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Abstract. The present paper is concerned with the identi�cation of an obstacle

or void of di�erent conductivity included in a two-dimensional domain by mea-

surements of voltage and currents at the boundary. We employ a reformulation

of the given identi�cation problem as a shape optimization problem as proposed

by Sokolowski and Roche [20]. It turns out that the shape Hessian degenerates at

the given hole which gives a further hint on the ill-posedness of the problem. For

numerical methods, we propose a preprocessing for detecting the barycenter and

a crude approximation of the void or hole. Then, we resolve the shape of the hole

by a regularized Newton method.

Introduction

Let D � R
2 denote a bounded domain with boundary @D = � and assume the

existence of a simply connected subdomain S � D, consisting of material with

constant conductivity, essentially di�erent from the likewise constant conductivity

of the material in the subregion 
 = D n S. We consider the identi�cation problem

of this inclusion if the Cauchy data of the electrical potential u are measured at the

boundary � , i.e., if a single pair f = uj� and g = (@u=@n)j� is known.

The problem under consideration is a special case of the general conductivity recon-

struction problem and is severely ill-posed. It has been intensively investigated as

an inverse problem. We refer for example to Hettlich and Rundell [16] for numerical

algorithms and to Friedmann and Isakov [12] as well as Alessandrini, Isakov and

Powell [1] for particular results concerning uniqueness. Moreover, we refer to Br�uhl

and Hanke [2, 3] for methods using the complete Dirichlet{to{Neumann operator

at the outer boundary. We emphasize that we focus in the present paper on exact

measurements and do not consider noisy data.

In [20], Roche and Sokolowski have been introduced a formulation as shape opti-

mization problem. Moreover, analysis and numerical results are presented for �rst

order shape optimization algorithms. In the present paper we investigate related

second order methods, developed and applied by the authors in [8, 9, 10]. Provided

that the interface � = @S is suÆciently regular, higher order smoothness for the

objective can be shown by means of standard results. We assume the inclusion to

be starshaped with respect to a given pole x0 2 D and derive the second order shape

derivatives in terms of polar coordinates. Nevertheless, we prove compactness of the

shape Hessian at the optimal domain 
? = D nS?. This degeneration is completely

di�erent from the regular coercive situations observed in [9, 10]. Hence, neither the

validity of a suÆcient second order condition nor a quadratic convergence of the

Newton method can be guaranteed.
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Using �nite Fourier series to represent the boundary of the inclusion we arrive at a

�nite dimensional optimization problem. This optimization problem will be mini-

mized by a Newton method which has to be regularized due to the compactness of

the shape Hessian at the optimal domain. Precisely, we employ a Tikhinov regular-

ization of the necessary optimality condition. By numerical experiments we show

that our method outperforms �rst order algorithms. Introducing a preprocessing

for detecting the barycenter and a �rst crude approximation of the inclusion, we are

able extend our approach also to the case of small inclusions without knowing the

pole in advance.

The present paper is organized as follows. In Section 1 we present the physical

model and reformulate the identi�cation problem as shape optimization problem.

We compute the gradient and the Hessian of the given shape functional. Then, in

Section 2, we analyze the shape Hessian and prove its degeneration at the optimal

domain. In Section 3 we discretize the boundary of the inclusion and replace the

in�nite dimensional optimization problem by �nite dimensional one. Moreover, we

propose a boundary element method to compute the shape functional as well as its

gradient and Hessian. In Section 4, we perform several numerical experiments to

compare the regularized Newton method with a quasi Newton method. In the last

section, that is Section 5, we state concluding remarks.

1. Shape problem formulation

1.1. The physical model. Let D 2 R2 be a simply connected domain with bound-

ary � = @D and assume that an unknown simply connected inclusion S with regular

boundary � = @S is located inside the domain D satisfying dist(�;�) > 0, cf. Fig-

ure 1.1. To determine the inclusion S we measure for a given current distribution

g 2 H�1=2(�)=R the voltage distribution f 2 H1=2(�) at the boundary �. Hence, we

are seeking a domain 
 := D n S and an associated harmonic function u, satisfying

the system of equations

�u = 0 in 
;

u = 0 on �;

u = f on �;

@u

@n
= g on �:

This system denotes an overdetermined boundary value problem which admits a

solution only for the true inclusion S.
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Σ Ω Γ

Figure 1.1. The domain 
 and its boundaries � and �.

Following Sokolowski and Roche [20], we introduce the auxiliary harmonical func-

tions v and w satisfying

�v = 0 �w = 0 in 
;

v = 0 w = 0 on �;(1.1)

@v

@n
= g w = f on �;

and consider the following shape optimization problem

(1.2) J(
) =

Z



kr(v � w)k2dx =

Z
�

�
g � @w

@n

�
(v � f)d� ! inf :

Herein, the in�mum has to be taken over all domains including a void with suÆ-

ciently regular boundary. We refer to Roche and Sokolowski [20] for the existence

of optimal solutions with respect to this shape optimization problem.

1.2. Shape calculus. For sake of clearness in representation, we repeat the shape

calculus concerning the problem under consideration by means of boundary varia-

tions. The shape gradient has been computed �rst in [20] while the structure of the

shape Hessian has been sketched in terms of material derivatives. But we emphasize

that we derive a boundary integral representation of the shape Hessian which allows

us to investigate and implement it. For a survey on the shape calculus based on the

material derivative concept, we refer the reader to Sokolowski and Zolesio [21] and

the references therein.

Let the underlying variation �eldsV be suÆciently smooth such that C2;�-regularity

is preserved for all perturbed domains. Moreover, for sake of simplicity, we assume

in addition that the outer boundary and the measurements are suÆciently regular
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such that the state functions v = v(
) and w = w(
) satisfy

(1.3) v;w 2 C2;�(
):

Then, a formal di�erentiation of (1.2) in terms of local derivatives yields immediately

dJ(
)[V] =

Z
�

hV;nikr(v � w)k2d� + 2

Z



hr(v � w);r(dv � dw)idx;

where the local shape derivatives dv = dv[V] and dw = dw[V] satisfy

�dv = 0 �dw = 0 in 
;

dv = �hV;ni @v
@n

dw = �hV;ni@w
@n

on �;(1.4)

@dv

@n
= 0 dw = 0 on �;

Using @
 = �[� and the known boundary data from (1.1) and (1.4), the boundary

integral representation of the shape gradient is obtained via repeated integration by

parts

dJ(
)[V] =

Z
�

hV;nikr(v � w)k2d� + 2

Z
@


(dv � dw)
@(v � w)

@n
d�

= 2

Z
�

dv
@(v � w)

@n
d� �

Z
�

hV;ni
�
@(v � w)

@n

�2

d�

Furthermore, we conclude from

0 = �
Z



v�dvdx+

Z
@


v
@dv

@n
d� =

Z



hrdv;rvidx

= �
Z



dv�vdx+

Z
@


dv
@v

@n
d�;

and likewise

0 = �
Z



w�dvdx+

Z
@


w
@dv

@n
d� =

Z



hrdv;rwidx

= �
Z



dv�wdx+

Z
@


dv
@w

@n
d�;

the relationsZ
�

dv
@v

@n
d� =

Z
�

hV;ni
�
@v

@n

�2

d�;

Z
�

dv
@w

@n
d� =

Z
�

hV;ni @v
@n

@w

@n
d�:

Consequently, the shape gradient reads as

(1.5) dJ(
)[V] =

Z
�

hV;ni
"�

@v

@n

�2

�
�
@w

@n

�2
#
d�;
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see also [20]. Note that, as an immediate consequence of the shape calculus, (1.5)

implies an simpli�ed �rst order necessary condition

(1.6)
@v

@n

���
�
� @w

@n

���
�
:

In the case of a starshaped hole S, the boundary � = @S can be parametrized by a

function r = r(') of the polar angle ' and the perturbation �eldV can be chosen as

V = dr(')er(') with respect to a pole inside S. Hence, the shape gradient dJ [dr]

can be expressed equivalently in local coordinates as

(1.7) dJ(
)[dr] =

Z 2�

0

dr(') r(')

"�
@w

@n

�2

�
�
@v

@n

�2
#
(') d';

where the minus sign issues from the fact that her;ni = �r=
p
r2 + r02.

To derive the shape Hessian, we proceed similar to [6, 7] by di�erentiating the shape

gradient (1.7) and arrive at

d2J(
)[dr1; dr2] =

Z 2�

0

dr1(') dr2(')
�
krwk2 � krvk2

	
(1.8)

+dr1(') dr2(') r(')
@

@er

�
krwk2 � krvk2

	
+2dr1(') r(')

�
@w

@n

@dw[dr2]

@n
� @v

@n

@dv[dr2]

@n

�
d';

where all data have to be understood as traces on the unknown boundary �.

The homogeneous Dirichlet data vj� = 0 imply the identity

(krvk2)j� =
�
@v

@n

�2

:

Moreover, observing @=@t = �@=@�, we can decompose

@

@er

�
krvk2

�
=

2p
r2 + r02

@v

@n

�
r
@2v

@n2
� r0

@2v

@n@t

�
:

Since v is harmonical admitting homogeneous Dirichlet data on �, we arrive at the

identity

@2v

@n2
= ��@v

@n
;

where � denotes the curvature with respect to �, see [9] for the details.
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Since analogous results are valid with respect to w, we can simplify (1.8) by

d2J(
)[dr1; dr2] =

Z 2�

0

dr1 dr2

(
2rr0p
r2 + r02

�
@v

@n

@2v

@n@t
� @w

@n

@2w

@n@t

�
(1.9)

+

�
1� 2r2�p

r2 + r02

�"�
@w

@n

�2

�
�
@v

@n

�2
#)

+2dr1 r

�
@w

@n

@dw[dr2]

@n
� @v

@n

@dv[dr2]

@n

�
d':

2. Analyzing the shape Hessian

2.1. Boundary integral equations. In this subsection we compute the unknown

boundary data of the state functions v and w by boundary integral equations. We

introduce the single layer and the double layer operator with respect the boundaries

�;	 2 f�;�g by

(V�	u)(x) := � 1

2�

Z
�

log kx� yku(y)d�y; x 2 	;

(K�	u)(x) :=
1

2�

Z
�

hx� y;nyi
kx� yk2 u(y)d�y; x 2 	:

Note that V�	 denotes an operator of order �1 if � = 	, i.e. V�� : H�1=2(�) !
H1=2(�), while it is an arbitrarily smoothing compact operator if � 6= 	 since

dist(�;�) > 0. Likewise, if �;� 2 C2, the double layer operator K�� : H1=2(�) !
H1=2(�) is compact while it smoothes arbitrarily if � 6= 	. We refer the reader to

[15, 18] for a detailed description of boundary integral equations.

For sake of simplicity we suppose that diam
 < 1 to ensure that V�� is invert-

ible, cf. [17]. Moreover, the canonical spaces of the normal derivatives (@w=@n)j�
and (@w=@n)j� contain no constant functions, i.e., (@w=@n)j� 2 H�1=2(�)=R and

(@w=@n)j� 2 H�1=2(�)=R, respectively, and likewise for (@v=@n)j�. Then, the nor-
mal derivative of w is given by the Dirichlet-to-Neumann map

(2.10)

"
V�� V��

V�� V��

# "
@w

@n

��
�

@w

@n

��
�

#
=

"
1=2 +K�� K��

K�� 1=2 +K��

# "
0

f

#
;

cf. (1.1). Likewise, the unknown boundary data of v are determined by

(2.11)

"
V�� �K��

�V�� 1=2 +K��

#"
@v

@n

��
�

vj�

#
=

"
1=2 +K�� �V��
�K�� V��

#"
0

g

#
:

Note that here and in the sequel the operators (1=2 + K��), � 2 f�;�g, have
to be understood as continuous and bijective operators in terms of (1=2 + K��) :

H1=2(�)=R! H1=2(�)=R.
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The unknown boundary data of the local shape derivatives dv = dv[dr] and dw =

dw[dr] are derived by

(2.12)

"
V�� V��

V�� V��

#"
@dw

@n

��
�

@dw

@n

��
�

#
=

"
1=2 +K�� K��

K�� 1=2 +K��

# "
�hV;ni@w

@n

��
�

0

#

and

(2.13)

"
V�� �K��

�V�� 1=2 +K��

#"
@dv

@n

��
�

dvj�

#
=

"
1=2 +K�� �V��
�K�� V��

#"
�hV;ni @v

@n

��
�

0

#
:

2.2. Compactness of the Hessian at the optimal domain. Next, we will inves-

tigate the shape Hessian at the optimal domain 
?, that is, if the given inclusion is

detected and the �rst order necessary condition (1.6) holds. Consequently, all quan-

tities arising in the considerations are related to the optimal domain 
? throughout

this subsection. Since there holds v = w in (1.1) at 
?, the �rst two terms in (1.8)

vanish and the shape Hessian simpli�es according to

(2.14) d2J(
?)[dr1; dr2] =

Z 2�

0

2dr1(')r
?(')

@v

@n

�
@dw[dr2]

@n
� @dv[dr2]

@n

�
d':

Of course, the Hessian d2J(
?) does not vanish since the local shape derivatives

dw[dr2] and dv[dr2] have prescribed homogeneous Dirichlet and Neumann data at

the �xed boundary �, respectively (cf. (1.4)). Consequently, we conclude

@dv[dr2]

@n

���
�
6= @dw[dr2]

@n

���
�

which immediately implies

d2J(
?)[dr1; dr2] 6= 0:

Nevertheless, for all perturbations dr2 the Dirichlet data of dv[dr2] and dw[dr2]

coincide at �

dv[dr2]
��
�
dw[dr2]

��
�
== dr2r

?
@v

@n

���
�
:

To analyze the shape Hessian, we introduce the multiplication operator

Mdr := dr � r? @v
@n

and the operator associated with the di�erence of the Dirichlet-to-Neumann maps

with respect to the Dirichlet data h[dr] := drr?(@v=@n)j�

�(h[dr]) :=
@dw[dr]

@n

���
�
� @dv[dr]

@n

���
�
:

With these operators at hand, we can rewrite (2.14) by

(2.15) d2J(
?)[dr1; dr2] = h2Mdr1;�(Mdr2)i;

where h�; �i denotes the canonical L2([0; 2�))-inner product.
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Lemma 2.1. Let (1.3) hold, then the multiplication operator

M : H1=2(�) ! H1=2(�); Mdr := dr � r? @v
@n

;

is continuous.

Proof. Abbreviating u := r?(@v=@n)j� we may write Mdr = dr � u. Due to results

of Triebel [22] or Mazja and Shaposhnikova [19], the multiplication operator M is

continuous from H1=2(�) to H1=2(�), provided that u 2 C0;�(�) for some � > 1=2.

From (1.3) we conclude u = r?(@v=@n)j� 2 C1;�(�) which implies the assertion. �

Lemma 2.2. Let the operator � be the di�erence of the Dirichlet-to-Neumann maps

with respect to the Dirichlet data h[dr] := drr?(@v=@n)j�

�(h[dr]) :=
@dw[dr]

@n

���
�
� @dv[dr]

@n

���
�
:

Then, � is compact as an operator � : H1=2(�)! H�1=2(�), i.e., in its natural trace

spaces.

Proof. We conclude from (2.12) and (2.13)

�
V�� �K��(1=2 +K��)

�1V��
� @dv
@n

���
�
=
�
1=2 +K�� �K��(1=2 +K��)

�1K��

�
h;

�
V�� � V��V

�1
��V��

� @dw
@n

���
�
=
�
1=2 +K�� � V��V

�1
��K��

�
h:

Since in both equations the operators on the left as well as on the right hand side

are invertible and their di�erence is compact, we conclude

A
@dv

@n

���
�
= Bh; [A+ C1]

@dw

@n

���
�
= [B + C2]h;

whereA and B are bijective and continuous and C1 and C2 are compact perturbations

in the associated spaces. Therefore we arrive at

@dw

@n

���
�
� @dv

@n

���
�
=
�
(A+ C1)�1(B + C2)�A�1B

�
h

which is the desired result, since

(A+ C1)�1(B + C2)�A�1B = (A+ C1)�1C2 +
�
(A+ C1)�1 �A�1

�
B

is compact. �

In order to illustrate the compact behaviour of the operator � we consider an analytic

example concerning the situation of a ringshaped domain given by two concentric

circles.
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Example 2.3. Let D = B1(0) � R
2
be the unit circle and S = BR(0) for some

0 < R < 1. Then we have 
 = D n S := f(�; ') : � 2 (R; 1); ' 2 [0; 2�)g,
� = f(�; ') : � = 1; ' 2 [0; 2�)g, and � = f(�; ') : � = R; ' 2 [0; 2�)g. Harmonic

functions on such ringshaped domains can be represented via an ansatz in polar

coordinates

u(�; ') = A0 +B0 log �+

1X
n=1

�
An�

n +
A
�n

�n

�
cos n'+

�
Bn�

n +
B
�n

�n

�
sinn':

Expanding the Dirichlet data h = dvj� = dwj� in a Fourier series

h = h0 +

1X
n=1

hn cos n'+ h
�n sinn';

and observing the boundary condition dwj� = 0, we arrive at

dw(�; ') = h0
log �

logR
+

1X
n=1

Rn

1�R2n

�
1

�n
� �n

�
(hn cos n'+ h

�n sinn'):

Similarly, from (@dv=@n)j� = (@dv=@�)j�=1 = 0, we conclude

dv(�; ') = h0 +

1X
n=1

Rn

1 +R2n

�
1

�n
+ �n

�
(hn cosn' + h

�n sinn'):

Employing (@dw=@n)j� = �(@dw=@�)j�=R and likewise for dv, we �nd

@dw

@n

���
�
� @dv

@n

���
�
=

h0

R logR
� 4

1X
n=1

nR2n�1

1�R4n
(hn cosn'+ h

�n sinn'):

The exponential decay of the resulting Fourier coeÆcients clearly indicates the com-

pactness of the map �. Moreover, the decay is the faster the smaller the radius R

of the inclusion.

According to the Lemmas 2.1 and 2.2, the bilinear form d2J(
?) de�ned in (2.15) is

continuous on H1=2(�)�H1=2(�). Hence, it represents a continuous linear operator

H = 2M?�M : H1=2(�)! H�1=2(�)

As an immediate consequence of our considerations we conclude the following propo-

sition.

Proposition 2.4. The shape Hessian H : H1=2(�) ! H�1=2(�) is compact at the

optimal domain 
?
.

Remark 2.5. The domain 
?
is a strict local minimizer of (1.2) if

J(
) > J(
?) = 0; for all 
 � UÆ(

?):
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Nevertheless, a regular strict minimizer of second order satis�es H1=2
-coercivity of

the shape Hessian

d2J(
?)[dr; dr] � ckdrk2
H1=2(�)

;

cf. Dambrine and Pierre [4, 5]. The above proposition implies immediately that this

suÆcient second order optimality condition is not satis�ed.

The above considerations specify no detailed information on the eigenvalues of the

shape Hessian. We show in two examples that the eigenvalues of the shape Hessian

decrease exponentially. The �rst example given below is computed analytically. The

second one, concerned with the constellation in Figure 1.1, is presented in Section 4,

where we compute the eigenvalues numerically. Despite the fact that we have not

introduced any �nite dimensional approximation of the minimization problem yet,

we have to keep in mind exponentially growing condition numbers of the discrete

shape Hessian when increasing the degrees of freedom.

Example 2.6. We consider the same con�guration as in Example 2.3, i.e., 
 =

f(�; ') : � 2 (R; 1); ' 2 [0; 2�)g. If we choose for example the Dirichlet data

f := (x2�y2)j�=1 = cos 2' we conclude g = 2(1+R4)=(1�R4) cos' and (@v=@n)j� =
(@w=@n)j� = �4R=(1 �R4) cos'. Straightforward calculation leads to

d2J(
?)[cos k'; cos l'] = d2J(
?)[sink'; sin l']

=

8>><
>>:

32R4�
(1�R4)2

h
(k�2)R2k�4

1�R4k�8
+

(k+2)R2k+4

1�R4k+8

i
; if k = l > 2;

32R4�
(1�R4)2

(k+2)R2k+4

1�R4k+8
; if jk � lj = 4 and k; l > 2;

0; if jk � lj 6= 0; 4 and k; l > 2:

and d2J(
?)[cos k'; sin l'] = 0 for all k; l > 2. Consequently, the shape Hessian is a

banded matrix with coeÆcients exhibiting an exponential decay with respect to higher

frequencies.

3. Discretization

3.1. Finite dimensional approximation of boundaries. Since the in�nite di-

mensional optimization problem cannot be solved directly, we replace it by a �nite

dimensional problem. Based on polar coordinates, we can express the smooth func-

tion r 2 C2;�
per([0; 2�]) by the Fourier series

r(�) = a0 +

1X
n=1

an cos n�+ a
�n sinn�:
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Hence, it is reasonable to approximate the radial function by a truncated Fourier

series

(3.16) rNr(�) = a0 +

NrX
n=1

an cosn�+ a
�n sin n�:

If r is analytical, the Fourier series rNr converges to r exponentially in Nr, which

means, rNr is a p-approximation of r.

Since rNr admits 2Nr + 1 degrees of freedom a
�Nr ; a1�Nr ; : : : ; aNr, we arrive at a

�nite dimensional optimization problem in the open set

ANr := fa
�Nr ; a1�Nr ; : : : ; aNr 2 R : rNr(�) > 0; � 2 [0; 2�]g � R2Nr+1:

Hence, via the identi�cation rNr , 
Nr , the �nite dimensional approximation of

shape minimization problem (1.2) reads as

(3.17) J(
Nr)! min :

The associated gradients and Hessians have to be computed with respect to all

directions dr; dr1; dr2 = cosNr�; cos(Nr � 1)�; : : : ; sin(Nr � 1)�; sinNr�.

3.2. Treating the optimization problem. The minimization problem de�ned by

(3.17) implies to �nd its stationary points 
?
Nr

(3.18) dJ(
?

Nr
)[dr] = 0

for all directions dr 2 fcosNr�; cos(Nr � 1)�; : : : ; sin(Nr � 1)�; sinNr�g.
To solve (3.18), we consider on the hand a method which is based only on �rst order

information, namely a quasi Newton method updated by the inverse BFGS-rule

without damping, see [13, 14] for the details.

On the other hand, we perorm a Newton method which we regularize since the shape

Hessian is compact at the optimal domain 
?. Namely, abbreviating the discrete

gradient by Gn and the associated Hessian by Hn, we consider in the n-th iteration

step the descent direction

hn := �(H2
n + �nI)

�1
HnGn;

where �n > 0 is an appropriately chosen regularization parameter. This descent

direction hn solves the minimization problem

kHnh�Gnk2 + �khk2 ! min

and corresponds to a Tikhinov regularization of equation (3.18). Moreover, note that

we employ in both methods a quadratic line search with respect to the functional

(1.2).



12

3.3. Numerical method to compute the state. Observing the formulas (1.2),

(1.7) and (1.9), the functional, its gradient as well as its Hessian can be computed

from the knowledge of the boundary data of the sate equations (1.1) and (1.4).

These data are given by the boundary integral equations (2.10){(2.13). Hence, it is

rather convenient to employ a boundary element method to compute the required

boundary data of the state equations. We use a Galerkin discretization by N�

piecewise linear functions f��
i
gN�
i=1 on each boundary � 2 f�;�g. For �;	 2 f�;�g,

we introduce the system matrices

V�	 = � 1

2�

�Z
	

Z
�

log kx� yk��i (y)�	j (x)d�yd�x
�
i=1;:::;N�; j=1;:::;N	

;

K�	 =
1

2�

�Z
	

Z
�

hx� y;nyi
kx� yk2 ��

i
(y)�	

j
(x)d�yd�x

�
i=1;:::;N�; j=1;:::;N	

;

and the mass matrices

M� =

�Z
�

��i (x)�
�
j (x)d�x

�
i;j=1;:::;N�

;

and the load vectors of Dirichlet data f� and Neumann data g�

f� =

�Z
�

��i (x)f(x)d�x

�
i=1;:::;N�

; g� =

�Z
�

��i (x)g(x)d�x

�
i=1;:::;N�

:

Then, the linear system of equations

(3.19)

"
V�� V��

V�� V��

# "
a�

a�

#
=

"
1=2M� +K�� K��

K�� 1=2M� +K��

#"
M

�1
� f�

M
�1
� f�

#
;

gives us the Neumann data a� =
P

N�

i=1[a�]i�
�
i on � and a� =

P
N�

i=1[a�]i�
�
i on � from

the Dirichlet data on � and �. Likewise, the system

(3.20)

"
V�� �K��

�V�� 1=2M� +K��

#"
b�

a�

#
=

"
1=2M� +K�� �V��

�K�� V��

#"
M

�1
� g�

M
�1
� f�

#
;

yields the Dirichlet data b� =
P

N�

i=1[b�]i�
�
i on � and the Neumann data a� =P

N�

i=1
[a�]i�

�
i
on � from the Neumann data g� on � and the Dirichlet data f� on �.

The variables
�
@2v=(@n@t)

���
�
and

�
@2w=(@n@t)

���
�
, required for the shape Hessian,

can be computed by di�erentiating the piecewise linear representations of (@v=@n)j�
and (@w=@n)j�, respectively.
We mention that the appearing system matrices have to be computed only once

for each domain while the systems (3.19) and (3.20) have to be solved very often

with di�erent right hand sides to obtain the local shape derivatives. Hence, we

recommend to use a wavelet Galerkin scheme which yields quasi sparse system ma-

trices. We refer to [8, 9, 10, 11] for more details on the wavelet based fast solution

of boundary integral equations appearing in shape optimization.
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4. Numerical results

4.1. Quasi Newton versus regularized Newton method. In our �rst example

we consider the situation depicted in Figure 1.1, i.e., we choose the ellipse with semi-

axes 0:45 and 0:3 as domain D. The inclusion centered in x = (0; 0)T is described by

15 Fourier coeÆcients. The Dirichlet data on � = @D are chosen as f = (x2� y2)j�
while the Neumann data g on � are computed numerically with high accuracy.

10 20 30 40 50 60
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20

30
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50

60 −8

−7
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−5

−4

−3

−2

−1

0

Figure 4.2. Logarithmic moduli of the coeÆcients of the discrete

Hessian d2J(
?)[dr1; dr2].

The Hessian d2J(
?)[dr1; dr2] discretized via 65 Fourier coeÆcients (Nr = 32) is

visualized in Figure 4.2. A plot of its eigenvalue distribution can be found in Fig-

ure 4.3. We mention that the �rst 16 eigenvalues are smaller than zero which issues

from numerical roundo� errors, even though we applied N� = N� = 1024 boundary

elements. The plot exhibits clearly the exponential decay of the eigenvalues. The

`2-condition number of the discrete Hessian is about 109.

We employ the circle of radius 0:25 indicated by the dashed line in Figure 4.4 as

initial guess in our regularized Newton method. It turns out that setting �n =

2�n in the n-th step of the regularized Newton method is the best choice of the

regularization parameter. Thus, in each step we reduce the regularization parameter

by the factor 2. We observe that, similarly to multiscale methods, in the �rst steps

the low frequencies of the boundary are approximated while more and more the high

frequencies are resolved during the iteration. Let us mention that the line search
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Figure 4.3. The eigenvalues of the discrete Hessian.

prevents the divergence of the method, particularly in the last iteration steps. The

dash-dotted line in the right plot of Figure 4.4 indicates the solution in the case of

33 Fourier coeÆcients (Nr = 16) obtained after 50 steps of the regularized Newton

method using 512 boundary elements on each boundary (N� = N� = 512). The

right plot contains the solution after 50 steps of the quasi Newton method.

Figure 4.4. Initial guess and �nal approximation of the inclusion for

33 Fourier coeÆcients in case of the regularized Newton method (left)

and the quasi Newton method (right).

The progress of the minimization of the shape functional during the iteration and the

corresponding shape approximation errors measured by the `2-norm of the Fourier

coeÆcients are plotted in Figure 4.5. The solid and dashed lines correspond to the

regularized Newton and quasi Newton method, respectively. One observes faster

convergence and higher accuracy for the regularized Newton scheme. In particular,
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one recognizes from the plot concerning the functional that the objective is 2:8 �10�3
in the case of the initial guess and 3:5 � 10�11 in the last step.
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Figure 4.5. The values of the shape functional (left) and the `2-norm

of the shape approximation errors (right).

Figures 4.4 and 4.5 con�rm that the regularized Newton method computes the given

inclusion more exact than the quasi Newton method.

4.2. Preprocessing: Detecting the barycenter. To apply the shape calculus

from Subsection 1.2 for a re�ned resolution of the interface, the position of the pole

of the polar coordinate system has to be detected in advance. To our experience the

determination of this pole should be combined with a �rst crude predetermination

of the shape of the given inclusion.

From the general formula (1.5), for a constant shift �eld V � a we derive the

directional derivatives

dJ [a] =

Z
�

ha;ni
"�

@v

@n

�2

�
�
@w

@n

�2
#
d� =

*
a;

Z
�

n

"�
@v

@n

�2

�
�
@w

@n

�2
#
d�

+
:

Based on these directional derivatives, the implementation of a �rst order optimiza-

tion algorithm is straightforward.

We choose the same setup as in the �rst example but consider a lengthy inclusion

centered in x = (0:1; 0), cf. Figure 4.6. The preprocessing step performed with the

best �tting circle does not yield satisfying results since the circle is placed too close

to the right boundary, cf. Figure 4.6 (dashed line). Neither �rst nor second order

optimization methods detect the left boundary if this circle is used as initial guess

for a re�ned resolution of the boundary (dash-dotted line).

Hence, we should consider more degrees of freedom with respect to the boundary.

To ensure that the pole is equal to the barycenter, the radial function shall ful�ll
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Figure 4.6. Approximation of the inclusion for the best �tting ball.

Figure 4.7. Preprocessing using B-splines and �nal approximation

using the regularized Newton method (left) and the quasi Newton

method (right).

r(') = r(' + �). In our experience, the best choice to get a crude approximation

of the shape is the use of periodic cubic splines. We subdivide the interval [0; 2�)

equidistantly into 8 intervals and denote the smoothest n-th 2�-periodic cardinal B-

spline of order 3 on the given partitioning by B3
n. The ansatz r(') =

P8

n=1
bnB

3
n(�)

yields the conditions bn = bn+4 to ensure r(') = r('+�). Hence, we have to consider

the four directions dr = B3
n +B3

n+4 in addition to the shift �elds a = [1; 0]T ; [0; 1]T .

This are six degrees of freedom which we minimized in the preprocessing step. The

result of this preprocessing is indicated by dashed line in Figure 4.7.

The �nal approximation via 33 Fourier coeÆcients and 30 iterations of the regu-

larized Newton method is presented in the left plot Figure 4.7. The plot on the

right hand side shows the �nal approximation in case of 50 quasi Newton iterations.

Again, the regularized Newton method resolves the inclusion more exact, particu-

larly the left part its boundary. We remark that after the 45th iteration step of the
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regularized Newton method the `2-condition number of the Hessian is greater than

1016.

In both calculations, the preprocessing has been performed by 30 iteration steps of

a quasi Newton method updated by the inverse BFGS-rule without damping, where

the initial guess has been the circle of radius 0:1 and midpoint (0; 0). We mention

that only a few boundary elements are required for the preprocessing. In fact, we

have chosen N� = N� = 64. For the re�ned resolution of the boundary we have set

�n = 2�n and N� = N� = 512.

4.3. Scaling the inclusion. In our last example we employ again the setup of the

previous subsections but consider di�erent scaled inclusions centered in (�0:1;�0:05).
The preprocessing is performed like above by using B-splines and 30 quasi Newton

iterations. We iterate 30 times the regularized Newton scheme setting �n = 2�n

and N� = N� = 512. The solutions are presented in Figure 4.8. As these plots

con�rm, the resolution of the boundary seems to be the more inexact the smaller

the inclusion is. Nevertheless, the results con�rm stability of the regularized Newton

method.

Compared to the solution of the quasi Newton method, the resolution of the inclusion

is more precise. For example, in Figure 4.9, the solution obtained after 50 steps of

the quasi Newton method is depicted. It corresponds to the right plot in the middle

of Figure 4.8.

5. Conclusion

The present paper is concerned with second order methods for the identi�cation of

voids or inclusions. The problem under consideration is well known to be severely

ill-posed. Since the shape Hessian is compact at the optimal domain, we propose

a regularized Newton method for the resolution of the inclusion. Combined with a

preprocessing step to detect the barycenter and a �rst crude approximation of the

inclusion, the numerical results evince that the regularized Newton method resolves

the given inclusion more exact than �rst order methods.
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