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Abstract

Properties of low Prandtl number ows in slender cylindrical liquid bridges driven by

interfacial thermocapillary forces are addressed here in a theoretical and computational light.

Both `outward' (positive Marangoni number Ma) and `inward' (negative Ma) ow along the

liquid-gas interface are considered. In previous investigations (Davis & Smith 2003), a solution

curve for steady, axisymmetric ow was determined from asymptotic theory in the context of

slender bridges. It indicated both the non-existence of solutions beyond a positive, cut-o� value

of the scaled Marangoni number and a double branch in the case of solvability (although with

only one `attractor'). In the present study full numerical simulation (using a �nite-element

iterative solver, described herein) reveals the unsteady, three-dimensional nature of the ow

solution beyond the cut-o� value. Attention is paid to the case where the radius-to-height

aspect ratio is 0.5, from which the (nonlinearly-coupled) azimuthal modes m=1 and m=2 are

seen to dominate. The branch behaviour is then examined forMa < 0, and asymptotic analysis

reveals that a critical value of the scaled Marangoni number exists, on approach to which the

pressure gradient across the midzone becomes large and negative. Full computational solutions

on the attractor branch for Ma < 0 are subsequently presented, and these show encouraging

agreement with asymptotic predictions (as well as slender-ow midzone computations) near

the critical Marangoni number. The critical value moreover is shown to correspond to the

onset of `lemonheads' (non-convex radial velocity pro�les near the midzone), in precisely the

same manner as the cut-o� value for positive Ma.

1 Introduction

Thermocapillary ows feature in a wide range of physical systems and technical processes. Fur-

thermore, as Davis (1987) points out there are a signi�cant class of problems where the thermocap-

illarity dominates the dynamics, such as in the behaviour of weld pools, the rupture of thin �lms,

the movement of contact lines, the propagation of ames over liquid fuels and the containerless

processing of crystals. We are especially interested in the last application, at least for low Prandtl

number ows, although we don't restrict ourselves completely to crystal growth; more generally

we are concerned with understanding the structure and dynamics of liquid bridges, as well as

identifying key parameter values marking the onset of major structural changes within the ow.

Instabilities in thermocapillary liquid bridges have been of interest in recent years, due in part to

the direct applicability to oating-zone crystal growth processes. For low Prandtl numbers (Pr)

this applies to semiconductor melts, e.g. silicon (Pr = 0:01), morybdenum (Pr = 0:025) or gallium

arsenide (Pr = 0:068). The stability nature of such ows is a subject of great importance in the

crystal growth industry. Experimental studies (e.g. Chun & Wuest 1979, Preisser, Schwabe &

Scharmann 1983, Hu, You & Cao 1992) have clearly identi�ed two distinct types of instability

which are exclusively relevant to low Prandtl number ows: �rstly, steady axisymmetric ow was

seen to undergo transition to a stationary, three-dimensional (3D) state at a critical Marangoni

number (Ma), sayMac1 , and secondly, at a higher value Mac2 the ow becomes unstable to (3D)

oscillatory instabilities. A common feature of the latter instability type was the observation of

unwanted striations in the �nished crystal, which was not really observed for the �rst instability

type (see also Eyer, Leiste & Nitsche 1985, Jurisch & L�oser 1990). As noted in Wanschura et al.

1995 however, for both types of stability \the detailed structure of the disturbance ow and its

azimuthal wavenumber remained largely unknown, due to the experimental diÆculties associated

with the ow and temperature measurements in small liquid volumes". (The smallness of the

liquid volume is of course a necessary condition in a terrestrial environment { in which the give

experiments were performed { to ensure the liquid bridge doesn't collapse. It also serves to reduce

buoyancy e�ects.) Hence, numerical simulation (especially when coupled with mathematical results

from reduced models) can be of great value in understanding the instabilities more precisely.

Numerical linear instability analysis for problems with and without signi�cant buoyancy present
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have allowed a better understanding of the underlying mechanisms leading to both types of in-

stability, as well as identifying the most dangerous linear azimuthal mode, in each case. For pure

thermocapillarity, on which we concentrate in this paper, these include studies by Levenstam &

Amberg 1995, Wanschura et al. 1995, Leypoldt, Kuhlmann & Rath 2000. In particular, it was

demonstrated that the stationary instability is essentially hydrodynamic in nature. Consequently,

for Marangoni numbers beyond this critical bifurcation value, the ow is time-dependent on a

timescale that scales withMa=(Ma�Mac1). We emphasise here however, that these results apply

to the related but nevertheless distinct `half-zone' problem, where simpli�ed boundary conditions

are applied to `approximate' the upper or lower half of a non-deformed (i.e. cylindrical), oating-

zone con�guration. For full zones very little has been demonstrated in this context; Kaiser & Benz

(1998) show that the two instability types occur for full zones via direct numerical simulation,

and predict the corresponding Marangoni numbers (which agree well with experimental results);

however the mode behaviour itself, even linear aspects, are not considered.

In this �rst part of this paper we concentrate in detail on the �rst instability type, since we feel

that, despite a generally thorough understanding of the basic linear properties, from half-zone work

at least, very little is known on weakly-nonlinear aspects of the instability, i.e. mode interaction,

for either full zones or half zones. For this purpose we computed weakly-supercritical ow via full

numerical simulation, using a transient, 3D �nite-element solver, and here we analyse some of the

cases.

Negative Marangoni numbers are also studied since, as argued in Davis & Smith 2003 (herafter

referred to as DS), several situations could arise where they occur { �rstly, although rare the

surface-tension gradient for the liquid could be positive-valued; secondly, inhomogeneous heat-

loss e�ects at the liquid-gas interface could conceivably induce \localised" regions with negative

Marangoni number in e�ect - this would be particularly relevant if situated around the midheight of

the domain, where strong convective processes have already been identi�ed (DS). A third situation

is with liquid cooling problems. The slender-ow work of DS revealed that two solution branches

exist for negative Marangoni number, although one of these has proven to be more an exotic special

case rather than having any practical relevance, i.e. it has not been possible to compute solutions

for this branch via full numerical simulation (using a similar solver to the one described in this

paper). The reduced-model computational results in DS suggested that the branches `cut out' at

�nite scaled values of the Marangoni numbers where the pressure becomes large and negative, and

this is con�rmed in the present work for the `attractor' branch, using asymptotic analysis, where

good agreement with computational solutions is seen to occur.

The paper is structured as follows. In Section 2 we introduce the controlling hydrothermal system

of equations, and a description of the main parameters in the problem. Then in Section 3 details of

the computational solution method used for full numerical simulation are given, while in Section 4

results for three-dimensional weakly-supercritical ow (positiveMa) are presented. Here dominant

frequencies and mode interactions are analysed. The slender-ow system of equations holding

around the midheight of the domain, which was �rst derived in DS, is addressed theoretically in

Section 5, and an asymptotic form for the ultimate behaviour of the attractor branch for negative

Ma is established. In Section 6, steady axisymmetric numerical results for Ma < 0 are presented,

and comparisons are made with reduced-model computations as well as the theoretical predictions

of Section 5. Finally conclusions are made in Section 7.

2 The governing system of equations

Following the analysis and arguments in DS, we wish to solve a system comprising the incompress-

ible Navier-Stokes equations and the heat-transport equation in a cylindrical domain, and having
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the dimensionless form:

@u

@t
+ (u�r)u � �u +rp = 0 in 
; (2.2a)

r � u = 0 in 
; (2.2b)

@T

@t
+ (u�r)T �

1

Pr
�T = 0 in 
: (2.2c)

Here u; p and T denote the dimensionless velocity, pressure and temperature �elds, respectively,

while 
 represents the dimensionless (cylindrical) cavity. The associated boundary conditions are

u = 0; T = 0 on �SL; (2.2d)

u � n = 0; T = TD on �LG; (2.2e)

n � �� = �

Ma

Pr
rT � � on �LG; (2.2f )

where � �ru+ru
T
� pI3 denotes the stress tensor, with superscript T indicating the transpose

and I3 the 3 � 3 identity (delta) tensor. Also here �SL;�LG are the solid/liquid and liquid/gas

boundaries (both dimensionless), in turn, TD is the scaled external temperature imposed on the

free surface, � is an arbitrary vector in the local tangential plane to �LG, and n is the normal

vector to �LG (see Figure 1). In parametric form, the surfaces �SL; �LG can be expressed as:

�SL =
�
(r; z; �)jr 2 [0; rc]; z 2 f0; 1g; � 2 [0; 2�)

	
; (2.2g)

�LG =
�
(r; z; �)jr 2 frcg; z 2 [0; 1]; � 2 [0; 2�)

	
; (2.2h)

where rc denotes the dimensionless radius of the cylinder.

Finally, initial conditions

u = u0; T = T0 in 
 at t = 0 (2.2i)

are required to close the system.

In the above derivation, we have assumed negligible buoyancy e�ects as well as high surface tension

and low capillary number. The last two assumptions, as explained in DS, allow us to approximate

the liquid-gas interface by a non-deformable, cylindrical surface.

Solutions of (2.2a{f,i) are then sought for various values of the Marangoni number Ma, while the

Prandtl number Pr is held �xed. A small Prandtl number is selected since this is directly relevant

for several applications of interest to us, e.g. in semiconductor crystal growth, the Prandtl number

typically has values lying in the range 0.01 to 0.08. Consequently, under moderate conditions,

there is little feedback from the velocity on the temperature via advection, a feature that has been

exploited in the steady axisymmetric slender-ow modelling of (2.2a{f) (DS). There, the problem

reduces to a hydrodynamic system, where a strong convective mechanism occurring at the midzone

was identi�ed(see also Section 5). Hence, we concentrate on ow aspects in the subsequent sections.

3 Variational equations and computational method

For both steady and unsteady ow, the same transient solver is applied; in the former case, we

consider a solution as being obtained, once a suÆciently small tolerance value, measuring the L2(
)
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(a) (b)

Figure 1: (a) Sketch of a cylindrical liquid-bridge domain 
; with solid-liquid boundaries �SL and liquid-

gas interface �LG. For two-dimensional ow computation, axisymmetric solutions are sought in an arbi-

trary vertical `slice' S (with liquid-gas interface �S0): (b) Cylindrical and Cartesian coordinate systems.

norm of the solution di�erence between successive time steps, is reached, and remains below this

value for a suÆciently long time interval.

For the spatial discretisation, a standard Bubnov{Galerkin �nite-element method was used. In

contrast to the axisymmetric computational approach (see DS for details), where (2.2a{f ) are

converted into a variational form, which can directly accommodate the stress condition on the

slip boundary, we choose to apply the conventional Gaussian approach to the integration of the

di�usion term, leading to the form:

d

dt

Z



u�� dx+

Z



r(u) : r� dx+

Z



[(u � r)u] � � dx

�

Z



pr�� dx � I� = 0; (3.1a)

Z



(r � u) dx = 0; (3.1b)

d

dt

Z



T� dx+

Z



[(u � r)T ]� dx+
1

Pr

Z



rT � r� dx = 0; (3.1c)

where u 2 X := fv 2 (H1(
))
3 : v = 0 on Æ
 n�LG; v � n = 0 on �LGg; p 2 Y := L2(
) nR; T 2

Z := H1(
), and the test functions �;  ; � belong to the spaces X; Y; Z; respectively. Also, we

require u = u0; and T = T0 at t = 0, and note that u0 should be divergent-free in 
 and have

continuous normal component (zero, for the problem in hand) on all Dirichlet boundary portions

(Gresho & Sani 2000). Here

I� :=

Z
�LG

@u

@n
�� ds (3.2)

denotes the boundary-integral contribution along the liquid{gas interface. As shown more generally

in Appendix A, it is possible to accommodate the tangential stress boundary condition (2.2f), by

converting (3.2) into an equivalent stress-curvature-torsion (SCT) form; furthermore using extreme
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normal curve sections, which are (uniquely) � 1 = êz and � 2 = ê� for the cylindrical surface

considered, it follows immediately from (A13) that

I� = �2�rc

�
Ma

Pr

� 1Z
0

(� � êz)
dTD

dz
dz + 2�

1Z
0

(� � êz)(u � êz)dz; (3.3)

since the curvature values 0, r�1
c

apply to êz, ê� respectively.

Discrete solutions uh 2 Xh; ph 2 Yh; Th 2 Zh are sought, such that (3.1a-c) hold for all

� 2 Xh;  2 Yh; � 2 Zh; respectively. Here Xh; Yh; Zh are determined by the �nite element

under consideration. In our applications here, the Taylor{Hood triangular element has been imple-

mented, and hence, the velocity and temperature spaces comprise continuous, piecewise-quadratic

polynomials, while continuous, piecewise-linear polynomials form a basis for the discrete pressure

space. For this element, the velocity and temperature are of third-order spatial accuracy, while

the pressure is of second-order spatial accuracy (in each case measured by the L2(
) norm).

To discretise in time, a fractional-� scheme with operator splitting as variant (B�ansch 1998; Bris-

teau, Glowinski & Periaux 1987) was applied to the hydrodynamic part combined with a Crank-

Nicolson scheme for the energy equation. The essential feature of the former scheme is the numerical

decoupling of the nonlinearity and incompressibility as described in detail in DS; there descriptions

of the methods used to solve the subsequent matrix systems are also given (see also Davis & B�ansch

2002).

4 Numerical results for Ma > 0

In DS two-dimensional axisymmetric steady solutions were computed in the context of narrow

domains, amongst other possibilities, and for low Prandtl numbers. The ow solution in this

instance is characterised by two co-axial counter-rotating vortices of equal size which meet at the

midheight. Both full numerical solutions based on solving (2.2a{f,i) via a �nite-element scheme,

and numerical solutions based on solving an asymptotic nonlinear{viscous slender-ow model with

rc � 1 and Pr � 1 were obtained. The latter showed that steady axisymmetric solutions cease

to exist when the scaled thermocapillary parameter AM (explicitly de�ned in Section 5 below)

exceeds a value AML (� 3:3108).

Given the known �ndings from the related half-zone problem (Levenstam & Amberg 1995, Wan-

schura et al. 1995), we anticipated that for AM > AML three-dimensionality would play a rôle,

not only for narrow domains, but all possible cylindrical aspect ratios. The latter reference suggests

further that the most dangerous linear mode m increases with rc, via the (heuristic) approximate

relationship m = 4 rc ; interestingly, Levenstam and Amberg suggested that the instability can be

compared to that of a vortex ring of constant vorticity in an ideal uid, for which Widnall & Tsai

(1977) formally determined the relationship m = 5 rc.

Motivated by the reduced-model �ndings and half-zone results, three-dimensional transient sim-

ulations, based on using the numerical method outlined in the previous section, were performed

for a number of cases. Owing in part to the increased diÆculty of performing three-dimensional

simulations with narrow domains, especially regarding problems with grid resolution, we chose a

moderately small value namely rc = 0:5; this value of rc is also more typical for a real crystal-

growth oat-zone experiment, for example. In addition, the Prandtl number was �xed to be 0.02,
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Figure 2: Three-dimensional ow simulation for ReD = 2500; P r = 0:02; rc = 0:5 depicting

the time histories of (a) the L2(
)-norm of successive velocity solutions; (b),(c),(d) the cosine modes

m = 0 ({),1 (- -), 2 (- .) of the axial velocity component at (r; z) = (0:25; 0:25); (0:25; 0:5); (0:25; 0:75), in

turn.

while the initial solution was taken to be either a solution at a lower Marangoni number or else

u0 = 0; T0 = Tc; here Tc denotes the steady heat-conduction pro�le obtained by solving (2.2c{e,i)

without advection in the �rst equation.

The sample of results presented here were all obtained using a tetrahedral mesh comprising 31620

elements, 44135 velocity/temperature nodes and 5778 pressure nodes. The timestep size varied

between 0.0005 and 0.001. All results were fully converged with respect to mesh re�nement and

timestep size. In the following we consider the four cases ReD=2500,2600,2700,2800, where ReD �

Ma=Pr de�nes the dynamic Reynolds number, concentrating mainly on the �rst case. Before

discussing these, we note that solutions were also obtained for ReD values up to and including

2400, and for comparable mesh and timestep sizes; all of these yielded steady state solutions.

An unsteady solution is �rst obtained for ReD = 2500, and as expected three-dimensionality is

found to play a central rôle; before discussing this further, it is convenient here to introduce the

following representation for the axial velocity component uz := u � êz via cylindrical coordinates

(r; z; �) (see Figure 1(b)):

uz = a0(r; z; t) +

1X
m=1

am(r; z; t) cos(m�) +

1X
m=1

bm(r; z; t) sin(m�); (4.1)
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where am and bm denote the m'th Fourier cosine and sine mode in turn, while c.c. stands for

complex conjugate. We note that the form of (4.1) is valid for all the pointwise-de�ned ow

quantities, but that we have chosen to concentrate on just one of these.
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Figure 3: Time history behaviour and associated normalised frequency spectra for ReD = 2500; P r =

0:02; rc = 0:5 showing (a),(b),(c) radial, axial, azimuthal velocity components in turn at (r; z; �) =

(0:25; 0:75; 0); (0:25; 0:75; 5�=4); (d) axial velocity component at (r; z; �) = (0:5; 0:5; 0); (0:5; 0:5; �=2);

(e),(f) x-, axial velocity components at (r; z) = (0; 0:15). In plots (a)-(d), the frequency spectra for both

curves are identical.

The time histories for the three modes m =0, 1 and 2 are displayed in Figure 2, along with a

plot indicating the norm of the di�erence of successive solutions. We note here that all modes

of higher value are subdominant. The three modes are depicted along three circular curves, from

which several distinct features can be discerned. Firstly, it is clear that the m = 2 mode is the
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(a) (b)

(c) (d)

Figure 4: Computed transient velocity �eld for ReD = 2500 Pr = 0:02; rc = 0:5 at the dimensionless

times (a) 2.2; (b) 6.2; (c) 10.8; (d) 17.0.

�rst of the 3D modes to become active and at a time t � 3:9; this remains solely dominant until

t � 7:5, when the m = 1 mode (with frequency 0.25) starts to oscillate visibly. It is evident from

Figure 2, that the m = 2 mode (frequency 0.50) has double the frequency of that for m = 1,

which in turn suggests that the modes are nonlinearly coupled. While the oscillatory behaviour

of most ow quantities will be determined by the frequency values of these two modes (see Figure

3) a notable exception is with quantities involving integration over a given azimuthal angle range

(such as the L2(
)-norm of point quantities) as well as the axial velocity component along the

axis; the latter has a frequency value of 5.0, which corresponds to the basic linear frequency of the

m = 0 mode. The actual nonlinearly-a�ected frequency of the m = 0 mode is 1.0 we note, and

one possibility may be that its frequency stems from mode interaction involving the m = 2 mode

and a `mirror' mode having the same wavenumber but an opposite sign for the frequency, although

no �rm evidence can be provided. It is clear however from Figure 2 that the axisymmetric mode

is nonlinearly a�ected by the appearance of both modes, especially m = 2. Another interesting

feature is the behaviour of ux at the axis, where ux de�nes the horizontal velocity component at

the axis directed along � = 0 (i.e. y = 0; x � 0). From mathematical theory, coeÆcients of

ur and u� associated with even values of m must tend to zero on approach to the axis to avoid
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Dyn. Reynolds dominant signi�cant main 3D mode(s) near

number ReD frequency(ies) other frequencies start/at end-time t = 20

0 { 2400 ||- || |/|

2500 0:5 0:25; 1:0; 5:0 2=1; 2

2600 0:52 0:26; 0:78; 1:04; 5:21 2=1; 2

2700 0:28 0:56; 5:56 2=1; 2

2800 0:32 0:63; 6:27 2=1

Table 1: Frequency data for three-dimensional ow simulations with ReD ranging from 0 to 2800. In the

�nal column, \start" indicates the �rst appearance of 3D e�ects.

non-unique limiting values there (seen for example by imagining the velocity around an arbitrarily

thin column surrounding the axis, letting the column radius shrink to zero, and using azimuthal

symmetry properties for the modes in question). The odd modes (dominated by m = 1) naturally

avoid this scenario however, and because ux = ur cos(�) � u� sin(�) for r > 0, we would also

expect the frequency associated with m = 1 to dominate the behaviour of ux on approach to, and

at the axis; this is indeed observed in Figure 3e. We note further that uy at the axis (de�ned

along � = �=2) has analogous behaviour, but not necessarily uz, which is una�ected by the `thin

column' argument (Figure 3f). All frequency measurements were made using Matlab's fast Fourier

transform internal function, and for the time interval [10,20].

In Figure 4, results for ReD = 2500 are presented indicating four di�erent snapshots with cor-

responding times t = 2:0; 6:0; 10:8 and 17:0. The �rst two time instants correspond to the

axisymmetric- and m = 2 - dominated stages of the ow development, and indicate that the

upper vortex increases in size and moves below the midzone while the lower vortex correspond-

ingly shrinks. Perspective plots (not shown) indicate that the vortices are now \saddle-shaped"

(see e.g. Levenstam & Amberg 1995), in line with the dominance of the m = 2 mode. The �nal

two plots show the ow behaviour once the m = 1 mode is fully active; here a slight loss of mirror

symmetry associated with m = 2 can be observed.

As the value of ReD is increased beyond 2500 however, we observe a shift in the dominance of

the modes m = 1 and m = 2, as readily demonstrated in Figure 5. Correspondingly, the vortices

become more skewed and mirror symmetry is completely lost, as can be readily seen in Figure 6

for two time instants. A summary of the dominant frequency behaviour for the cases considered

is given in Table 1.

5 Slender-ow approximation

A hydrodynamic, slender-ow approximation of the steady axisymmetric system (based on as-

suming Pr � 1 and rc � 1) was derived in DS, and subsequently solved numerically using a

�nite-di�erence scheme, with the nonlinear terms lagged and upwinded. For positive Marangoni

number comparisons with full DNS (�nite-element) solutions (using Pr = 0:01, rc = 0:1) were

made. Very good agreement was obtained for problems both with and without buoyancy consid-

ered; for the latter this included AM values up to and including 3, where AM � r3
c
(Ma=Pr) is

the scaled Marangoni number in e�ect. The sudden non-existence of a solution beyond the value

3.3108 (:=AML) prompted interest in examining the ow mechanisms at the midzone (z � 0:5),

as explained next.

From the subcritical numerical computations in DS it was shown that, as the thermocapillary

stress on the liquid{gas interface is increased, the ow around the midheight of the domain starts
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Figure 5: Time histories of the cosine modes m = 0 ({),1 (- -), 2 (. .) of the axial velocity compo-

nent at (r; z) = (0:25; 0:25) for Pr = 0:02; rc = 0:05 and (a) ReD = 2500; (b) ReD = 2600; (c)

ReD = 2700; (d) ReD = 2800.

to become highly convective, almost jet-like. This makes intuitive sense when considering the

fundamental form of the solution for steady, axisymmetric ows, i.e. two counterrotating tori

which meet at the midheight, and increase in strength, as the Marangoni number is increased.

5.1 The midzone system

From the full numerical simulation of DS, the emergence of non-convex radial velocity pro�les

in the vertical direction (the so-called `lemonheads') for relatively narrow domains was shown to

coincide with the `cut-o�' value AML being exceeded in the slender-ow model. To recap, the

model suggests solving an ordinary-di�erential, nonlinear-viscous system of the form:

(�r~u)0 + �r ~w = 0; ~u ~w0 + ~w2 = �~q + (�r ~w0)0=�r; (5.1a,b)

around z = 0:5, where ~u(�r); ~w(�r) denote the scaled local radial and axial velocity components, ~q

is the scaled local constant-valued pressure gradient, and �r is the scaled radial coordinate. The

absence of any temperature feedback on the hydrodynamic system is a direct consequence of

assuming negligible buoyancy which, as noted in DS, only �rst becomes signi�cant for very high

10



(a) (b)

Figure 6: Computed transient velocity �eld for ReD = 2800; P r = 0:02; rc = 0:5 at the dimensionless

times (a) 8.2; (b) 13.2.

values of the Grashof number (Gr � r�6
c

). For the external temperature pro�le TD(z) � sin(�z),

the boundary conditions to accompany (5.1a,b) are

~u = 0; ~w0 = (AM)�2 at �r = 1; (5.1c,d)

�niteness at �r = 0: (5.1e)

The choice for TD(z) was discussed in some detail in DS we note, and the sinusoidal pro�le

was adopted due to some inherent advantages, in particular enabling an explicit (heat-conduction

type) temperature approximation to be obtained. Unpublished full computational results have also

con�rmed that the qualitative structure of the ow is essentially una�ected by di�erent choices for

TD(z).

The system (5.1a{e) was solved numerically via an abridged version of the reduced-model numerical

solver described above. Furthermore, the solutions were checked by means of a separate alternative

semi-implicit iteration procedure. Figure 7 indicates the dependence of ~q on AM , where non-

uniqueness is clearly evident, as well as the anticipated cut-o� point for positive AM values.

Another feature of interest is the branch behaviour for negative values of AM . Both branches

appear to suggest that the pressure gradient eventually becomes large and negative, as AM is

decreased towards certain critical values. An asymptotic analysis of the midzone system for�~q � 1

given next, addresses this issue. The results obtained therein will be used in Section 6 to compare

with computational results.

5.2 Large negative thermocapillary stresses

Here we attempt to determine solution properties of (5.1a{e) for large negative pressure. First,

in order to have consistent dominant balances in the momentum and continuity equations, the

relationships u � w � (�q)1=2 would appear to be necessary. This leads to the following asymptotic

expansions:

~u = �̂~u0 + �̂~u1 + � � � ; ~w = �̂ ~w0 + �̂ ~w1 + � � � ; ~q = �̂2~q0 + �̂~q1 + � � � ; (5.2)

11



Figure 7: Midzone-analysis result for ~q vs. AM . The lubrication results is indicated for comparison, by

crosses.

where �̂ � 1 and �̂ � �̂. Before investigating further, it is convenient here to eliminate w from

the nonlinear terms in (5.1b). Using the continuity equation for this purpose, it follows that:

�~u~u00 + ~u0 2 + ~u~u0=�r + 2~u2=�r2 = �~q + (�r ~w0)0=�r: (5.3)

Substituting (5.2) into (3.3) yields, to leading-order, the nonlinear-inviscid equation

�~u0~u
00

0 + ~u0 20 + ~u0~u
0

0=�r + 2~u20=�r
2 = �~q0; (5.4)

which is valid for 0 < �r < 1. From the coordinate change s = �r2 we can deduce that

2s(2~u0~u0ss � 2~u20s � ~u20=s
2) = ~q0: (5.5)

By letting u0 = ~u0s
1=2 this simpli�es further to

4(u0u0ss � u0s
2) = ~q0: (5.6)

Although (5.6) admits several types of solutions, we would expect at least one or other of the

boundary conditions at the slip and axis to hold, and preferably both. Hence, for example, while

(5.6) admits a solution proportional to � sinh(c1s + c2) for any real c2, and nonzero real c1, this

would in turn imply a radial velocity pro�le like sinh(c1�r
2 + c2)=�r, and only one of (5.1c) or

12



(5.1e) and not both can be ful�lled. An alternative solution form to (5.6) is sin(c1s+ c2), so that

~u0 = � sin(c1�r
2+c2)=(c1�r), again for real c1; c2 with c1 6= 0 and with (real)  = (�~q0=4)

1=2 (which

is consistent with the negative pressure gradient, we note). By limiting c1 to the set fn� : n 2 Ng

and setting c2 = 0 we can now satisfy the boundary conditions for ~u0 at both the axis and the slip.

Hence, one set of possible solutions is:

~u0 = � sin(n��r2)=(n��r); (n 2 N) (5.7a)

and from (5.1a) it then follows immediately that

~w0 = �2 cos(n��r2); (n 2 N): (5.7b)

While ~w0 is consistent with the �niteness condition at the axis, we cannot directly satisfy the

stress condition on the slip, since ~w00 = 0 there. This suggests we need to consider higher order

e�ects, in order to accommodate (5.1d). It is reasonable to expect a viscous correction e�ect at

the next signi�cant level, since we would otherwise obtain an essentially identical system to the

leading-order one, and therefore be unable to ful�l (5.1d). Hence, balancing terms in (5.3) suggests

that � = O(1) and

�~u0~u
00

1 � ~u1~u
00

0 + 2~u00~u
0

1 + ~u0~u
0

1=�r + ~u1~u
0

0=�r + 4~u0~u1=�r
2 = �~q1 +Rn; (5.8)

where

Rn = �8n�(sin(n��r2) + n��r2 cos(n��r2)) (5.9)

denotes the viscous-correction term.

The solution properties of (5.8) are examined in detail in Appendix B, but here we just note the

salient points: �rstly, we can derive a solution for ~u1 which satis�es the axis and slip conditions

(i.e. is zero-valued there) and secondly, a corresponding solution for ~w1 which satis�es the axis

condition. At the approach to the slip (�r ! 1�), we obtain the interesting result:

~w1 � �16n2�2 +O[(1� �r) log(1� �r)]: (5.10)

In order that (3.10) is compatible with the stress condition on the slip, it is therefore necessary

that

(AM)n = 16n2; (5.11)

where (AM)n denotes the cut-o� value corresponding to the n'th solution of (5.7a,b), as ~q ! �1.

6 Numerical results for Ma < 0

Although ows with negative Marangoni number are perhaps less applicable in practice, at the

very least they provide us here with a good opportunity to validate full numerical solutions against

reduced-model computations and associated asymptotic theory. In the slender-ow model, the

lubrication solution approximation of DS, which in scaled form is

uL =
�2�r

8

�
1� �r2

�
sin(�z); wL =

�

4

�
1� 2�r2

�
cos(�z); p0

L
(z) = �2� cos(�z); (6.1a-c)

and holds in the bulk of the domain, is known to be appropriate on the attractor branch (but not

the other - see Figure 7) for small values of jAM j; moreover as DS demonstrated for positive values

of AM , these solutions are remarkably robust and continue to serve as a good approximation in

much of the domain (i.e. away from the end-walls) even for O(1) values of jAM j.
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Figure 8: Narrow-domain full simulation for Pr = 0:01; rc = 0:1 depicting the radial pro�les at z=0.5 for

the radial velocity component and the axial velocity gradient respectively in (a),(b) for AM=-3; (c),(d)

for AM=-10; (e),(f) for AM=-15.5. In each case comparisons are made with computed slender-ow data,

an approximate lubrication solution and (5.7a,b) with n=1.

It has also been shown in Section 5.2 above that possible theoretical approximations exist in the

midzone of the domain (around z = 0:5) in the limit of large negative pressure. In this section these

predictions are tested against full numerical solutions, as well as the numerical solutions provided

by the slender-owl �nite-di�erence midzone solver described above (and more extensively in DS).

For the full simulations, the Prandtl number has the value 0.01 while the dimensionless cylinder

radius is taken as 0.1.

Figure 8 shows the comparison of the numerical results with the lubrication solution and the

solution (5.7a,b) for n = 1. Here the comparisons are for radial velocity and axial velocity gradient

at the midzone; the �rst plots for AM = �3 con�rms the point made about the robustness of

the lubrication solution, while the plots for AM = �10 and AM = �15:5 show the increasing

relevance of the given limiting solution for large �jqj. It seems fully reasonable to expect that

none of the other possible integer values in (5.7a,b) will give a more accurate solution, since for

example, both full and reduced computational solutions indicate that the radial velocity has no
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intermediate zeroes in (0,1), whereas it's easy to see that the n'th solution in (5.7a,b) has exactly

(n � 1) intermediate zeroes. A global view of the solution is given in Figure 9, where the basic

qualitative form of the solution can be seen: here the solution consists of two counter-rotating

vortices of equal size with common axis r = 0, as with the steady 2D qualitative form for positive

values of AM ; an example of the latter is also shown in this �gure for convenience. We see that the

solution forms are similar, with the major exception being that, for AM < 0 the solution consists

of inward-owing motion along the midzone, i.e .the direction of motion in each vortex is reversed

compared to the situation for AM > 0.

(a) (b)

Figure 9: Computed velocity �eld in a narrow domain for Pr = 0:01; rc = 0:1 with (a) AM = �10; (b)

AM = 2.

If we assume now that the solution (5.7a,b) with n = 1 is a valid midzone approximation to upper

branch solutions, then according to (5.11) we should expect the upper-branch slender-ow solution

to cut-out at AM = �16. Reduced-model computations have directly con�rmed this feature,
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with no accurate solutions being computable below this value. Full axisymmetric solutions were

computed for AM values as low as -25 however, and several interesting features were uncovered. In

Figure 10 the radial and axial velocity pro�les at r = 0:05 are plotted. We are especially interested

in the behaviour of the former, where the focus is on the convexity of the curves; as Figures 10c,d

suggest, the curves for AM > �16 are entirely convex in the bulk of the domain (i.e. excluding

the high-shear behaviour near the endwalls, where the slender-ow approximation is not valid). In

contrast, for AM < �16, the curves are clearly non-convex, while at AM = �16 the associated

curve exhibits two points of inection (roughly), while otherwise being convex in nature. This

result exactly mirrors the �ndings for positive AM described in DS, and seems to suggest strongly

that the two-dimensional steady state is lost once the radial pro�le exhibits a point of inection in

the bulk. Unfortunately, we cannot provide any mathematical evidence to support this, although

of course, it's well-known that inectional pro�les are often linked to the onset of instabilities.

Finally here, we remark that some e�ort was made to better understand the nature of the lower

branch, in particular whether or not the branch there also cuts out at a �nite value, or perhaps

exhibits some other trend, such as exponential growth. No �rm conclusions could be made however,

partly due to the associated diÆculty of obtaining a converged and valid solution on this branch,

even using the reduced-model code. From those solutions successfully computed however, the

solution form for the radial velocity suggested that the theoretical approximation (5.7a,b) with

n = 2 might possibly hold, especially as the former consistently yielded one intermediate zero in

(0; 1); corresponding plots depicting the behaviour of the axial velocity gradient were less convincing

however, and so no �rm conclusions can be made here.

7 Conclusions

In the preceding sections we have studied the ow behaviour of thermocapillary-driven liquid

bridges for both positive and negative Marangoni number.

For positive Marangoni number, where the motion on the liquid-gas interface is outward directed

(and inward along the axis), full computations for rc = 0:5 have demonstrated that steady ax-

isymmetric ow �rst becomes unstable to the azimuthal mode m = 2. Hence, this mode is the

most dangerous in a `linear' sense, and furthermore is stationary in nature, exactly in agreement

with half-zone predictions for this same test case (Wanschura et al 1995). We are also concerned

however with possible mode development and interaction, and therefore compute for relatively

large end-times; this enables us for instance to witness the later activation of the m = 1 mode,

and its subsequent interplay with other modes, particularly the m = 0 and m = 2 modes. It is

clear from the frequency table in Section 4 and Figures 2, 3 that the modes m = 1 and m = 2

are nonlinearly related due to the evident frequency doubling. The above computations were per-

formed with Pr = 0:02, although we note that the instability here is virtually independent of Pr,

provided that Pr � 1, as for half zones (Wanschura et al 1995).

While no exact prediction for the critical dynamic Reynolds number Re�
D

can be made for the

given test case, our numerical results indicate that ReD 2 (2400; 2500). As (ReD�Re
�

D
) increases,

the relative importance of the m = 2 mode decreases and m = 1 begins to dominate alone; loosely

speaking, the greater the dominance of the latter mode, the greater the loss of mirror symmetry

in vertical plane plots, as can be observed in Figures 4,6, for example.

For negative Marangoni number the slender-ow midzone analysis of DS (also Figure 7 here)

suggest that the pressure becomes large and negative at the approach to a �nite, critical value
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Figure 10: Full computational results for AM = �3; �10; ;�16; �20; �25 indicating (a) the scaled

radial velocity component; (b) the scaled axial velocity component vs. z at r = 0:05. In (c) the double

axial derivative of the former is shown, and in (d) a close-up focussing on inectional properties.

of AM . The asymptotic analysis presented in Section 5.2 assumes a mainly inviscid response in

the midzone, and while regular solutions can be obtained, e.g. (5.7a,b), the thermocapillary stress

condition cannot be satis�ed at this level. Instead higher-order viscous e�ects need to be taken

into account, and consequently the n'th solution of (5.7a,b) is valid only if AM � (AM)n, where

(AM)n = �16n2. Both full and slender-ow midzone computational results of upper branch cases

are compared with the n = 1 solution of (5.7a,b), as well as the lubrication approximation of DS;

very good agreement with the latter is shown for AM = �3, while the agreement with the former

improves markedly as AM is reduced further, with fairly good agreement evident for AM = �15:5.

Finally we remark once again on the `lemonhead' e�ect, �rst described in DS. In that study, the

radial velocity exhibited non-convex pro�les across the midzone for AM > AML(� 3:3108). In

Figure 10b we see an analogous situation for AM < �16. Moreover, Figures 10c,d infer that the

critical value corresponds to the �rst instance where the pro�le is not completely convex, but has

at least one point of inection (two in our case, due to midheight symmetry).
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solver.

Appendix A. Stress-Curvature-Torsion (SCT) Boundary-Integral Form

Taking the L2(
) scalar product of (2.2a), we integrate the di�usion part using Green's Theorem

directly, i.e.

�

Z



(�u � �) dx =

Z



(r� : ru)dx� I�; (A1)

where

I� :=

Z
�LG

@u

@n
�� ds: (A2)

If we suppose that (� 1; � 2;n) is an orthonormal basis of R3 , where � 1; � 2 are vectors in the local

tangent plane on �LG and n is the local outer normal, then generalising (2.2f) to include any

right-hand side (continuous on �LG) we have the two independent boundary conditions

� i � (�n) � n � �� i = gi on �LG; (A3)

for i=1,2.

Clearly, only the `strain' part of � makes a contribution here, and hence, for i = 1; 2 on �LG

gi = � i � [(ru)n] + � i � [(ru)
Tn]; (A4)

which reduces to

gi = � i �
@u

@n
+ n �

@u

@�i
(A5)

using associativity arguments.

Since (� 1; � 2;n) is an orthonormal basis, and using the non-deformation condition on �LG in

advance, we may write

u = (u � � 1)� 1 + (u � � 2)� 2; on �LG: (A6)

Likewise,

� = (� � � 1)� 1 + (� � � 2)� 2; on �LG: (A7)

Now combining (A5) and (A7), we can deduce that

@u

@n
�� =

2X
i=1

(� � � i)gi �

2X
i=1

(� � � i)(n �
@u

@�i
): (A8)

Since @(u � n)=@�i = 0, for i = 1; 2; it follows from (A6) that

n �
@u

@�i
=

2X
j=1

(u � � j)(n �
@� j

@�i
): (A9)

From elementary di�erential geometry it is easy to prove that

@� i

@�i
= ��iNi; (i = 1; 2) (A10)
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where Ni denotes the outer normal for the i0th curve on �LG and �i its curvature.

It can also be shown that
@� j

@�i
= ��ijn+ �i(Ni � � j)� i; (A11)

for i = 1; 2 with j 6= i, where �ij denotes the normal torsion component of the vector � j along the

local coordinate �i.

Hence, combining (A8) { (A11) with (A2) we can determine that

I� =

2X
i=1

Z
�LG

(��� i)gi ds+

2X
i=1

Z
�LG

(��� i)(u�� i)(n�Ni)�i ds+

2X
i=1

Z
�LG

(��� i)(��� (3�i))�i ds; (A12)

where, for convenience, we have dropped the `j' subscript in the torsion term. This expression

de�nes the stress-curvature-torsion form for I�.

Finally, if we just restrict ourselves to normal sections (so that Ni = n), and moreover to lines

of curvature, (that is, those unique curves yielding maximum and minimum curvature, which by

necessity are orthogonal), we can further simplify the expression to

I� =

2X
i=1

Z
�LG

(� � � i)gi ds+

2X
i=1

Z
�LG

(� � � i)(u � � i)�i ds: (A13)

Here we have used an elementary property of di�erential geometry, namely zero torsion along lines

of curvature. (This can be easily visualised for axisymmetric surfaces { such as our cylindrical

domain { where the lines of curvature are the meridians and parallels; these curves are clearly

planar, and hence yield zero torsion.)

Appendix B. Properties of the viscous-correction system

The proposed leading-order solutions (5.7a,b) for �~q � 1 automatically result in zero shear stress

on the slip, and hence, this condition must be accommodated at a higher order. The �rst non-trivial

change we can expect is when viscous e�ects are taken into account.

We �rst write ~u1 = ~u0 � in (5.8) resulting in:

~u20(�
00

� �=�r) + 2~q0� = ~q1 �Rn; (B1)

where 0 denotes di�erentiation with respect to �r, as in Section 5.2. Here the properties of ~u0 have

been exploited to reduce the complexity on the left-hand side. Making the variable switch t = n��r2

allows us to further simplify the form of the relationship to

sin2(t)�tt � 2� = �(~q1=~q0)� 8n�(sin(t) + t cos(t)): (B2)

A second substitution � =  cot(t) enables us to derive the equation

(cot2(t) t)t = �(~q1=~q0) cot(t) csc
2(t)� (8n�=~q0) cot(t) csc

2(t)(sin(t) + t cos(t)); (B3)

which upon integration yields

 t = (~q1=2~q0) sec
2(t)�(4n�=~q0)[t= cos(t)+tan2(t)�

tZ
t̂ csc(t̂) dt̂+3 sec(t) tan(t)]+D1 tan

2(t): (B4)
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Here the bar on the integral sign denotes the principal value. A �nal integration gives

 = (~q1=2~q0) tan(t)� (4n�=~q0)[(tan(t)� t)�

tZ
t̂ csc(t̂) dt̂+�

tZ
t̂2 csc(t̂) dt̂+ 3 sec(t)]

+D1(tan(t)� t) +D2: (B5)

Here we note that D1 and D2 are constants of integration, and these can be determined uniquely

by imposing the radial-velocity conditions of �niteness at the axis and zero-valuedness at the slip.

Subsequently, we have the properties  � t as t! 0+ and  � (n� � t) as t! 1�.

It is clear from second order in the continuity equation that ~w1 satis�es

~w1 = �~u01 � ~u1=�r: (B6)

With the substitution ~u1 = ~u0� and an identical relationship to (B6) for ~u0; ~w0 stemming from

leading-order continuity balances, it immediately follows that

~w1 = ~w0�� ~u0�
0: (B7)

Owing to the asymptotic nature of  at the axis, it follows that � is bounded there, while �0 � t�1=2

there; since ~u0 � t1=2 and ~w0 � 1 clearly follow from (5.7a,b) we can conclude that ~w1 is �nite at

the axis. It remains to examine the shear stress contribution at the slip. Di�erentiating ~w0 with

respect to �r in (B6), and combining the result with (B1) yields

~w01 = ( ~w00 + 2~q0=~u0)� + 2 ~w0�
0

� ~q1=~u0 +Rn=~u0: (B8)

Substituting for � again, we can determine with the aid of (5.7a,b) that

~w01 = �4(�t)1=2[ cos(t)� 2 t cot(t) csc(t) + (Rn � ~q1) csc(t)=(4
2)]: (B9)

Then combining (5.9) and (B4), and noting that  (n�) = 0, it follows that

~w01 � �16n2�2 +O[(1� �r) log(1� �r)]; (B10)

as �r ! 1�.
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