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Abstract

A homogeneous (bulk) silicon semiconductor is studied by using the Direct Sim-

ulation Monte Carlo (DSMC). Two DSMC algorithms are considered, the self scat-

tering technique (SST) and the constant time technique (CTT). First, the results

obtained by CTT are shown to converge (with vanishing time step) to the results

obtained by SST. The truncation error of CTT turns out to be of �rst order with

respect to the time step. Second, the eÆciency of both algorithms is compared. It

is found that SST is more eÆcient if a high precision (relative error less then three

percent) of the results is needed.
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1 Introduction.

The Direct Simulation Monte Carlo (DSMC) algorithm is a stochastic method that solves

the Boltzmann equation by replacing the distribution function with a representative set

of particles. In solid state physics this method has been widely investigated for describing

charge transport in submicrometric semiconductors [1, 2]. The DSMC shows itself to be

a very useful tool, since it permits particular physical simulations unattainable in experi-

ments, or even investigation of nonexistent materials in order to emphasize special features

of the phenomenon under study. It provides an accurate description of carrier transport

phenomena because the various scattering mechanisms and band structure models are

taken into account.

In contrast to the other simulation tools, like drift-di�usion or hydrodynamic models,

the DSMC results are a�ected by discretization and stochastic errors, which inuence

dramatically their accuracy and eÆciency .

An analysis of the stochastic error has been recently tackled in [3]. Here, in this

paper, we shall draw our attention to the discretization error introduced in the free ight

mechanism.

In section 2 we introduce the basics of the DSMC, and the main scattering mechanisms

for silicon. In section 3 the free ight generation mechanisms, i.e. the Self Scattering and

the Constant Time techniques, are treated. In section 4 we study the discretization error

introduced by the Constant Time Technique, in the simulation of a homogeneous silicon

semiconductor, and the eÆciency of the two algorithms is compared.

2 Basic Equations.

The Monte Carlo method for evolving a solution of the Boltzmann Transport Equation

(BTE) [4] consists in recreating the history evolution of electrons in time and space inside

the crystal, subject to the action of external and self-consistent electric �eld and of the

given scattering mechanisms [1, 5].

The simulation starts with one or more electrons in given initial conditions for mo-

mentum ~k and position x. During the free ight (i.e. the time between two collisions)

the external forces are made to act according to the Newton's equations of motion in the

crystal :

dx

dt
=

1

~
rk"(k) (1)

~
dk

dt
= �qE(t; x) (2)

where "(k) is the kinetic energy of the considered crystal conduction band structure

measured from the band minimum, q the absolute value of the electron charge, and ~ the

Planck constant divided by 2�. The electric �eld E(t; x) satis�es the Poisson equation

�(��) = q
h
n(t; x)�ND(x) +NA(x)

i
; (3)
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E = �rx�;

where �(t; x) is the electric potential, ND and NA are respectively the donor and

acceptor densities (which are positive functions), � the dielectric constant , and n the

electron density.

In the neighborhood of the band minimum a good dispersion relation is given by the

parabolic approximation:

"(k) =
~
2
k
2

2m?
; k 2 
; (4)

where m? is the e�ective electron mass (which is 0.32 me in silicon), and k belongs to

the domain 
, called �rst Brillouin zone, which is a characteristic of each material. In

silicon this zone is formed by six equivalent ellipsoidal valleys along the axis of the frame

of reference at about 0.85 (in the units 2�

a
where a is the lattice constant) from the zone

center.

The electron group velocity v � (v1; v2; v3) is given by

v(k) =
1

~
rk" =

~k

m?
:

The equations (1),(2)are solved with a numerical scheme by using a time step �t, which

depends on the stability and accuracy used.

Then a scattering mechanism is chosen randomly as responsible for the end of the

free ight, according to the relative probabilities of all possible scattering mechanisms.

From the di�erential cross section of this mechanism a new k state after scattering is

randomly chosen as initial state of the new free ight: after the collision the electron can

remain in the same valley (intravalley scattering) or be drawn in another equivalent valley

(intervalley scattering).

The main scattering mechanisms in silicon, at room temperature, are due to electron-

phonon interactions (acoustic and non polar optical). Their transition probability, per

unit time, from a state k to a state k
0 can be modeled as [1]:

w(k; k0) = K0(k; k
0)Æ("(k0)� "(k)) +

6X
i=1

Ki(k; k
0)�

[Æ("(k0)� "(k) + ~!i)(nqi + 1) + Æ("(k0)� "(k)� ~!i)nqi] (5)

where ~!i is a phonon energy and nqi the phonon equilibriumdistribution which, according

to the Bose-Einstein statistics, is given by

nqi =
1

exp(~!i=kBTL)� 1
:
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where TL is the lattice temperature. The function K0 represents intravalley elastic scat-

tering transition probability and it reads

K0(k; k
0) =

kBTL�
2
d

4�2~ � v2�
; (6)

where �d is the acoustic-phonon deformation potential, � the silicon mass density, vs the

sound velocity of the longitudinal acoustic mode . The inelastic scattering probability is

Ki(k; k
0) =

Zf (DtKi)
2

8�2�!i
; (7)

where DtKi is the deformation potential for the i-th optical phonon, and Zf is the number

of �nal equivalent valleys for the considered inter-valley scattering. The electron-electron

interaction is taken into account in the framework of the mean �eld approximation through

the Poisson's equation. This is reasonable if one considers the case of low electron density,

for which the short range collisions between electrons can be neglected.

3 The free ight generation.

Because the scattering process is considered markovian, the probability that a particle

does not su�er a collision in the time interval [0; t] is :

P (t) = exp

�
�

Z t

0

w[k(t0)]dt0
�

(8)

where

w(k) =

Z
w(k; k0)dk0

is the total transition probability, i.e. w(k)dt0 is the total probability that a particle with

wave vector k su�ers a collision in [t0; t0 + dt0] .

The time t appearing in the previous formula is the free ight duration. In order to

generate a stochastic free ight, one takes an uniform distribution of random numbers r

and tries to solve the problem:

P (t) = r

or by taking the logarithm,

� log r =

Z t

0

w[k(t0)]dt0 : (9)

This formula is used to calculate the time of ight duration t from a selected uniform

random number r. The integral on the right hand side is trivial if w[k(t0)] is constant,

but in general this integral cannot be performed analytically. Since the solution of eq.(9)

is of paramount importance to obtain an eÆcient implementation of the algorithm, some

algorithms have been introduced :
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1. Self Scattering Technique (SST).

Let be K the set of the k vectors that a particle can have during the simulation.

Then we de�ne a number � such as is greater then the largest scattering rate possible

in the simulation, i.e.

� � maxk2Kw(k) =
1

�0
: (10)

Let us introduce a �ctitious scattering probability wss , called self scattering, such

that the total scattering probability (including this process) is � :

w(k) + wss(k) = � :

Whenever the self scattering is selected as the collision mechanism, nothing hap-

pens to the particle which maintains, after the scattering, the same energy and

momentum it had before. If we take w(k) = � then eq.(9) trivially yields:

� log r = �t) t = �
log r

�
: (11)

The self scattering is obviously a mathematical trick, with no physical meaning,

which does not alter the statistical distribution of the real scattering events. The

main advantage of this technique is that the programming is very simple; one dis-

advantage is that a lot of computer time is spent performing computations related

to this scattering. Since the total scattering rate is maintained arti�cially high, the

free ight will be much shorter than in reality: with this technique from the 70 %

to 95 % of the computations might be spent just in dealing with self scattering. In

order to reduce the number of self scattering , some improvements to this algorithm

has proposed in [6].

If a large number of particles is simulated simultaneously (e.g. Ensemble Monte

Carlo simulation), for each simulated particle a di�erent free ight time t appears:

synchronization problems arise for the evaluation of statistical indicators.

2. Constant Time Technique (CTT) .

The total simulation time is subdivided into tiny time intervals �t. The probability

that a particle will survive without scattering during a ballistic ight of duration

�t is given by eq. (8), i.e. (remember that w(k) = 1=� (k))

exp

�
�

Z t+�t

t

dt0

� [k(t0)]

�
' exp

�
�

�t

� (k)

�
(12)

having assumed that the time step �t is small enough so that k(t0) can be taken

as constant during the free ight. If now �t=� (k) � 1 , the probability that the

particle will scatter at the end of the free-ight of duration �t can be approximated

as:

1 � exp

�
�

�t

� (k)

�
'

�t

� (k)
: (13)

5



Therefore, for each particle the total scattering rate is evaluated at the �nal wavevec-

tor k(t+�t) and we make the comparison

�t

� (k)
�< r1 (14)

where r1 is a random number 2 [0,1]; if in eq.(14) the operator � holds the particle

su�ers a scattering, otherwise no scattering occurs.

Regarding the choice of the time step �t, it is appropriately chosen to be much

smaller than the minimum total scattering time for any particle in the device. This

can be estimated at the beginning of the simulation from the bias condition, lattice

temperature, device dimensions and other input parameters. For submicron devices

at room temperature, with few Volt bias, this time step is ' 10�15sec: which is a

severe limitation to the total device simulation time.

In the case of an ensemble Monte Carlo device simulation, the constant time technique

is the method of choice. Since the ights progress synchronously in small increments,

programming becomes much easier and a number of costly checking procedures, necessary

for bookkeeping when dynamics calculations are done for the whole ight, may be avoided.

The technique is also very e�ective for vectorization, since the particles are naturally

kept synchronous. The DSMC introduce an error which consists of two components the

systematic error (wrong expectation) and the statistical error (uctuating estimate of

expectation). The systematic error of CTT depends on the time step, while the SST does

not has any systematic error. The statistical error depends on the particle number used

in the simulation. In the following we shall study these errors.

4 Simulation results.

In this paper we simulate a homogeneous (bulk) silicon semiconductor , at room tempera-

ture, in which an electric �eld have been frozen in the spatial direction x. The simulation

was time-dependent (not space-depending) . The motion equations are solved in the time

interval [ 0 , Ttot] , where Ttot = 50 ps, by using both CTT and SST methods.

The most relevant physical quantities in the simulations are the average drift velocity

, the average energy, and the average energy-ux. At each time step

tn = n�t; n = 1; 2; ::::; int

�
Ttot

�t

�

these quantities are de�ned by the following functionals:

Vx(tn) =
1

N

X
part

vx(tn) (15)
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W (tn) =
1

N

X
part

"(tn) (16)

Sx(tn) =
1

N

X
part

"(tn)vx(tn) (17)

N = 100; 000 (18)

where N is the total particle number and the summation is extended to all the particles

in the semiconductor.

As already mentioned, in our simulations the 75 % of the CPU time is spent in checking

the self scattering events, and the scattering rate number is ' 2 107 for 10,000 particles.

In �gures 1,2,3 we plot Vx(tn) , W (tn) and Sx(tn) , for an electric �eld of 80,000 V/cm

in the time interval 0 - 5 ps, obtained by using the CTT with time step �t = 6�10�15

sec .

For tn � 1 ps we have the transient regime, which is characterized by a local maximum

: the mean velocity overcomes (overshoot phenomena) the asymptotic value, that is the

value attained in the stationary regime (�g. 1). This phenomena disappears for small

electric �eld strengths. We observe that, in the stationary regime, the average velocity,

energy and energy-ux are noisy.

For a �xed time step �t, the stationary value of each functional is obtained by averaging

the quantities (15), (16), (17) in the time interval 5ps - 50ps , i.e.

V (�t) =
1

NT

NTX
n=1

Vx(tn) (19)

W (�t) =
1

NT

NTX
n=1

W (tn) (20)

S(�t) =
1

NT

NTX
n=1

Sx(tn) (21)

where NT is the number of time steps �t within the time interval 5ps - 50ps.

In �gures 4,5,6 we plot the averaged values (19), (20), (21) as function of the time step

�t : convergence with respect to �t is observed . In the same �gures we plot, by a

solid line, the value obtained by using the self-scattering technique. We observe that the

values obtained by the constant time technique converge to those obtained by using the

self scattering technique for �t � 0:1� 10�15 sec.

In order to understand the truncation error introduced in the CTT, we introduce the

Fractional Truncation Error (FTE hereafter) for some functional F , as

E(�t) =
jF (�t)� F0j

jF0j
(22)
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where F0 is the value obtained by using the self-scattering technique, because it does not

involve any time step error. In our case we denote respectively by EV (�t),EW (�t) and

ES(�t) the fractional truncation error for mean velocity, energy and energy ux .

In �gures 7,8,9 we plot the fractional truncation error EV , EW and ES obtained

by simulations, for an electric �eld 80,000 V/cm, as a function of the time step �t.

From �gures 7-9 is evident that the FTE for mean velocity, energy and energy ux is an

increasing function of the time step �t. The maximum FTE for energy EW is ' 10 %

whereas for the other functionals is ' 6 %.

In the same �gures a linear �t is shown, proving that this error is �rst order with respect

to the time step. In �gure 10 we plot, for the two algorithms, the CPU time consumed

by using the same particles number. From this �gure is evident that the SST is more

eÆcient respect to the CTT, if a less relative error is needed.

But in principle the statistical error (related to the uctuation of the estimator) must

be taken into account. In order to understand this e�ect on the eÆciency of the used

method, we consider two cases. First, we take equal number of particles and we choose

the CTT time step such that it has the same CPU of the SST (�t ' 6�10�15 from �gure

10). Then we plot the results obtained with the two algorithms in �gure 11 : we see that

the uctuations are quite similar (because the same particles number is used) but there is

a systematic error of ' 4 % (evaluated with the average values). Second, we take the time

step for the CTT so that the systematic error EV is 0.5 percent (�t= 0.6 �10�15 from

�gure 7) then we reduce the particles number (from 100,000 to 13,000) in order to have

the same CPU time of the SST (i.e. ' 4000 sec. from �gure 10). We plot the velocity

obtained with the two algorithms in �gure 12: now the CTT has a small systematic error,

but larger uctuations (' 9 %) respect to the SST (' 3 %) . The conclusion is that

the eÆciency of the CTT would be similar to that of SST, if larger uctuations of the

estimator occurs. Finally we underline that similar results are obtained for other values

of the electric �eld, and for the energy and energy ux estimators.
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Figure 1: The velocity Vx(tn) as function of the time tn 2 [0,5] for an electric �eld of

80,000 V/cm obtained by using the CTT with �t= 6�10�15 sec., and 105 particles.
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Figure 2: The energyW (tn) as function of the time tn 2 [0,5] for an electric �eld of 80,000

V/cm obtained by using the CTT with �t=6�10�15 sec. , and 105 particles.
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Figure 3: The energy ux Sx(tn) as function of the time tn 2 [0,5] for an electric �eld of

80,000 V/cm obtained by using the CTT with �t=6�10�15 sec. , and 105 particles.
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Figure 4: The mean velocity V eq.(19)obtained with CTT as function of the time step

�t obtained for an electric �eld of 80,000 V/cm . The solid line is the value obtained by

using the SST. In both cases 105 particles are simulated.
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Figure 5: The mean energy W eq.(20) obtained with CTT as function of the time step

�t for an electric �eld of 80,000 V/cm . The solid line is the value obtained by using the

SST . In both cases 105 particles are simulated.
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Figure 6: The mean energy ux S eq.(21)obtained with CTT as function of the time step

�t for an electric �eld of 80,000 V/cm . The solid line is the value obtained by using the

SST .In both cases 105 particles are simulated.
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Figure 7: The fractional truncation error for the mean velocity EV as function of the time

step �t obtained with an electric �eld of 80,000 V/cm, and 105 particles. The circles are

the simulation results , the solid line is a linear �t.
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Figure 8: The fractional truncation error for the mean energy EW as function of the time

step �t obtained with an electric �eld of 80,000 V/cm , and 105 particles. The circles are

the simulation results , the solid line is a linear �t.
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Figure 9: The fractional truncation error for the mean energy ux ES as function of the

time step �t obtained with an electric �eld of 80,000 V/cm, and 105 particles. The circles

are the simulation results , the solid line is a linear �t.
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Figure 10: The CPU time consumed by the CTT (with ooo) as function of the time step

�t for an electric �eld of 80,000 V/cm. The solid line is the CPU time consumed by using

the SST. In both cases 105 particles are used.
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Figure 11: The velocity V as function of time obtained with the CTT (solid upper curve)

and with SST (dashed lower curve) for an electric �eld of 80,000 V/cm, and 105 particles.

We choose the time step �t=6�10�15sec., such that the two methods consume the same

CPU . The solid straight line is the CTT mean velocity whereas the dashed straight line

is the SST mean velocity.
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Figure 12: The velocity V as function of time obtained with the CTT (dashed line) and

with SST (solid line) for an electric �eld of 80,000 V/cm. The time step of the CTT is

chosen such that the systematic error EV is ' 0.5 % (�t= 0.6 �10�15), and the particles

number such that the CTT has the same CPU time of the SST (' 4000 sec.).
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