
Weierstra�-Institut

f�ur Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 { 8633

Monte Carlo Methods and Numerical Solutions

Wolfgang Wagner

submitted: 5th August 2004

Weierstrass Institute for

Applied Analysis and Stochastics

Mohrenstrasse 39

D-10117 Berlin, Germany

E-Mail: wagner@wias-berlin.de

No. 954

Berlin 2004

W I A S

2000 Mathematics Subject Classi�cation. 65C05, 76P05, 82C80.

Key words and phrases. Rare�ed gas dynamics, Direct Simulation Monte Carlo, Boltzmann

equation, stochastic models.



Edited by

Weierstra�-Institut f�ur Angewandte Analysis und Stochastik (WIAS)

Mohrenstra�e 39

10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

The purpose of this paper is to illustrate that direct simulation Monte

Carlo methods can often be considered as rigorous mathematical tools for

solving nonlinear kinetic equations numerically. First a convergence result for

Bird's DSMC method is recalled. Then some sketch of the history of stochas-

tic models related to rare�ed gas dynamics is given. The model introduced by

Leontovich in 1935 provides the basis for a rigorous derivation of the Boltz-

mann equation from a stochastic particle system. The last part of the paper

is concerned with some recent directions of study in the �eld of Monte Carlo

methods for nonlinear kinetic equations. Models with general particle inter-

actions and the corresponding limiting equations are discussed in some detail.

In particular, these models cover rare�ed granular gases (inelastic Boltzmann

equation) and ideal quantum gases (Uehling-Uhlenbeck-Boltzmann equation).

Problems related to the order of convergence, to the approximation of the

steady state solution, and to variance reduction are brie
y mentioned.
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1 DSMC and the Boltzmann equation

Direct simulation Monte Carlo (DSMC) has been the most widely used numerical

algorithm in kinetic theory. We refer to G.A. Bird's monograph [Bir94, Sections 9.4,

11.1] concerning remarks on the historical development. The history of the subject

is also well re
ected in the proceedings of the bi-annual conferences on \Rare�ed

Gas Dynamics" ranging from 1960 [RGD60] to the present volume.

The method is based on systems of particles�
x1(t); v1(t); : : : ;xn(t); vn(t)

�
; t � 0 ; n � 1 ; (1)

imitating the behaviour of gas molecules in a probabilistic way. It includes sev-

eral numerically motivated approximations. Independent motion (free 
ow) of the

particles and their pairwise interactions (collisions) are separated using a splitting

procedure with a time increment �t : During the free 
ow step, particles move ac-

cording to their velocities,

xi(t+�t) = xi(t) +
Z

t+�t

t

vi(s) ds ; i = 1; : : : ; n ;

and do not collide. At this step boundary conditions are taken into account. During

the collision step, particles do not change their positions. At this step some partition

D = [lc

l=1Dl

of the spatial domain into a �nite number lc of disjoint cells is introduced. In each

cell a certain amount of binary collisions between particles is performed,

vi; vj ) v
�

i
; v
�

j
:

The probabilistic rules of these transformations depend on the interaction potential

between gas molecules.

The interest in studying the connection between stochastic simulation procedures in

rare�ed gas dynamics and the Boltzmann equation was stimulated by K. Nanbu's

paper [Nan80] (cf. the survey papers [Nan86], [IN87]). Convergence for the Nanbu

scheme and its modi�cations was studied in [Bab89] (spatially homogeneous case)

and [BI89] (spatially inhomogeneous case). Convergence for Bird's method was

proved in [Wag92]. It was established that the empirical measures related to the

particle system (1),

�
(n)(t; dx; dv) =

1

n

nX
i=1

Æxi(t);vi(t)(dx; dv) ;

converge (as n ! 1) to a deterministic measure with some density f̂ ; which is

de�ned as follows.

Consider the time discretization tk = k�t ; k = 0; 1; : : : ; and auxiliary functions

f
(1;k)(t; x; v) ; f

(2;k)(t; x; v) ; t 2 [tk; tk+1] ; (x; v) 2 D �R3
:
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These functions are determined by two systems of equations coupled via their initial

conditions. The �rst system, corresponding to the free 
ow simulation steps, has

the form

@

@t
f
(1;k)(t; x; v) + (v;rx) f

(1;k)(t; x; v) = 0 ; (2)

with appropriate boundary conditions. Here r denotes the vector of partial deriva-

tives and ( :; : ) is the scalar product in the Euclidean spaceR3
: The initial conditions

are

f
(1;k)(tk; x; v) = f

(2;k�1)(tk; v) ; k = 1; 2; : : : ; f
(1;0)(0; x; v) = f0(x; v) ;

where f0 is some density function related to the initial state of the particle system

(1). The second system of equations, corresponding to the collision simulation steps,

has the form

@

@t
f
(2;k)(t; x; v) =

Z
D

Z
R3

Z
S2
h(x; y)B(v;w; e)� (3)h

f
(2;k)(t; x; v�) f (2;k)(t; y; w�)� f

(2;k)(t; x; v) f (2;k)(t; y; w)
i
de dw dy ;

where

h(x; y) =
1

jDlj

lcX
l=1

�D
l
(x)�D

l
(y) ; (4)

j:j denotes the volume, �A is the indicator function of a set A and S2 is the unit

sphere in R3
: The collision kernel B is determined by the interaction potential

between gas molecules. The initial conditions are

f
(2;k)(tk; x; v) = f

(1;k)(tk+1; x; v) ; k = 0; 1; : : : :

The limiting density f̂ is de�ned as

f̂(tk; x; v) = f
(2;k�1)(tk; x; v) ; k = 1; 2; : : : ; f̂(0; x; v) = f0(x; v) :

2 History of stochastic models in RGD

2.1 Statistical description

The basis for the statistical theory of gases was provided in the second half of the

19th century. James Clerk Maxwell (1831-1879) found the distribution function of

the gas molecule velocities in thermal equilibrium,

feq(v) =
1

[2� T ]3=2
exp

 
�
kvk2

2T

!
; v 2 R3

: (5)
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The positive number T corresponds to the temperature of the gas. Ludwig Boltz-

mann (1844-1906) studied the problem if a gas starting from any initial state reaches

the Maxwellian distribution (5). In [Bol72] he established the equation

@

@t
f(t; x; v) + (v;rx)f(t; x; v) = (6)Z
R3

dw

Z
S2
deB(v;w; e)

h
f(t; x; v�) f(t; x; w�)�f(t; x; v) f(t; x; w)

i

governing the time evolution of the distribution function

f(t; x; v) ; t � 0 ; x 2 D � R3
; v 2 R3

:

This function represents the relative amount of gas particles at time t having a

position close to x and a velocity close to v : The collision transformation is

v
� = v + e (e;w � v) ; w

� = w + e (e; v � w) : (7)

For the hard sphere model (billiard balls) the collision kernel takes the form

B(v;w; e) = c j(v � w; e)j ; for some c > 0 :

2.2 Leontovich model

Consider a stochastic particle system

Z
(n)(t) =

�
X1(t); V1(t); : : : ;Xn(t); Vn(t)

�
; t � 0 ; (8)

determined by an in�nitesimal generator of the form

A(n)(�)(z) =
nX
i=1

(vi;rxi
)(�)(z)+

1

2n

X
1�i6=j�n

Z
S2

h
�(J(z; i; j; e))� �(z)

i
q
(n)(xi; vi; xj; vj; e) de ;

where � is an appropriate test function,

z = (x1; v1; : : : ;xn; vn) ; xi; vi2R
3
; i = 1; : : : ; n ;

q
(n) is an intensity function and

[J(z; i; j; e)]k =

8><
>:

(xk; vk) ; if k 6= i; j ;

(xi; vi + e(e; vj � vi)) ; if k = i ;

(xj; vj + e(e; vi � vj)) ; if k = j ;

is the jump transformation. Here we assume D = R3 so that no boundary condi-

tions are involved. We recall the pathwise behaviour of the system (8), which is a
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piecewise-deterministic process in the sense of [Dav93, Section 2]. Starting at z the

process moves according to the free 
ow, i.e.

Z
(n)(t) =

�
x1 + t v1; v1; : : : ;xn + t vn; vn

�
;

until a random jump time �1 is reached. The probability distribution of this time is

determined by

Prob(�1 > t) = exp

�
�

Z
t

0
�
(n)(Z(n)(s)) ds

�
; t � 0 ;

where

�
(n)(z) =

1

2n

X
1�i6=j�n

Z
S2
q
(n)(xi; vi; xj; vj; e) de :

At the random time �1 the process jumps into a state z1 ; which is obtained from the

state z
0 = (x01; v

0

1; : : : ;x
0

n
; v
0

n
) of the process just before the jump by a two-particle

interaction. Namely, two indices i; j and a direction vector e are chosen according

to the probability density

q
(n)(x0

i
; v
0

i
; x
0

j
; v
0

j
; e)

2n�(n)(z0)
(9)

and the velocities v0
i
; v
0

j
are replaced using the collision transformation (7).

The study of the relationship between the process (8) and the Boltzmann equation

(6) was started by M. A. Leontovich (1903-1981) in the paper [Leo35] in 1935.

Let p(n)(t; z) denote the n{particle distribution function of the process. Applying

properties of the collision transformation (7) and some symmetry assumptions on

q
(n)

; the equation

@

@t
p
(n)(t; z) +

nX
i=1

(vi;rxi
) p(n)(t; z) = (10)

1

2n

X
1�i6=j�n

Z
S2

h
p
(n)(t; J(z; i; j; e))� p

(n)(t; z)
i
q
(n)(xi; vi; xj; vj; e) de

is obtained from Kolmogorov's forward equation. Using the method of generating

functions, Leontovich �rst studied the cases of \monomolecular processes" (inde-

pendent particles) and of \bimolecular processes" with discrete states (e.g., a �nite

number of velocities). Under some assumptions on the initial state, he showed

that the expectations of the relative numbers of particles in the bimolecular scheme

asymptotically (as n !1) solve the corresponding deterministic equation. In the

case of the full Boltzmann equation the stochastic process was described via (10)

(even including a boundary condition of specular re
ection). Concerning the asymp-

totic behaviour of the process, Leontovich noted that he was not able to prove a

limit theorem in analogy with the discrete case, though he strongly believes that
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such theorem holds. However, he pointed out the following. Let p
(n)

k
denote the

marginal distributions corresponding to the density p
(n)

: If

lim
n!1

p
(n)
2 (t; x1; v1; x2; v2) = lim

n!1
p
(n)
1 (t; x1; v1) lim

n!1
p
(n)
1 (t; x2; v2) (11)

and

lim
n!1

q
(n)(x; v; y; w; e) = Æ(x�y)B(v;w; e) ; (12)

where Æ denotes Dirac's delta{function, then the function

f(t; x; v) = lim
n!1

p
(n)
1 (t; x; v)

solves the Boltzmann equation. For example, (12) is satis�ed for

q
(n)(x; v; y; w; e) = h

(n)(x; y)B(v;w; e)

and

h
(n)(x; y) =

(
c
�1
n

; if kx� yk � "
(n)

;

0 ; otherwise ;

where cn is the volume of a ball with radius "(n) ! 0 : In this case, according to (9),

only those particles can collide which are closer to each other than the interaction

distance "(n) :

Independently, the stochastic approach to the Boltzmann equation was developed

by M. Kac (1914-1984) in the paper [Kac56a] in 1956 (see also the books [Kac56b]

and [Kac59]). The spatially homogeneous version of equation (10) is called \master

equation" referring to [NLU40]. The factorization property (11) is called \chaos

property" (indicating asymptotic independence) and the statement of the basic the-

orem is \propagation of chaos". The spatially inhomogeneous case was treated by

C. Cercignani in the paper [Cer83] in 1983. He considered a system of \soft spheres",

where \molecules collide at distances randomly given by a probability distribution",

and proved propagation of chaos (modulo a uniqueness theorem). The limiting

equation is the molli�ed Boltzmann equation (cf. [Cer88, SectionVIII.3])

@

@t
f(t; x; v) + (v;rx) f(t; x; v) = (13)Z

D

Z
R3

Z
S2
h(x; y)B(v;w; e)

h
f(t; x; v�) f(t; y; w�)� f(t; x; v) f(t; y; w)

i
de dw dy ;

which reduces to the Boltzmann equation (6) if the \molli�er" h is a delta-function.

Further references concerning the spatially inhomogeneous case are [Sko88], [Fun86],

[NT89], [LP90], [Wag96], [GM97], [Rez03].
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2.3 Stochastic numerics

Stochastic numerical procedures in rare�ed gas dynamics go back to the papers

[Bir63] (homogeneous gas relaxation problem) and [Bir65] (shock structure prob-

lem) by G.A.Bird in 1963 and 1965, respectively. An interesting development of the

DSMC method was related to the \time counter" { the mechanism that determines

the number of collisions during a time step. Several similar modi�cations were intro-

duced under di�erent names in [Kou86] (null-collision technique), [IR88] (majorant

frequency scheme), [Bir89] (no time counter scheme). The basic idea of \�ctitious

jumps" is applicable in general situations (cf. [EK86, Section 4.2]). In [Nan80]

K. Nanbu derived a stochastic particle scheme starting directly from the Boltzmann

equation. However, the original method su�ered from certain de�ciencies (quadratic

e�ort in the number of particles, conservation of momentumand energy only on aver-

age). Later this approach was considerably improved (cf. [Bab86], [Bab89]) so that it

did successfully work in applications like the reentry problem (cf. [NGS91], [Bab98]).

Among the numerous Russian sources on stochastic algorithms for the Boltzmann

equation we mention papers related to the Leontovich-Kac-process [BY75], [Kon86],

[Khi86], [IR89], papers using branching processes [ENS89], [EM87] and papers fol-

lowing Skorokhod's approach via stochastic di�erential equations with respect to

Poisson measures [Ars87], [LS89].

2.4 Comments

Boltzmann's equation (6) was derived from a model with deterministic interaction

between particles. The origin of stochasticity (necessary for the interpretation of the

solution) remained unclear. Statistical mechanics solves this problem via a random

initial state of the system. Leontovich's motivation for introducing his model was

to provide a stochastic process such that the Boltzmann equation describes the

limit (for the particle number going to in�nity) of rigorously de�ned mathematical

expectations. Moreover, this approach allows one to study 
uctuations. He did

not address the problem of the relationship between the stochastic process and the

description of the system by quantum (or classical) mechanics. The main new point

in this model are the stochastic interactions. Billiard balls can penetrate each other

colliding only with a certain probability. This is a conceptual barrier, which Kac was

not able to overcome. In 1959 he wrote [Kac59, p.131]: \The primary disadvantage

of the master equation approach ... lies in the diÆculty (if not impossibility!) of

extending it to the nonspatially uniform case." In 1973 the message was the same

[Kac73, p.385]: \The master equation approach su�ers from a major de�ciency.

It is limited to the spatially homogeneous case. It seems impossible to bring in

streaming terms while at the same time treating collisions as random events." Bird's

DSMC algorithm can be derived from the Leontovich model by introducing certain

numerical approximations (splitting, cells). The problem of combining free 
ow with

stochastic collisions is avoided (hidden) by the splitting procedure. Nevertheless, all

particles in a cell collide according to some probabilistic rules and not according to

7



their actual trajectories.

3 Some recent directions of study

3.1 General interactions

Consider particles with types from a locally compact separable metric space Z : Any

event in the system consists in the interaction of at most R particles and produces

as a result a �nite number of particles. This includes, for example, the generation of

new particles from a source, the extinction or transformation of single particles, the

collision of two particles, as well as more complicated chemical reactions. Formally,

we introduce the state space of the particle system as

E =

(
nX
i=1

Æzi : n � 0 ; zi 2 Z ; i = 1; : : : ; n

)
;

where Æa denotes the delta-measure concentrated at a : The admissible subsequent

states of � 2 E are denoted by

J0(�; �) = � + � ; Jr(�; i1; : : : ; ir; �) = � + � � Æzi1
� : : :� Æzir ; r = 1; : : : ; R ;

where i1; : : : ; ir are pairwise distinct indices from f1; : : : ; ng and � 2 E : The in-

tensity of these events is determined by some compactly bounded kernels q0; q1; : : : ; qR
depending on a corresponding number of arguments. The asymptotic behaviour of

such systems has been studied under appropriate assumptions in [EW03]. It turned

out that they approximate the deterministicmeasure-valued solution of the equation

d

dt
h'; �(t)i = G('; �(t)) ; t > 0 : (14)

The nonlinear operator is de�ned as

G('; �) =
Z
E

h'; �i q0(d�)+

RX
r=1

Z
Z

: : :

Z
Z

Z
E

h
h'; �i � '(z1)� : : :� '(zr)

i
qr(z1; : : : ; zr; d�)�(dz1) : : : �(dzr) ;

for continuous test functions ' with compact support and measures � on Z ; where

the notation h'; �i =
R
Z
'(z) �(dz) is used. As an example we consider the spatially

homogeneous Boltzmann equation with dissipative collisions. Let Z = Rd
; d � 1 ;

and denote

v
0(v;w; e; �) =

v + w

2
+ "(v;w; �)

kv � wk e

2

w
0(v;w; e; �) =

v + w

2
� "(v;w; �)

kv � wk e

2
;
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where v;w 2 Rd
; e 2 Sd�1 (unit sphere), � 2 � (measurable space) and " is some

measurable function. Note that

kv0k2 + kw0k2 = kvk2 + kwk2 �
1� "(v;w; �)2

2
kv �wk2 ;

i.e. energy is dissipated if "2 < 1 ; conserved if "2 = 1 ; and created if "2 > 1 :

Assuming

q2(v;w;A) =
1

2

Z
�

Z
Sd�1

�A(Æv0(v;w;e;�) + Æw0(v;w;e;�))B(v;w; e) de �(d�) ;

where A is a measurable subset of E and � is some probability measure on � ;

equation (14) takes the form

d

dt
h'; �(t)i =

1

2

Z
Rd

Z
Rd

Z
�

Z
Sd�1

h
'(v0(v;w; e; �))+

'(w0(v;w; e; �))� '(v)� '(w)
i
B(v;w; e) de �(d�)�(t; dv)�(t; dw)

and reduces to the weak form of the spatially homogeneous Boltzmann equation in

the case " � 1 :

An even more general class of stochastic models is obtained when the intensity of

an individual interaction depends on the state of the whole system, e.g. via the par-

ticle density. Such systems approximate certain generalized Boltzmann equations.

One example is the Uehling-Uhlenbeck-Boltzmann equation [UU33] related to ideal

quantum gases. In the spatially homogeneous case this equation reads

@

@t
f(t; v) =

Z
R3

dw

Z
S2
deB(v;w; e)

h
[1+�f(t; v)] [1+�f(t; w)] f(t; v�) f(t; w�)�

[1+�f(t; v�)] [1+�f(t; w�)] f(t; v) f(t; w)
i
: (15)

It reduces to the Boltzmann equation in the case � = 0 : Bose-Einstein statistics

and Fermi-Dirac statistics are equilibrium distributions of equation (15) with � =

+1 and � = �1 ; respectively. A DSMC method for this equation was studied in

[GW03], where more details and further references can be found. A second example

is the limiting equation for the Consistent Boltzmann Algorithm [AGA95], a DSMC

modi�cation for dense gases. This equation takes the form

@

@t
f(t; x; v) + (v;rx) f(t; x; v) =

Z
R3

dw

Z
S2
deB(v;w; e)� (16)h

Y (%(t; x�)) f(t; x�; v�) f(t; x�; w�)� Y (%(t; x)) f(t; x; v) f(t; x; w)
i
:

Here %(t; x) =
R
R3 f(t; x; v) dv is the density and x

� denotes an appropriate dis-

placement during collisions. The positive continuous function Y is going to in�nity

as the density reaches its close-packing value. Equation (16), which is closely related

to the Enskog equation, has been studied in [GW00a], [GW02], where more details

and further references can be found. The derivation of equations (15) and (16) from

corresponding particle systems was rather formal, and rigorous results would be of

considerable interest.
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3.2 Convergence order

The DSMC algorithm mentioned above depends on three main approximation pa-

rameters { the number of particles n ; the splitting time step �t and the cell size

�x : By taking the limit n!1 one obtains the system of equations (2), (3), which

depends on the remaining two parameters. In the limit �t! 0 this system trans-

forms into equation (13) with h de�ned in (4). Finally, the Boltzmann equation (6)

is obtained in the limit �x! 0 : For numerical purposes the order of convergence

with respect to the various parameters is important. The order with respect to n

has been established in the context of general Markov processes in [NT89], [GM97].

Cell size dependence was studied in [AGA98]. Second order with respect to time

step was predicted in [Bog88]. However, in [Ohw98], [Ohw00] the author noticed

a mistake in the derivations of [Bog88] and gave some speci�c example illustrating

�rst order behaviour. On the other hand, rather thorough numerical experiments in

[GW00b] showed second order behaviour in many test cases (see also the derivation

in [Had00]). So this problem still needs some further investigations (see, e.g., the

contribution by M.A. Gallis and co-authors in these proceedings).

3.3 Steady state problems

In many applications studying the equilibrium behaviour of gas 
ows is of primary

interest. To this end, time averaging over trajectories of the corresponding particle

system is used,

1

k

kX
j=1

"
1

n

nX
i=1

'(xi(tj); vi(tj))

#
; tj = �t+ j�t ;

where ' is some test function and �t is the starting time for averaging. To justify

this procedure (for k !1), one has to study the connection between the stationary

density of the process and the stationary Boltzmann equation. From the results men-

tioned above one can obtain information about the limit limt!1 limn!1 p
(n)
1 (t; x; v)

while here one is interested in the limit limn!1 limt!1 p
(n)
1 (t; x; v) : The identity of

both quantities is not at all obvious. Some result concerning the factorization of the

equilibrium distribution was obtained in [CPW98]. But in this �eld the state of the

theory is rather unsatisfactory.

3.4 Variance reduction

A serious problem in many applications of DSMC (
ows with high density gradi-

ents, or low Mach number 
ows) are large statistical 
uctuations. For the purpose

of variance reduction, a modi�cation of DSMC called SWPM (stochastic weighted

particle method) was proposed in [RW96]. In SWPM a system of weighted particles

is used, which allows one to resolve low density regions with a moderate number of

simulation particles (cf. [RW01]). A convergence proof for SWPM has recently been

10



proposed in [MW03]. Further references related to weighted particles are [Sch93],

[Boy96]. An \information preservation method" (cf. [FS01], [SB02]) has been de-

veloped for low Mach number 
ows occurring in micro-electro-mechanical systems

(MEMS). Here the convergence issue is open.

References

[AGA95] F. J. Alexander, A. L. Garcia, and B. J. Alder. A consistent Boltzmann

algorithm. Phys. Rev. Lett., 74(26):5212{5215, 1995.

[AGA98] F. J. Alexander, A. L. Garcia, and B. J. Alder. Cell size dependence

of transport coeÆcients in stochastic particle algorithms. Phys. Fluids,

10(6):1540{1542, 1998.

[Ars87] A. A. Arsenev. Approximation of the solution of the Boltzmann equation

by solutions of Ito stochastic di�erential equations. Zh. Vychisl. Mat. i

Mat. Fiz., 27(3):400{410, 1987. In Russian.

[Bab86] H. Babovsky. On a simulation scheme for the Boltzmann equation. Math.

Methods Appl. Sci., 8:223{233, 1986.

[Bab89] H. Babovsky. A convergence proof for Nanbu's Boltzmann simulation

scheme. European J. Mech. B Fluids, 8(1):41{55, 1989.

[Bab98] H. Babovsky. Die Boltzmann-Gleichung: Modellbildung{Numerik{An-

wendungen. B. G. Teubner, Stuttgart, 1998.

[BI89] H. Babovsky and R. Illner. A convergence proof for Nanbu's simula-

tion method for the full Boltzmann equation. SIAM J. Numer. Anal.,

26(1):45{65, 1989.

[Bir63] G. A. Bird. Approach to translational equilibrium in a rigid sphere gas.

Phys. Fluids, 6:1518{1519, 1963.

[Bir65] G. A. Bird. Shock wave structure in a rigid sphere gas. In J.H. de Leeuw,

editor, Rare�ed Gas Dynamics, volume 1, pages 216{222. Academic Press,

New York, 1965.

[Bir89] G. A. Bird. Perception of numerical methods in rare�ed gas dynamics.

Progr. Astronaut. Aeronaut., 118:211{226, 1989.

[Bir94] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas

Flows. Clarendon Press, Oxford, 1994.

[Bog88] S. V. Bogomolov. Convergence of the method of summary approximation

for the Boltzmann equation. Zh. Vychisl. Mat. i Mat. Fiz., 28(1):119{126,

1988. In Russian.

11



[Bol72] L. Boltzmann. Weitere Studien �uber das W�armegleichgewicht unter Gas-

molek�ulen. Sitzungsber. Akad. Wiss. Wien, 66:275{370, 1872.

[Boy96] I. D. Boyd. Conservative species weighting scheme for the direct sim-

ulation Monte Carlo method. J. of Thermophysics and Heat Transfer,

10(4):579{585, 1996.

[BY75] O. M. Belotserkovskij and V. E. Yanitskij. Statistical particle in cell

method for problems in rare�ed gas dynamics. I. Construction of the

method. Zh. Vychisl. Mat. i Mat. Fiz., 15(5):1195{1209, 1975. In Russian.

[Cer83] C. Cercignani. The Grad limit for a system of soft spheres. Comm. Pure

Appl. Math., 36(4):479{494, 1983.

[Cer88] C. Cercignani. The Boltzmann Equation and its Applications. Springer,

New York, 1988.

[CPW98] S. Caprino, M. Pulvirenti, and W. Wagner. Stationary particle systems

approximating stationary solutions to the Boltzmann equation. SIAM J.

Math. Anal., 29(4):913{934, 1998.

[Dav93] M. H. A. Davis. Markov Models and Optimization. Chapman & Hall,

London, 1993.

[EK86] S. N. Ethier and T. G. Kurtz. Markov Processes, Characterization and

Convergence. Wiley, New York, 1986.

[EM87] S. M. Ermakov and N. M. Moskaleva. Branching processes and the Boltz-

mann equation. Numerical aspects. Vestnik Leningrad Univ. Ser. 1, 3:38{

43, 1987. In Russian.

[ENS89] S. M. Ermakov, V. V. Nekrutkin, and A. S. Sipin. Random Processes for

Classical Equations of Mathematical Physics, volume 34 of Mathematics

and its Applications (Soviet Series). Kluwer Academic Publishers Group,

Dordrecht, 1989.

[EW03] A. Eibeck and W. Wagner. Stochastic interacting particle systems and

nonlinear kinetic equations. Ann. Appl. Probab., 13(3):845{889, 2003.

[FS01] J. Fan and C. Shen. Statistical simulation of low-speed rare�ed gas 
ows.

J. Comput. Phys., 167:393{412, 2001.

[Fun86] T. Funaki. Construction of stochastic processes associated with the Boltz-

mann equation and its applications. In K. Ito and T. Hida, editors,

Stochastic processes and their applications, volume 1203 of Lecture Notes

in Mathematics, pages 51{65. Springer, Berlin/Heidelberg, 1986.

[GM97] C. Graham and S. M�el�eard. Stochastic particle approximations for gen-

eralized Boltzmann models and convergence estimates. Ann. Probab.,

25(1):115{132, 1997.

12



[GW00a] A. L. Garcia and W. Wagner. The limiting kinetic equation of the con-

sistent Boltzmann algorithm for dense gases. J. Statist. Phys., 101(5-

6):1065{1086, 2000.

[GW00b] A. L. Garcia and W. Wagner. Time step truncation error in direct simu-

lation Monte Carlo. Phys. Fluids, 12(10):2621{2633, 2000.

[GW02] A. L. Garcia and W. Wagner. Some new properties of the kinetic equation

for the Consistent Boltzmann Algorithm. Transport Theory Statist. Phys.,

31(4-6):579{594, 2002.

[GW03] A. L. Garcia and W. Wagner. Direct simulation Monte Carlo method

for the Uehling-Uhlenbeck-Boltzmann equation. Physical Review E,

68:056703, 2003.

[Had00] N. G. Hadjiconstantinou. Analysis of discretization in direct simulation

Monte Carlo. Phys. Fluids, 12(10):2634{2638, 2000.

[IN87] R. Illner and H. Neunzert. On simulation methods for the Boltzmann

equation. Transport Theory Statist. Phys., 16(2&3):141{154, 1987.

[IR88] M. S. Ivanov and S. V. Rogazinskij. Comparative analysis of algorithms

of the direct statistical modeling method in rare�ed gas dynamics. Zh.

Vychisl. Mat. i Mat. Fiz., 28(7):1058{1070, 1988. In Russian.

[IR89] M. S. Ivanov and S. V. Rogazinskij. EÆcient schemes for direct statisti-

cal modeling of rare�ed gas 
ows. Mat. Model., 1(7):130{145, 1989. In

Russian.

[Kac56a] M. Kac. Foundations of kinetic theory. In Third Berkeley Symposium on

Mathematical Statistics and Probability Theory, volume 3, pages 171{197,

1956.

[Kac56b] M. Kac. Some Stochastic Problems in Physics and Mathematics. Magnolia

Petroleum Co., 1956.

[Kac59] M. Kac. Probability and Related Topics in Physical Sciences. Interscience,

London, 1959.

[Kac73] M. Kac. Some probabilistic aspects of the Boltzmann equation. Acta

Phys. Austriaca, Suppl. X:379{400, 1973.

[Khi86] A. I. Khisamutdinov. A simulation method for statistical modeling of rar-

e�ed gases. Dokl. Akad. Nauk SSSR, 291(6):1300{1304, 1986. In Russian.

[Kon86] Yu. N. Kondyurin. A statistical approach to the solution of the Boltz-

mann equation. Zh. Vychisl. Mat. i Mat. Fiz., 26(10):1527{1534, 1986.

In Russian.

13



[Kou86] K. Koura. Null{collision technique in the direct{simulation Monte Carlo

method. Phys. Fluids, 29(11):3509{3511, 1986.

[Leo35] M. A. Leontovich. Basic equations of the kinetic gas theory from the

point of view of the theory of random processes. Zhurnal Teoret. Ehksper.

Fiziki, 5(3-4):211{231, 1935. In Russian.

[LP90] M. Lachowicz and M. Pulvirenti. A stochastic system of particles mod-

elling the Euler equation. Arch. Rational Mech. Anal., 109(1):81{93, 1990.

[LS89] A. V. Lukshin and S. N. Smirnov. An eÆcient stochastic algorithm for

solving the Boltzmann equation. Zh. Vychisl. Mat. i Mat. Fiz., 29(1):118{

124, 1989. In Russian.

[MW03] I. Matheis and W. Wagner. Convergence of the stochastic weighted

particle method for the Boltzmann equation. SIAM J. Sci. Comput.,

24(5):1589{1609, 2003.

[Nan80] K. Nanbu. Direct simulation scheme derived from the Boltzmann equa-

tion. I. Monocomponent gases. J. Phys. Soc. Japan, 49(5):2042{2049,

1980.

[Nan86] K. Nanbu. Theoretical basis of the direct simulation Monte Carlo method.

In V. BoÆ and C. Cercignani, editors, Rare�ed Gas Dynamics, volume 1,

pages 369{383. Teubner, Stuttgart, 1986.

[NGS91] H. Neunzert, F. Gropengiesser, and J. Struckmeier. Computational meth-

ods for the Boltzmann equation. In Applied and industrial mathematics

(Venice, 1989), volume 56 of Math. Appl., pages 111{140. Kluwer Acad.

Publ., Dordrecht, 1991.

[NLU40] A. Nordsieck, W. E. Lamb, Jr., and G. E. Uhlenbeck. On the theory

of cosmic{ray showers. I. The furry model and the 
uctuation problem.

Physica, 7(4):344{360, 1940.

[NT89] V. V. Nekrutkin and N. I. Tur. On the justi�cation of a scheme of di-

rect modelling of 
ows of rare�ed gases. Zh. Vychisl. Mat. i Mat. Fiz.,

29(9):1380{1392, 1989. In Russian.

[Ohw98] T. Ohwada. Higher order approximation methods for the Boltzmann

equation. J. Comput. Phys., 139:1{14, 1998.

[Ohw00] T. Ohwada. Higher order time integration of spatially nonhomogeneous

Boltzmann equation: deterministic and stochastic computations. Trans-

port Theory Statist. Phys., 29(3-5):495{508, 2000.

[Rez03] F. Rezakhanlou. A stochastic model associated with Enskog equation and

its kinetic limit. Comm. Math. Phys., 232(2):327{375, 2003.

14



[RGD60] Rare�ed gas dynamics: Proceedings of the First International Symposium

held at Nice, International Series on Aeronautical Sciences and Space

Flight, Division IX, Vol. 3, Pergamon Press, New York, 1960.

[RW96] S. Rjasanow and W. Wagner. A stochastic weighted particle method for

the Boltzmann equation. J. Comput. Phys., 124(2):243{253, 1996.

[RW01] S. Rjasanow and W. Wagner. Simulation of rare events by the stochastic

weighted particle method for the Boltzmann equation. Math. Comput.

Modelling, 33(8-9):907{926, 2001.

[SB02] Q. Sun and I.D. Boyd. A direct simulationmethod for subsonic, microscale

gas 
ows. J. Comput. Phys., 179:400{425, 2002.

[Sch93] M. Schreiner. Weighted particles in the �nite pointset method. Transport

Theory Statist. Phys., 22(6):793{817, 1993.

[Sko88] A. V. Skorokhod. Stochastic Equations for Complex Systems, volume 13

of Mathematics and its Applications (Soviet Series). D. Reidel Publishing

Co., Dordrecht, 1988.

[UU33] E. A. Uehling and G. E. Uhlenbeck. Transport phenomena in Einstein-

Bose and Fermi-Dirac gases. I. Phys. Rev., 43:552{561, 1933.

[Wag92] W. Wagner. A convergence proof for Bird's direct simulation Monte Carlo

method for the Boltzmann equation. J. Statist. Phys., 66(3/4):1011{1044,

1992.

[Wag96] W. Wagner. A functional law of large numbers for Boltzmann type

stochastic particle systems. Stochastic Anal. Appl., 14(5):591{636, 1996.

15


