
Weierstra�-Institut

f�ur Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 { 8633

Long-term behavior for superprocesses over a

stochastic ow

Jie Xiong�;1

submitted: February 10, 2004

1 Department of Mathematics

University of Tennessee

Knoxville, TN 37996-1300

jxiong@math.utk.ed

No. 906

Berlin 2004

W I A S

2000 Mathematics Subject Classi�cation. 60G57, 60H15, 60J80.

Key words and phrases. Superprocess, stochastic ow, log-Laplace equation,

long-term behavior.

� Research supported partially by NSA, by Canada Research Chair Program and by Alexander

von Humboldt Foundation. Thanks go also to the Weierstrass Institute for Applied Analysis and

Stochastics.



Edited by

Weierstra�-Institut f�ur Angewandte Analysis und Stochastik (WIAS)

Mohrenstra�e 39

10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

We study the limit of a superprocess controlled by a stochastic ow as

t ! 1. It is proved that when d � 2, this process su�ers long-time local

extinction; when d � 3, it has a limit which is persistent. The stochastic log-

Laplace equation conjectured by Skoulakis and Adler [7] and studied by this

author [12] plays a key role in the proofs like the one played by the log-Laplace

equation in deriving long-term behavior for usual super-Brownian motion

1 Introduction and main results

Suppose that a branching system is a�ected by a Brownian motion W (t) which

applies to every individual in that system. Between branchings, the motion of the

ith particle is governed by an individual Brownian motion Bi(t) and the common

Brownian motion W (t):

d�i(t) = b(�i(t))dt+ �1(�i(t))dW (t) + �2(�i(t))dBi(t)

where b : R
d ! R

d , �1; �2 : R
d ! R

d�d are measurable functions, W; B1; B2; � � �

are independent d-dimensional Brownian motions. Each individual, independent of

others, splits into 2 or dies with equal probabilities after its standard exponential

time runs out. This system has been constructed by Skoulakis and Adler [7] (a

similar model has been investigated by Wang [9] and Dawson et al [2]). As being

indicated by [7], this model is more realistic than the usual superprocess in the study

of the real world problems. In fact, W can be regarded as the outside force which

applies to the whole system, and hence, to each individual in that system. It is

evident that such an outside force should be involved for a model to be realistic.

Because of the introduction of this outside force, the process is no longer of branching

property which is the key to the successes in the study of the classical superprocesses.

1



To overcome this diÆculty, new tools have to be developed. The aim of this paper

is to study the long-term behavior of this process.

Let MF (R
d) be the collection of all �nite Borel measures on R

d . Let C2
0(R

d) be

the collection of functions which is of compact support and continuous derivatives

up to order 2. Let C2
0(R

d)+ consist of the nonnegative elements of C2
0 (R

d). It has

been established by Skoulakis and Adler [7] that the scaling limit of the system is

anMF (R
d)-valued superprocess Xt which is uniquely characterized by the following

martingale problem: X0 = � and for any � 2 C2
0(R

d),

Mt(�) � hXt; �i � h�; �i �
Z t

0
hXs; L�i ds (1.1)

is a continuous martingale with quadratic variation process

hM(�)it =
Z t

0

�D
Xs; �

2
E
+
���DXs; �

T
1r�

E���2� ds (1.2)

where

L� =
dX

i=1

bi@i�+
1

2

dX
i;j=1

aij@2ij�;

aij =
Pd

k=1

P2
`=1 �

ik
` �

kj
` , @i means the partial derivative with respect to the ith

component of x 2 R
d , �T1 is the transpose of the matrix �1, r = (@1; � � � ; @d)T is the

gradient operator and h�; fi represents the integral of the function f with respect to

the measure �. It was conjectured in [7] that the conditional log-Laplace transform

of Xt should be the unique solution to a nonlinear stochastic partial di�erential

equation (SPDE). Namely

E�

 
e�hXt;fi

�����W
!
= e�h�;y0;ti (1.3)

and

ys;t(x) = f(x) +

Z t

s

�
Lyr;t(x)� yr;t(x)

2
�
dr

+

Z t

s
rTyr;t(x)�1(x)d̂W (r) (1.4)

2



where d̂W (r) represents the backward Itô integral:

Z t

s
g(r)d̂W (r) = lim

j�j!0

nX
i=1

g (ri) (W (ri)�W (ri�1))

where � = fr0; r1; � � � ; rng is a partition of [s; t] and j�j is the maximum length of

the subintervals.

This conjecture was con�rmed by Xiong [12] under the following conditions (BC)

which will be assumed throughout this paper: f � 0; b; �1; �2 are bounded with

bounded �rst and second derivatives. �T2 �2 is uniformly positive de�nite, �1 has third

continuous bounded derivatives. f is of compact support.

We have proved in Theorem 1.2 in [12] that (1.4) has a unique L2(Rd)+-valued

solution in the following sense: 8 � 2 C1
0 (Rd), 8 s � t,

hys;t; �i = hf; �i+
Z t

s
hyr;t; L��� yr;t�i dr

+

Z t

s

D
yr;t;rT (�1�)

E
d̂W (r)

where L� is the dual operator of L given by

L�� = �
dX
i=1

@i(b
i�) +

1

2

dX
i;j=1

@2ij(a
ij�):

Further, we have shown that (cf. Lemma 2.5 in [12])

E sup
0�r�t

k@xyr;tk2L2(Rd) <1;

where @xyr;t is the weak derivative. This then implies that for �xed r and t, yr;t(x) is

a continuous function of x. Furthermore, by Lemma 2.2 in [12], we see that jyr;t(x)j

is bounded by kfk1, the supremum of f . Theorem 1.4 in [12] implies (1.3). As a

consequence, we see that ys;t of (1.4) is nonnegative since �ys;t is the logarithm of

a conditional Laplace transform of a nonnegative random variable.

Note that in the study of the classical superprocess, the PDE satis�ed by the log-

Laplace transform played an important role. In this note, we shall demonstrate that
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the stochastic log-Laplace equation (1.4) plays a similar role in the study of the

long-term behavior of the superprocess over a stochastic ow. The main idea is to

show that Ee�h�;y0;ti has a limit by making use of (1.4) (see also (3.4)).

If the initial measure is �nite, then the total mass ofXt is Feller's branching di�usion

which reaches 0 in �nite time. To obtain interesting long-time limit, we need to

consider the in�nite measure case. In Section 3, we construct the process in the

state space of measures with subexponential tails by making use of the conditional

branching property of this process which is implied from the conditional log-Laplace

formula (1.3). Throughout this paper, we shall assume that the initial measure � is

in�nite.

This article is organized as follows: In Section 2, we consider a di�usion process

driven by two Brownian motions. We shall prove that, given one of the Brownian

motions, the conditional process is still a Markov process. Then, we give suÆcient

conditions for a �-�nite measure to be invariant for this conditional process with any

realization of the given Brownian motion. In Section 3 we prove that Xt converges

in law to a persistent distribution when the spatial dimension d � 3. In Section 4,

we show that the process becomes extinct locally (eventually) when d � 2.

The results of this paper (Theorems 3.4 and 4.1) are analogous to the corresponding

classical results for super-Brownian motion. Although the proofs are adopted from

the classical ones (cf. [10], [1]), the novelty of this article is its employment of the

stochastic log-Laplace equation. Furthermore, as we point out in Remark 2.5, the �-

�nite invariant measure is not unique. Therefore, even in the classical superprocess

case, the long-term limit is not unique. To our knowledge, this paper is the �rst to

notice this phenomenon.

Throughout this paper, we use c to represent a constant which can vary from place

to place. We use �t and �(t) to denote the same process whenever it is convenient
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to do so.

2 Conditional Markov processes and their in�nite

invariant measures

Let �(t) be the di�usion process given by

d�(t) = b(�(t))dt+ �1(�(t))dW (t) + �2(�(t))dB1(t): (2.1)

In this section, we consider the conditional process of �(t) with given W . More

speci�cally, we give suÆcient conditions for an in�nite measure to be invariant for

this conditional process with any given W (cf. (2.5)). The existence of such a

measure is crucial in next section. In Proposition 2.3 we give suÆcient conditions

for the existence of such invariant measures. In Remark 2.4, we give examples where

such conditions are satis�ed.

Let EW denote the conditional expectation with W given. Let

F �
t = �(�s : s � t):

Lemma 2.1 �(t) is a conditional Markov process in the following sense: 8 s < t

and f 2 Cb(R
d),

E
W (f(�(t))jF �

s ) = E
W (f(�(t))j�(s)); a:s:

Proof: For s < t �xed, denote the process fWr �Ws : r 2 [s; t]g by W s;t. Since

(2.1) has a unique strong solution, we see that �(t) is a function of �(s); W s;t and

B
s;t
1 . Namely �(t) = G(s; t; �(s);W s;t; B

s;t
1 ) for a measurable function G. Therefore

E
W (f(�(t))jF �

s ) = E(f(�(t))jF �
s _ FW

t ) (2.2)

= E

�
E(G(s; t; �(s);W s;t; B

s;t
1 )jFW;B1

s _ �(W s;t))

����F �
s _ FW

t

�
:
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Since B
s;t
1 is independent of FW;B1

s _�(W s;t), we see that the conditional expectation

E(G(s; t; �(s);W s;t; B
s;t
1 )jFW;B1

s _ �(W s;t))

is simply the expectation of G(s; t; �(s);W s;t; B
s;t
1 ) for B

s;t
1 with �(s) and W s;t being

�xed. Namely, it is a function of �(s) and W s;t, say g(s; t; �(s);W s;t). Therefore, we

can continue (2.2) with

E
W (f(�(t))jF �

s ) = E(g(s; t; �(s);W s;t)jF �
s _ FW

t ) (2.3)

= g(s; t; �(s);W s;t):

Similarly, we can show that

E
W (f(�(t))j�(s)) = g(s; t; �(s);W s;t): (2.4)

The conclusion of the lemma then follows from (2.3) and (2.4).

Given W , denote the conditional transition function by

pW (s; x; t; �) � P
W (�(t) 2 �j�(s) = x):

Throughout this paper, we assume that � is an invariant measure of �(t): 8 s < t,

for almost all given W , Z
pW (s; x; t; �)�(dx) = �: (2.5)

It is clear that

g(s; t; x;W s;t) =

Z
Rd

f(y)pW (s; x; t; dy):

Note that g is continuous in s and t. We may and will take a version of pW such

that for almost all W , (2.5) holds for all s < t.

Since the condition (2.5) is not easy to verify, we seek equivalent (at least suÆcient)

conditions. To this end, we write (2.1) into Stratonovich form:

d�(t) =
�
�b(�(t))dt+ �2(�(t))dB1(t)

�
+ �1(�(t)) Æ dW (t) (2.6)
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where ÆdW (t) denote Stratonovich di�erential and �bi = bi � 1
2

Pd
j;k=1 @k�

ij
1 �

kj
1 .

Intuitively, � is an invariant measure for �(t) with each given realization ofW if and

only if it is invariant for both parts of (2.6). Namely, it should be invariant for the

di�usion process

d�(t) = �b(�(t))dt+ �2(�(t))dB1(t)

and, formally, for the dynamical system

_�(t) = �1(�(t)) _Wt

with each given realization of W .

Let

�L� =
dX

i=1

�bi@i�+
1

2

dX
i;j=1

�aij@2ij�;

where �aij =
Pd

k=1 �
ik
2 �

kj
2 .

If � is �nite, it is well-known (cf. Varadhan [8], and Ethier and Kurtz [3], Theorem

9.17) that � is invariant for �(t) if and only if � is absolutely continuous with respect

to Lebesgue measure and �L�� = 0 (denote the Radon-Nickodym derivative by the

same notation as the original measure), where �L� is the dual operator of �L given by

�L�� = �
dX
i=1

@i(�b
i�) +

1

2

dX
i;j=1

@2ij(�a
ij�):

Under suitable conditions, it was proved in Xiong [13] that the same statement is

true for � being a �-�nite measure.

Formally, the second part leads to r(�T1 �) = 0. Therefore, we conjecture that under

a suitable growth condition, � is a �-�nite invariant measure for pW for each W if

and only if �L�� = 0 and r(�T1 �) = 0.

To investigate this conjecture, we need to study the Wong-Zakai approximation ��(t)

for the process �(t):

d��(t) =
�
�b(��(t)) + �1(�

�(t)) _W �
t

�
dt+ �2(�

�(t))dB1(t)
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where _W �
t = ��1(W(k+1)� �Wk�) if k� � t � (k + 1)�, k = 0; 1; � � �.

Lemma 2.2 For any c1 > 0, there exists a constant c such that for any � > 0,

Ex exp (�c1j��(t)j) � ce�c1jxj:

Proof: Note that

j��(t)j � jxj �Kt�
����
Z t

0
�1(�

�(s)) _W �
sds

�����
����
Z t

0
�2(�

�(s))dB1(s)

���� : (2.7)

By the martingale representation theorem, there is a real-valued Brownian motion

B such that Z t

0
�2(�

�(s))dB1(s) = B(�t)

where

�t =

Z t

j�2(��(s))j2ds � Kt:

It is well-known that for any K1 > 0 and T > 0,

E exp

 
K1 sup

s�T

jB(s)j
!
<1:

Therefore,

E exp

�
2c1

����
Z t

0
�2(�

�(s))dB1(s)

����
�
� E exp

 
2c1 sup

s�Kt

jBsj
!
<1: (2.8)

Now we consider
R t
0 �1(�

�(s)) _W �
sds. To simplify the notation, we take d = 1. Let

��(s) = k� for k� � s < (k + 1)�. By Itô's formula, we have

Z t

0
(�1(�

�(s))� �1(�
�(��(s)))) _W

�
sds

=
X
k

Z (k+1)�

k�
(�1(�

�(s))� �1(�
�(k�)))ds��1(W(k+1)� �Wk�)

=
X
k

Z (k+1)�

k�

Z s

k�

�L�1(�
�(r))drds��1(W(k+1)� �Wk�)

+
X
k

Z (k+1)�

k�

Z s

k�
�01(�

�(r))�1(�
�(r))drds��2(W(k+1)� �Wk�)

2

+
X
k

Z (k+1)�

k�

Z s

k�
�01(�

�(r))�2(�
�(r))dB1(r)ds�

�1(W(k+1)� �Wk�)

� I1 + I2 + I3:

8



As

jI1j �
X
k

c�jW(k+1)� �Wk�j

� c�

 X
k

jW(k+1)� �Wk�j2
!1=2

(t=�)1=2

� ct
p
�;

jI2j �
X
k

cjW(k+1)� �Wk�j2 � ct

and

jI3j2 =

�����
X
k

Z (k+1)�

k�
��1((k + 1)�� r)�01(�

�(r))�2(�
�(r))dB1(r)(W(k+1)� �Wk�)

�����
2

�
X
k

 Z (k+1)�

k�
��1((k + 1)�� r)�01(�

�(r))�2(�
�(r))dB1(r)

!2X
k

(W(k+1)� �Wk�)
2

� t

Z t

0
j��1(��(r) + �� r)�01(�

�(r))�2(�
�(r))j2dr � c:

we see that ����
Z t

0
(�1(�

�(s))� �1(�
�(��(s)))) _W

�
sds

���� � c: (2.9)

As Z t

0
�1(�

�(��(s)))) _W
�
sds =

Z t

0
�1(�

�(��(s))))dWs;

similar to (2.8), we have

E exp

�
2c1

����
Z t

0
�1(�

�(��(s)))) _W
�
sds

����
�
<1: (2.10)

The conclusion of the lemma then follows from (2.7,2.8,2.9,2.10).

The following proposition proves the suÆciency of the conditions in our conjecture.

It remains open whether these conditions are necessary.

Proposition 2.3 Suppose that � is a nonnegative function and is of derivatives up

to order 2 on R
d
such that

jr log�(x)j � K(1 + jxj); 8x 2 R
d :

If �L�� = 0 and r(�T1 �) = 0, then (2.5) holds.

9



Proof: Let pW� (s; x; t; �) be the transition probabilities of the Markov process ��(t)

with given W . Note that the generator of ��(t) is

L�
t� = �L�+ ( _W �

t )
T�1r�:

Now we �x W and �, and show that � is a �-�nite invariant measure for pW� by

adapting the proof of [13] to the present time-dependent case.

For any f 2 C1
0 (Rd)+, take r large enough such that the support of f is contained

in S � fx 2 R
d : jxj < rg. Let

US(t; x) = E
W
x f(�

�(t))1�S>t

where �S is the �rst exit time of ��(t) from S. Then

8><
>:

@US

@t
= L�

tUS (t; x) 2 (0;1)� S

US(0; x) = f(x) x 2 �S

US(t; x) = 0 x 2 @S:

Note that

@

@t

Z
S
US(t; x)�(x)dx =

Z
S
L�
tUS(t; x)�(x)dx

= �
Z
@S
�(x)rTUS(t; x)�a(x)~ndx

= �
Z
@S
�(x)j�a~nj@US

@~e
dx (2.11)

where ~n is the inner normal vector, ~e = j�a~nj�1(�a~n) and @US

@~e
is the directional deriva-

tive. Note that

~e � ~n = j�a~nj�1~nT �a~n > 0;

so that ~e points to the interior of S. As US(t; x) � 0 for x 2 S and US(t; x) = 0 for

x 2 @S, we have @US

@~e
� 0. Hence, we can continue (2.11) with

@

@t

Z
S
US(t; x)�(x)dx � 0:

Thus Z
S
US(t; x)�(x)dx �

Z
S
f(x)�(x)dx:

10



Taking r!1, we have

Z
Rd

E
W
x f(�

�(t))�(x)dx �
Z
Rd

f(x)�(x)dx <1:

Let �n be a smooth function on R
d such that �n(x) = 1 for jxj � n, �n(x) = 0 for

jxj � 2n and

sup
x2Rd

jr�n(x)j � cn�1; sup
x2Rd; 1�i;j�d

���@2ij�n(x)
��� � cn�2:

De�ne

un(t) =

Z
Rd

�(x)�n(x)E
W
x f(�

�(t))dx and u(t) =

Z
Rd

�(x)EWx f(�
�(t))dx:

Similar to [13], we can show that

ju0n(t)j � c

Z
jxj�2n

�(x)EWx f(�
�(t))dx � vn(t):

Then vn 2 C([0; T ]) decreases to 0 as n!1. By Dini's theorem, vn ! 0 uniformly

for t 2 [0; T ]. Therefore, u0n(t) ! 0 as n ! 1 uniformly for t 2 [0; T ]. Note that

un(t)! u(t). Therefore,

u0(t) = lim
n!1

u0n(t) = 0:

Namely, Z
Rd

E
W
x f(�

�(t))�(x)dx =

Z
Rd

f(x)�(x)dx:

Let F (W ) be a bounded continuous function of W . Then

Z
Rd

Ex(f(�
�(t))F (W ))�(x)dx =

Z
Rd

f(x)�(x)dxE(F (W )): (2.12)

By Wong-Zakai theorem (cf. [11] or [5], P410, Theorem 7.2), we have ��(t) ! �(t)

as � ! 0. Note that jf(x)j � ce�c1jxj for any c1 > 0. By Lemma 2.2, apply the

dominated convergence theorem to (2.12), we have

Z
Rd

Ex(f(�(t))F (W ))�(x)dx =

Z
Rd

f(x)�(x)dxE(F (W )):

This implies the conclusion of the proposition.

11



Remark 2.4 1) If b, �1 and �2 are constants, then � = �, the Lebesgue measure,

satis�es the conditions of Proposition 2.3 and hence, (2.5) holds.

2) Suppose that �1(x) = ��1(x)I, where ��1 is a real-valued function and I is the iden-

tity matrix. If �(dx) � 1
��(x)

dx satis�es �L�� = 0, then the conditions of Proposition

2.3 hold for � and hence, � is an invariant measure for the conditional process.

Remark 2.5 In general, the �-�nite invariant measure is not unique. Suppose that

�2 = I and b is a constant vector. As being pointed out in [13], �1(x) = 1 and

�2(x) = e2b
T x

are two solutions to �L�� = 0. For the second condition, we seek

�1 = (�
ij
1 )d�d such that

dX
i=1

@i�
ij
1 = 0;

dX
i=1

@i(�
ij
1 e

2bT x) = 0

for j = 1; 2; � � � ; d. The existence of such �1 is clear if d > 2 since there are d2

entries of �1 and 2d < d2 equations.

3 Non-trivial limit when d � 3

In this section, we extend the process Xt to the space of in�nite measures and

consider the long-time behavior of Xt in high spatial dimensions. We shall prove

that Xt has a non-trivial limit in distribution which is, in fact, persistent. The proof

is adopted from Wang [10].

Let PW (�) � P (�jW ) be the conditional probability measure. First, we establish the

equivalence between the martingale problem (1.1-1.2) and the conditional martingale

problem de�ned below which is more natural and is easier to handle.

Lemma 3.1 Xt is a solution to the martingale problem (1.1-1.2) if and only if it

is a solution to the following conditional martingale problem (CMP): For almost all

W , for all � 2 C2
0(R

d),

Nt(�) � hXt; �i � h�; �i �
Z t

0
hXs; L�i ds�

Z t

0

D
Xs;rT��1

E
dW (s) (3.1)

12



is a continuous PW
-martingale with quadratic variation process

hN(�)it =
Z t

0

D
Xs; �

2
E
ds: (3.2)

Proof: Suppose that Xt is a solution to the martingale problem (1.1-1.2). Similar

to the martingale representation Theorem 3.3.6 in Kallianpur and Xiong [6] there

exist processes W and B such that W is a R
d -valued Brownian motion, B is an

L2(Rd)-cylindrical Brownian motion independent of W , and

Mt(�) =

Z t

0

D
Xs;rT��1

E
dW (s) +

Z t

0
hf(s;Xs)

��; dBsiL2(Rd)

where f(s;Xs) is a linear map from L2(Rd) to S 0(Rd), the space of Schwartz distri-

butions such that

hXt; �1�2i = hf(t; Xt)
��1; f(t; Xt)

��2iL2(Rd) ; 8�1; �2 2 S(Rd):

It is then easy to see that Xt solves the CMP (3.1-3.2).

On the other hand, suppose that Xt is a solution to the CMP (3.1-3.2). As Nt(�) is

a PW -martingale, for s < t, we have

E(Nt(�)WtjFs) = E(E (Nt(�)j�(W ) _ Fs)WtjFs)

= E(Ns(�)WtjFs)

= Ns(�)Ws:

Hence the quadratic covariation process hN(�);W it = 0. Therefore,

Mt(�) = Nt(�) +

Z t

0

D
Xs;rT��1

E
dW (s)

is a martingale with quadratic variation process

hM(�)it = hN(�)it +
Z t

0

���DXs;rT��1
E���2 ds

=

Z t

0

�D
Xs; �

2
E
+
���DXs;rT��1

E���2� ds:
13



This proves that Xt is a solution to the MP (1.1-1.2).

Now, we extend the state space of the superprocess to the space of in�nite measures.

Let �a(x) = e�ajxj. De�ne the space of measures of subexponential tails as:

Mexp(R
d) = f� : 9a > 0; h�; �ai <1g:

Let Si, i = 1; 2; � � �, be a sequence of bounded disjoint subsets of R
d such that

R
d = [1i=1Si. Let �i(�) = �(�\Si). Let X i be a sequence ofMF (R

d)-valued processes

which are, given W , conditionally independent and for each i, X i
t is a solution to

the CMP (3.1-3.2) with �i in place of �. Let Xt =
P
1

i=1X
i
t . For any a > 0,

E

D
Xt; e

�ajxj
E

=
1X
i=1

E

D
X i

t ; e
�ajxj

E

=
1X
i=1

E

Z
�i(dx)Exe

�aj�(t)j (3.3)

where the last equality follows from Theorem 5.1 in [12]. By Lemma 2.2, we have

Exe
�aj�(t)j � ce�ajxj:

Therefore, we can continue (3.3) with

E

D
Xt; e

�ajxj
E
� c

Z
�(dx)e�ajxj <1:

Hence, Xt is a well-de�ned Mexp(R
d)-valued process. It is easy to show that Xt

solves the CMP (3.1-3.2), and hence, the MP (1.1-1.2). It is clear that (1.3) remains

true for � 2Mexp(R
d).

Next, we consider the following SPDE:

ys(x) = f(x) +

Z s

0

�
Lyr(x)� yr(x)

2
�
dr

+

Z s

0
rTyr(x)�1dW (r): (3.4)

Lemma 3.2

yt(x) =

Z
pW (0; x; t; du)f(u)�

Z t

0
dr

Z
pW (r; x; t; du)yr(u)

2: (3.5)

14



Proof: Note that the existence of a solution to (3.5) follows from Picard iteration.

Since the solution to (3.4) is unique, we only need to show that (3.5) implies (3.4).

Suppose zt is the solution to (3.5). Let

TW
s;t f(x) =

Z
pW (s; x; t; du)f(u):

Then

zt(x) = TW
0;t f(x)�

Z t

0
drTW

r;t (z
2
r )(x)

= f(x) +

Z t

0
dsLTW

0;sf(x) +

Z t

0
rTTW

0;sf(x)�1dW (s)

�
Z t

0
dr

�
z2r (x) +

Z t

r
dsLTW

r;s(z
2
r )(x) +

Z t

r
rTTW

r;s(z
2
r )(x)�1dW (s)

�
:

By stochastic Fubini's theorem (cf. [5], P116, Lemma 4.1), we can continue with

zt(x) = f(x) +

Z t

0
dsLTW

0;sf(x)�
Z t

0
ds

Z s

0
drLTW

r;s(z
2
r )(x)

�
Z t

0
drz2r(x) +

Z t

0
rTTW

0;sf(x)�1dW (s)

�
Z t

0

�Z s

0
drrTTW

r;s(z
2
r )(x)�1

�
dW (s)

= f(x) +

Z t

0
dsLzs(x)�

Z t

0
drz2r (x) +

Z t

0
�T1rzs(x) � dW (s):

This �nishes the proof of (3.5).

Denote the �rst term on the right hand side of (3.5) by TW
t f(x). Then, it satis�es

(3.4) without the square term. Namely, 8� 2 C1
0 (Rd),

D
TW
t f; �

E
= hf; �i+

Z t

0

D
TW
s f; L��

E
ds�

Z t

0

D
TW
s f;rT (�1�)

E
dW (s):

Lemma 3.3

E(TW
t f(x)2) � ct�

d

2

Z
Rd

jf(z)jdz
Z
R

jf(z)jp0(t; x; z)dz

where c is a constant and p0 is the transition function of the Brownian motion.

15



Proof: By Itô's formula, it is easy to see that 8�;  2 C1
0 (Rd),

d
�D
TW
t f; �

E D
TW
t g;  

E�
=

�D
TW
t f; L��

E D
TW
t g;  

E
+
D
TW
t f; �

E D
TW
t g; L� 

E

+
D
TW
t f;rT (�1�)

E D
TW
t g;rT (�1 )

E �
dt

+d(mart:)

Denote (f � g)(x; y) = f(x)g(y). Then

d

dt

D
E(TW

t f � TW
t g); � �  

E
=
D
E(TW

t f � TW
t g); L�(� �  

E
(3.6)

where L
� is the dual operator of L given by

LF (x; y) =
1

2

dX
i;j=1

 
aij(x)

@2F (x; y)

@xi@xj
+ aij(y)

@2F (x; y)

@yi@yj
+

dX
k=1

�ik1 (x)�
jk
1 (y)

@2F (x; y)

@xi@yj

!

+
dX

i=1

 
bi(x)

@F (x; y)

@xi
+ bi(y)

@F (x; y)

@yi

!
:

Let p(t; (x; y); (z1; z2)) be the transition function of the Markov process generated

by L. By (3.6), we see that

E(TW
t f � TW

t g)(x; y) =

Z
Rd

Z
Rd

f(z1)g(z2)p(t; (x; y); (z1; z2))dz1dz2:

By Theorem 4.5 in Friedman [4], there exists a constant c such that

p(t; (x; y); (z1; z2)) � cp0(t; x; z1)p0(t; y; z2):

The conclusion of the lemma then follows from the facts that p0(t; x; z1) � ct�
d

2 and

E(TW
t f(x)2) = E(TW

t f � TW
t f)(x; x):

Here is our main result.

Theorem 3.4 Suppose that d � 3, (2.5) holds and � has density which is bounded

by c1e
c2jxj, where c1 and c2 are two constants. Then Xt converges in distribution to

a limit X1 as t!1. Furthermore, EX1 = �.

16



Proof: By (1.4), we have

yt�s;t(x) = f(x) +

Z t

t�s

�
Lyr;t(x)� yr;t(x)

2
�
dr

+

Z t

t�s
rTyr;t(x)�1d̂W (r)

= f(x) +

Z s

0

�
Lyt�r;t(x)� yt�r;t(x)

2
�
dr

+

Z s

0
rTyt�r;t(x)�1d �W

t(r) (3.7)

where �W t(r) = W (t)�W (t� r) and the stochastic integral above is the usual Itô

integral.

Recall that ys is given by (3.4). Since W and �W t are both Brownian motions,

fys : 0 � s � tg and fyt�s;t : 0 � s � tg have the same distribution as stochastic

processes. Therefore,

Ee�h�;y0;ti = Ee�h�;yti: (3.8)

Note that ys;t and ys are nonnegative (when f � 0), the above expectations are

�nite.

Taking integral on both sides of (3.5) with respect to the measure �, by (2.5), we

have

h�; yti = h�; fi �
Z t

0

D
�; y2r

E
dr: (3.9)

Let t!1 in (3.9), we obtain

lim
t!1

h�; yti = h�; fi �
Z
1

0

D
�; y2r

E
dr: (3.10)

Then, as t!1,

E�e
�hXt;fi = Ee�h�;y0;ti = Ee�h�;yti (3.11)

! E exp

�
�h�; fi+

Z
1

0

D
�; y2r

E
dr

�
:

Note that, 8 f 2 C2
b (R

d),

E� hXt; fi = E

�
E
W
� hXt; fi

�

17



= E h�; y0;ti

� E

Z
�(dx)

Z
pW (0; x; t; du)f(u)

=

Z
�(du)f(u) <1; (3.12)

where the second equality follows from Theorem 5.1 in [12], the inequality follows

from (3.5) and the last equality from (2.5). By approximation, we can show that

(3.12) still hold if f(x) = e�ajxj. Therefore, fXtg is tight in Mexp(R
d). Let X1

be a limit point. Then, the Laplace transform of X1 is given by the limit on the

right hand side of (3.11). Therefore, the limit distribution is unique and hence, Xt

converges to X1 in distribution.

By Fatou's lemma, we have

E hX1; fi � lim inf
t!1

E� hXt; fi � h�; fi ;

where the second inequality follows from (3.12). On the other hand, by Jensen's

inequality

e�EhX1;fi � Ee�hX1;fi

= E exp

�
�h�; fi+

Z
1

0

D
�; y2r

E
dr

�

and hence

E hX1; fi � � log E exp

�
�h�; fi+

Z
1

0

D
�; y2r

E
dr

�
:

Replace f by �f , we have

h�; fi � E hX1; fi

� ���1 log E exp
�
�� h�; fi+

Z
1

0

D
�; y2r(�f)

E
dr

�

= h�; fi � ��1 log E exp

�Z
1

0

D
�; y2r(�f)

E
dr

�

here yr(�f) is de�ned as in (3.4) with f replaced by �f . We only need to show that

��1 log E exp

�Z
1

0

D
�; y2r(�f)

E
dr

�
! 0 as �! 0: (3.13)

18



By (3.10), we have Z
1

0

D
�; y2r(�f)

E
dr � � h�; fi : (3.14)

Hence

lim
�!0

��1 log E exp

�Z
1

0

D
�; y2r(�f)

E
dr

�
(3.15)

� lim
�!0

E��1
�
exp

�Z
1

0

D
�; y2r(�f)

E
dr

�
� 1

�

= E lim
�!0

��1
�
exp

�Z
1

0

D
�; y2r(�f)

E
dr

�
� 1

�

where the last equality follows from (3.14) and the dominated convergence theorem.

By (3.5), we have

Z
1

0

D
�; y2r(�f)

E
dr � �2

Z
1

0

D
�; (TW

r f)2
E
dr:

Therefore, by (3.15), we only need to show that

Z
1

0

�
�;
�
TW
t f(x)

�2�
dt <1; a:s: (3.16)

Note that

Z 1

0

�
�;
�
TW
t f(x)

�2�
dr �

Z 1

0

D
�; TW

t f(x)kfk1
E
dt

= h�; fi kfk1 <1: (3.17)

On the other hand,

E

Z
1

1

�
�;
�
TW
t f(x)

�2�
dt

�
Z
1

1
ct�

d

2

Z
Rd

jf(z)jdz
Z
R

jf(z)j
Z
Rd

ec2jxjp0(t; x; z)dxdzdt

� c

Z
1

1
t�

d

2dt

Z
Rd

jf(z)jdz
Z
R

jf(z)jec2jzjdz <1

where the �rst inequality follows from Lemma 3.3 and the second inequality follows

from the well-known fact that

Z
Rd

ec2jxjp0(t; x; z)dx � cec2jzj:

This, together with (3.17), imply the almost sure �niteness in (3.16).
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4 Long-time local extinction when d � 2

In this section, we prove the long-term local extinction when d � 2. We adapt the

proof of Dawson et al [1] to our present setup.

Theorem 4.1 Suppose that d � 2 and (2.5) holds. Further, we assume that

� << � and 0 < c1 �
d�

d�
� c2 <1:

For any bounded Borel set B in R
d
, we have

lim
t!1

Xt(B) = 0; in probability:

Proof: By (1.3) and (3.8), we see that it is suÆcient to show

lim
t!1

h�; yti = 0 a:s: (4.1)

By (3.10), the left hand side of (4.1) exists. By Fatou's lemma, we only need to

show that

lim inf
t!1

E h�; yti = 0:

For � > 0, choose K such that

Z
jxj2>K

p1(x)dx < �; (4.2)

where pt(x) is the density of the normal random vector with mean 0 and covariance

matrix tI. Let c and � be such that f � cp� . For t > 0, set

St = fx 2 R
d : jxj2 � K(t + �)g:

Note that by (3.4),

Eyt(x) � f(x) +

Z t

0
E(Lyr (x))dr:

It is well-known that the above inequality yields

Eyt(x) � c

Z
pt(x� u)f(u)du: (4.3)
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By (4.3) and (4.2), since f � cp� , we haveZ
Sc
t

Eyt(x)�(dx) � c

Z
Sc
t

pt+� (x)dx

= c

Z
jxj2>K

p1(x)dx < c�: (4.4)

By Jensen's inequality and (3.9), we have

Z t

0
jSrj�1g2(r)dr � cE

Z t

0

Z
Sr

yr(x)
2dxdr (4.5)

� cE

Z t

0

D
�; y2r

E
dr

� h�; fi ;

here jSrj denotes the Lebesgue measure of Sr and g(r) =
R
Sr

Eyr(x)�(dx). As

R
1

0 jSrj�1dr =1, it follows from (4.5) that

lim inf
t!1

g(t) = 0; a:s: (4.6)

By (4.4) and (4.6), we have

lim
t!1

E h�; yti � c�; a:s::

Since � is arbitrary, the proof of the statement is complete.
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