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Abstract. We introduce the notion of the degree of ill{posedness of linear oper-ators in operator equations between Hilbert spaces. For speci�c assumptions onthe noise this quantity can be computed explicitely. Next it is shown that thedegree of ill{posedness as introduced explains the loss of accuracy when solvinginverse problems in Hilbert spaces for a variety of instances.1. IntroductionWe study the solution of operator equations Ax = y under presence of noise, whichmeans we are given an operator A : X ! Y , acting between Hilbert spaces and data(1.1) yÆ = Ax+ Æ�;where Æ represents the noise level and Æ� the noise inherent in the data yÆ. Our goalis to study the lack of accuracy when reconstructing the unknown solution x basedon data yÆ.Ideally, if the noise is bounded k�k � 1 and the operator is boundedly invertible,then we would be able to reconstruct the unknown solution x by x̂ := A�1yÆ, andthis would result in an error boundkx� x̂k = kÆA�1�k � ÆkA�1 : Y ! Xk; i.e., of the orderÆ:But in general, either when the noise is unbounded, in particular statistical, and/orthe operator does not have a bounded inverse, then there will be a lack in accuracywhen reconstructing x based on data yÆ. The question arises, whether one candescribe this loss as dependent on the operator A and/or the type of noise �. Thisleads to the notion of the degree of ill{posedness of the operator in the presence ofnoise. The loss of accuracy will then be seen to depend on this degree of ill{posednessand on some a priori smoothness assumption on the exact solution.In this study we assume that the underlying operator A is compact and injectiveand the noise is either bounded deterministic or centered Gaussian white noise, suchthat for any functional a 2 Y it holdsE jh�; aij2 = kak2:In this framework, an estimate for approximating x, based on observations yÆ isgiven as an arbitrary (measurable) mapping, say x̂ into X. Its error at any probleminstance x 2 X is then given byedet(x; x̂; Æ) := supk�k�1 kx� x̂(yÆ)kin the deterministic case orestat(x; x̂; Æ) := �Ekx� x̂k2�1=2for Gausssian white noise. The worst-case error over a class F of problem instancesis given as e�(F; x̂; Æ) := supx2F e�(x; x̂; Æ);1



with � 2 fdet; statg. The best possible order of accuracy it de�ned my minimizationover all estimators, i.e., e�(F; Æ) := infx̂ e�(F; x̂; Æ):In the present context we are interested in the asymptotic behavior of e�(F; Æ) asÆ ! 0, when the class F of problem instances is given by general source conditionsin the form(1.2) A'(R) := fx 2 X; x = '(A�A)v; kvk � Rg ;where ' is a function on the spectrum of the operator A�A. Further restrictions willbe imposed later on.Previous approaches. There were various attempts to formalize the notion ofdegree of ill{posedness. The �rst appearance of this notion probably dates back toG. Wahba, Practical approximate solutions to linear operator equations when the data arenoisy, SIAM J. Numer. Anal., 14 (1977), pp. 651{667.Later this question was discussed in some talk byM. Nussbaum, Deterministische und stochastische Modellierung von Inversen Problemen,WIAS 1994. This resulted in a joint studyM. Nussbaum and Sergei Pereverzev. The degree of ill{posedness in stochastic and deter-ministic noise models, Preprint 509, WIAS, Berlin, 1999.In a similar way this was explored in the context of Hilbert scales inP. Math�e and S. V. Pereverzev, Optimal discretization of inverse problems in Hilbertscales. Regularization and self-regularization of projection methods, SIAM J. Numer. Anal.38(2001), pp. 1999{2021.The distinction between the smoothness of the solution and the intrinsic lack ofinvertibility of the operator became transparent. Within the context of classicalHilbert scales, say Hs; s 2 R, the latter is de�ned as� := sup �s; EkA�1�k2s <1	 :For operators acting along such scales, i.e. for some a > 0 it holds kAxk�+a � kxk�,this quantity was proven to be � = �(a+ 1=2), which can be interpreted as � stepsize plus one half, the latter being the contribution due to white noise.For variable Hilbert scales fX g, as introduced below, and deterministic noise thiswas extended to (with � and  being functions)� := inf � ; kA�1 : Y ! X k � 1	 ;as elaborated in [5]. It could be seen, that this minimization problem has a solutiongiven by �(t) = 1=pt. Below we shall also review this result.In the present context of white noise the natural de�nition should read� := inf � ; EkA�1�k2 � 1	 :The following questions arise naturally.{ Can this de�nition be given a precise meaning?2



{ Does this relate to the lack of accuracy for operator equations under statis-tical noise?In Section 2 we shall provide a framework in which the above de�nition becomesmeaningful. Moreover, we shall calculate �, as a function of the underlying operatorA under both assumptions on the noise.Then in Section 3 we shall see that for a variety of cases the degree of ill{posednessis inherent in the loss of accuracy as this has been shown for classical Hilbert scalesin [3].We close our investigations with some representative examples.2. The degree of ill{posedness under general source conditionsIn contrast to the usual approach, where smoothness is given by (�nite) di�erentia-bility properties, we express smoothness in terms of the compact injective operatorA from (1.1). This approach is related to variable Hilbert scales, as introduced byHegland [2]. We briey recall the basic concept.2.1. Variable Hilbert scales. We shall assume, that the scale is generated by A�A.The singular numbers of A�A are denoted by (sk)1k=1, arranged in non-increasingorder. In particular a := s1 = kA�Ak.Each function ' : (0; a] ! [0;1) can be assigned a pre-Hilbert space as follows.First let F := (x; x = nXj=1hx; ujiuj; n <1) ;be the linear space of �nite expansions in u1; u2; : : : , the eigenbasis of A�A. Given' we can endow F with scalar producthx; yi' := 1Xj=1 hx; ujihy; uji'2(sj) ; x; y 2 F:The completion of F in this scalar product is denoted by X', such that A'(R)from (1.2) is the ball of radius R in X'. It is easy to verify, that A'(R) � X isrelatively compact only, if limt!0 '(t) = 0, such that we assume ' is non-decreasingand '(0+) = 0. We shall call such functions index (functions) throughout.De�nition 1. Let I(0; a] denote the class of all functions ' : (0; a]! [0;1), whichare non-decreasing and limt&0 '(t) = 0. We agree to call functions from I(0; a]index functions.The collection fX'; ' 2 I(0; a]g is called variable Hilbert scale. A detailed accountof such variable Hilbert scales can be found in [2, 10] and [5, 4]. We shall however notuse much of the theory developed towards numerical analysis under general sourceconditions. 3



2.2. Bounded deterministic noise. Here we review one result from [5]. This isfor completeness, but also to see how calculations are carried out within the presentframework. In [5] the function� := inf � ; kA�1 : Y ! X k � 1	was de�ned to be the degree of ill{posedness. But the operator A is not boundedlyinvertible from Y into X, therefore X cannot embed into X, thus  cannot bean index. Therefore we require that  is the adjoint of an index function, i.e.,1= 2 I(0; a].Moreover, it is important to notice that the index functions are only determinedon the spectrum of A�A, thus we identify index functions which coincide on thespectrum of the operator A�A.De�nition 2. Let(2.3) � := sup� 2 I(0; a]; kA�1 : Y ! X1= k � 1	be the point-wise supremum on sj; j = 1; 2; : : : . The function � = 1=� is calleddegree of ill{posedness of equation (1.1) under bounded deterministic noise.The degree of ill{posedness of the operator A under bounded deterministic noise iscalculated next.Proposition 1. For a compact injective operator A and bounded noise it holds truethat(2.4) �(t) = pt; 0 < t � a:Thus the degree of ill{posedness is t! 1=pt.Proof. Let  be any index function satisfying the restriction from (2.3). For anarbitrary kyk � 1 we can argue as follows.1 � kA�1yk21= = k (A�A)A�1yk2 = k 2(A�A)(A�A)�1yk:Thus k 2(A�A)(A�A)�1k � 1, which translates to  2(t)=t � 1 and proves pt to bean upper bound. But is is easy to see that pt itself ful�lls the restriction, so theupper bound is attained and the proof is complete. �Remark 1. Notice that in variable Hilbert scales this degree of ill{posedness is aninvariant. Once the scale �ts to the operator the degree of ill{posedness no longerdepends on the operator. Therefore, the theory of regularization of linear ill{posedproblems in variable Hilbert scales has nice geometric properties, see [5].2.3. Gaussian white noise. Based on Proposition 1 there is good reason to mimicthe de�nition for white noise as above with the same modi�cation as for deterministicnoise.De�nition 3. Let(2.5) � := sup � 2 I(0; a]; EkA�1�k21= � 1	 :The function � = 1=� is said to be the degree of ill{posedness for operator equa-tions (1.1) under Gaussian white noise. 4



As we shall see next, this can be calculated explicitely. Recall that sj; j = 1; 2; : : :denotes the decreasing sequence of singular numbers of A�A.Theorem 1. The degree of ill{posedness for operator equations (1.1) under Gauss-ian white noise is(2.6) �(t) =  Xsk�t 1=sk!1=2 :Let us denote 	(t) := �Psk�t 1=sk��1. This function is closely related to the har-monic mean of the singular numbers of A�A. A more balanced variant of the degreeof ill{posedness can be given in terms of tj; j = 1; 2; : : : , the sequence of singularnumbers of A as �(t) = �Pt2k�t 1=t2k�1=2.Proof. We shall show that 1=�2(t) = 	(t). To this end we rewrite for any index  EkA�1�k21= = tr 2(A�A)(A�A)�1 = 1Xj=1  2(sj)sj :Let us consider the family �k 2 I(0; a] of piece-wise constant functions de�ned as�k(t) := (p	(sk); t � sk0; else:PlainlyP1j=1 �2k(sj)=sj = 1. Note also that for any j it holds true that maxf�2k(sj),k = 1; 2; : : :g = 	(sj), such that � from (2.5) obeys�2 � sup ��2k; k = 1; 2; : : :	 = 	:Now suppose that for some k it holds true that �2(sk) > 	(sk). By de�nition, for all" > 0 we can �nd  " with  2"(sk) � �2(sk)� " and EkA�1�k21= " � 1. But, because " is non-decreasing we deduce1 � kXj=1  2"(sj)sj �  2"(sk)	(sk) :This yields 	(sk) �  2"(sk) � �2(sk) � ". Letting " ! 0 allows to complete theproof. �In Section 4 we shall estimate the degree of ill{posedness for important special cases.3. Relation to best possible accuracyHere we shall establish that the degree of ill{posedness as introduced above is in-herent in the loss of accuracy when reconstructing the solution x from (1.1) undernoisy data yÆ. It will be transparent that this loss is determined by both, the de-gree of ill{posedness of the operator and the a priori smoothness ' 2 I(0; a] of thesolution x 2 A'(R), see (1.2). Precisely, given the a priori smoothness ' and degreeof ill{posedness � let � := '=� 2 I(0; a].5



3.1. Bounded deterministic noise. Again we review one result for deterministicnoise from [5]. An increasing function ' is said to obey a �2{condition, if there is1 � C <1 for which '(2t) � C'(t); 0 < t � a.In the present setup we have �(t) = pt'(t); 0 < t � a. Theorem 1 from [5] assertsthe following.Theorem 2. If the function t! '2((�2)�1(t) is concave, thenedet(A'(R); Æ) � R'(��1(Æ=R)); 0 < Æ � aR:If, in addition ' obeys a �2 condition thenedet(A'(R); Æ) � R'(��1(Æ=R)); 0 < Æ � aR:Remark 2. The concavity of the above composite function is crucial. However, thisis not restrictive, because in many cases this is ful�lled. As was established in [5] thisholds true if log(') is concave, thus for all polynomial index functions, but also forindex functions of logarithmic type, as t! log�� 1=t, at least if t is small enough.We will not discuss topics as there are discretization, adaptation. . . . These areinteresting and important issues, but here our attention is towards best possibleaccuracy, which is ideal but serves as a benchmark for more practical cases.3.2. Gaussian white noise. Our analysis for Gaussian white noise will be basedon Pinsker's seminal paper [9], where a general result was established, which allowsto draw conclusions for the present setup of general source conditions. We mentionthat for some special cases a similar analysis was carried out in [6].Upper bound: Regularization. It is well known that approximate solutions to (1.1)require regularization. If the best possible accuracy shall be achieved, then theregularization must be capable to take the a priori smoothness into account. Thesystematic study of this issue goes back to [11]. In the context of general sourceconditions this was extended in [5]. However, the easiest way to retain the bestpossible accuracy is spectral cut{o� (hard threshold). This is not always feasiblebut for our purpose suÆcient. We will not formally introduce the machinery ofregularization methods, but note the following. The original equation (1.1) can berewritten, using the singular value decomposition as(3.7) yÆ = 1Xj=1 psjhx; ujivj + Æ�;which leads to an in�nite systemhyÆ; vji = psjhx; uji+ Æ�j; j = 1; 2; : : :where the �j are i.i.d standard normal. As estimate x̂ of x based on observationsyÆ;1; yÆ;2; : : : we shall use x̂n(yÆ) := nXj=1 1psj hyÆ; vjiuj:6



where the choice of n = n(Æ) plays the role of a regularizing parameter. The upperbound for such type of estimators is provided inProposition 2. Let � be the degree of ill{posedness of the operator equation (1.1).For an index function ' let(3.8) �(t) := '(t)�(t) ; 0 < t � a:Given Æ > 0 let(3.9) n� := max fn; �(tn) � Æ=Rg :Uniformly for x 2 A'(R) the estimator x̂n�(yÆ) provides(3.10) �Ekx� x̂n�k2�1=2 � p2R'(��1(Æ=R)):Note that � has jumps, and we de�ne the inverse by ��1(s) = inf fu; �(u) � sg.Proof. It is easy to see thatkx� x̂n�k2 = 1Xj=n�+1 jhx; ujij2 + Æ2 n�Xj=1 jh�; vjij2 =tj:Thus we can boundEkx� x̂n�k2 = 1Xj=n�+1 jhx; ujij2 + Æ2 n�Xj=1 1=tj� '2(tn�) 1Xj=n�+1 jhx; ujij2 ='2(tj) + Æ2=	(tn�)� R2'2(tn�) + Æ2�2(tn�):Therefore, if n� is chosen as in (3.9), thenEkx� x̂n�k2 � 2R2'2((�2)�1(Æ2=R2);from which the proof can be completed. �Remark 3. A re�ned analysis as carried out in [9], and using a more subtle reg-ularization provides the exact constant, but is not of such a form, which is easy tointerpret.Lower bounds: Reduction to regression. Again we start from (3.7) to obtain an in�-nite system of equations. This set of equations is given a suitable form by considering(3.11) yÆ;j = �j + Æ�j; j = 1; 2; : : : ;which is the standard regression problem with independent (Gaussian) noise, havingvariances �2j = Æ2=sj; j = 1; : : : , and �j := hx; uji; j = 1; 2; : : : .This regression problem is only complete, after �xing assumptions on the unknown� := (�1; �2; : : : ). In terms of Fourier coeÆcients hx; uji with respect to the eigenbasis7



u1; u2; : : : the assumption (1.2) rewrites as� 2 BR := ((�1; �2; : : : ); 1Xj=1 �2j'2(sj) � R2) :This is exactly the setup of the paper [9] by M. S. Pinsker. It will be convenient torephrase Pinsker's results, who aimed at providing the exact asymptotics. Let ajand �j; j = 1; 2; : : : as above. Theorem 1 from [9] can be stated as follows.Fact 1. There is c1 > 0 with the following property. If � = �(Æ) is such, that(3.12) Æ2 Xj; '(sj)>� 1sj 1�'(sj) �1� �'(sj)� = R2;then the error of the best estimator can be bounded from above and below byR� � estat(A'(R); Æ) � c1R�:Remark 4. The derivation of this statement from Pinsker's Theorem 1 can befound in [6]. Under additional assumptions Pinsker is even able to show, thatlimÆ!0 estat(A'(R); Æ)=R�(Æ) = 1.Recall the de�nition of � from (3.8) and note that � is increasing and limt&0�(t) =0.In [5, Prop. 2] the lower bound for reconstruction in the general ill{posed problem forbounded deterministic noise was proved under additional geometric assumptions. Inthe statistical framework an analogous assumption will be made. In that paper theasymptotic error behavior is described through a concave function. The respectivefunction in the present context turns out to be t! '2((�2)�1(t)). For our proof towork, slightly more is assumed. Namely, there is 0 < r < 1 for which(3.13) '2((�2)�1(2(1 + r2)t)) � 2'2((�2)�1(t)); 0 < t < �2(a):Remark 5. For concave functions (3.13) holds true with r = 0.Now we are ready to state and prove the main result in this section.Proposition 3. Suppose that (3.13) is ful�lled. Let t� be chosen from(3.14) n� := sup�n; �(tn) � rÆ2R�as t� := tn�. Then the error of the best estimator can be bounded from below by(3.15) estat(A'(R); Æ) � c1R'(t�):First we provide some auxiliary estimate.Lemma 1. Under assumption (3.13) we have for 0 < 2s � '2(a) that(3.16) 1� �2(('2)�1(2s))�2(('2)�1(s)) � r21 + r2 :8



Proof. Because t! '2((�2)�1(t)) is increasing, the same holds true for the inverse,such that the above inequality implies by a change of variables2(1 + r2)�2(('2)�1(s)) � �2(('2)�1(2s));hence 2 �2(('2)�1(s))�2(('2)�1(2s)) � 11 + r2 :Rewriting this in terms of �2, using � = '=�, we obtain2 s�2(('2)�1(s)) � �2(('2)�1(2s))2s = �2(('2)�1(2s))�2(('2)�1(s)) � 11 + r2 :from which the assertion easily follows. �Let us notice that (3.13) is equivalent to(3.17) P2s>'2(sj)�s 1=sjP'2(sj)�2s 1=sj � r2; as s! 0;as can be seen from the proof of Lemma 1. This representation is less intuitive butuseful for inspecting examples, below.Proof of Theorem 3. Given Æ, let n� be from (3.14). We shall show, that for �t, whichis obtained from the solution � from (3.12) via '(�t) = 2�, necessarily �t � t�. Indeed,we can conclude, using t := (2�)2 and t = '2(�t) intermediately, thatR2 = Æ2 Xj; '(sj)>� 1sj 1�'(sj) �1� �'(sj)� � Æ28�2 Xj; 4�>'(sj)�2� 1sj= Æ22t ��2(('2)�1(t)� �2(('2)�1(2t))�� Æ22�2(�t) �1� �2(('2)�1(2t))�2(('2)�1(t)) � :Using Lemma 1 we end up with R2 � r2Æ2=4�2(�t) from which we easily deduce�t � t�. Using Fact 1 the proof can be completed. �Comparing the upper and lower bound for the best possible accuracy we can statethe following result.Theorem 3. Under assumption (3.13) the following estimates hold true.(3.18) c1R'(��1(rÆ=2R) � estat(A'(R); Æ) � p2R'(��1(Æ=R):If the function t! '(��1(t) obeys a �2{condition thenestat(A'(R); Æ) � R'(��1(Æ=R); as Æ ! 0:Remark 6. By its very construction, on the spectrum s1; s2; : : : it holds true that�(sj) � 1=psj = �det(sj). Therefore'(('=�det)�1(sj)) � '(('=�)�1(sj)); j = 1; 2; : : : ;such that under (3.13) and on the spectrum the best possible accuracy under statis-tical noise is harder than under bounded deterministic noise. For severely ill{posed9



problems, i.e., if �(t) � �det(t), and if ' obeys a �2{condition, then the rates coin-cide. This was observed in previous studies, see e.g. [8].4. ExamplesIt might be of interest to estimate the degree of ill{posedness and the related bestpossible accuracy in important special cases. For these examples the results forbounded deterministic noise are known, see [5], and will not be reviewed here.Therefore we entail details for statistical noise, only.Example 1. Let us assume that the singular numbers tj of the operator A asymptot-ically behave like tj � 1j�a. Then sj � j�2a hence 	(t) � t2a+12a . The degree of ill{posedness in this case asymptotically behaves like �(t) � (1=t)(a+1=2)=(2a); 0 < t � a.Let us additionally assume that smoothness is given by '(t) = t�=2a, see for in-stance [5]. In this case it is easy to estimate the quotient from (3.17) as follows.P2s>'2(sj)�s 1=sjP'2(sj)�2s 1=sj � c1=('2)�1(s)# fj; s � '2(sj) < 2sg(1=('2)�1(2s))(2a+1)=2a� c(('2)�1(2s))1=2a#�j; s � '2(sj) < 2s	 � r2as s! 0.Thus Theorem 3 applies and we obtain estat(A'(R); Æ) � R(Æ=R) ��+a+1=2 .In this particular case the analysis in [9] even yields thatlimÆ!0 estat(A'(R); Æ)=(R(Æ=R) ��+a+1=2 ) = 1:Example 2. For severely ill{posed problems, i.e., when the singular numbers behavelike tj � e��j for some � > 0, we obtain 	(t) � �t, and the degree of ill{posednessasymptotically behaves like �(t) � 1=p�t; 0 < t � a. It is worthwhile to notice thatasymptotically this is the same as the degree of ill{posedness for bounded determin-istic noise, cf. Proposition 1.If for some � > 0 the a priori smoothness is '(t) = log�1=� 1=t2, then we can boundthe enumerator from (3.17) by the last summand and the denominator by usingPlj=1 bj � bl+1=(b� 1); b > 1 to obtainP2s>'2(sj)�s 1=sjP'2(sj)�2s 1=sj � (e� � 1) e�1=(2�)(1=s)�e�(1=(2�)(1=s)�+1) � 1� e��:Again Theorem 3 applies and that the degree of ill{posedness correctly predicts theasymptotic error estat(A'(R); Æ) � R log�1=� Æ2=R2.In the speci�c situation when one wants to recover the initial distribution in theheat conduction problem from noisy data at time T > 0, then this problem re-duces to a severely ill{posed, similar to the one from above. In this particular1For sequences aj ; bj ; j = 1; 2; : : : the symbol aj � bj means that there are constants 0 < c <C <1 for which caj � bj � Caj ; j = 1; 2; : : : . 10



case, which is not covered by [9], and when the a priori smoothness is given by'(t) = (2T= log(1=t2))�=2, the authors in [1] can prove thatlimÆ!0 estat(A'(R); Æ)=(R� 2Tlog Æ2=R2��=2) = 1;which again shows that the asymptotics abstained above is exact.5. ConlusionIn this study we have formally introduced the notion of the degree � of ill{posednessfor linear operator equation in Hilbert spaces. This de�nition extends previous ap-proaches as found in the literature. In contrast to equations with bounded deter-ministic noise this degree depends on spectral properties of the involved operatorby a quantity related to the harmonic mean of the singular numbers.For ill{posed problems in variable Hilbert scales, i.e., when smoothness is measuredin terms of general source conditions by some index function ', it can be seen that thebest possible accuracy for reconstructing the unknown solution is determined by thepair (�; ') through the function �(t) = '(t)=�(t). Under some additional restrictionthe asymptotic error of reconstruction at noise level Æ behaves like Æ ! '(��1(Æ)).This extends previous study for bounded deterministic noise.References[1] G. Golubev and R. Khasminskii. A statistical approach to the Cauchy problem for the Laplaceequation. In State of the art in probability and statistics (Leiden, 1999), volume 36 of IMSLecture Notes Monogr. Ser., pages 419{433. Inst. Math. Statist., Beachwood, OH, 2001.[2] Markus Hegland. Variable Hilbert scales and their interpolation inequalities with applicationsto Tikhonov regularization. Appl. Anal., 59(1-4):207{223, 1995.[3] Peter Math�e and Sergei V. Pereverzev. Optimal discretization of inverse problems in Hilbertscales. Regularization and self-regularization of projection methods. SIAM J. Numer. Anal.,38(6):1999{2021, 2001.[4] Peter Math�e and Sergei V. Pereverzev. Discretization strategy for linear ill-posed problems invariable Hilbert scales. Inverse Problems, 19(6):1263{1277, 2003.[5] Peter Math�e and Sergei V. Pereverzev. Geometry of linear ill-posed problems in variableHilbert scales. Inverse Problems, 19(3):789{803, 2003.[6] Peter Math�e and Sergei V. Pereverzev. Regularization of some linear ill{posed problems withdiscretized random noisy data. submitted, 2004.[7] M. Nussbaum and Sergei Pereverzev. The degree of ill{posedness in stochastic and determin-istic noise models. Preprint 509, WIAS, Berlin, 1999.[8] Sergei Pereverzev and Eberhard Schock. Morozov's discrepancy principle for Tikhonov regu-larization of severely ill-posed problems in �nite-dimensional subspaces. Numer. Funct. Anal.Optim., 21(7-8):901{916, 2000.[9] M. S. Pinsker. Optimal �ltration of square-integrable signals in Gaussian noise. ProblemsInform. Transmission, 16(2):52{68, 1980.[10] Ulrich Tautenhahn. Optimality for ill-posed problems under general source conditions. Numer.Funct. Anal. Optim., 19(3-4):377{398, 1998.[11] G. M. Va��nikko and A. Yu. Veretennikov. Iteracionnye procedury v nekorrektnyh zadaqah.\Nauka", Moscow, 1986.[12] Grace Wahba. Practical approximate solutions to linear operator equations when the data arenoisy. SIAM J. Numer. Anal., 14(4):651{667, 1977.11


