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Abstract

We study the optimal investment strategy for maximizing the expected utility of

the terminal wealth with partial information. Under the assumption that the borrow-

ing rate is higher than the saving rate and the utility function is U(x) = logx, we

develop a new method to solve such problem and derive the explicit solutions that are

easy to implement.

1 Introduction

The study of continuous time portfolio optimization problem was initiated by Merton

([11], [12]). Under the hyperbolic absolute risk-avoiding (HARA) utility function, the

closed form solution of the portfolio optimization problem is obtained for the constant

coeÆcients model. With the same model and more general utility function, Karatzas et

al [7] derived explicit solution which generalizes Merton's results. This problem is still of

current research interest (cf. Browne ([1], [2], [3]), Davis and Norman [4], Yang and Ma

[16] and Yang et al [15]). The common hypotheses to these papers are that the borrowing

rate is the same as the saving rate, and the investor has access to the complete information.

In the real world situation, the borrowing rate is always higher than the saving rate. This

spread of the rates will a�ect the decision an investor makes. The aim of this article

is to see what is this e�ect. The investment strategy under various targets and under

the interest rates spread have been studied for some cases (cf. Yang and Huang [14]).

This article will consider the maximization of the utility functions under the interest rates

spread which is not studied in the above mentioned papers.

On the other hand, the assumption of complete information does not �t the real world

situation. Since the Brownian motion and the drift coeÆcient in the stochastic di�erential

equation (SDE) satis�ed by the price of the stock is usually not directly observable and

cannot be estimated accurately, the information ow available to an investor is not the

complete one. A reasonable assumption is that the investor has access to the informa-

tion ow (partial information) generated by the past prices of the stock. The model with

partial information is more reasonable, and its analysis becomes more complicated than

the usual one with complete information. Based on partial information, Yang et al [15]

and Yang and Ma [16] obtained the optimal strategy for maximizing the expected utility

of the lifetime consumption and the optimal investment strategy, and the corresponding

estimation formula for the information valuation. Yang and Xiong [17] studied the max-

imization of the expected utility for the terminal wealth and the related problems. An

explicit solution is obtained under logarithmic utility. In this paper, we will consider the

e�ect of both rate-spread and partial information. The utility function we take will be the

logarithmic function.

Suppose a small investor can buy a stock whose price (per share) is a stochastic process

S
t
, can borrow money from a bank whose lending rate is R

t
, and can deposit her money

to a saving account with an interest rate r
t
. For simplicity, we assume that R

t
> r

t
> 0
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are deterministic. The goal of this investor is to choose a portfolio such that the expected

utility of her wealth at terminal time T is maximized.

Suppose that the stock price S
t
is governed by the following SDE:

dS
t
= �

t
S
t
dt+ �

t
S
t
dW 1

t
; (1.1)

where the appreciation rate �
t
and the volatility �

t
of the stock are continuous stochas-

tic processes, W 1 is a (standard) one-dimensional Brownian motion. All the processes

considered in this paper are on a stochastic basis (
;F ; P;F
t
) and adapted to fF

t
g.

We assume that �
t
= �(�

t
; �

t
) where �

t
(independent of (W 1;W 2)) is a stochastic process

taking values in a measurable space E, � is a real-valued function on R � E and �
t
is a

stochastic process governed by the following SDE:

d�
t
= b1(�t)dW

1
t
+ b2(�t)dW

2
t
+ c(�

t
)dt (1.2)

where b1; b2; c are real functions on R, W 2 is a one-dimensional Brownian motion inde-

pendent of W 1. Note that the dependency of the volatility on the appreciation rate is a

reasonable assumption. Usually, the higher the appreciation rate, the higher the volatility.

�
t
represents other random factors which may a�ect �

t
.

Assume that the investor can only get information from the movement of the stock price.

Let

G
t
= �(S

s
: 0 � s � t):

Then, G
t
is the information available to her at time t. Note that the quadratic variation

process of S is

V ar(S)
t
=

Z
t

0

�2
r
S2
r
dr:

Hence �
t
is G

t
-adapted. However, the appreciation rate �

t
is usually unobservable.

Let X
t
be the wealth process. The portfolio at time t consists of three proportions �

t
�

(�
t
; �

t
; �

t
) of her total wealth X

t
in the stock, her borrowing from the bank and in the

saving deposit. Let U(x) = log x be the utility function. The goal of this investor is to

choose f�
t
: 0 � t � Tg such that E(U(X

T
)) is maximized.

However, her choice of the portfolio cannot be arbitrary. First of all, her decision must be

based on the information available to her, i.e., �
t
must be G

t
-adapted. We assume that

the investor must live within her mean, i.e., X
t
� 0 for all t.

In summary, we introduce the following

De�nition 1.1. An investment strategy f�
t
g0�t�T is admissible if

i) The stochastic process �
t
is G

t
-adapted;

ii)
R
T

0
�2
t
�2
t
X2

t
dt <1, X

t
� 0 a.s. for all 0 � t � T ;

iii) For all t 2 [0; T ], we have

�
t
� �

t
+ �

t
= 1; �

t
; �

t
� 0:

We denote the collection of all admissible strategies by A.

Suppose that the investor has initial wealth X0 and she will take self-�nancing trading

strategy, namely, it generates neither positive nor negative dividends (cf. DuÆe [5], p86).

Then her wealth process X = fX
t
g0�t�T satis�es: 8 0 � t � T ,

dX
t

=
�
t
X

t

S
t

dS
t
� �

t
X

t
R
t
dt+ �

t
X

t
r
t
dt

= (r
t
+ �

t
(�

t
� r

t
)� �

t
(R

t
� r

t
))X

t
dt+ �

t
�
t
X

t
dW 1

t
: (1.3)
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The investment portfolio problem is described as follows:

max fE (U(X
T
)) � 2 Ag (1.4)

subject to the constrain (1.3).

This paper is organized as follows: In the next section, we introduce some basic �ltering

techniques and derive a particle system representation of the optimal �ltering of the ap-

preciation rate �
t
. Note that the �ltering model we encounter in this problem does not

fall into the standard framework of the nonlinear �letring theory. New technique based

on the particle system representation are developed in section 2. In section 3, we derive a

solution for the optimal strategy based on dynamic programming principle.

2 Filtering setup

Since �
t
is not directly observable, it has to be estimated based on G

t
. We shall use

the theory of nonlinear �ltering to accomplish it. We refer the reader to the books of

Kallianpur [6] and Liptser and Shiryayev [10] for an introduction on this topic.

Let U
t
be the optimal �lter of �

t
. Namely, U

t
is a probability measure valued process such

that for any f 2 C
b
(R),

hU
t
; fi = E(f(�

t
)jG

t
);

here the notation hU; fi stands for the integral of a function f with respect to a measure

U . Denote m
t
= E(�

t
jG

t
).

Applying Itô's formula to (1.1), we have

d log S
t
=

�
�
t
� 1

2
�2
t

�
dt+ �

t
dW 1

t
: (2.1)

The aim of this section is to solve the �ltering problem with signal given by (1.2) and

observation given by (2.1). Namely, we will derive the SDE satis�ed by the optimal �lter

U
t
. As �

t
= �(�

t
; �

t
), the coeÆcient before the observation noise, depends on the signal,

this model is not covered by any known result of the nonlinear �ltering theory. On the

other hand, as we indicated in the introduction, �
t
can be regarded as a functional of

fS
u
: u � tg. Therefore, the reader might think the model is covered by the classical

theory of nonlinear �ltering (cf. Theorem 8.1.1 in [10]). However, it is not known whether

this functional is Lipschitz continuous. From this point of view, this model is again not

covered by any existing result in the nonlinear �ltering theory.

In this section, we derive the �ltering equation based on the particle system representation

idea of Kurtz and Xiong [8]. As a by-product of this approach, it provides a natural

numerical scheme in solving the �ltering equation (for the uncorrelated case, see Kurtz

and Xiong [9]).

For �xed �, let

�+;t
(�) = E�(�; �

t
) and ��;t(�) = E�(�; �

t
)�1:

Theorem 2.1. Suppose that b1; b2; c are bounded Lipschitz continuous functions. Suppose

that �(�; �) is Lipschitz on � with the Lipschitz constant independent of �. Then U
t
is the

unique solution to the following SDE:

d hU
t
; fi =

��
U
t
; b1f

0 +

�
��;t��

1

2
�+;t

�
f

�
� hU

t
; fi

�
U
t
; ��;t��

1

2
�+;t

��
d~�

t

+


U
t
; cf 0 + bf 00

�
dt (2.2)

3



where b =
b
2
1
+b

2
2

2
, �(�) = � and ~�

t
is a Brownian motion.

Proof: Let d�
t
� ��1

t
d log S

t
. Since, �

t
2 G

t
, F�

t
� G

t
. By Girsanov's formula, �

t
,

independent of W 2, is a Brownian motion under the probability measure ~P given by

d ~P = A
T
dP where

A
t
= exp

 Z
t

0

��1
r

�
�
r
� 1

2
�2
r

�
d�

r
� 1

2

Z
t

0

��2
r

�
�
r
� 1

2
�2
r

�2
dr

!
:

By Kallianpur-Striebel formula, we have

hU
t
; fi = hV

t
; fi

hV
t
; 1i (2.3)

where

hV
t
; fi = ~E

�
f(�

t
)A

t

���Gt�
is called the unnormalized �lter.

Note that

dA
t
= ��1

t

�
�
t
� 1

2
�2
t

�
d�

t

and (1.2) can be rewritten as

d�
t
= b1(�t)d�t + b2(�t)dW

2
t
+

�
c� b1�

�1(�
t
; �

t
)

�
�
t
� 1

2
�2(�

t
; �

t
)

��
dt:

Now we derive a SDE for V
t
. To this end, we consider an exchangeable particle system�

d�i
t

= b1(�
i

t
)d�

t
+ b2(�

i

t
)dBi

t
+
�
c� b1�

�1(�i
t
; �i

t
)
�
�i
t
� 1

2
�2(�i

t
; �i

t
)
��
dt

dAi

t
= ��1(�i

t
; �i

t
)
�
�i
t
� 1

2
�2(�i

t
; �i

t
)
�
Ai

t
d�

t
; i = 1; 2; � (2.4)

and de�ne D
~V
t
; f
E
= lim

n!1

1

n

nX
i=1

Ai

t
f(�i

t
)

where fBi : i = 1; 2; � � � g are independent copies of W 2. By the independence of � and

fBi; �i : i = 1; 2; � � � g, we haveD
~V
t
; f
E
= ~E

�
f(�

t
)A

t

���F�

t

�
: (2.5)

On the other hand, (2.4) can be rewritten as8<
:

d�i
t

= b1(�
i

t
)��1(�i

t
; �i

t
)d log S

t
+ b2(�

i

t
)dBi

t

+
�
c� b1�

�1(�i
t
; �i

t
)
�
�i
t
� 1

2
�2(�i

t
; �i

t
)
��
dt

dAi

t
= ��1(�i

t
; �i

t
)
�
�i
t
� 1

2
�2(�i

t
; �i

t
)
�
Ai

t
��1(�i

t
; �i

t
)d log S

t
; i = 1; 2; �

(2.6)

which has strong solution (�i
t
; Ai

t
) = F

t
(S;Bi; �i). Let I

t
be the invariant �-�eld of the

exchangeable sequence f(S;Bi; �i) : i = 1; 2; � � � g. Then G
t
� I

t
andD

~V
t
; f
E
= ~E

�
f(�

t
)A

t

���It� : (2.7)

As F�

t
� G

t
� I

t
, by (2.5) and (2.7), we get that ~V

t
= V

t
.
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Applying Itô's formula to Ai

t
f(�i

t
), we have

d(Ai

t
f(�i

t
)) = Ai

t
f 0(�i

t
)

�
b1(�

i

t
)d�

t
+ b2(�

i

t
)dBi

t
+

�
c� b1�

�1
t

�
�i
t
� 1

2
�2
t

��
dt

�

+
1

2
Ai

t
f 00(�i

t
)b(�i

t
)dt+ f(�i

t
)��1

t

�
�i
t
� 1

2
�2
t

�
Ai

t
d�

t

+b1(�
i

t
)f 0(�i

t
)��1

t

�
�i
t
� 1

2
�2
t

�
Ai

t
dt:

Take summation, divide both sides by n and let n!1, we have

d hV
t
; fi =

�
V
t
; b1f

0 +

�
��;t��

1

2
�+;t

�
f

�
d�

t
+


V
t
; cf 0 + bf 00

�
dt (2.8)

here we used the fact that

lim
n!1

E

����� 1n
nX

i=1

Z
t

0

Ai

s
b2(�

i

s
)f 0(�i

s
)dBi

s

�����
2

= lim
n!1

E

Z
t

0

E

��Ai

s
b2(�

i

s
)f 0(�i

s
)
��2 ds

= 0;

1

n

nX
i=1

Ai

t
��1(�i

t
; �i

t
)�i

t
f(�i

t
)! hV

t
; ��;t�fi

and
1

n

nX
i=1

Ai

t
�(�i

t
; �i

t
)f(�i

t
)! hV

t
; �+;t

fi :

Apply Itô's formula to (2.3), making use of (2.8), we have

d hU
t
; fi = hV

t
; 1i�1 d hV

t
; fi � hV

t
; fi hV

t
; 1i�2 d hV

t
; 1i

+ hV
t
; fi hV

t
; 1i�3

�
V
t
; ��;t��

1

2
�+;t

�2
dt

�hV
t
; 1i�2

�
V
t
; b1f

0 +

�
��;t��

1

2
�+;t

�
f

��
V
t
; ��;t��

1

2
�+;t

�
dt

=

�
U
t
; b1f

0 +

�
��;t��

1

2
�+;t

�
f

�
d�

t
+


U
t
; cf 0 + bf 00

�
dt

�hU
t
; fi

�
U
t
; ��;t��

1

2
�+;t

�
d�

t

+ hU
t
; fi

�
U
t
; ��;t��

1

2
�+;t

�2
dt

�
�
U
t
; b1f

0 +

�
��;t��

1

2
�+;t

�
f

��
U
t
; ��;t��

1

2
�+;t

�
dt

=

�
U
t
; b1f

0 +

�
��;t��

1

2
�+;t

�
f

�
d~�

t

�hU
t
; fi

�
U
t
; ��;t��

1

2
�+;t

�
d~�

t
+


U
t
; cf 0 + bf 00

�
dt

where ~�
t
is given by

d~�
t
= d�

t
�
�
U
t
; ��;t��

1

2
�+;t

�
dt:

5



This proves that (2.2) holds. The uniqueness follows from the same arguments as Theorem

3.3 in [8].

~�
t
given above is called the innovation process of the nonlinear �ltering.

Denote m
t
= hU

t
; �i. Note that

d~�
t
= ��1

t

�
dS

t

S
t

�m
t
dt

�
:

The self-�nance condition (1.3) can be rewritten as

dX
t
= (r

t
+ (m

t
� r

t
)�

t
� (R

t
� r

t
)�

t
)X

t
dt+ �

t
�
t
X

t
d~�

t
: (2.9)

When �
t
does not depend on �

t
, the classical �ltering theory is applicable to the model

(1.2, 2.1). The conclusion of the following remark is proved in [17].

Remark 2.2. i) If b1; b2 are constants, c(x) = ax and 0 < c1 � �
t
� c2 < 1 is

deterministic, and U0 is conditionally, given G0, normal with mean m0 and variance 0
a.s., then U

t
is conditionally, given G

t
, normal with mean m

t
and variance 

t
a.s., where

m
t
and 

t
satis�es the following equations:8<

:
dm

t
= am

t
dt+ b1�t+t

�
2
t

�
dSt

St

�m
t
dt
�
;

_
t

= 2a
t
+ 2b�

�
b1�t+t

�t

�2
;

0 � t � T: (2.10)

ii) If, in addition, �
t
= � is a constant, then 

t
is solved explicitly as follows:


t
=

8><
>:

� + 2
p
�2 + b2

2
�2
�
1� 0�+

0��
exp

�
�2
p
�2+b

2
2
�
2

�
2 t

���1
if �2 + b22 6= 0;�

1

0
+ t

�
2

��1
if � = b2 = 0;

where

� = a�2 � b1�; � = ��
q
�2 + b2

2
�2:

iii) In general, there is no explicit formula for U
t
. A numerical solution can be derived

based on the particle representation ((2.6), (2.5)). We refer the reader to Kurtz and Xiong

[9] for a similar model.

3 Optimal strategy under partial information and logarith-

mic utility

In this section, we consider the optimization problem. Namely, we solve

max
�2A

E [logX
T
] ; (3.1)

subject to the constrain (2.9).

Applying Itô's formula to (2.9), we have

logX
T

= logX0 +

Z
T

0

�
t
�
t
d~�

t
(3.2)

+

Z
T

0

�
r
t
+ (m

t
� r

t
)�

t
� (R

t
� r

t
)�

t
� 1

2
�2
t
�2
t

�
dt:

6



Taking expectation, we have

E (logX
T
) = logX0 + E

Z
T

0

�
r
t
+ (m

t
� r

t
)�

t
� (R

t
� r

t
)�

t
� 1

2
�2
t
�2
t

�
dt:

We now seek the solution to the following nonlinear dynamic programming problem (DPP):

min
�2A

�
1

2
�2
t
�2
t
� (m

t
� r

t
)�

t
+ (R

t
� r

t
)�

t
� r

t

�
(3.3)

subjects to the constrains �
�
t
� �

t
+ 1 � 0;

�
t

� 0:

To this end, we de�ne the Lagrange function

L(�
t
; �

t
; �1; �2) =

1

2
�2
t
�2
t
� (m

t
� r

t
)�

t
+ (R

t
� r

t
)�

t
� r

t
� �1(�t � �

t
+ 1)� �2�t:

By the principle of the nonlinear dynamic programming, we have

Lemma 3.1. If (��
t
; ��

t
; �1; �2) solves8>>>>>><
>>>>>>:

L
�t
= �

t
�2
t
�m

t
+ r

t
+ �1 = 0 (i)

L
�t
= R

t
� r

t
� �1 � �2 = 0 (ii)

L
�1

= �(�
t
� �

t
+ 1) � 0 (iii)

L
�2

= ��
t
� 0 (iv)

�1 � 0; �2 � 0 (v)

�1(�t � �
t
+ 1) + �2�t = 0; (vi)

(3.4)

then it is a solution to the nonlinear DPP (3.3).

To solve (3.4), we denote

��
t
=

m
t
�R

t

�2
t

; �+
t
=

m
t
� r

t

�2
t

:

It is obvious that ��
t
< �+

t
. By (iii) and (vi) in (3.4), we see that

(�
t
� 1)�1 = (R

t
� r

t
)�

t
; (�

t
� 1)�2 = (R

t
� r

t
)(�

t
� 1� �

t
): (3.5)

Now we discuss the solution according to three cases.

Case 1: (�
t
> 1). By (iii) in (3.4), we have �

t
� �

t
� 1 > 0. On the other hand, (v) in

(3.4) and (3.5) imply that �
t
� 1 � �

t
. Therefore �

t
= �

t
� 1. Plug it into (3.5), we see

that �1 = R
t
� r

t
and �2 = 0. (i) of (3.4) then implies �

t
= ��

t
.

Case 2: (�
t
< 1). By (3.5) and (v) in (3.4), we have �

t
� 0. Combine with (iv) in (3.4),

we get �
t
= 0. By (3.5), we see that �1 = 0. Therefore, (i) in (3.4) implies that �

t
= �+

t
.

Case 3: (�
t
= 1). By (i) in (3.4),

�1 = m
t
� r

t
� �2

t
: (3.6)

By (v) in (3.4), it is clear that

m
t
� r

t
� �2

t
:
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Namely �+
t
� 1 holds. Plug (3.6) into (ii) in (3.4), we arrive at

�2 = R
t
�m

t
+ �2

t
:

(v) in (3.4) then implies

m
t
�R

t
� �2

t
:

Namely ��
t
� 1 holds. (3.5) clearly implies �

t
= 0.

To summarize, we have

Theorem 3.2. The solution (��
t
; ��

t
; ��

t
) to the optimization problem (3.3) is given by

(��
t
; ��

t
; ��

t
) =

8<
:

(��
t
; ��

t
� 1; 0) if ��

t
> 1;

(�+
t
; 0; 1 � �+

t
) if �+

t
< 1;

(1; 0; 0) if ��
t
� 1 and �+

t
� 1:

(3.7)

Proof: It is easy to calculate the Hessian matrix of L. In fact, its determinant is �1.
Hence, the portfolio we obtained indeed maximizes the expected utility.

Remark 3.3. (i) From the optimal strategy we see that the borrowing is zero if the saving

is positive and vice versa. This coincides with the intuition.

(ii) The optimal strategy formula shows that when the estimated appreciation rate is very

high, then she should borrow some money and invest it in stock; when the estimated ap-

preciation rate is very low, then she should make a certain cash reserve and buy a certain

amount of the stock, but never borrow money from the bank; when the estimated appre-

ciation rate is moderate, then she should put all her money in stock but no borrowing.

This also conform with the intuition. However, the intuition does not give us the precise

portfolio.
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