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AbstractWe introduce a simple method of analyzing the transitional dynamics ofthe Uzawa-Lucas endogenous growth model with human capital externali-ties. We use the value function approach to solve both the social planner'soptimization problem in the centralized economy and the representativeagent's optimization problem in the decentralized economy. The complex-ity of the Hamilton-Jacobi-Bellman equations is signi�cantly reduced to aninitial value problem for one ordinary di�erential equation. This approachallows us to �nd the optimal controls for the non-concave Hamiltonian inthe centralized case and to identify the symmetric Nash equilibrium of theagents' optimal strategies in the decentralized case. For a wide range ofthe degree of the human capital externality we calculate the global transi-tional dynamics towards the balanced growth path. The U-shaped courseof output growth rates is explained in detail.JEL Classi�cations: C61, O41, C721 IntroductionWe introduce a simple solution method for the analysis of endogenous growthmodels. We demonstrate this method by studying the transitional dynamics ofthe Uzawa (1965) and Lucas (1988) model. Our method is of global character andis closest to the time-elimination method by Mulligan and Sala-i-Martin (1991).In his seminal paper, Lucas (1988) argues that the economy's average level of hu-man capital contributes to total factor productivity in goods production therebycausing an externality. Since our method is based on the value function approach,it is generally applicable to the centralized, possibly non-concave, case as well asto the decentralized case. Furthermore, the value function is deterministic evenin a model with uncertainty such that this approach is easier to generalize in thisdirection. We apply our method �rst to the social planner's optimization prob-lem and second to the representative agent's problem in a decentralized economy.We are able to give analytically explicit expressions for functions of the result-ing highly non-linear Hamilton-Jacobi-Bellman (HJB) equations, which to ourknowledge have not yet been obtained before. This allows us to follow the valuefunction approach rather than the Pontryagin maximum principle (Kamien andSchwartz, 1991). Using the model's homogeneity (Caball�e and Santos, 1993) wereduce the dimension of the optimal decision rules and thereby simplify our anal-ysis. The knowledge of an explicit functional form that solves the HJB equationfacilitates our e�orts. This `candidate' function, however, is not the value func-tion except for one speci�c initial value which corresponds to the balanced growth1



path solution. We show that at this particular value a saddle point behavior oc-curs.The candidate function outside the balanced growth path yields the unstablesolution branch in the phase diagram and thus non-feasible controls. Findingan analytic expression for the stable solution branch, which gives the true valuefunction, seems to be a daunting task. We therefore transform the HJB equa-tion suitably and �nally arrive at an explicit one-dimensional ordinary di�erentialequation, which can be solved by standard numerical schemes. In the centralizedcase, the usual transformation for implicit di�erential equations applies and thecandidate function provides the correct initial conditions. In the decentralizedcase, our analysis is restricted to non-cooperative symmetric Nash equilibria andwe �rst arrive at a partial di�erential equation. The additional variable entersbecause the path of the average level of human capital is treated as exogenouslygiven by the agents. However, by exploiting the imposed symmetric Nash equi-librium condition we again obtain an ordinary di�erential equation. Finally, theglobal character of our method allows to analyze the centralized as well as thedecentralized economy far away from the balanced growth path.A main feature of the Uzawa-Lucas model constitutes that the agents have to`learn or to do' (Chamley, 1993), i.e. they have to allocate their human capitalbetween two production sectors. The �rst sector is a goods sector where a singlegood usable for consumption and physical capital investment is produced. Thissector exhibits a production technology that uses human as well as physical cap-ital. The second sector is a schooling sector where agents augment their stock ofhuman capital. Here, human capital is the only input factor. Since the averagelevel of human capital in
uences the productivity of each individual's stock ofhuman capital, there is a clear linkage between the average stock of human capi-tal and the opportunity costs of schooling. In the decentralized economy, agentsare only compensated for their respective private factor supplies but not for theirin
uence on the economy-wide average stock of human capital. Also, they donot coordinate their actions which leads to the situation where agents treat theopportunity costs of schooling as exogenously given. In other words: the averagelevel of human capital causes a cost externality in the schooling decision. As aresult, the agents' schooling decisions are not Pareto-optimal and the incentivestructure described above leads to non-eÆcient equilibria. By contrast, the cen-tral planner, who internalizes all relevant incentives, reaches the social optimumby choosing the eÆcient level of schooling activities.The theoretical model considered here di�ers from that studied by Lucas (1988)only in the choice of the utility function. We assume logarithmic preferences,implying that the constant intertemporal elasticity of substitution is equal toone. This assumption reduces the number of parameters by one and simpli�es thecalculations. Nevertheless, the balanced growth path implications are analogousto those in the more general case. Only in some very restrictive cases explicitsolutions are known. Xie (1994) studies the special constellation where the inverseof the intertemporal elasticity of substitution and the output elasticity of physical2



capital in the goods sector are equal and focusses on the decentralized case.Hartley and Rogers (2003) solve an Arrow and Kurz (1970) type of a two sectorgrowth model in closed form after introducing a stochastic disturbance in the lawof capital accumulation.The allocation of human capital is the mechanism that causes the di�erences be-tween the outcomes of the centralized and the decentralized case. Our numericalresults reveal the underlying incentive structure and con�rm that the model im-plies U-shaped adjustment of output growth rates (Mulligan and Sala-i-Martin,1993). When physical capital is relatively scarce, the growth rate of output isvery high but declining. It even falls below the balanced growth path value beforeit rises again and �nally converges to the balanced growth rate.The paper is organized as follows. Section 2 introduces the model. Section3 presents our strategy of solving the social planner's problem. Based on ourresults of the third section, we treat in Section 4 the decentralized case, whichrequires a higher analytical and numerical e�ort. Section 5 discusses our solutionmethod and compares it to other approaches. Section 6 presents numerical resultsexplaining the U-shaped course of output growth rates. Section 7 concludes. TheAppendix contains proofs of statements omitted in the paper.2 The modelWe assume a closed economy populated by a large number of identical in�nitely-lived agents. Firms are producing a single good and there is a schooling sectorproviding educational services. Population is constant and normalized to one.The representative agent has logarithmic preferences over consumption streamsU = Z 1t=0 e��t ln ctdt; (1)where ct is the level of consumption at time t and � > 0 is the subjective discountrate. The logarithmic utility function implies that the intertemporal elasticity ofsubstitution is equal to one. Agents have a �xed endowment of time, which isnormalized as a constant 
ow of one unit. The variable ut denotes the fractionof time allocated to goods production at time t. As agents do not bene�t fromleisure, the whole time budget is allocated to the two sectors. The fraction 1�utof time is spent in the schooling sector. Hence, in any solution the conditionut 2 [0; 1] (2)has to be ful�lled. The variables ct and ut are the agent's control variables.Human capital production is determined by a linear technology in human capital_ht = B (1 � ut) ht; (3)where we assume that B is positive. This schooling technology together withcondition (2) implies that human capital will never shrink, i.e. the growth rate3



_h must be non-negative. It also implies that the realized marginal and averageproduct are equal to B (1� ut). Note that we abstract from depreciation. Weassume an in�nitely large number of pro�t-maximizing �rms producing a singlegood. They are using a Cobb-Douglas technology in the two inputs physical andhuman capital. The level of human capital utilized in goods production equalsthe total level of the stock of human capital multiplied by the fraction of timespent in the goods sector at time t. Total factor productivity A is enhanced bythe external e�ect 
 of the economy's average stock of human capital, ha;t. Theoutput yt is determined by yt = Ak�t (utht)1�� h
a;t:The parameter � is the output elasticity of physical capital and we assume � 2(0; 1). We further assume that the exponent 
 is nonnegative. If we set utequal to one, we get the potential output in the goods sector. Since all agentsare homogeneous, the economy's average level of human capital must equal therepresentative agent's level of human capital at any point in timeht = ha;t; 8t � 0: (4)In the decentralized economy the representative �rm is taking ha;t as given andrents physical and human capital on complete factor markets. Market clearingfactor prices and the zero pro�t condition allow to state the agent's budget con-straint as yt = ct + _kt; 8t � 0:The right-hand side describes the spending of the agent's earnings, where _kt isthe rate of change of the agent's physical capital stock kt. Since we abstractfrom depreciation, this rate corresponds to the agent's net investment in physicalcapital. The left-hand side collects the streams of income stemming from theagent's physical capital stock and from his work e�ort utht. We assume that theinitial values k0 and h0 are strictly positive. Note that by consuming more thancurrent production it is possible to disinvest in physical capital, i.e. the growthrate of physical capital turns negative.Informational structureWe want to analyze the model from two perspectives. The �rst perspective is theone taken by the benevolent planer in a centralized economy. In order to derivethe social optimum, all information is used and all incentives are internalized. Thesecond refers to the representative agent in a decentralized economy. At time 0he has to choose optimal time dependent consumption and schooling decisionpaths. Then he is committed to these paths for the whole future. The non-cooperative symmetric Nash equilibrium condition implies that he is trying to�nd the best response given the path of the economy-wide average schoolingdecision. Furthermore, he takes into account that every single agent does alsoplay the best response and so forth. Perfect foresight implies that we are lookingfor �xed points in the space of optimal time dependent decision rules.4



3 The centralized economyThis section presents our strategy of solving the social planner's problem. Theplanner exploits the equality condition (4) and his dynamic optimization problem(DOP) is given by: U = maxct;ut Z 1t=0 e��t ln ctdt;with respect to the state dynamics_kt = Ak�t u1��t h1��+
t � ct; 8 t � 0;_ht = B (1 � ut) ht; 8 t � 0;kt � 0 and ht � 0 8 t � 0:The initial values k0; h0 > 0 are assumed to be given. Requiring these endowmentsto be strictly positive ensures an interior solution and rules out trivial solutions.Since we assume a Cobb Douglas production technology and logarithmic utility,this restriction will be satis�ed automatically under optimal controls. In Section3.1 we analyze the above DOP. Using homogeneity in the initial conditions, wereduce the HJB equation to only one implicit ordinary di�erential equation andgive an explicit solution of the HJB equation. This `candidate' is indeed theplanner's value function at one point, which corresponds to the balanced growthpath of the economy. An application of the candidate function outside this pointyields non-feasible controls. The implied allocation of human capital leads to highschooling e�orts when the opportunity costs of schooling in goods production arelow and it leads to little schooling e�orts when these costs are high. Surely,this a�ords an opportunity for arbitrage. As a consequence this ineÆciency isaccelerating and �nally implies non-feasible controls. In Section 3.2, we transformthe problem of determining the value function into an initial value problem for anexplicit one-dimensional ordinary di�erential equation. The linear approximationat the saddle point is given in terms of the parameters. Moreover, the explicitform allows it to apply classical numerical methods in order to determine thevalue function globally: In our simulations the standard Mathematica procedureNDSolve worked very eÆciently.3.1 The social planner's optimization problemIn the DOP the two control functions ct and ut are chosen by the social plannergiven the set of admissible controls(ct; ut)t�0 2 X := f(f; g) : [0;1)! X j f; g locally bounded and measurablegwith X := [0;1)� [0; 1]. Using the logarithmic preferences and the exponentialdiscount rate, the planner de�nes the representative agent's value function:V (k0; h0) := max(c;u)2X (R10 e��t ln ct dt; � =1�1; � <1;5



where � denotes the stopping time � := infft � 0 j kt = 0g. This is a classicaloptimal control problem with in�nite horizon (Fleming and Soner, 1995, SectionI.7). However, the results derived there are not directly applicable because x 7! xpfor p 2 (0; 1) and x > 0 is only locally Lipschitz continuous and we allow V = �1.Nevertheless, it turns out that the optimal controls imply dynamics where thestate variables are bounded away from zero so that � =1 holds and the above-mentioned conditions are satis�ed. In order to determine the value function, wewrite down the HJB equation for the value function V evaluated at k; h > 0 andt � 0: �V = max(c;u)2X � ln c+ Vk(Ak�u1��h1��+
 � c) + VhB(1� u)h	:Here, Vk and Vh denote the partial derivatives with respect to k and h, whichcan be interpreted as the shadow prices of relaxing the corresponding constraints.Recall that in the case of an in�nite time horizon, autonomous equations, and anexponential discount rate the HJB equation simpli�es to a di�erential equationindependent of time. We determine the maximum by looking at the �rst ordernecessary conditions. The implied optimal controls are given by:c� = V �1k ; (5)u� = �A(1��)VkBVh � 1� kh��
� : (6)The planner chooses the consumption stream such that the marginal utility isequal to the marginal change of wealth with respect to physical capital. Theoptimal allocation of human capital between the two sectors is determined by theweighted ratio of the marginal changes in goods production and schooling due toa marginal shifting of the human capital allocation. The respective weights arethe planner's shadow prices of the corresponding state variable. Since the valuefunction V is obviously increasing in its arguments, the relation (5) ensures thatthe consumption rate is positive. Equally, u� 2 (0;1) holds, but u� > 1 maywell occur. For the moment, let us suppose that the controls (u�; c�) found aboveare feasible. Then the HJB equation becomes:�V + 1 = � lnVk + �k (AVkh
) 1� �1��BVh�1��� +BVhh: (7)In fact, the HJB equation is homogeneous in the initial conditions. This allowsus to follow Mulligan and Sala-i-Martin (1991) in de�ning a so-called state-likevariable xt := kth�(1��+
)=(1��)t . The introduction of xt reduces the complexityof the problem by one dimension. Its dynamics are given by_xt = Ax�t u1��t � ctxtk�1t � 1��+
1�� B(1� ut)xt: (8)Introducing the control-like variable qt := ctxtk�1t , we see that the evolution ofxt is completely described by xt, ut and qt. For any initial state (~k0; ~h0) with~x0 := ~k0~h�(1��+
)=(1��)0 = x0 we are led to apply the same controls ~ut = ut and6



~qt = qt. The only di�erence is that the consumption rate ~ct di�ers from ct bythe factor (~h0=h0)(1��+
)=(1��). Any solution V (k; h) can thus be deduced fromV (x; 1) =: f(x) via V (k; h) = f�kh� 1��+
1�� �+ 1��+
�(1��) lnh:The HJB equation in terms of f can be derived fromVk = f 0(x)xk and Vh = 1��+
1�� � 1�h � f 0(x)xh �:Note that q� = 1=f 0 holds. Furthermore, the optimal human capital allocation(6) can be stated in terms of the optimal choice of the control-like variable q�:u� = � A(1��)2B(1��+
)( 1� q��x)� 1� x: (9)After simplifying and collecting terms, the HJB equation reads as follows�f(x) + 1 � B(1��+
)�(1��) + ln f 0(x) = B(1��+
)1�� x� ' 1��� f 0(x) 1�( 1��f 0(x)x) 1��� � f 0(x)�; (10)where the constant ' is given by' := �A(1��)2����B(1��+
) � 11�� > 0:We claim that a solution to this equation is given byf(x) := B 1��+
1�� +� ln����2 + 1� ln(x+ '): (11)Indeed we have f 0(x) = 1=(�x+�') as well as 1� �f 0(x)x = 'f 0(x) such that (10)is satis�ed. We infer that a candidate for the value function is given by:W (k; h) = B 1��+
1�� +� ln����2 + 1� ln�k + 'h 1��+
1�� �; k; h > 0: (12)However, note that limk!0W (k; h) = W (0; h) > �1 = V (0; h) holds, which iscontradictory to � = 0. Thus, using W in the �rst order necessary conditionalong the optimal consumption path (5) implies positive consumption rates evenif k = 0 holds such that the physical capital stock turns negative. Similarly,the insertion of W into the �rst order necessary condition along the optimalhuman capital allocation path (6) implies that the planner chooses a high levelof schooling activities if physical capital is relatively scarce. On the other hand,if human capital is relatively scarce, his schooling e�orts are low. In any case,the function W is an upper bound for the true value function V :V (k; h) �W (k; h); 8 k; h > 0:The Appendix presents a proof of this fact. Moreover, if for some (k0; h0) thepair (c�t ; u�t ), derived from the �rst order necessary conditions, is in X and � =17



holds, then all inequalities in the proof become equalities, (c�t ; u�t ) is the pair ofoptimal controls and V (k0; h0) = W (k0; h0) holds. We insert the controls derivedfrom W c� = �(x+ ')kx ; u� = � A(1��)2B'(1��+
)� 1�x = �B(1��+
)A�(1��) � 11�� x (13)into the dynamics equation (8) for xt:_xt = � B(1��+
)(A�) 12�� (1��)� 2��1��x2t + �B(1��+
)� � ��xt � ��A(1��)2����B(1��+
) � 11�� : (14)A search for steady states of xt shows that on the positive axis _xt only vanishesfor the value xss := �� A(1��)2���B2��(1��+
)2���1=(1��) = ��'B(1��+
):This steady state xss leads to the balanced growth path, for which the controlsqss = csst xss=kt and uss derived from W remain constant and are thus admissibleas long as u� � 1 holds. Linearizing the right hand-side of equation (14) atx = xss shows that xss is locally unstable and we infer that W yields the unstablesolution branch in the phase diagram (see Figure 1).Proposition 1. If xss := k(0)h(0) = ��'B(1��+
) and � 1��1��+
 � B hold, then the controlscsst = �xss+'xss kt = ��k(0) + 'h(0) 1��+
1�� � exp�(B 1��+
1�� � �)t�; (15)usst = uss = �(1��)B(1��+
) (16)are indeed optimal in X . In addition to the control u, the control-like variable qremains constant as well:qsst = qss = �(xss + ') = �'��+B(1��+
)B(1��+
) :The brief proof of this proposition is given in the Appendix. The �xed pointderived above is the unique balanced growth path equilibrium of the centralizedeconomy. For 
 = 0 we recover the �ndings of Benhabib and Perli (1994). Sincethe social planner's Hamiltonian is convex for 
 > 0 their approach does noto�hand furnish a solution in the decentralized case. The above results show thatthe balanced growth path allocation of human capital is split over both productionsectors and remains constant along this path. Furthermore, we learn that it isnegatively related to the degree of the external e�ect of human capital in goodsproduction captured by the parameter 
.3.2 Determining the centralized solutionThe main problem in solving the reduced HJB equation (7) stems from the factthat it is not explicit in f 0. For this implicit di�erential equation standard tech-niques (Bronshtein and Semendyayew, 1997) are used to establish an explicit8



di�erential equation for f 0. Since we can always add suitable constants to f solv-ing (10), we restrict our attention to the homogeneous form f(x) = G(x; f 0(x))of (10) where the function G is given byG(x; p) := � lnp� + xuss � p 1� (1� � px)��1� � p� (17)with  := '(1��)=�. The function G equals up to an additive constant and up tothe factor � the Hamiltonian of the transformed DOP. We �nd for the derivativesGx(x; p) = puss� � 1�p � x��1� � 1�p + 1�2�� x�� 1�; (18)Gp(x; p) = � 1�p +  xuss� 1�p � x��1� � 1��p � x�� xuss (19)By the relationship of G with the Hamiltonian, the Pontryagin maximum princi-ple states for pt := f 0(xt)_xt = �pt +  xt(��1p�1t ��xt)uss(��1p�1t �xt) 1� � �xtuss ; (20)which can also be easily veri�ed from equation (8) directly . Due to f = G(x; f 0)we get f 0 = Gx(x; f 0) +Gp(x; f 0)f 00. Thus, setting p(x) := f 0(x), we arrive at theexplicit di�erential equation in pp0(x) = p(x)�Gx(x;p(x))Gp(x;p(x)) ;which in our case yieldsp0 = p uss+1� (��1p�1�x)�1� (��1p�1+ 1�2�� x)�x�uss��1p�1+ x(��1p�1�x)�1� (��1��1p�1�x) :The optimal consumption rate satis�es c� = V �1k = k=(xf 0), such that consideringq(x) = cx=k = f 0(x)�1 = p(x)�1, the rescaled consumption rate, which we havealready encountered in (8), we obtain a di�erential equation for this control-likevariable in terms of the state-like variable x:q0 = �p0p2 = q uss + 1�  (��1q � x)�1� (��1q + 1�2�� x)x+ uss��1q �  x(��1q � x)�1� (��1��1q � x): (21)This equation is now explicit in q0 and standard analytical and numericalmethodscan be used for its study. Since we know the value of q at the steady-state initialcondition x = xss, we face a classical initial value problem where the solution isusually unique. Here, however, uniqueness fails because the candidate functionW as well as the true value function both solve the initial value problem. This isdue to the fact that at (x�; q(x�)) in the fraction appearing in equation (21) bothnumerator and denominator vanish and the right-hand side is indeterminate. Weproceed as follows. The di�erential equation can be written asq0(x) = K(x; q(x))L(x; q(x)) with K(xss; q(xss)) = L(xss; q(xss)) = 0:9



In order to obtain determinacy at xss we use L'Hôpital's rule, which givesq0(xss) = Kx(xss; q(xss)) +Kq(xss; q(xss))q0(xss)Lx(xss; q(xss)) + Lq(xss; q(xss))q0(xss) :This leads us to a quadratic equation in q0(xss), one solution of which we alreadyknow from W , namely q0(xss) = �. Therefore, there exists exactly one otherpossible solution of q0(xss) which is given byq0(xss) = �Kx (xss; q (xss))�Lq(xss; q(xss)) :This fraction is now determinate andKx = �(1��) uss�2 q(��1q � x)�(1+�)=�(2���1q + (1� 2�)x);Lq = ��1 +  (1��)uss�2�2xq(��1q � x)�(1+�)=�;�Kx�Lq = (1��) q(2���1q+(1�2�)x)uss�2(��1q�x)(1+�)=�+ (1��)��1xqimplies q0(xss) = ��1 + 2(uss)�1(1��)2+�(1��)1��2+uss� �: (22)Note that this value is always larger than the other root �. This is explainedby the fact that this solution, corresponding to the true value function, will runthrough the origin and thus has to be smaller than the �rst solution on the interval[0; xss). Though uniquely determined, this stable solution branch can only beapproximated locally by the linearization given in (22) or globally by a numericalsolver. In sum, using the di�erential equation (21) and the steady-state valuesfound in Proposition 1, we can determine the values of the control-like variableq at the state-like values x. From this we deduce the corresponding values off 0, c and u as well as of f and V for speci�ed initial values x0 or h0 and k0,respectively. For small values of x, our method yields solutions with u� > 1. Inview of the �rst order conditions we have to set u� = 1 and solve for the optimalc� in the remaining one sector growth model. Mathematically, this correspondsto a free boundary problem.4 The decentralized economyThe decentralized economy is characterized by the fact that, although all agentscould bene�t from a collusive agreement, they are not able to enforce such a deal.Existing �rms face a strong shirking incentive, but even if they cooperate, newentrants may bene�t from free-riding. The following considerations are based onRomer (1986) and lead us to the representative agent's maximization problem.The production technology is linear homogeneous with respect to the factors that10



receive compensation in the decentralized economy. This ensures that the �rms'pro�ts will be zero and consequently their number is indeterminate. Thereforewe restrict our attention to an equilibrium path along which the number of �rmsequals the number of agents. This means that per �rm and per capita valuescoincide and we focus on a single representative agent running a competitive�rm. It remains to take care of the impact of the average level of human capitalon total factor productivity. In order to analyze the law of motion of the averagestock of human capital the representative agent needs three ingredients: First,the in�nite number of agents implies that the representative agent's allocationdecision has no measurable in
uence on the average decision in the economy.Second, note that at time t = 0 all agents are identically endowed with the percapita stocks h0 and k0. Third, since the agents are assumed to be identical,we restrict our solution to symmetric equilibria. Hence, we can think of therepresentative agent's maximization problem as the problem of �nding symmetrictime-dependent strategies for the solutions of an in�nite number of interdependentDOP's indexed by n 2 N. Although the agent has no measurable in
uence on theeconomy's average decision of allocating human capital the (yet unknown) pathof ua does in
uence the agents' optimal decisions on c and u. This is rationalbecause ha a�ects the evolution of the productivity in the goods sector suchthat the opportunity costs of schooling are directly linked with ua. In Section4.1 we interpret the interdependent utility maximization problems of agents in adecentralized economy as a non-cooperative game and we de�ne the symmetricNash equilibrium. In Section 4.2 we use again the homogeneity in the initialconditions of the HJB equation and determine an implicit partial di�erentialequation. The structure of this equation is similar to the planner's case, butit now also depends on time. This occurs because the time dependent functionua;t enters. A parameter depending version of the unstable solution branch helpsus to determine the steady state of the decentralized economy. In Section 4.3we transform the problem into solving one explicit partial di�erential equationassuming ua;t to be given. Using the Nash condition we again reduce to anordinary di�erential equation.4.1 Nash equilibriumWe suppose in�nitely many homogeneous agents A(n), n = 1; 2; :: each of themequipped with his own physical capital k(n) and human capital h(n). Assumingthat the average human capital ha = limN!1 1N PNn=1 h(n) exists in a mathemati-cal sense, each agent faces his own dynamical optimization problem to attain themaximum lifetime utilityU (n) = maxc(n)t ;u(n)t Z 1t=0 e��t ln c(n)t dt;11



subject to the state dynamics_k(n)t = A(k(n)t )�(u(n)t )1��(h(n)t )1��h
a;t � c(n)t ; 8 t � 0;_h(n)t = B�1� u(n)t �h(n)t ; 8 t � 0;k(n)t � 0 and h(n)t � 0 8 t � 0:The constraints on the control variables (u(n)t )t�0 and (c(n)t )t�0 are as before inthe social planner's problem. We interpret this optimization problem as a multi-ple players' non-cooperative game where the di�erent optimization problems areconnected via the value of the average human capital stock. Since all agents areidentical, their initial endowments k(n)0 and h(n)0 are the same and it is sensibleto seek symmetric Nash equilibria. Applying the de�nition (e.g., Dockner et al.(2000), Chapter 4) to our setup, the controls (u(n�)t )t�0 and (c(n�)t )t�0 form a Nashequilibrium ifU (n)�(u(1�)t )t�0; (c(1�)t )t�0; (u(2�)t )t�0; (c(2�)t )t�0; :::; (u(n�)t )t�0; (c(n�)t )t�0; :::�� U (n)�(u(1�)t )t�0; (c(1�)t )t�0; (u(2�)t )t�0; (c(2�)t )t�0; :::; (u(n)t )t�0; (c(n)t )t�0; :::�holds for all feasible controls (u(n)t )t�0 and (c(n)t )t�0 and for all n. By symmetry,u(n�) = u� and c(n�) = c� do not depend on the agent A(n) and in particular theaverage human capital satis�es ha = h(n�). Hence, the agent's lifetime utility U (n)only depends on his own controls u(n) and c(n) and on the average stock of humancapital ha the value of which does not change under di�erent decisions of merelyone agent. Thus, u� and c� satisfy the Nash condition ifU�(u(�)t )t�0; (c(�)t )t�0; (ha;t)t�0� � U�(ut)t�0; (ct)t�0; (ha;t)t�0�holds for all feasible controls (ut)t�0 and (ct)t�0. Note that from now on we dropthe superscript (n) in the notation.4.2 The representative agent's optimization problemOur �rst step is again to de�ne the value function for the DOP at hand. The twocontrols ct and ut are chosen by the representative agent such that they are in Xand maximize his discounted utility while taking the economy's average level ofhuman capital ha;t as given. In fact, if a symmetric Nash equilibrium exists then_ha;t = B(1� u�t )ha;tholds. This implies that ha;t cannot grow faster than exponentially such that wecan apply Proposition 1. In the sequel, we shall express the formulae for the singleagent in terms of ua;t = u�t and only use that (ua;t)t�0 is a continuous function oftime with values in [0; 1]. Observe that we thus introduce a time dependence ofthe optimization problem and obtain a non-autonomous HJB-equation. Indeed,unless ua;t remains constant, the value function will change in time because of12



di�ering future productivity in the goods sector. As an alternative to our time in-homogeneous DOP in the three state variables (k; h; ha), we could have consideredthe four state variables (k; h; ka; ha) and used the time-autonomous character ofthe game to model the representative agent's DOP with some exogenous controlfunctions ua(ka; ha) and ca(ka; ha). This approach, though, yields less intuitiveformulae and cannot be simpli�ed as easily as the one proposed here. In order toremain close to the notation in Section 3, the discounting of the value functionover time is cancelled by the factor e�t. Thus, the dynamic optimization problemreads as follows1:~V (kt; ht; ha;t; t;ua;t) := max(c;u)2X (e�t R1t e��s ln cs ds; �t =1�1; �t <1:The stopping time �t at point t in time is de�ned as �t := inffs � t j ks = 0g andthe set X of admissible controls is the same as in Section 3. The correspondingHJB equation now also depends on the function (ua;t)t�0:�~V (�;ua)= max(c;u)2Xnln c+ ~Vk(�;ua) _kt+ ~Vh(�;ua) _ht+ ~Vha(�;ua) _ha+ ~Vt(�;ua)o (23)The agent has no in
uence on the average allocation ua and it makes no di�erencewhether the braces include the last two terms or not. As in the centralized case,we show that a solution ~W (k; h; ha; t;ua) of this equation is always an upperbound for the true value function ~V (k; h; ha; t;ua), if ~W is concave in k and h,see the Appendix. We proceed as for the social planner's DOP. The �rst ordernecessary conditions are: c� = ~V �1k ; (24)u� = �A(1��) ~VkB ~Vh � 1� kh 
�ah : (25)The interpretation of these conditions is almost the same as in the centralizedcase, the only di�erence is that the shadow values of the capital stocks nowdepend on the path of the economy's average human capital allocation decisionua. We continue with the insertion of these �ndings into the HJB equation (23).We obtain�~V + 1+ ln ~Vk = �k �A~Vkh
a� 1� �1��B ~Vh� 1��� +B ~Vhh+ ~VhaB (1� ua)ha + ~Vt: (26)The rede�nition of the state-like variable xt := kth�1t h�
=(1��)a;t and the control-likevariable qt := cth�1t h�
=(1��)a;t implies in analogy to the centralized case_xt = Ax�t u1��t � qt �B(1� ut)xt � 
1��B(1� ua;t)xt: (27)1The tilde stresses that we consider the value function of the representative agent and notthe social planner's value function. 13



Again we exploit the inherent homogeneity and write~V (k; h; ha; t;ua) = ~f�kh�1h �
1��a ; t;ua�+ 1� ln�hh 
1��a �:The derivatives of ~V (k; h; ha; t;ua), expressed in terms of the state-like variablex and the parameter depending rede�ned function ~f := ~f (x; t;ua), are~Vk = ~f 0xk ; ~Vh = 1�h � ~f 0xh ; ~Vha = 
1��� 1�ha � ~f 0xha �; and ~Vt = _~f;where ~f 0 := ddx ~f (x; t;ua) and _~f := ddt ~f (x; t;ua). Thus the parameter dependingfunction ~f determines decisively the shadow values of the three production factors.The introduction of ~f allows us to rewrite the �rst order necessary conditions.Hence (24) can be rewritten as c� = k(x ~f 0)�1 and for (25) we haveu� = � A(1��) ~f 0(x;t;ua)B( 1��x ~f 0(x;t;ua))� 1� x = � A(1��)B( 1� q��x)� 1� x: (28)The condition on the left hand side shows us that the average allocation of hu-man capital ua in
uences the individual's decision of allocating human capital.Furthermore, using q� = 1= ~f 0 the condition on the right corresponds to (9) in theplaner's case. Again, we reduce the HJB-equation and arrive at� ~f + 1 + ln ~f 0 = A 1� �(1��) 1��� ~f 0 1� xB 1��� ( 1�� ~f 0x) 1��� +B�1� � ~f 0x�+B 
�
ua1�� (1� � ~f 0x) + _~f: (29)This is still a partial di�erential equation in the variables t and x. In a �rst stepwe only seek the balanced growth path solution, where the state-like variable xand the control variables q and u remain constant over time. In this case, we takethe exogenous value ua;t to equal a constant ua 2 [0; 1] whence the coeÆcients ofthe reduced HJB-equation are time independent and we look for time autonomoussolutions ~f . Using (29) and treating ua as a given constant we obtain� ~f + 1 � B(1��+
�
ua)�(1��) + ln ~f 0 = B(1��+
�
ua)1�� x ' 1���a ~f 0 1�( 1�� ~f 0x) 1��� � ~f 0! ; (30)where 'a depends on the value of ua:'a := � A(1��)��B(1��+
�
ua)�� 11�� > 0:A slightly modi�ed version of the function in (11) namely~f(x;ua) = B 1��+
�
ua1�� +� ln����2 + 1� ln(x+ 'a) (31)is a solution of this reduced HJB equation, which only yields admissible controlsfor the steady state (xss; ussa ) of equation (27), which is given byxss = ��'ssaB(1��+
�
ussa ) and ussa = �B ; (32)14



where 'ssa denotes 'a for ua = ussa . The corresponding optimal controls are foundto be uss = �B and qss = �(xss + 'ssa ) = �'ssa �(��
)+B(1��+
)B(1��+
)��
 : (33)We stress that ~f(xss;ussa ) determines uss independently of ua such that the decen-tralized steady state is unique. A posteriori we conclude that the only possibleparameter choice in order to have a symmetric Nash equilibrium in steady stateis ua = ussa = �=B. Conversely, this steady state solution is indeed a Nashequilibrium for the DOP at hand. It equals the corresponding values derived bythe Pontryagin maximum principle along the lines of Benhabib and Perli (1994).Compared to the centralized case, the steady-state allocation of human capitalbetween the two sectors is not in
uenced by the external e�ect of human capitalin goods production captured by 
. Since the realized marginal productivity inthe schooling sector remains constant, human capital just grows at a constantrate and the average stock of human capital a�ects total factor productivity inthe goods sector in a constant manner. On the other hand human capital has di-minishing private marginal returns in goods production such that physical capitalinvestment provides the mechanism to reconcile the (private) marginal returns ofhuman capital in both sectors. Hence, for the allocation of human capital alongthe balanced growth path, the degree of the external e�ect in goods productionplays no role in the decentralized economy. On a transition path to the steadystate, however, the value of 
 is important, since the goods sector's productivitypath in
uences the path of the opportunity costs of schooling and therefore theconvergence of the state-like variable towards its steady state.4.3 Determining the decentralized solutionO� the steady state we can only assert that in a Nash equilibrium with timehomogeneous controls ua;t = u�(xt) holds along the optimal controls. The �rstintuition to replace ua;t by u�(x) from equation (27) in the reduced HJB-equation(30) is wrong because the dynamic programming principle needs to consider allpossible values (x; t) in order to derive the HJB-equation, which is not only de�nedon the one-dimensional solution submanifold (xt; t) corresponding to the optimalcontrol. Hence, this idea would introduce a dependence of ua on x and f in thedynamic programming principle from which the agent can bene�t, i.e. he wouldbe in the position to (partially) exploit the externality. For instance, startingin x > xss the agent would have an incentive to decrease the state variablex by shifting human capital to the schooling sector. Although the choice of asmaller u has a lowering e�ect on goods sector productivity, for positive 
 thise�ect is more than o�set by the higher values of h and ha. Hence the increasedproductivity would a�ord the opportunity to increase consumption. Numericalimplementations of this wrong approach yield signi�cantly deviating policy rules.Yet, if we transform the reduced HJB-equation into a di�erential equation for~fx(x; t), like in the centralized case of Section 3.2, we shall �nd that the di�erentialequation along the solution path simpli�es to an ordinary di�erential equation.15



From there on, the same techniques as before yield an initial value problem whichis easily solved numerically. We restrict our attention of the HJB-equation f(x; t)to the homogeneous form G(t)(x; fx(x; t); ft(x; t)) withG(t)(x; p; d) := B(1��+
�
ua;t)�2(1��) � ln p� + B(1��+
�
ua;t)�(1��) xp( a;t( 1�p � x)��1� � 1) + d�and  a;t := � A(1��)��B(1��+
�
ua;t)�� 1� :Consequently, p(x; t) := fx(x; t) solves the partial di�erential equationp = G(t)x +G(t)p px +G(t)t pt:Solving for px(x; t) would already yield an explicit di�erential equation in p. Noteagain that _xt = �G(t)p holds along the optimal control path. From economic theorywe immediately infer that xt converges monotonically to the steady state xss suchthat _xt = �G(t)p 6= 0 holds o� the balanced growth path. Denoting the inversefunction of t 7! xt by x 7! t(x) we put ~p(x) = p(x; t(x)) for x > 0 and x 6= xss.From G(t)d = ��1 we thus infer~p(x) = G(t)x +G(t)p (~p0(x)� ptt0(x)) + pt� = G(t)x +G(t)p ~p0(x):where G(t) means of course G(t(x)) along the solution path. There we know fromthe Nash condition that ua;t = u�(xt) holds which we can �nally insert to obtainthe ordinary di�erential equation ~p = Gx +Gp~p0 withGx(x; p) = B(1��+
�
u(p;x))�(1��) p� (p; x)( 1�p � x)�1� � 1�p + 1�2�� x�� 1�;Gp(x; p) = � 1�p + B(1��+
�
u(p;x))�(1��) x� (p; x)( 1�p � x)�1� � 1��p � x�� 1�Here u(p; x) is derived from formula (28), that isu(p; x) = � A(1��)B( 1�p�x)� 1� x: (34)and  (p; x) is obtained from  a;t, replacing ua;t by u(p; x). The explicit ordinarydi�erential equation ~p0 = (~p �Gx)=Gp can be rewritten in terms of the optimalcontrol-like variable q = ~p�1 such that the following explicit di�erential equationin q has to be solved:q0 = q (1��)��B(1��+
�
u(q;x))� (q;x)( 1� q�x)�1� ( 1� q+ 1�2�� x)�1�(1��)q�B(1��+
�
u(q;x))x� (q;x)( 1� q�x)�1� ( 1�� q�x)�1� : (35)As in the centralized case, the right hand side will be indeterminate at the steadystate since numerator and denominator vanish. Again L'Hôpital's rule gives anexplicit expression for the derivative q0 at xssq0(xss) = [uss(��
)+1��+
][(2�2�+
)(1��+
)(uss)�1�(2�2�+
)
+1��+
](1��2)(1��+
�
uss)+�(1��+
)uss : (36)16



The Appendix gives some intermediate results that we obtained when determiningthis expression. Finally, a simple initial value problem remains to be solved. Note,that the di�erential equation (35) together with the restated �rst order necessarycondition (34) gives an explicit formula for the optimal control-like variable q.After solving for the optimal q� given a certain state x, one can easily determinethe optimal human capital allocation u�. In the more general model consideredby Mulligan and Sala-i-Martin (1993) the corresponding optimal controls aredetermined by two coupled di�erential equations.Easy numerical schemes now allow to determine the solution, which does notyield indeterminacy in the di�erential equation except at the steady state xssand at x = 0 such that the value function is twice continuously di�erentiable.The optimal controls found are indeed admissible except for small values of xwhere u may be larger than one. As before we set u = 1 in this region and solvethe control problem for the single variable q. Altogether, this veri�es that wehave obtained the symmetric Nash equilibrium we had looked for. Moreover, itis seen to be unique.The solution method presented here is also applicable for the parameter spacestudied by Xie (1994). Xie analyzes the model with isoelastic preferences wherethe parameter � denotes the inverse of the intertemporal elasticity of substitution.Since he restricts � to be equal to the output elasticity of physical capital, thenumber of parameters studied there is equal to ours and his choice of the moregeneral utility function is bought by imposing this restriction2.5 The solution method revisitedThe solution method of the Uzawa-Lucas model of endogenous growth presentedhere is of global character and works in the centralized case as well as in thedecentralized case. We reduce the problem of determining the value function tosolving an explicit ordinary di�erential equation in q with the initial value q(xss)prescribed by the balanced growth path solution. We show analytically that xssis a saddle point of the dynamics of q. By exhibiting a closed form solution we�nd the unstable branch, which in turn easily yields the value q0(xss) for the sta-ble solution branch by L'Hôpital's rule. Using this knowledge, the initial valueproblem for the stable solution is determinate and becomes easily tractable bystandard numerical solvers for explicit ordinary di�erential equations. While thedi�erential equation for q is highly nonlinear, it is still possible to study analyt-ically the dependence of the solution on the di�erent parameters. The standardmethod is to linearize the right hand side with respect to this parameter andto investigate the dynamics locally around one particular parameter value. Theknowledge of q(x) then allows to determine the optimal human capital allocation2The functional form of the unstable solution branch is then given by:�(k; h; ha;ua) := �1��(k+'ahh
=(1��)a )1���(1��)(1� �B (1��+
�ua
))� � 2���(1��) , with 'a := � ��(1��)A(1��+
�ua
)�B� 11��17



u(x) via formula (34). Of course, the value function V itself is calculated on thebasis of the formula q(x) = f 0(x)�1 together with its value at xss and the rela-tionship between V and f . The transition from an initial state o� the balancedgrowth path is simulated by inserting the optimal controls into the two dynamicstate equations for k and h.The main steps in simplifying the original nonlinear implicit HJB equation in thevariables k and h were (a) to use the inherent homogeneity by introducing thestate-like variable x, the control-like variables q and u and the value function-like function f and (b) to transform the implicit one-dimensional di�erentialequation for f into an explicit di�erential equation for q. To what extent does thisapproach hinge on the special model considered? The �rst step (a) is a standardsimpli�cation trick and applies to almost all two-sector models considered in theeconomical literature. So, we focus on the second step (b). For the transformationof the implicit HJB equation for f it was essential that this equation had the formf(x) = G(x; f 0(x)) for some function G: (37)Given this representation, our method readily yields an explicit di�erential equa-tion for f 0(x), which together with some speci�c value of f , e.g. at the steadystate, permits a simple analytical and numerical analysis of the value function.The additional knowledge of a solution facilitates the calculations in the sad-dle point case, but is not strictly necessary since a local analysis around thesteady state would already provide enough information. If we now consider anautonomous two-sector growth model in general form_kt = Fk(kt; ht; ut)� c;_ht = Fh(kt; ht; ut);with the optimization problem for (ut) and (ct)Z 10 e��tg(ct) dt �! max!;we end up with the autonomous HJB equation�V = maxc;u �g(c) + Vk(Fk(k; h; u)� c) + VhFh(k; h; u)�:At �rst glance it seems that we always obtain the desired representation (37).However, the reduction to state-like and control-like variables may introduce anon-derivative term on the right. For instance, the use of an isoelastic utilityfunction g(c) = c�, � 2 (0; 1), in the centralized Uzawa-Lucas model lets us setby homogeneityV (k; h) = f(kh� 1��+
1�� )h (1��+
)�1�� = f(x)h (1��+
)�1�� :Hence, the derivative Vh is expressed in terms of both, f and f 0. This shows thatthe choice of a logarithmic utility function is crucial for our approach to work18



so easily. In the general case, but with the speci�c choice g(u) = ln(u) we willnot face this problem. Assuming homogeneity of the production functions Fkand Fh with respect to k and h, we can introduce a suitable state-like variablex = x(k; h) = k�kh��h and the value function can be written asV (k; h) = f(x) + ��1 ln(h�h):This additive structure thus allows to write Vk and Vh in terms of f 0 only. Insummary, our approach allows to simplify drastically the HJB-equations for alltwo-sector growth models with logarithmic utility. Naturally, a wider scope be-yond two-sector growth models is feasible, but the general structure of the math-ematical optimization problem should be preserved.Let us discuss brie
y the similarities and di�erences of our and alternative solu-tion strategies. The reason for choosing the value function approach rather thanthe more widely used Pontryagin maximum principle is twofold. First, the valuefunction approach is able to cope with non-concave DOPs which can occur in thecentralized version of the model if 
 is positive. Second, the value function hasthe advantage that it is deterministic even if we allow for stochastic disturbancesin the model, such that this approach is the natural one to choose if one wantsto extend the model in this direction. The HJB-equations are single implicitpartial di�erential equations. In the centralized case V (k; h) is two dimensionaland in the decentralized case ~V (k; h; ha; t;ua) is four dimensional. At this stagethe Pontryagin maximum principle leads to a system of four explicit coupled dif-ferential equations for _k, _h, _c, and _u. Then we exploit the inherent homogeneityof the DOP by introducing the state-like variable x and the control-like variableq. Using these transformed variables we arrive at an implicit ordinary di�eren-tial equation in x in the centralized case and at an implicit partial di�erentialequation in x and t in the decentralized case. The application of the maximumprinciple, however, would have lead to a three dimensional system of explicit dif-ferential equations. In the centralized case we use a standard technique in orderto transform the implicit into an explicit rational di�erential equation (21) forthe control-like variable q. Since we know the steady state value xss and theunstable solution branch, we are able to determine the initial condition q(xss)and the local linearization corresponding to the stable branch q0(xss).The time elimination method proposed by Mulligan and Sala-i-Martin (1991)uses similar arguments, although it is based on the maximum principle. It usesthe fact that the derivative of the control-like variable with respect to the state-like variable is equal to the time derivative of the control-like variable dividedby the time derivative of the state-like variable. To obtain initial conditions inthis method, basically the same procedure as ours is used in the steady state.Focusing on two-sector growth models in a second paper, Mulligan and Sala-i-Martin (1993) derive a system of two explicit ordinary di�erential equations,which in our terminology involve q and u as functions of x. Even in the Uzawa-Lucas model they do not simplify further to one equation, which is due to thenon-logarithmic utility assumed in their model, compare the discussion above. We19



want to stress here that numerically both methods can be implemented with highspeed (our examples were computed in less than one second) and high accuracyby standard mathematical packages. Yet, the reduction to merely one explicitdi�erential equation has the great advantage that the behavior of the solutioncan be studied analytically much more easily than in coupled systems, especiallywith respect to the in
uence of certain parameters.The preceding arguments are evenmore stringent when compared with the adjointequations obtained by the pure maximum principle. This approach is adoptede.g. by Benhabib and Perli (1994) and Bond, Wang, and Yip (1996) and yields,even after reduction, three nonlinear coupled dynamic equations where only thevalues for t!1 are known from the balanced growth path. The more demandingtechniques of shooting or backward solving for this kind of problems, as advocatedby Brunner and Strulik (2002), are thus avoided.Instead of following the maximum principle for our concrete model, we deliber-ately favored the dynamic programming or value function approach because itallows an easier generalization to the stochastic setting. An interesting naturalexample would be random shocks in the production of physical capital. Verygenerally, if we conserve homogeneity in the noise modelling, the HJB equationin terms of the state-like variable x will be of the formf = G(x; f 0; f 00);involving a second derivative due to the Itô term of the corresponding Markovgenerator. Consequently, the same principle as before yields one second orderdi�erential equation for p = f 0:p = Gx(x; p; p0) +Gp(x; p; p0)p0 +GP (x; p; p0)p00 ) p00 = p�Gx +Gpp0GP :Note that the equation is explicit in the second order term and even elliptic. Forspecial model setups this may be simpli�ed further, but already the general modelallows the use of standard analytical and numerical tools for elliptic equations.The only possible diÆculty might be a singularity in the �rst order term. Adetailed analysis is left for future work. Here, we only want to mention twoadvantages we anticipate for our approach: First, in the maximum principleapproach the adjoint equations are backward stochastic di�erential equationsand an extension of the time elimination method is not obvious. Second, thereduction to only one equation, even though of second order, should simplifythe analysis, the numerical implementation of Monte Carlo simulations and the�tting to empirical data considerably.6 Discussion of the numerical resultsIn this section we make use of our method and show that on the transitionpath the output growth rate towards the balanced growth rate obeys a U-shaped20
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. The minima of the U-shaped growth ratesare always to the left of the balanced growth rate. Analytically the growth rateof output can be decomposed as follows:_ytyt = � _xtxt + (1� �) _utut + 1��+
1�� _htht ; where _xtxt = _ktkt � 1��+
1�� _htht : (39)In the following we consider the individual terms in the sum as separate functionsof x. The �rst term _x=x is positive for x < xss and negative for x > xss,tending to in�nity for x ! 0. From the decay of u(x) we infer that the secondterm _u=u has the reverse property: it is negative for x < xss and positive forx > xss. The last term _h=h is never negative and monotonically increasingwith limx!1 _h=h = B. Furthermore _h (xss) =h (xss) determines the growth rateof output along the balanced growth path and is equal to B � 1��1��+
� in thecentralized case and to B � � in the decentralized case. Hence, the three termsbehave very di�erently and yield in sum the U-shape of _y=y that we observe. Forpositive 
 the growth rate of output implied by the planner's solution is alwayshigher than the corresponding rate in the decentralized economy. This can beinterpreted as the welfare loss due to the lack of a coordination mechanism.Qualitatively, however, the implied growth rates of both solutions behave verysimilar. For x < xss with �xed 
, the growth rate �rst declines in x before itstarts to rise again. For x > xss, the growth rate is increasing in x.Again we study �rst the centralized case. The case x < xss corresponds toa relatively high endowment of human capital. Let us assume that the socialopportunity costs of schooling are higher than the potential bene�ts of educationalactivities. Obviously the planner wishes to set u bigger than one, i.e. he wantsto disinvest in human capital. Since he must set u equal to one, he can onlyadjust physical capital. Therefore, we know that the output stream is larger thanthe smoothed consumption stream. But with u equal to one, goods technologyhas diminishing returns in physical capital and any additional unit of k lowersproductivity in goods production. As a consequence, the output growth rate ishigh but declining. When the restriction u � 1 is no longer binding the plannerstarts to shift human capital to the schooling sector. Two opposite e�ects start23



to set in. The lower value of u directly causes a smaller productivity in goodsproduction while the growing stock of h pushes productivity in the oppositedirection. Initially the decline of productivity due to the physical capital e�ectand to the allocation e�ect dominates. After a while when u adjusts slower thehuman capital e�ect is dominating such that goods sector productivity startsto rise again and the output growth rate follows. Obviously, the dominance ofthe human capital e�ect arises the faster the larger 
. The case x > xss meansthat human capital is relatively scarce such that the productivity of h in goodsproduction is high. Here the e�ect due to human capital dominates during thewhole transition process, although its dominance is becoming weaker when thestate-like variable x moves towards its steady state.Finally we focus on the decentralized case. Concerning the in
uence of x, therepresentative agent's reasoning is similar to the planner's except that it refers toprivate instead of social opportunity costs of schooling. The larger the externale�ect 
, the higher the agent's bene�ts of anticipating the evolution of the averagestock of human capital ha. These bene�ts are re
ected in high growth ratesof either human or physical capital which are then transmitted to high outputgrowth rates. However, due to the growing costs of non-coordination, the increasein 
 is not as steep as in the centralized case.7 ConclusionIn this paper, we have introduced a simple method of analyzing global transi-tional dynamics of the Uzawa-Lucas endogenous growth model with logarithmicutility. As a result, we merely have to solve one ordinary di�erential equationin the parameters of the model. Since we know the functional form of the un-stable solution branch, we are able to determine analytically the initial conditionfor the di�erential equation. Finally, we solve the initial value problem. This isa clear advantage compared to the three-dimensional system of coupled di�er-ential equations encountered when applying standard approaches based on themaximum principle. Furthermore, our method yields global results, such as theU-shaped course of output growth rates, which are not captured by a local lin-earization.We present numerical results to the social planner's optimization problem forwide ranging degrees of the external e�ect 
. In the decentralized case, the repre-sentative agent's HJB equation is restricted to the economy's average decision ua.Therefore, the agent has to determine his optimal choice u given the economy-wide average decision ua. Our method formalizes this reasoning by treating theaggregate human capital allocation rule ua as an exogenously given parameter.This formalization illustrates the reasoning of agents in a clear manner and revealsthe economic intuition of symmetric Nash equilibria. Anticipating the evolutionof the average human capital stock means �nding a �xed point in the space ofadmissible time dependent policy functions. In a symmetric equilibrium, the24



agent's optimal policy rule u should coincide with the economy's average decisionua. Finally, we argue that the model's inherent asymmetry is responsible for theU-shaped course of output growth rates.We show that our method is generally applicable for two sector growth modelswith logarithmic utility. Due to this restriction on the preferences, our approachis even easier to solve than the time-elimination method proposed by Mulliganand Sala-i-Martin (1991). The homogeneity in the production technologies allowsus to rewrite the value function as the sum of the value function-like function fand a logarithmic expression in the human capital stock. As a result the shadowvalues of physical and human capital only depend on f 0. Furthermore the HJB-equation can be stated in two terms only, in the state-like variable x and inf 0. When choosing more general preferences, e.g. iso-elastic utility, the additivestructure disappears and our approach does not work so easily.By and large, we have limited our discussion mainly to the deterministic setup.However, theorists are often interested in the impact of cyclical volatility on theeconomy's performance. For instance, Canton (2002) asks whether long-termeconomic growth increases or decreases with increased cyclical volatility. Sincethe value function is deterministic even in a model with uncertainty, the valuefunction approach is the natural one to choose if one wants to introduce stochasticdisturbances. We argue that if the modelling of the noise preserves the model'shomogeneity, the HJB-equation can be stated in three terms, in x, in f 0, and inf 00. The second derivative of the value function-like function f leads us to onesecond order di�erential equation. Since this equation is explicit and even ellipticit allows the use of standard mathematical tools. Finally, we think that a rigoroustreatment of the stochastic case would be a worthwhile project.AppendixW is an upper bound for the true value function VFor all k0; h0; t > 0 and all controls (ct; ut) 2 X with � > t we havee��tW (kt; ht) = W (k0; h0) + Z t0 (��e��sW (ks; hs)+ e��sWk(ks; hs) _ks + e��sWh(ks; hs) _hs) ds�W (k0; h0) + Z t0 (��e��sW (ks; hs)+ e��s(�W (ks; hs)� ln(cs)) ds= W (k0; h0) + Z t0 e��s(� ln(cs)) ds;where we have used the fact that W solves the HJB equation or is at least anupper bound, i.e. a supersolution, if (c�t ; u�t ) =2 X since we have not excluded the25



values u�t > 1. Hence, by rearranging the terms and taking the limit t!1, weobtain V (k0; h0) � W (k0; h0)� limt!1 e��tW (kt; ht);if the latter limit exists. Note that this inequality is always trivially valid for� <1. Since ht grows exponentially and ct � 0 holds, also kt cannot grow fasterthan exponentially and thus W (kt; ht) grows at most linearly, which implies thatthe limit cannot be larger than zero. On the other hand, ht � h0 holds for allt � 0 so that W (kt; ht) is uniformly bounded from below for all t � 0. Hence,this last limit exists, equals zero, i.e. the transversality condition is ful�lled, andV (k0; h0) �W (k0; h0)holds, as asserted.Proposition 1Obviously, the controls css and uss are admissible because uss � 1 by assumption.The value of xss ensures that we are on the balanced growth path and _xt = 0holds so that the values of the controls are easily derived from (13). Hence bythe preceding remark on W , the controls are indeed optimal.~W is an upper bound for the true value function ~VFor all kv; hv; t > v and any controls (cs; us) 2 Xv with �v =1 we �nde��tW (kt; ht; t) = e��vW (kv; hv; v) + Z tv e��s���W (ks; hs) +Wk(ks; hs; s) _ks+Wh(ks; hs; s) _hs +Wt(ks; hs; s)� ds� e��vW (kv; hv; v) + Z tv (��e��s ln(cs)) ds:The exponential growth bounds for ha;t and ht imply exponential bounds for ktand ct so that limt!1 e��tW (kt; ht; t) = 0 is guaranteed. We inferW (kv; hv; v) � e�v Z 1v e��s ln(cs) ds:Since the controls were arbitrary, we have shown W (k; h; v) � V (k; h; v) underthe only hypothesis �v =1. If �v <1 were true, the value function would equal�1 and the asserted inequality is trivially true.The initial value q(xss) in the decentralized caseNote that the derivatives of  (q; x) at q = q(xss) and x = xss are found to be x = ('ssa ) 1��� 
uxB(1��+
)��
 and  q = ('ssa ) 1��� 
uqB(1��+
)��
 :26



The respective derivatives of (34) are given byux = B(1��+
)��
+�B�'ssa and uq = �1B�'ssa :Let K(q(xss); xss) and L(q(xss); xss) denote the numerator and denominator ofthe di�erential equation (35). Again q0(xss) = �Kx(q(xss);xss)�Lq(q(xss);xss) holds and the twoderivatives are as follows:Kx (q(xss); xss) = ��qss�(2�2�+
)((uss)�1(1��+
)�
)+1��+
��'ssaLq (q(xss); xss) = 1��2� + uss(1 � �+ 
)1 � �+ 
 � 
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