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Abstract

We introduce a simple method of analyzing the transitional dynamics of
the Uzawa-Lucas endogenous growth model with human capital externali-
ties. We use the value function approach to solve both the social planner’s
optimization problem in the centralized economy and the representative
agent’s optimization problem in the decentralized economy. The complex-
ity of the Hamilton-Jacobi-Bellman equations is significantly reduced to an
initial value problem for one ordinary differential equation. This approach
allows us to find the optimal controls for the non-concave Hamiltonian in
the centralized case and to identify the symmetric Nash equilibrium of the
agents’ optimal strategies in the decentralized case. For a wide range of
the degree of the human capital externality we calculate the global transi-
tional dynamics towards the balanced growth path. The U-shaped course
of output growth rates is explained in detail.

JEL Classifications: C61, 041, C72

1 Introduction

We introduce a simple solution method for the analysis of endogenous growth
models. We demonstrate this method by studying the transitional dynamics of
the Uzawa (1965) and Lucas (1988) model. Our method is of global character and
is closest to the time-elimination method by Mulligan and Sala-i-Martin (1991).
In his seminal paper, Lucas (1988) argues that the economy’s average level of hu-
man capital contributes to total factor productivity in goods production thereby
causing an externality. Since our method is based on the value function approach,
it is generally applicable to the centralized, possibly non-concave, case as well as
to the decentralized case. Furthermore, the value function is deterministic even
in a model with uncertainty such that this approach is easier to generalize in this
direction. We apply our method first to the social planner’s optimization prob-
lem and second to the representative agent’s problem in a decentralized economy.
We are able to give analytically explicit expressions for functions of the result-
ing highly non-linear Hamilton-Jacobi-Bellman (HJB) equations, which to our
knowledge have not yet been obtained before. This allows us to follow the value
function approach rather than the Pontryagin maximum principle (Kamien and
Schwartz, 1991). Using the model’s homogeneity (Caballé and Santos, 1993) we
reduce the dimension of the optimal decision rules and thereby simplify our anal-
ysis. The knowledge of an explicit functional form that solves the HJB equation
facilitates our efforts. This ‘candidate’ function, however, is not the value func-
tion except for one specific initial value which corresponds to the balanced growth
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path solution. We show that at this particular value a saddle point behavior oc-
curs.

The candidate function outside the balanced growth path yields the unstable
solution branch in the phase diagram and thus non-feasible controls. Finding
an analytic expression for the stable solution branch, which gives the true value
function, seems to be a daunting task. We therefore transform the HJB equa-
tion suitably and finally arrive at an explicit one-dimensional ordinary differential
equation, which can be solved by standard numerical schemes. In the centralized
case, the usual transformation for implicit differential equations applies and the
candidate function provides the correct initial conditions. In the decentralized
case, our analysis is restricted to non-cooperative symmetric Nash equilibria and
we first arrive at a partial differential equation. The additional variable enters
because the path of the average level of human capital is treated as exogenously
given by the agents. However, by exploiting the imposed symmetric Nash equi-
librium condition we again obtain an ordinary differential equation. Finally, the
global character of our method allows to analyze the centralized as well as the
decentralized economy far away from the balanced growth path.

A main feature of the Uzawa-Lucas model constitutes that the agents have to
‘learn or to do’ (Chamley, 1993), i.e. they have to allocate their human capital
between two production sectors. The first sector is a goods sector where a single
good usable for consumption and physical capital investment is produced. This
sector exhibits a production technology that uses human as well as physical cap-
ital. The second sector is a schooling sector where agents augment their stock of
human capital. Here, human capital is the only input factor. Since the average
level of human capital influences the productivity of each individual’s stock of
human capital, there is a clear linkage between the average stock of human capi-
tal and the opportunity costs of schooling. In the decentralized economy, agents
are only compensated for their respective private factor supplies but not for their
influence on the economy-wide average stock of human capital. Also, they do
not coordinate their actions which leads to the situation where agents treat the
opportunity costs of schooling as exogenously given. In other words: the average
level of human capital causes a cost externality in the schooling decision. As a
result, the agents’ schooling decisions are not Pareto-optimal and the incentive
structure described above leads to non-efficient equilibria. By contrast, the cen-
tral planner, who internalizes all relevant incentives, reaches the social optimum
by choosing the efficient level of schooling activities.

The theoretical model considered here differs from that studied by Lucas (1988)
only in the choice of the utility function. We assume logarithmic preferences,
implying that the constant intertemporal elasticity of substitution is equal to
one. This assumption reduces the number of parameters by one and simplifies the
calculations. Nevertheless, the balanced growth path implications are analogous
to those in the more general case. Only in some very restrictive cases explicit
solutions are known. Xie (1994) studies the special constellation where the inverse
of the intertemporal elasticity of substitution and the output elasticity of physical



capital in the goods sector are equal and focusses on the decentralized case.
Hartley and Rogers (2003) solve an Arrow and Kurz (1970) type of a two sector
growth model in closed form after introducing a stochastic disturbance in the law
of capital accumulation.

The allocation of human capital is the mechanism that causes the differences be-
tween the outcomes of the centralized and the decentralized case. Our numerical
results reveal the underlying incentive structure and confirm that the model im-
plies U-shaped adjustment of output growth rates (Mulligan and Sala-i-Martin,
1993). When physical capital is relatively scarce, the growth rate of output is
very high but declining. It even falls below the balanced growth path value before
it rises again and finally converges to the balanced growth rate.

The paper is organized as follows. Section 2 introduces the model. Section
3 presents our strategy of solving the social planner’s problem. Based on our
results of the third section, we treat in Section 4 the decentralized case, which
requires a higher analytical and numerical effort. Section 5 discusses our solution
method and compares it to other approaches. Section 6 presents numerical results
explaining the U-shaped course of output growth rates. Section 7 concludes. The
Appendix contains proofs of statements omitted in the paper.

2 The model

We assume a closed economy populated by a large number of identical infinitely-
lived agents. Firms are producing a single good and there is a schooling sector
providing educational services. Population is constant and normalized to one.
The representative agent has logarithmic preferences over consumption streams

U:/ e " 1nc.dt, (1)
t

=0
where ¢; i1s the level of consumption at time ¢ and p > 0 is the subjective discount
rate. The logarithmic utility function implies that the intertemporal elasticity of
substitution is equal to one. Agents have a fixed endowment of time, which is
normalized as a constant flow of one unit. The variable u; denotes the fraction
of time allocated to goods production at time ¢. As agents do not benefit from
leisure, the whole time budget is allocated to the two sectors. The fraction 1 — u;
of time is spent in the schooling sector. Hence, in any solution the condition

Uy € [0, 1] (2)

has to be fulfilled. The variables ¢; and u; are the agent’s control variables.
Human capital production is determined by a linear technology in human capital

he = B(1 — ;) hy, (3)

where we assume that B is positive. This schooling technology together with
condition (2) implies that human capital will never shrink, i.e. the growth rate

3



h must be non-negative. It also implies that the realized marginal and average
product are equal to B (1 — us). Note that we abstract from depreciation. We
assume an infinitely large number of profit-maximizing firms producing a single
good. They are using a Cobb-Douglas technology in the two inputs physical and
human capital. The level of human capital utilized in goods production equals
the total level of the stock of human capital multiplied by the fraction of time
spent in the goods sector at time t. Total factor productivity A is enhanced by
the external effect v of the economy’s average stock of human capital, h,;. The
output y; is determined by

yr = Ak (ushe)' ™ hY,.

The parameter a is the output elasticity of physical capital and we assume a €
(0,1). We further assume that the exponent 7 is nonnegative. If we set u,
equal to one, we get the potential output in the goods sector. Since all agents
are homogeneous, the economy’s average level of human capital must equal the
representative agent’s level of human capital at any point in time

ht - ha,t; Vt Z 0 (4)

In the decentralized economy the representative firm is taking h,: as given and
rents physical and human capital on complete factor markets. Market clearing
factor prices and the zero profit condition allow to state the agent’s budget con-
straint as

yt:ct+kt7 vt > 0.

The right-hand side describes the spending of the agent’s earnings, where ke is
the rate of change of the agent’s physical capital stock k;. Since we abstract
from depreciation, this rate corresponds to the agent’s net investment in physical
capital. The left-hand side collects the streams of income stemming from the
agent’s physical capital stock and from his work effort u;h;. We assume that the
initial values ko and hg are strictly positive. Note that by consuming more than
current production it is possible to disinvest in physical capital, i.e. the growth
rate of physical capital turns negative.

Informational structure

We want to analyze the model from two perspectives. The first perspective is the
one taken by the benevolent planer in a centralized economy. In order to derive
the social optimum, all information is used and all incentives are internalized. The
second refers to the representative agent in a decentralized economy. At time 0
he has to choose optimal time dependent consumption and schooling decision
paths. Then he is committed to these paths for the whole future. The non-
cooperative symmetric Nash equilibrium condition implies that he is trying to
find the best response given the path of the economy-wide average schooling
decision. Furthermore, he takes into account that every single agent does also
play the best response and so forth. Perfect foresight implies that we are looking
for fixed points in the space of optimal time dependent decision rules.
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3 The centralized economy

This section presents our strategy of solving the social planner’s problem. The
planner exploits the equality condition (4) and his dynamic optimization problem

(DOP) is given by:
U= max/ e " 1nc.dt,
t

Ci, Ut =0

with respect to the state dynamics

ky = AkSul®hi ™t ¢, Vi >0,
iLt:B(l—ut)ht, thO,
ktZO and htZO thO

The initial values kg, hg > 0 are assumed to be given. Requiring these endowments
to be strictly positive ensures an interior solution and rules out trivial solutions.
Since we assume a Cobb Douglas production technology and logarithmic utility,
this restriction will be satisfied automatically under optimal controls. In Section
3.1 we analyze the above DOP. Using homogeneity in the initial conditions, we
reduce the HJB equation to only one implicit ordinary differential equation and
give an explicit solution of the HJB equation. This ‘candidate’ is indeed the
planner’s value function at one point, which corresponds to the balanced growth
path of the economy. An application of the candidate function outside this point
yields non-feasible controls. The implied allocation of human capital leads to high
schooling efforts when the opportunity costs of schooling in goods production are
low and it leads to little schooling efforts when these costs are high. Surely,
this affords an opportunity for arbitrage. As a consequence this inefficiency is
accelerating and finally implies non-feasible controls. In Section 3.2, we transform
the problem of determining the value function into an initial value problem for an
explicit one-dimensional ordinary differential equation. The linear approximation
at the saddle point is given in terms of the parameters. Moreover, the explicit
form allows it to apply classical numerical methods in order to determine the
value function globally: In our simulations the standard Mathematica procedure
NDSolve worked very efficiently.

3.1 The social planner’s optimization problem

In the DOP the two control functions ¢; and u; are chosen by the social planner
given the set of admissible controls

(ct,ue)e>o € X :={(f,9) :[0,00) = X | f, g locally bounded and measurable}

with X :=[0,00) % [0,1]. Using the logarithmic preferences and the exponential
discount rate, the planner defines the representative agent’s value function:

oo —
fo e Plncdt, 7= 00
—00

V(ko,ho) := max {

, T < 00,



where 7 denotes the stopping time 7 := inf{t > 0|k; = 0}. This is a classical
optimal control problem with infinite horizon (Fleming and Soner, 1995, Section
1.7). However, the results derived there are not directly applicable because z — z?
forp € (0,1) and z > 0is only locally Lipschitz continuous and we allow V = —c0.
Nevertheless, it turns out that the optimal controls imply dynamics where the
state variables are bounded away from zero so that 7 = oo holds and the above-
mentioned conditions are satisfied. In order to determine the value function, we
write down the HJB equation for the value function V evaluated at k,A > 0 and
t>0:

pV = (m;aEXX { Inc+ V}C(Akaul_ahl_a"'” —c)+ WB(1 - u)h}
Here, V4 and V;, denote the partial derivatives with respect to k& and h, which
can be interpreted as the shadow prices of relaxing the corresponding constraints.
Recall that in the case of an infinite time horizon, autonomous equations, and an
exponential discount rate the HJB equation simplifies to a differential equation
independent of time. We determine the maximum by looking at the first order
necessary conditions. The implied optimal controls are given by:

¢t = V;c_la (5)

1

* A(l—a)V, \ @
wo= (AT b (6)

a

The planner chooses the consumption stream such that the marginal utility is
equal to the marginal change of wealth with respect to physical capital. The
optimal allocation of human capital between the two sectors is determined by the
weighted ratio of the marginal changes in goods production and schooling due to
a marginal shifting of the human capital allocation. The respective weights are
the planner’s shadow prices of the corresponding state variable. Since the value
function V is obviously increasing in its arguments, the relation (5) ensures that
the consumption rate is positive. Equally, u* € (0,00) holds, but u* > 1 may
well occur. For the moment, let us suppose that the controls (u*, ¢*) found above
are feasible. Then the HJB equation becomes:

l—a

PV +1=—InV; + ak (AVhY)= (1——a)T + BV,h. (7)

BV,

In fact, the HJB equation is homogeneous in the initial conditions. This allows

us to follow Mulligan and Sala-i-Martin (1991) in defining a so-called state-like

(1—atv)/(1-a)

variable z; := kih, . The introduction of z; reduces the complexity

of the problem by one dimension. Its dynamics are given by

Ty = Azdu; ™ — cpzik]t — %B(l — Uy ) T4 (8)
Introducing the control-like variable ¢; := ctmtkt_l, we see that the evolution of

z; 1s completely described by z;, u; and ¢;. For any initial state (ko,ﬁo) with

Zg = koﬁa(l_a+7)/(l_a) = xo we are led to apply the same controls @; = u; and
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g+ = q:- The only difference is that the consumption rate ¢ differs from ¢; by
the factor (ho/ho)t~otM/(1=2) " Any solution V(k,k) can thus be deduced from
V(z,1) =: f(z) via

Loty

V(k,h) = f(kh™ =) + ;5723 Inh.

The HJB equation in terms of f can be derived from

Vi= 2 and V= fEiv(h - L),

Note that ¢* = 1/f' holds. Furthermore, the optimal human capital allocation
(6) can be stated in terms of the optimal choice of the control-like variable ¢*:

* A(l—a)? a
= (B(l—a-l—v)(l;q*—z)) T 9)

After simplifying and collecting terms, the HJB equation reads as follows

l—a

pfa) +1- B2 b inf(e) = 2ozt o2 LEE, - f(a), (10

l-a ’ -2
L_fi(z)e) =

where the constant ¢ is given by

All—a)2—aq> ﬁ
Q= (753(1_)a+7) ) > 0.

We claim that a solution to this equation is given by

B 4pmp—p
fle) = BEEIROR 1y y) (11)
Indeed we have f'(z) = 1/(pz + pyp) as well as %— f'(z)z = ¢f'(z) such that (10)

is satisfied. We infer that a candidate for the value function is given by:

B2t 4 plnp—p
2

p

l—aty
)

W(k,h) = + 2 1In(k + ph == k, h > 0. (12)
However, note that limg_,o W(k,h) = W(0,h) > —oo = V(0, k) holds, which is
contradictory to 7 = 0. Thus, using W in the first order necessary condition
along the optimal consumption path (5) implies positive consumption rates even
if & = 0 holds such that the physical capital stock turns negative. Similarly,
the insertion of W into the first order necessary condition along the optimal
human capital allocation path (6) implies that the planner chooses a high level
of schooling activities if physical capital is relatively scarce. On the other hand,
if human capital is relatively scarce, his schooling efforts are low. In any case,

the function W is an upper bound for the true value function V:
V(k,h) < W(k,h), Yk,h>0.

The Appendix presents a proof of this fact. Moreover, if for some (ko, ho) the
pair (¢}, u}), derived from the first order necessary conditions, is in X and 7 = oo
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holds, then all inequalities in the proof become equalities, (¢}, u}) is the pair of
optimal controls and V' (ko, ho) = W (ko, ho) holds. We insert the controls derived
from W

C=seret v () e = ()T 0y

into the dynamics equation (8) for z:

2—a 1
L B(l—a+v) )m 2 (B(l—a-l—’y) _ ) _ (A(l—a)Z—“aa)E 14
Tt ((Aa)ﬁ(l_a) et a P)%e = P\ " B(i-a+) : (14)
A search for steady states of z; shows that on the positive axis z; only vanishes

for the value
255 — o ( A(l-a)? %a )1/(1—a) o pap

This steady state z*¢ leads to the balanced growth path, for which the controls
q* = ¢z [k and u*® derived from W remain constant and are thus admissible
as long as u* < 1 holds. Linearizing the right hand-side of equation (14) at
z = z*° shows that z°° is locally unstable and we infer that W yields the unstable

solution branch in the phase diagram (see Figure 1).

Proposition 1. Ifz* := % = B(l”_ajﬂ) and pli;j‘_v < B hold, then the controls
58 e l-aty —a

¢ = p*asthe = p(k(0) + @h(0) 7==" ) exp((B321* — p)t),  (15)

ult =t = el (16)

B(l—a+v)

are indeed optimal in X. In addition to the control u, the control-like variable g
remains constant as well:

88 88 88 a+B(l-a
g° = 9" = p(a* + ) = ppogptiat)

The brief proof of this proposition is given in the Appendix. The fixed point
derived above is the unique balanced growth path equilibrium of the centralized
economy. For v = 0 we recover the findings of Benhabib and Perli (1994). Since
the social planner’s Hamiltonian is convex for ¥ > 0 their approach does not
offhand furnish a solution in the decentralized case. The above results show that
the balanced growth path allocation of human capital is split over both production
sectors and remains constant along this path. Furthermore, we learn that it is
negatively related to the degree of the external effect of human capital in goods
production captured by the parameter +.

3.2 Determining the centralized solution

The main problem in solving the reduced HJB equation (7) stems from the fact
that it is not explicit in f’. For this implicit differential equation standard tech-
niques (Bronshtein and Semendyayew, 1997) are used to establish an explicit
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differential equation for f’. Since we can always add suitable constants to f solv-
ing (10), we restrict our attention to the homogeneous form f(z) = G(z, f'(z))
of (10) where the function G is given by

G(z,p) == 1“”+ (¢p (L —pz)°s —p) (17)

with 1 := p(1=*)/* The function G equals up to an additive constant and up to
the factor p the Hamiltonian of the transformed DOP. We find for the derivatives

1

Ce(z,p) = 2 (1/}(; — ) (L 4 2ag) 1), (18)
Colop) = — L+ 82(L —2) = (L —2) - & (19)

By the relationship of G with the Hamiltonian, the Pontryagin maximum princi-
ple states for p; := f'(z)

Lo ’lﬁwt(a_lpt_l—lﬂt) _ pTi 20
Ly = — Dt + i -1 L uss)? ( )
u”(p lpt —Et)o‘

which can also be easily verified from equation (8) directly . Due to f = G(z, f)
we get [/ = Gz, f') + Gp(z, f)f". Thus, setting p(z) := f'(z), we arrive at the

explicit differential equation in p

z)—Gg(z,p(z
o) = 2gent

which in our case yields

;o us41— ’l,b( -1 —1 :E) o (p—lp—l_l_l —2a )
p=p =y .
—z—ussp —1 -|—’¢:E( —-1_ ) =3 ( P p :E)

The optimal consumption rate satisfies ¢* = V}c_l = k/(zf'), such that considering
q(z) = cz/k = f'(z)™! = p(z)~*', the rescaled consumption rate, which we have
already encountered in (8), we obtain a differential equation for this control-like
variable in terms of the state-like variable z:

;P w19 lg—2)F (pg + Ha)
g=—75 =9 ; 0 . (21)
z+usplq — Yz(p'qg — z)= (alplq — z)

This equation is now explicit in ¢’ and standard analytical and numerical methods
can be used for its study. Since we know the value of g at the steady-state initial
condition z = z*°, we face a classical initial value problem where the solution is
usually unique. Here, however, uniqueness fails because the candidate function
W as well as the true value function both solve the initial value problem. This is
due to the fact that at (z*, g(z*)) in the fraction appearing in equation (21) both
numerator and denominator vanish and the right-hand side is indeterminate. We
proceed as follows. The differential equation can be written as

K(z,q(z))

7(®) = Tz (=)

with K(z*,q(z*)) = L(z*, ¢(z*)) = 0.



In order to obtain determinacy at z** we use L’Hopital’s rule, which gives

Ko(z*, q(z*)) + K, (2%, q(z%))q (z**)
Lz(z*,q(2*)) + Lo(z**, q(2**))q'(z**) -

q'(z*) =

This leads us to a quadratic equation in ¢'(z°*), one solution of which we already
know from W, namely ¢'(z°*) = p. Therefore, there exists exactly one other
possible solution of ¢/(z**) which is given by

— K, (z*,q(z*))
pLg(zs,q(z))

This fraction is now determinate and

q'(z*) =

K, = "0 q(p7q — 2)"(+)/%(20p7q + (1 - 2a)z),

Ly =p" + Btheq(p g — o) "0/,
Ko _ (1—a)yg(2ap™lg+(1-2a)z)
pLq usa?(p~lg—z)(1to)/ety(l-a)plag
implies
EX] 1 _aZ all—-a
q(2") = p(l e )). (22)

Note that this value is always larger than the other root p. This is explained
by the fact that this solution, corresponding to the true value function, will run
through the origin and thus has to be smaller than the first solution on the interval
[0,2°°). Though uniquely determined, this stable solution branch can only be
approximated locally by the linearization given in (22) or globally by a numerical
solver. In sum, using the differential equation (21) and the steady-state values
found in Proposition 1, we can determine the values of the control-like variable
g at the state-like values z. From this we deduce the corresponding values of
f', c and u as well as of f and V for specified initial values zo or hg and ko,
respectively. For small values of z, our method yields solutions with v* > 1. In
view of the first order conditions we have to set u* = 1 and solve for the optimal

¢* in the remaining one sector growth model. Mathematically, this corresponds
to a free boundary problem.

4 The decentralized economy

The decentralized economy is characterized by the fact that, although all agents
could benefit from a collusive agreement, they are not able to enforce such a deal.
Existing firms face a strong shirking incentive, but even if they cooperate, new
entrants may benefit from free-riding. The following considerations are based on
Romer (1986) and lead us to the representative agent’s maximization problem.
The production technology is linear homogeneous with respect to the factors that
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receive compensation in the decentralized economy. This ensures that the firms’
profits will be zero and consequently their number is indeterminate. Therefore
we restrict our attention to an equilibrium path along which the number of firms
equals the number of agents. This means that per firm and per capita values
coincide and we focus on a single representative agent running a competitive
firm. It remains to take care of the impact of the average level of human capital
on total factor productivity. In order to analyze the law of motion of the average
stock of human capital the representative agent needs three ingredients: First,
the infinite number of agents implies that the representative agent’s allocation
decision has no measurable influence on the average decision in the economy.
Second, note that at time ¢ = 0 all agents are identically endowed with the per
capita stocks hg and kg. Third, since the agents are assumed to be identical,
we restrict our solution to symmetric equilibria. Hence, we can think of the
representative agent’s maximization problem as the problem of finding symmetric
time-dependent strategies for the solutions of an infinite number of interdependent
DOP’s indexed by n € N. Although the agent has no measurable influence on the
economy’s average decision of allocating human capital the (yet unknown) path
of u, does influence the agents’ optimal decisions on ¢ and u. This is rational
because h, affects the evolution of the productivity in the goods sector such
that the opportunity costs of schooling are directly linked with u,. In Section
4.1 we interpret the interdependent utility maximization problems of agents in a
decentralized economy as a non-cooperative game and we define the symmetric
Nash equilibrium. In Section 4.2 we use again the homogeneity in the initial
conditions of the HJB equation and determine an implicit partial differential
equation. The structure of this equation is similar to the planner’s case, but
it now also depends on time. This occurs because the time dependent function
Uq ¢ enters. A parameter depending version of the unstable solution branch helps
us to determine the steady state of the decentralized economy. In Section 4.3
we transform the problem into solving one explicit partial differential equation
assuming u,: to be given. Using the Nash condition we again reduce to an
ordinary differential equation.

4.1 Nash equilibrium

We suppose infinitely many homogeneous agents A™ n = 1,2, .. each of them
equipped with his own physical capital &™) and human capital A(™). Assuming
that the average human capital b, = limy_, % 25:1 h(") exists in a mathemati-
cal sense, each agent faces his own dynamical optimization problem to attain the
maximum lifetime utility

U = max/ e_ptlncgn)dt,
¢

an) ,ugn) =0
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subject to the state dynamics

B = AR (uiM ) (R e, — Vit >0,
A = B(1 — u{™)A{™, Vit >0,
E™>0 and A™>0 vt > 0.

The constraints on the control variables (ugn))tzo and (cgn))tzo are as before in
the social planner’s problem. We interpret this optimization problem as a multi-
ple players’ non-cooperative game where the different optimization problems are
connected via the value of the average human capital stock. Since all agents are
identical, their initial endowments k(()") and hé") are the same and it is sensible
to seek symmetric Nash equilibria. Applying the definition (e.g., Dockner et al.
(2000), Chapter 4) to our setup, the controls (u,ﬁ”*))tzo and (cgn*))tzo form a Nash
equilibrium if

U™ (w50, () es05 (w)i505 (€7)i505 -5 (@ is0, (€7 )i05 )

> U (' )ezo, (e rzos (™ iz, (e iz 5 (™ )iz, (67 )03 )

holds for all feasible controls (uﬁ”))tzo and (cﬁ”))tzo and for all n. By symmetry,
u(™) = u* and (™) = ¢* do not depend on the agent A" and in particular the
average human capital satisfies h, = h("*). Hence, the agent’s lifetime utility U™
only depends on his own controls (™ and ¢ and on the average stock of human
capital h, the value of which does not change under different decisions of merely
one agent. Thus, u* and ¢* satisfy the Nash condition if

U((ug*))tzm (Cg*))tzm (ha,t)tZO) > U((’u,t)tzo, (ct)exo, (ha,t)tZO)

holds for all feasible controls (u:)i>0 and (c¢)¢>0. Note that from now on we drop
the superscript (n) in the notation.

4.2 The representative agent’s optimization problem

Our first step is again to define the value function for the DOP at hand. The two
controls ¢; and u; are chosen by the representative agent such that they are in X
and maximize his discounted utility while taking the economy’s average level of
human capital h,; as given. In fact, if a symmetric Nash equilibrium exists then
hag = B(1 — u})hay
holds. This implies that h,: cannot grow faster than exponentially such that we
can apply Proposition 1. In the sequel, we shall express the formulae for the single
agent in terms of u,; = u; and only use that (uq;)i>0 is a continuous function of
time with values in [0,1]. Observe that we thus introduce a time dependence of
the optimization problem and obtain a non-autonomous HJB-equation. Indeed,
unless u,: remains constant, the value function will change in time because of
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differing future productivity in the goods sector. As an alternative to our time in-
homogeneous DOP in the three state variables (k, h, h,), we could have considered
the four state variables (k, h, kq, hy) and used the time-autonomous character of
the game to model the representative agent’s DOP with some exogenous control
functions ug(ka, ha) and cq(kq, he). This approach, though, yields less intuitive
formulae and cannot be simplified as easily as the one proposed here. In order to
remain close to the notation in Section 3, the discounting of the value function
over time is cancelled by the factor e?*. Thus, the dynamic optimization problem
reads as follows!:

V (ki bty hag, t; U ) := max

(cu)eX

o0 —
- {e”tft e ”lnc,ds, T =00

— 00, T < 00.

The stopping time 7; at point ¢ in time is defined as 7; := inf{s > t| k, = 0} and
the set X of admissible controls is the same as in Section 3. The corresponding
HJB equation now also depends on the function (uq¢)e>0:

oV (1a) = max {Inc-+ Ta(-suae+ Va(sta) e + Th (0a)ha+ Giua)}  (23)

(cu)eX
The agent has no influence on the average allocation u, and it makes no difference
whether the braces include the last two terms or not. As in the centralized case,
we show that a solution W(k,h,hqs,t;u,) of this equation is always an upper
bound for the true value function V(k, h, hq,t;u,), if W is concave in k and h,

see the Appendix. We proceed as for the social planner’s DOP. The first order
necessary conditions are:

¢ = V;c_la (24)

u* = (714(1—?)%) = kb (25)

The interpretation of these conditions is almost the same as in the centralized
case, the only difference is that the shadow values of the capital stocks now
depend on the path of the economy’s average human capital allocation decision
Uq. We continue with the insertion of these findings into the HJB equation (23).
We obtain

1 l—a

oV +1+1nV = ok (ATh7) " (52) ° + BUh+ V5B (1 — wa) ha + Vi (26)

The redefinition of the state-like variable z; := ktht_lh;}/(l_a) and the control-like

variable g; := ctht_lh;z/(l_a) implies in analogy to the centralized case

Ty = Am?‘utl_a —q— B(1 —ug)zs — LaB(l — Ug 1)Lt (27)

1—

!The tilde stresses that we consider the value function of the representative agent and not
the social planner’s value function.
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Again we exploit the inherent homogeneity and write
V(k, by ha tiua) = F(BR R, ua) + LIn(hhE).

The derivatives of V (k, h, ha,t;ua), expressed in terms of the state-like variable
z and the parameter depending redefined function f := f(z,¢;u,), are

!

[~

Ve=tg, V=g V=G 5, ed V=
where f' := %f (z,t;u,) and fi= % ~(az,t;ua). Thus the parameter depending
function f determines decisively the shadow values of the three production factors.

The introduction of f allows us to rewrite the first order necessary conditions.
Hence (24) can be rewritten as ¢* = k(zf')~* and for (25) we have

o [ Aa)f(enu Vo _ (_aa-a) \°
u= (B(lp—zfl(z,t;ua))> z (B(lpq*_z)> Z. (28)
The condition on the left hand side shows us that the average allocation of hu-
man capital u, influences the individual’s decision of allocating human capital.

Furthermore, using ¢* = 1/f the condition on the right corresponds to (9) in the
planer’s case. Again, we reduce the HJB-equation and arrive at

pf+1tinf = S Lt B3 - flo) + BEZe(0— o) + . (29)

p

This is still a partial differential equation in the variables ¢ and z. In a first step
we only seek the balanced growth path solution, where the state-like variable z
and the control variables g and uw remain constant over time. In this case, we take
the exogenous value u,; to equal a constant u, € [0, 1] whence the coefficients of
the reduced HJB-equation are time independent and we look for time autonomous
solutions f. Using (29) and treating u, as a given constant we obtain

pf_|_ 1 — Bl-ety—yus) 4 1y = B(l—aty—7ua) . ( wiza fﬁ _ "/) (30)
(=)= ’

p(l—a) l-a
where ¢, depends on the value of u,:
L A(l-a)a* ﬁ
Pa = (W) > 0.
A slightly modified version of the function in (11) namely

~ B““f_%+plnp—p

f(m;ua) = o2 + %111(:1; + (Pa) (31)

is a solution of this reduced HJB equation, which only yields admissible controls

88
a

for the steady state (z*°,us®) of equation (27), which is given by

ss __ papg’ _ P
R T (e — and u)’ = £,

(32)

14



where ¢2° denotes ¢, for u, = u3’. The corresponding optimal controls are found
to be

58 58 58 58 ss pla— B(l-a
U = and g% = p(z* + ¢;°) = py, p(B(Z)—J;Jr(vl)—pT)' (33)

P
B

We stress that f(a:”; u2®) determines u** independently of u, such that the decen-
tralized steady state is unique. A posteriori we conclude that the only possible
parameter choice in order to have a symmetric Nash equilibrium in steady state

is u, = u?® = p/B. Conversely, this steady state solution is indeed a Nash

equilibrium for the DOP at hand. It equals the corresponding values derived by
the Pontryagin maximum principle along the lines of Benhabib and Perli (1994).
Compared to the centralized case, the steady-state allocation of human capital
between the two sectors is not influenced by the external effect of human capital
in goods production captured by . Since the realized marginal productivity in
the schooling sector remains constant, human capital just grows at a constant
rate and the average stock of human capital affects total factor productivity in
the goods sector in a constant manner. On the other hand human capital has di-
minishing private marginal returns in goods production such that physical capital
investment provides the mechanism to reconcile the (private) marginal returns of
human capital in both sectors. Hence, for the allocation of human capital along
the balanced growth path, the degree of the external effect in goods production
plays no role in the decentralized economy. On a transition path to the steady
state, however, the value of 7 is important, since the goods sector’s productivity
path influences the path of the opportunity costs of schooling and therefore the
convergence of the state-like variable towards its steady state.

4.3 Determining the decentralized solution

Off the steady state we can only assert that in a Nash equilibrium with time
homogeneous controls u,; = u*(z;) holds along the optimal controls. The first
intuition to replace u,: by u*(z) from equation (27) in the reduced HJB-equation
(30) is wrong because the dynamic programming principle needs to consider all
possible values (z,t) in order to derive the HJB-equation, which is not only defined
on the one-dimensional solution submanifold (z,t) corresponding to the optimal
control. Hence, this idea would introduce a dependence of u, on z and f in the
dynamic programming principle from which the agent can benefit, i.e. he would
be in the position to (partially) exploit the externality. For instance, starting
in z > z* the agent would have an incentive to decrease the state variable
z by shifting human capital to the schooling sector. Although the choice of a
smaller u has a lowering effect on goods sector productivity, for positive + this
effect is more than offset by the higher values of A and h,. Hence the increased
productivity would afford the opportunity to increase consumption. Numerical
implementations of this wrong approach yield significantly deviating policy rules.
Yet, if we transform the reduced HJB-equation into a differential equation for
fz(az, t), like in the centralized case of Section 3.2, we shall find that the differential
equation along the solution path simplifies to an ordinary differential equation.
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From there on, the same techniques as before yield an initial value problem which
is easily solved numerically. We restrict our attention of the HJB-equation f(z,1)
to the homogeneous form G (x, f.(z,t), fi(z,t)) with

GU(a,p,d) 1= Bligmpeasd a4 Bliosomadl gy, (L —0)°F — 1) + 4

72 (1-a) (-

and

L A(l—a)a® 1:
¢‘17t T (B(l—a-l-v—vua,t)“) :
Consequently, p(z,t) := fz(z,t) solves the partial differential equation
p=GY+ GV, + Gp,.

Solving for p,(z,t) would already yield an explicit differential equation in p. Note

again that z; = pG ) holds along the optimal control path. From economic theory
we 1mmed1ate1y infer that z; converges monotonically to the steady state z*° such
that z; = pG # 0 holds off the balanced growth path. Denoting the inverse
function of ¢t — z; by = — t(z) we put p(z) = p(z,t(z)) for £ > 0 and = # z°

From G‘(;) = p~! we thus infer
B(z) =GP + GV (§(2) — pet'(2)) + & = GY) + GY§' ().

where G(*) means of course G(®)) along the solution path. There we know from
the Nash condition that u,; = u*(z;) holds which we can finally insert to obtain
the ordinary differential equation p = G, + Gpp’ with

Ga(o,p) = PU=bemleslp (y(p, 2)(L — )= (4 + 1220) — 1),
B(l—a+vy—vyu(p,x =1
Gyla,p) = — % + B=mtrmtoally (4(p o)L — )7 (2 — o) —1)

Here u(p, z) is derived from formula (28), that is

u(p, ) = (%) : z. (34)

PP

and ¥ (p,z) is obtained from v, ,, replacing uq ¢ by u(p, z). The explicit ordinary
differential equation p' = (p — G;)/Gp can be rewritten in terms of the optimal
control-like variable g = p~! such that the following explicit differential equation
in ¢ has to be solved:

| (-a)e-Bl-atr—ules)) ($ao)(ha-o) T (et i22a)-1)
g =gq - = . (35)
(1-a)a-Bl1-atr-ulge))e($ae)(ba—s) = (La-s)-1)

As in the centralized case, the right hand side will be indeterminate at the steady
state since numerator and denominator vanish. Again L’Hopital’s rule gives an
explicit expression for the derivative ¢’ at z**

1 ssy [ (a=r)+l-ata][(2-2a4y) (1—aty) (utf) Tt - (2-2a47)7+1—a+]
q(:II )_ (1-a®)(1—aty—vuss)ta(l—atvy)uss :

(36)
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The Appendix gives some intermediate results that we obtained when determining
this expression. Finally, a simple initial value problem remains to be solved. Note,
that the differential equation (35) together with the restated first order necessary
condition (34) gives an explicit formula for the optimal control-like variable gq.
After solving for the optimal ¢* given a certain state z, one can easily determine
the optimal human capital allocation u*. In the more general model considered
by Mulligan and Sala-i-Martin (1993) the corresponding optimal controls are
determined by two coupled differential equations.

Easy numerical schemes now allow to determine the solution, which does not
yield indeterminacy in the differential equation except at the steady state z*°
and at z = 0 such that the value function is twice continuously differentiable.
The optimal controls found are indeed admissible except for small values of z
where u may be larger than one. As before we set w = 1 in this region and solve
the control problem for the single variable q. Altogether, this verifies that we
have obtained the symmetric Nash equilibrium we had looked for. Moreover, it
is seen to be unique.

The solution method presented here is also applicable for the parameter space
studied by Xie (1994). Xie analyzes the model with isoelastic preferences where
the parameter o denotes the inverse of the intertemporal elasticity of substitution.
Since he restricts o to be equal to the output elasticity of physical capital, the
number of parameters studied there is equal to ours and his choice of the more
general utility function is bought by imposing this restriction?.

5 The solution method revisited

The solution method of the Uzawa-Lucas model of endogenous growth presented
here is of global character and works in the centralized case as well as in the
decentralized case. We reduce the problem of determining the value function to
solving an explicit ordinary differential equation in g with the initial value g(z*°)
prescribed by the balanced growth path solution. We show analytically that z**
is a saddle point of the dynamics of q. By exhibiting a closed form solution we
find the unstable branch, which in turn easily yields the value ¢'(z**) for the sta-
ble solution branch by L’Hopital’s rule. Using this knowledge, the initial value
problem for the stable solution is determinate and becomes easily tractable by
standard numerical solvers for explicit ordinary differential equations. While the
differential equation for g is highly nonlinear, it is still possible to study analyt-
ically the dependence of the solution on the different parameters. The standard
method is to linearize the right hand side with respect to this parameter and
to investigate the dynamics locally around one particular parameter value. The
knowledge of g(z) then allows to determine the optimal human capital allocation

2The functional form of the unstable solution branch is then given by:

_ 1-o(p ahh’v/(l—ﬂ) l-e _ . o ﬁ
E(k, b, hoyug) := P (ktoahhy ) — 229 with ¢, 1= (4—)—0 1-0)A4 )

T op(1-0)(1- B(1—oty—uay))”  p(l-0)’ (1-o+7-uav)"B
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u(z) via formula (34). Of course, the value function V itself is calculated on the
basis of the formula g(z) = f'(z)~! together with its value at z** and the rela-
tionship between V and f. The transition from an initial state off the balanced
growth path is simulated by inserting the optimal controls into the two dynamic
state equations for k and h.

The main steps in simplifying the original nonlinear implicit HIB equation in the
variables k and h were (a) to use the inherent homogeneity by introducing the
state-like variable z, the control-like variables g and u and the value function-
like function f and (b) to transform the implicit one-dimensional differential
equation for f into an explicit differential equation for q. To what extent does this
approach hinge on the special model considered? The first step (a) is a standard
simplification trick and applies to almost all two-sector models considered in the
economical literature. So, we focus on the second step (b). For the transformation
of the implicit HJB equation for f it was essential that this equation had the form

f(z) = G(z, f'(z)) for some function G. (37)

Given this representation, our method readily yields an explicit differential equa-
tion for f’(z), which together with some specific value of f, e.g. at the steady
state, permits a simple analytical and numerical analysis of the value function.
The additional knowledge of a solution facilitates the calculations in the sad-
dle point case, but is not strictly necessary since a local analysis around the
steady state would already provide enough information. If we now consider an
autonomous two-sector growth model in general form

kt = Fk(ktahtaut) -G,
]:Lt = Fh(kt,ht,ut),

with the optimization problem for (u;) and (¢;)

/ e " g(c;) dt — max!,
0
we end up with the autonomous HJB equation
pV = max(g(c) + Vi (Fx(k, h,u) — ¢) + Vi Frn(k, h,u)).

At first glance it seems that we always obtain the desired representation (37).
However, the reduction to state-like and control-like variables may introduce a
non-derivative term on the right. For instance, the use of an isoelastic utility
function g(c) = ¢?, B € (0,1), in the centralized Uzawa-Lucas model lets us set
by homogeneity

+y ., (l—at7)8 (i=at7)8

V(k,h) = f(kh™ o< )b ima = f(z)h 1=

Hence, the derivative V}, is expressed in terms of both, f and f’. This shows that
the choice of a logarithmic utility function is crucial for our approach to work
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so easily. In the general case, but with the specific choice g(u) = In(u) we will
not face this problem. Assuming homogeneity of the production functions Fy
and Fj with respect to k and h, we can introduce a suitable state-like variable
z = z(k,h) = k*h~*» and the value function can be written as

V(k,h) = f(z) + p~ In(h>*).

This additive structure thus allows to write V4 and V, in terms of f’ only. In
summary, our approach allows to simplify drastically the HJB-equations for all
two-sector growth models with logarithmic utility. Naturally, a wider scope be-
yond two-sector growth models is feasible, but the general structure of the math-
ematical optimization problem should be preserved.

Let us discuss briefly the similarities and differences of our and alternative solu-
tion strategies. The reason for choosing the value function approach rather than
the more widely used Pontryagin maximum principle is twofold. First, the value
function approach is able to cope with non-concave DOPs which can occur in the
centralized version of the model if 7 is positive. Second, the value function has
the advantage that it is deterministic even if we allow for stochastic disturbances
in the model, such that this approach is the natural one to choose if one wants
to extend the model in this direction. The HJB-equations are single implicit
partial differential equations. In the centralized case V(k,h) is two dimensional
and in the decentralized case V(k, h,ha,t;u,) is four dimensional. At this stage
the Pontryagin maximum principle leads to a system of four explicit coupled dif-
ferential equations for ic, iL, ¢, and u. Then we exploit the inherent homogeneity
of the DOP by introducing the state-like variable z and the control-like variable
g. Using these transformed variables we arrive at an implicit ordinary differen-
tial equation in z in the centralized case and at an implicit partial differential
equation in z and ¢ in the decentralized case. The application of the maximum
principle, however, would have lead to a three dimensional system of explicit dif-
ferential equations. In the centralized case we use a standard technique in order
to transform the implicit into an explicit rational differential equation (21) for
the control-like variable g. Since we know the steady state value z** and the
unstable solution branch, we are able to determine the initial condition g(z*°)
and the local linearization corresponding to the stable branch ¢'(z**).

The time elimination method proposed by Mulligan and Sala-i-Martin (1991)
uses similar arguments, although it is based on the maximum principle. It uses
the fact that the derivative of the control-like variable with respect to the state-
like variable is equal to the time derivative of the control-like variable divided
by the time derivative of the state-like variable. To obtain initial conditions in
this method, basically the same procedure as ours is used in the steady state.
Focusing on two-sector growth models in a second paper, Mulligan and Sala-
i-Martin (1993) derive a system of two explicit ordinary differential equations,
which in our terminology involve ¢ and u as functions of z. Even in the Uzawa-
Lucas model they do not simplify further to one equation, which is due to the
non-logarithmic utility assumed in their model, compare the discussion above. We
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want to stress here that numerically both methods can be implemented with high
speed (our examples were computed in less than one second) and high accuracy
by standard mathematical packages. Yet, the reduction to merely one explicit
differential equation has the great advantage that the behavior of the solution
can be studied analytically much more easily than in coupled systems, especially
with respect to the influence of certain parameters.

The preceding arguments are even more stringent when compared with the adjoint
equations obtained by the pure maximum principle. This approach is adopted
e.g. by Benhabib and Perli (1994) and Bond, Wang, and Yip (1996) and yields,
even after reduction, three nonlinear coupled dynamic equations where only the
values for ¢ — oo are known from the balanced growth path. The more demanding
techniques of shooting or backward solving for this kind of problems, as advocated
by Brunner and Strulik (2002), are thus avoided.

Instead of following the maximum principle for our concrete model, we deliber-
ately favored the dynamic programming or value function approach because it
allows an easier generalization to the stochastic setting. An interesting natural
example would be random shocks in the production of physical capital. Very
generally, if we conserve homogeneity in the noise modelling, the HJB equation
in terms of the state-like variable z will be of the form

f=Glz, [, f"),

involving a second derivative due to the It6 term of the corresponding Markov
generator. Consequently, the same principle as before yields one second order
differential equation for p = f":

— Gy + Gpp'
p = Ga(z,p,0') + Gplz,p, 0 )0 + Gp(z,p,p)p" = p' = : G - '
P

Note that the equation is explicit in the second order term and even elliptic. For
special model setups this may be simplified further, but already the general model
allows the use of standard analytical and numerical tools for elliptic equations.
The only possible difficulty might be a singularity in the first order term. A

detailed analysis is left for future work. Here, we only want to mention two
advantages we anticipate for our approach: First, in the maximum principle
approach the adjoint equations are backward stochastic differential equations
and an extension of the time elimination method is not obvious. Second, the
reduction to only one equation, even though of second order, should simplify
the analysis, the numerical implementation of Monte Carlo simulations and the
fitting to empirical data considerably.

6 Discussion of the numerical results

In this section we make use of our method and show that on the transition
path the output growth rate towards the balanced growth rate obeys a U-shaped

20



stable
15

1.25

o unstable
0.75

05

0.25

0 2 4 6 8 10 0 2 4 6 8 10

Bhase diagrams for g(z) with ~ :X%
Figure 1: left: centralized solution  right: decentralized so-
lution

course. In order to study the economy’s performance, we consider the following
typical calibration of the parameter values

A=1 B=2%1 p:%, and a=1. (38)

10? 3

Figure 1 shows the phase diagrams for g(z) where we have set y equal to ;5. The
left part displays the solution of the centralized economy and the right part refers
to the decentralized economy. The linear thick lines are derived from the solutions
(11) and (31), whereas the concave thick lines that start in the respective origin
are the optimal controls ¢ derived from the true value function V, that is the
numerical solution of (21) and (35). Both functions meet in the saddle points
(z°,¢°*). Note, that the central planer’s high valuation of human capital leads to
a lower steady state value of z in the centralized economy. In the centralized case,
the thin lines indicate the curves where the functions L(z, q) and K(z, q) vanish.
The steeper thin line corresponds to values (z,q) where 2 = 0. Above this line z
is negative and below it is positive. Similarly, the flatter thin line corresponds to
values (z, q) where ¢ = 0, above this line g decreases and below it increases. This
shows that the controls derived from (11) correspond to the unstable solution
branch, whereas the numerically determined optimal controls are indeed globally
stable, i.e. they induce adjustment towards the balanced growth path solution.
Since u, 1s not well-defined off the two solution branches the corresponding lines
are missing in the decentralized case.

Figure 2 shows the optimal human capital allocation w in the (z,v) space as
a surface. The left part represents the social planner’s solution and the right
part the decentralized case. The black lines correspond to the respective steady-
state values u**. Since the social returns are taken into account by the planner,
his valuation of human capital is higher than that of the representative agent.
This explains why for positive v the planner’s allocation of human capital to the
goods sector, respectively the cooperative allocation, is always smaller than the
corresponding value of u in the decentralized economy. For small values of z and
v, they both are about to set u larger than one.

Let us now turn to the social planner’s solution. Keeping « fixed, the fraction of
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Figure 2: left: centralized solution  right: decentralized so-
lution

time allocated to goods production decreases when z increases. This observation
can be rationalized as follows. A high value of z indicates that the economy’s
endowment of human capital is relatively low. This leads to high marginal social
returns of human capital in the goods sector. Arbitrage reasoning implies that
the realized marginal productivity of human capital in the schooling sector must
also be relatively high. Hence a comparatively high fraction of human capital
is attracted by the schooling sector. This explains the relatively low value of w.
Since the marginal social returns of human capital in goods production and 7
are positively related, this reasoning can also explain the negative slope of the
surface with respect to v. Hence, we observe for the steady state z*° that the
value of u* decreases in the value of ~.

Next, we consider the representative agent’s solution. For fixed «, the behavior
of u 1s qualitatively similar to the centralized case. However, the agent considers
private returns instead of social returns. The fact that v has no influence on the
private marginal returns of human capital in goods production explains why the
surface of u is not simply declining in «. Instead it is increasing to the left and
decreasing to the right of z**. Given a certain level of z > z**, u is decreasing
in . Since the agent anticipates aggregate schooling activities and hence the
evolution of total factor productivity, he defers human capital investment for lower
values of 4 in order to exploit the relatively low opportunity costs of schooling
in the future. Otherwise, if z < z** holds, he prefers schooling today for large
values of v because today’s opportunity costs in this case are relatively low. The
benefits from anticipation are the larger the higher the effect of A, on total factor
productivity, i.e. the bigger 4. On the other hand, the costs of non-coordination
are increasing in 7. For the steady state u**, human capital returns in both sectors
move parallel and the benefits from anticipation vanish, such that v** = p/B must
be independent of ~.

Figure 3 plots the numerical results for the growth rate of output in (z, ) space.
The left part shows the social planner’s case and the right part refers to the
decentralized economy. The black lines denote the respective balanced growth
rates. Note that we confirm Barro and Sala-i-Martin’s (1995) finding that output
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growth rates are U-shaped for fixed «v. The minima of the U-shaped growth rates
are always to the left of the balanced growth rate. Analytically the growth rate
of output can be decomposed as follows:

%zai—i—l—(l—a)i—i—l—lzf—aﬂ’g—z, where E—Z::—z—l_lf—aﬂ% (39)
In the following we consider the individual terms in the sum as separate functions
of z. The first term /z is positive for z < z,, and negative for z > =z,
tending to infinity for z — 0. From the decay of u(z) we infer that the second
term u/u has the reverse property: it is negative for z < z,, and positive for
z > zg. The last term h/h i1s never negative and monotonically increasing
with limg o h/h — B. Furthermore A (2ss5) /h (zs5) determines the growth rate
of output along the balanced growth path and is equal to B — -1=%p in the

l-—a+ty
centralized case and to B — p in the decentralized case. Hence, the three terms

behave very differently and yield in sum the U-shape of y/y that we observe. For
positive v the growth rate of output implied by the planner’s solution is always
higher than the corresponding rate in the decentralized economy. This can be
interpreted as the welfare loss due to the lack of a coordination mechanism.
Qualitatively, however, the implied growth rates of both solutions behave very
similar. For z < z°° with fixed -y, the growth rate first declines in = before it
starts to rise again. For z > z°°, the growth rate is increasing in z.

Again we study first the centralized case. The case z < z*° corresponds to
a relatively high endowment of human capital. Let us assume that the social
opportunity costs of schooling are higher than the potential benefits of educational
activities. Obviously the planner wishes to set u bigger than one, i.e. he wants
to disinvest in human capital. Since he must set u equal to one, he can only
adjust physical capital. Therefore, we know that the output stream is larger than
the smoothed consumption stream. But with uw equal to one, goods technology
has diminishing returns in physical capital and any additional unit of k& lowers
productivity in goods production. As a consequence, the output growth rate is
high but declining. When the restriction v < 1 is no longer binding the planner
starts to shift human capital to the schooling sector. Two opposite effects start
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to set in. The lower value of u directly causes a smaller productivity in goods
production while the growing stock of A pushes productivity in the opposite
direction. Initially the decline of productivity due to the physical capital effect
and to the allocation effect dominates. After a while when u adjusts slower the
human capital effect is dominating such that goods sector productivity starts
to rise again and the output growth rate follows. Obviously, the dominance of
the human capital effect arises the faster the larger 4. The case z > z°° means
that human capital is relatively scarce such that the productivity of A in goods
production is high. Here the effect due to human capital dominates during the
whole transition process, although its dominance is becoming weaker when the
state-like variable z moves towards its steady state.

Finally we focus on the decentralized case. Concerning the influence of z, the
representative agent’s reasoning is similar to the planner’s except that it refers to
private instead of social opportunity costs of schooling. The larger the external
effect 7, the higher the agent’s benefits of anticipating the evolution of the average
stock of human capital h,. These benefits are reflected in high growth rates
of either human or physical capital which are then transmitted to high output
growth rates. However, due to the growing costs of non-coordination, the increase
in v is not as steep as in the centralized case.

7 Conclusion

In this paper, we have introduced a simple method of analyzing global transi-
tional dynamics of the Uzawa-Lucas endogenous growth model with logarithmic
utility. As a result, we merely have to solve one ordinary differential equation
in the parameters of the model. Since we know the functional form of the un-
stable solution branch, we are able to determine analytically the initial condition
for the differential equation. Finally, we solve the initial value problem. This is
a clear advantage compared to the three-dimensional system of coupled differ-
ential equations encountered when applying standard approaches based on the
maximum principle. Furthermore, our method yields global results, such as the
U-shaped course of output growth rates, which are not captured by a local lin-
earization.

We present numerical results to the social planner’s optimization problem for
wide ranging degrees of the external effect . In the decentralized case, the repre-
sentative agent’s HJB equation is restricted to the economy’s average decision u,.
Therefore, the agent has to determine his optimal choice u given the economy-
wide average decision u,. Our method formalizes this reasoning by treating the
aggregate human capital allocation rule u, as an exogenously given parameter.
This formalization illustrates the reasoning of agents in a clear manner and reveals
the economic intuition of symmetric Nash equilibria. Anticipating the evolution
of the average human capital stock means finding a fixed point in the space of
admissible time dependent policy functions. In a symmetric equilibrium, the
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agent’s optimal policy rule u should coincide with the economy’s average decision
Uq. Finally, we argue that the model’s inherent asymmetry is responsible for the
U-shaped course of output growth rates.

We show that our method is generally applicable for two sector growth models
with logarithmic utility. Due to this restriction on the preferences, our approach
is even easier to solve than the time-elimination method proposed by Mulligan
and Sala-i-Martin (1991). The homogeneity in the production technologies allows
us to rewrite the value function as the sum of the value function-like function f
and a logarithmic expression in the human capital stock. As a result the shadow
values of physical and human capital only depend on f’. Furthermore the HJB-
equation can be stated in two terms only, in the state-like variable z and in
f'. When choosing more general preferences, e.g. iso-elastic utility, the additive
structure disappears and our approach does not work so easily.

By and large, we have limited our discussion mainly to the deterministic setup.
However, theorists are often interested in the impact of cyclical volatility on the
economy’s performance. For instance, Canton (2002) asks whether long-term
economic growth increases or decreases with increased cyclical volatility. Since
the value function is deterministic even in a model with uncertainty, the value
function approach is the natural one to choose if one wants to introduce stochastic
disturbances. We argue that if the modelling of the noise preserves the model’s
homogeneity, the HJB-equation can be stated in three terms, in z, in f’, and in
f". The second derivative of the value function-like function f leads us to one
second order differential equation. Since this equation is explicit and even elliptic
it allows the use of standard mathematical tools. Finally, we think that a rigorous
treatment of the stochastic case would be a worthwhile project.

Appendix

W is an upper bound for the true value function V
For all ko, ho,t > 0 and all controls (c;, us) € X with 7 > ¢ we have
e~ W (ke he) = W (ko, ho) + / t(—pe"’sW(ks,hs)
+ e P Wi(ks, }(L))k + e P Wi (ks, by )by ds
< W (ko, ho) + /t(—pe_”sW(ks, hy)
+ e_”s(pW(ks,ohs) —In(c,)) ds
= W (ko, ho) + /t e "*(—1In(c,)) ds,
0

where we have used the fact that W solves the HJB equation or is at least an
upper bound, i.e. a supersolution, if (cf,uf) ¢ X since we have not excluded the
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values u; > 1. Hence, by rearranging the terms and taking the limit ¢ — oo, we
obtain

V(ko, ho) S W(ko, ho) — t1i>r£10 e_ptW(kt, ht),

if the latter limit exists. Note that this inequality is always trivially valid for
T < 00. Since hy grows exponentially and ¢; > 0 holds, also k; cannot grow faster
than exponentially and thus W (ky, h:) grows at most linearly, which implies that
the limit cannot be larger than zero. On the other hand, A; > hg holds for all
t > 0 so that W(k;, h:) is uniformly bounded from below for all ¢ > 0. Hence,
this last limit exists, equals zero, i.e. the transversality condition is fulfilled, and

V(ko, ho) < W (Ko, ho)

holds, as asserted.

Proposition 1

Obviously, the controls ¢** and u*® are admissible because u** < 1 by assumption.
The value of z°° ensures that we are on the balanced growth path and z; = 0
holds so that the values of the controls are easily derived from (13). Hence by
the preceding remark on W, the controls are indeed optimal.

W is an upper bound for the true value function V
For all ky, hy,t > v and any controls (cs,u,) € X, with 7, = 0o we find
e PW (ky, heyt) = e P W (ky, by, v) + /t e (—pW (K, ho) + Wi(ks, hs, 5) ks
+ Wh(ks, hy, 8)hy + v;t(ks, h,s)) ds
< e W (ky, ho, v) + /t(—pe_ps In(c,)) ds.

The exponential growth bounds for h,; and h: imply exponential bounds for k;
and ¢; so that lim; o, e "W (ky, hs,t) = 0 is guaranteed. We infer

W(ky, hy,v) > e”“/ e *°ln(cs) ds.

Since the controls were arbitrary, we have shown W(k, h,v) > V(k,h,v) under
the only hypothesis 7, = co. If 7, < co were true, the value function would equal
—oo and the asserted inequality is trivially true.

The initial value ¢(z*®) in the decentralized case

Note that the derivatives of ¥(q,z) at ¢ = ¢(z**) and z = z** are found to be

l—a l—a
_ (02°) = vyua _ (93%) @ vyug
Yo = B(l—a+v)—pvy and ¢‘1 ~ B(l-aty)-pv’
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The respective derivatives of (34) are given by

B(l—a+7)—pyv+e
Bap??®

and u, = =—%

Uy = q — Balpzs‘

Let K(q(z**),z**) and L(q(z**),z**) denote the numerator and denominator of

the differential equation (35). Again ¢'(z**) = % holds and the two

derivatives are as follows:

pa** [(2-2a+7)((u**) " (1—a-t7)—7)+1-atv]

33
ap}

Kz (q(mss)7mss) - _
2, w(l—a+ty)

Lq (q(z*),2%) = 1_aa T l—a+vy—qu*

This implies the expression given in equation (36).
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