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Abstract. We propose a class of Markovian agent based models for the time

evolution of a share price in an interactivemarket. The models rely on a micro-

scopic description of a market of buyers and sellers who change their opinion

about the stock value in a stochastic way. The actual price is determined in

realistic way by matching (clearing) o�ers until no further transactions can be

performed. Some analytic results for a non-interacting model are presented.

We also propose basic interaction mechanisms and show in simulations that

these already reproduce certain particular features of prices in real stock mar-

kets.

1. Introduction

The �nancial markets constitute an intriguing and complex system that has not

failed to attract mathematicians and scientists from other �elds for a long time.

Only rather recently, however, has mathematical �nance, and more speci�cally the

theory of derivatives on the stock markets become a major �eld of mathematics

and one of the major sources of inspiration for probability theory in general and

stochastic analysis in particular. The reason for this development is simple: It

is based on the apparent success of the so-called Black-Scholes formula for the

fair price of an option as a tool for the actual trader on the market. Indeed, the

very existence of this mathematical theory appears to be largely responsible for the

recent growth and diversi�cation of the derivative market itself, which in its present

form would have been impossible without an underlying mathematical theory. On

the other side, the great success of this same theory in the mathematical sciences is

due, beyond the obvious advantages it provides for the careers of students trained

in this �eld, largely to the fact that there is a very clear mathematical setting for

this theory with clearly spelled out axioms and assumptions which allows for the

mathematician to bring his traditional weapons to bear in a familiar terrain.

One of the crucial issues in the �nancial mathematics is the modeling of prices of

commodities (stocks, currencies etc.) with help of stochastic processes. The main

approaches that have been used in this context are the following:

� generalized Black-Scholes (BS) theory. Originally the BS theory [2] (for

good textbook exposition see, e.g., [10, 7]) emerged as a theoretical foun-

dation of pricing of derivatives (options) of underlying �nancial instruments

(stocks, currencies etc.). Initially the price of the underlying was taken as

geometric Brownian motion. Later this theory was generalized and put on

the axiomatic background based on the assumption of the so-called non-

arbitrage condition. This led to the conclusion that prices are described

by semi-martingale measures, and thus are essentially given by solutions

of certain stochastic di�erential equations. This framework has been the

main driving force of the rapid growth of �nancial mathematics in the last

decades. Note that the main purpose of this theory is not to derive speci�c

models for the underlying but rather to deduce consequences from gener-

ally accepted principles. In this respect this approach can be compared to

classical thermodynamics.

� statistical approach. Empirical studies of share price data try to model the

data by certain stochastic process. Popular classes of models are ARCH,
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GARCH, ARMA etc. There seem to be no totally conclusive results, but

certain interesting phenomena have been observed, such as universal ex-

ponents in certain correlation data (see [1]). Quite frequently, analogies

to phenomena like turbulence are drawn. This approach does not usually

intend to derive the model from any underlying economic theory.

� agent based models. \As prices are generated by the demand of agents who

are active on the �nancial market for the given asset, a [. . . ] model [. . . ]

should be explained in terms of the interaction of these agents." Based on

this observation stated by F�ollmer in [6], a large number of agent based

models for price evolution have been developed. F�ollmer in [6] suggested a

model of di�usion in random environment by viewing the price process as a

sequence of temporary equilibria in a market with agents. Among the most

popular microscopic models for �nancial markets are so-called agent based

models that are more or less sophisticated versions of the \minority game"

(MG); for reviews, see Je�ries and Johnson [9], Bouchaud and Giardina

[8], and references therein. In all these models there exists a collection of

traders, each endowed with the possibility to make a decision (typically of

the type \buy", \sell", or \hold") concerning a given investment. To reach

such a decision, the trader disposes of a certain number of \strategies", a

strategy typically being a function of the price history into the set of deci-

sions. The game consists of the traders choosing their strategies in a way as

to reach certain objectives (in the minority game to be \in the minority",

in reality to make a maximal pro�t from the transactions undertaken). At

each time step, the asset price is updated according to an empirical rule

as a function of the number of \buyers" and \sellers". There are currently

a large number of versions of such models around, including models with

additional stochastic components. These models exhibit a rather rich dy-

namical structure. However, they are rather heavy handed both analytically

(where little or nothing is known on a mathematical level) and numerically.

Moreover, the large number of assumptions and parameters entering the

models makes their predictive power somewhat limited. Purely determinis-

tic models of this type have been criticized before (Bouchaud and Giardina

[8]) and stochastic models have been proposed that should allow to take

into account irrational behaviour of agents.

In this paper we want to propose agent based market models that are much

simpler and that, at the same time, are build reasonably close to what is actually

happening in �nancial markets. The main distinction between our model and the

MG type models is that it focuses on collective e�ects of a market while not at-

tempting to model the actual reasoning process of an individual trader. The basic

paradigm of our modeling approach is the notion of a price. Prices of a share of

stock or other commodity arise from trading. There are various developed theo-

ries in economics concerning prices based on some equilibrium assumptions, but,

fortunately, in the stock market in particular, the price of a share is obtained by

a well de�ned procedure which is easily implementable in an algorithm provided a

suÆcient amount of information about the state of the market at any given time is

available. The basic principle of our approach is the modeling of a set of interacting

agents in a way that allows to extract the price from the current trading state in a

rigorous way.

The remainder of this article is organized as follows. In Section 2 we explain

the basic principles of our modeling approach in detail and illustrate them in some

special cases. In Section 3 we analyze some of the phenomena that can already be

observed in this simplest setup and relate them to certain features of real world



3

data. In Section 4 we introduce a number of additional features that should be

implemented to obtain more realistic models, and discuss some of the additional

e�ects they produce. In Section 5 we present our conclusions.

2. Our approach

The basic procedure of price determination in real stock markets is done by

trading. That is to say, participating traders propose prices at which they are

willing to sell respectively buy a certain number of shares of a given stock. The

list of these o�ers at a stock exchange is called the orderbook. On the basis of this

orderbook the market maker is matching buy and sell o�ers according to certain

rules until no further transactions are possible. That is to say, after the matching

procedure (clearing) the highest price proposed for buying a share is smaller than

the lowest price at which a share is o�ered. These two values are then quoted as

the bid price and the ask price. The dynamics of the real stock market thus has

two components:

� the changing of buy and sell o�ers made by traders and

� the matching of these o�ers by the market maker which �xes the quoted

price at a given time.

Our purpose is to develop a class of models which re
ects this mechanism of pricing

and allows for diverse modeling on di�erent levels of complexity of the behaviour

of the agents, while maintaining the pricing mechanism by the market maker. To

do so, a minimal requirement for the description of the state space of the trading

agents is that it must allow us to recover the state of the orderbook at any given

moment in time.

Our idea is thus to consider the time evolution of a virtual orderbook or a \trad-

ing state" containing the opinions of each participating agent about the \value"1

of the stock. The evolution is driven by the change in opinion of the agents and

the action of the market maker.

A minimal model in which this idea can be implemented can be described as

follows. We consider trading in one particular stock. Assume that there are N

\traders" and M < N shares of the stock. We make the simplifying assumption

that each trader can own at most one share. The state of each trader i is given

by its opinion pi 2 R about the logarithm of the value of the stock, and by the

number of shares he owns ni 2 f0; 1g. This is to say, the trader i would be willing

to sell his share at the price epi , if he owns one (ni = 1), respectively buy a share

at this price, if he does not own one (ni = 0). We say that a trading state is stable,

if the M traders having the M highest opinions pi all own a share. This means in

particular that in a stable state one can infer the set of owners of shares from the

knowledge of the state of opinions p = (p1; : : : ; pN ). Thus a stable trading state is

completely determined by the set of N values pi, and we will in the sequel identify

stable trading states with the vector p. As we will normally only work with stable

trading state, we suppress the quali�er stable when no confusion can arise.

Given a stable trading state p we denote by p̂ = (p̂1; : : : ; p̂N ) its order statistics,

that is p̂i = p�i
for a permutation � � �(p) of the set of N elements such that p̂1 �

� � � � p̂N . Then the number of shares owned by traders, n(p) =
�
n1(p); : : : ; nN (p)

�

1We will distinguish the notion of the value from that of the price. The value is what agents

have an opinion about, while the price is determined by the market. The opinion on the value

can be driven by fundamental considerations (e.g. earning or dividend expectations, typically

coming from outside information), or speculative considerations (e.g. predictions based on partial

knowledge on the current state of the opinions of other traders), or both.
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satis�es

ni(p) =

�
0; if �i(p) � N �M ,

1; if �i(p) � N �M + 1.

To a trading state p we associate the ask price

pa � pa(p) = p̂N�M+1 ;

and the bid price

pb � pb(p) = p̂N�M :

Obviously, pa(p) is the lowest price asked by traders owning a share and pb(p) is

the highest price o�ered by traders wanting to buy a share. For convenience we

will refer to 1

2
(pa + pb) as the current price in the sequel.

Any dynamics p(t) de�ned on the trading state induces the dynamics of p̂ and

in particular of the pair
�
pa; pb

�
.

Our next simplifying assumption is that the above trading state p evolves in

time as a (usually time-inhomogeneous) Markov chain2 p(t) with state space RN.

We will further assume that time is discrete (this is inessential but more conve-

nient for computer simulations) and that the updating proceeds asynchronously,

i.e. typically at a given instant only a single opinion changes. This dynamics can

be considered as an interacting particle system, however, some special features

should be incorporated that re
ect the peculiarities of a market.

The �rst and most obvious one is that the ask and bid prices pa(t); pb(t) are

likely to be important quantities which will in
uence the updating probabilities.

Moreover, it is reasonable to distinguish between transitions that leave n un-

changed, and those for which n
�
p(t+1)

�
6= n

�
p(t)

�
. In the latter case we say that

a transaction has occurred.

Before we discuss some more speci�c implementations of this general setup a few

remarks concerning some features that may appear o�ending are in place.

The �rst is doubtlessly the assumption that the process is Markovian. This

appear unnatural because the most commonly available information on a stock

is the history of its price, the \chart", and most serious traders will take this

information at least partly into account when evaluating a stock, with some making

it the main basis for any decision.3 Certainly one could retain such information and

formulate a non-Markovian model, as e.g. the model of Bouchaud and Giardina [8].

However, if one starts to think about this, one soon �nds that it is very diÆcult to

formulate reasonable transition rules on the basis of the price history. On a more

fundamental level, one will also come to the conclusion that the analysis of the

history of the share price is in fact performed in order to obtain information of the

current opinion of the traders concerning the value of the stock with the hope of

inferring information on the future development of the price. For instance, if one

knew that there are many people willing to sell shares at a price not much higher

than pa, one knows that it will be diÆcult for the price to break through this level

(this is know as a \resistance" by chart-analysts and usually inferred from past

failures to break through such a level). Therefore, instead of devising rules based

on past price history, we may simply assume that the market participants have

some access to the prevailing current opinions, obtained through various sources

(chart analysis, rumours, newspaper articles, etc.) and take this into account when

changing their own estimates.

The second irritating point is that money does not appear in our model except

in the form of opinions about values. In particular, we do not keep track of the

cash
ow of a given investor (that is to say we do not care whether a given investor

2We will discuss the Markovian assumption later.
3A frequently heard remark being that all information on a stock is in its price.
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wins or looses money). There are various reasons to justify this. First we consider

that the market participants do not invest a substantial fraction of their assets in

this one stock, so that shortage of cash will not prevent anyone to buy if she deems

opportune to do so (in the worst case money can be obtained through credits).

Then, money is not conserved, but the total value of the stock can in
ate as long as

there is enough con�dence. Also, we do not keep track of the objective success of

a trader, because we do not know how this will eventually in
uence her decisions.

While a given trader may follow her personal strategy with the hope of making

pro�ts, we cannot be sure that these strategies will succeed. What is important

and what is built into our model, however, is the fact that any trader4 will have

the subjective impression to make a pro�t at any transaction.5 Thus we feel that

opinions about values are the correct variables to describe such a market rather

than the actual 
ow of capital, at least at the level of a simple model.

The above setting suggests a rather general and 
exible class of models of a stock

market. Its main feature is that it describes the time evolution of a share price as

the result of an interacting random process that re
ects the change of the opinions

of individual traders concerning the value of the stock. Even when this last process

is modelled as a Markov process, the resulting price process
�
pa(t); pb(t)

�
will in

general not be a Markov process.

3. Examples

3.1. Ideal gas approximation. Obviously the simplest model for the dynamics

of the trading state p(t) is to choose it as a collection of independent identically

distributed one-dimensional Markov processes (\random walks") pi(t). This cor-

responds to the ideal gas approximation in statistical mechanics. In this case, the

price process is simply obtained from the order statistics of independent processes

and asymptotic results for M and/or N large (recall that M denotes the number

of traded shares and N the total number of traders) can be obtained rather easily.

While this model is somewhat simplistic, some rather interesting phenomena can

already be modelled in this context, as we will explain now.

We may be interested in a situation where some macro-economic model may

predict several stable (respectively metastable) values of the stock price, realized

as the minimum of some utility function V .

In such a situation it seems not unreasonable to model the process of a single

trader as a one-dimensional di�usion process with drift obtained from a potential

function V , i.e. we can take pi(t) to be a solution of the stochastic di�erential

equation

dpi(t) = �V 0

�
pi(t)

�
dt+

p
" dWi(t)

with Wi(t) i.i.d. standard Brownian motions, and " > 0 a parameter measuring the

di�usivity. Alternatively, we can take discrete approximations of this process, as

will always be done in numerical simulations.

Let us consider the situation when there are two (meta) stable values of the

price, q1 and q2, i.e. the situation where the potential V has two minima (wells)

at q1 and q2. If the potential is strong, resp. " is small, an individual trader would

typically spent long periods of time near one of the favoured values q1 or q2.

4We could enlarge the model to incorporate a small fraction of traders which do not act

according to common sense, or against their own convictions (e.g. traders that have bought their

stock on credit and are executed by their creditors on falling prices. It may be interesting to

consider the e�ect of that in the context of market crashes).
5Which also implies that this subjective opinion must be wrong at least for one of the traders

involved. But this seems to re
ect reality.
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Let w1 be the escape rate from the well q1 to the well q2 and let w2 be the

escape rate in the opposite direction. It is well known that these escape rates

are exponentially small, wi � exp
�
�2(V � � Vqi)="

	
, where V � is the value of the

maximum of V on the interval [q1; q2], if " is small. Denote by At the number of

traders in the right well q2 at time t � 0. Suppose that A0 is much larger than M

implying that the actual price at the initial moment is situated near q2. We are

interested in describing the moment of the \crash", i.e. when the price moves from

the right well q2 to the left well q1.

Then we can approximate the individual processes pi(t) by a two-state Markov

chains with state space fq1; q2g and transition rates w1 and w2. In this approxima-

tion we can compute the normalized expected number at � EAt=N of traders in

state q2 at time t as the solution to the ordinary di�erential equation

d

dt
at = �w2at + w1(1� at) :

We get

at =
w1

w2 +w1

+
�
a0 �

w1

w2 +w1

�
exp

�
�(w2 +w1)t

	
and the crash time Tc can be de�ned as t such that at =M=N ,

Tc =
1

w2 +w1

log
a0(w2 + w1) �w1

M
N
(w2 +w1) �w1

If the energy barrier �V � V � � Vq2 is large enough, the time for each single

buyer to escape from the initial well is much larger than the relaxation time for the

system of At particles in the right well, and thus it is natural to expect that the

system will pass through the sequence of local equilibrium states corresponding to

At independent random walkers. Using this observation, the evolution of the price

can be described in terms of the Bt � At �M 's order statistic in a system of At

random variables whose distribution is approximately Gaussian with parameters q2

and
�
V 00(q2)

�
�1
.

To do this, let F ( � ) denote the distribution function of an individual walker

conditioned to stay near q2 and de�ne qB = q(Bt) as the solution to the equation

M

At

= 1� F (qB) � 1��
�
(qB � q2)

p
V 00(q2)

�
;

where �( � ) is the distribution function of the standard Gaussian variable. Using

the well-known asymptotics for the tail distribution of �( � ),

u

u2 + 1

e�u
2=2

p
2�

� 1p
2�

Z
1

u

e�x
2=2 dx � 1� �(u) � 1

u

e�u
2=2

p
2�

; u!1;

we immediately get

qB � q2 �
�2 log(At=Bt)

V 00(q2)

�1=2
+

log(4� log(At=Bt))p
8V 00(q2) log(At=Bt)

; Bt=M ! 0 :

Consequently, in the limit of large At, M such that � = 1�M=At is �xed we have

qB � q2 �
�2 log(��1)

V 00(q2)

�1=2
:

In this regime of \increasing ranks", the 
uctuations of the Bt's order statistic

have Gaussian behaviour and their scaling can be derived from [11, Theorem 2.5.2].

To do this, consider a small enough y such that

AtF (qB + y)
�
1� F (qB + y)

�
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Figure 1. Crash in a double-well potential

is large for large Bt and such that

M �At

�
1� F (qB + y)

�
(BtM=At)1=2

! �

as At, M = (1� �)At, and Bt = �At are getting large. In view of the de�nition of

qB the LHS expression above equalsr
BtAt

M

�F (qB + y)

F (qB)
� 1

�
;

where the last ratio can be approximated by

q2 � qB

q2 � qB � y

exp
�
�(qB + y � q2)

2V 00(q2)=2
	

exp
�
�(qB � q2)2V 00(q2)=2

	 � 1 + (q2 � qB)V
00(q2) y ;

assuming that (q2 � qB)
2V 00(q2) is large enough. As a result, in the limit of large

M and Bt, we have

� �
p
�M (q2 � qB)V

00(q2)

1� �
y �

p
2�MV 00(q2) log(��1)

1� �
y :

It remains to observe that Theorem 2.5.2 from [11] implies then that the ask price

pa(t) satis�es

Pr
�
pa(t) � qB + y

�
! �(� ) :

In other words, the price corresponding to a system of At such agents has mean

qB, shifted away from the well q2 on a distance of order (log(��1)=V 00(q2))
1=2 and

the variance of the price (ie, the volatility) diverges as (MV 00(q2))
�1(� log(��1))�1

in the limit of small � = Bt=(M +Bt).

Finally, recalling the hydrodynamic description of Bt and the de�nition of Tc,

we can also describe the time dependence of the mean E�,

E� = E�t �
1� expf�(w2 +w1)(Tc � t)g

1 +w1 expf(w2 + w1)tg=
�
(w2 +w1)a0 � w1

� ; t � Tc:

3.2. Interacting traders. The simple model introduced in the previous section is

rather arti�cial and simplistic. In reality one would expect that the behaviour of a

trader is in
uenced by the information received from the market as well as external

in
uences. Moreover, the opinion held by a trader with respect to the current price

should somehow re
ect some his intrinsic psychological characteristics. Finally,

the exchange of shares occurring when a transaction takes place should have some

visible e�ect on the time evolution. In the following we suggest some minimal

features that should be incorporated in an interacting model to take into account

some such e�ects. We will see that these features correspond to types of interactions

that are not commonly considered in the theory of interacting particle systems.
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� The derived process of the (ask and bid) price is the most easily accessible

piece of information about the trading state of the market for any trader.

It is natural that the updating rules should take the current value of this

process into account. The simplest and natural modi�cation is to introduce

a bias towards the actual price
�
pa(t); pb(t)

�
into the distribution of opinion

change.

� Traders whose opinion is far from the current price are likely not to pay

much attention to what is happening on the market. It is reasonable to

assume that they update their opinion less frequently. This feature can be

included by reducing the overall transition rates as a function of pi(t)�p(t).
� Finally, it is natural to assume that the traders performing a transaction,

that is exchange of a share, will update their opinions according to some

special rules re
ecting the fact that someone buying or selling a share at a

given price believes that she has struck a favourable deal, i.e. they attribute

a higher value to the share then what they paid, respectively a lower one

then what they got.

In the following we describe some concrete framework in which these features

are implemented. We describe the construction of the process algorithmically.

Change of opinion: At any time step we �rst select at random a trader. We will

allow this probability to depend on pi, and we choose trader i with a probability

proportional to f(pi(t) � p(t)), where we de�ne the \current price" via p(t) =�
pa(t)+pb(t)

�
=2 and the function f(x) � 0 has its maximum at zero. The function

f is responsible for the slow-down phenomenon away from p(t). Once a trader has

been selected, she changes her opinion from pi to p
0

i with probability proportional

to q(pi; p
0

i) which in turn may depend on the entire state of the system. A possible

choice for these functions is

f(x) = 1=(1 + jxj)�; � > 0 ;

and q(x; y;p) being, for any �xed p, a kernel of a random walk. In typical cases,

q(x; y;p) depends on p through pa and pb only. Once p0i is chosen, we check whether

p0i < pa, if ni = 0, resp. whether p0i > pb, if ni = +1. If this is the case, we set

pi(t + 1) = p0i, and pj(t + 1) = pj(t) for all j 6= i, and continue to the next time

step. Otherwise, we perform

Transaction: Assume �rst that ni(t) = 0 and p0i � pa(t). This means that the

buyer i has decided to buy at the current asked price. Since by de�nition there

is at least one seller who asks only the price pa(t), we select from all these one at

random with equal probabilities. Call this trader j. Then we set

pi(t + 1) = pa(t) + g; pj(t + 1) = pa(t)� g

where g > 0 is a �xed or possibly random number. Similarly, if ni(t) = 1 and

p0i � pb(t), the seller i sells to one of the buyers that o�er the price p0(t), and we

set

pi(t+ 1) = po(t) � g; pj(t + 1) = po(t) + g

The �nal state in all cases represents a new stable trading state and the process

continues. Note that g should be at least as large as to cover the transaction cost.

These additional features make the mathematical analysis of the model much

more diÆcult, but they introduce some interesting e�ects that are somewhat similar

to phenomena observed in real markets. Let us brie
y comment on these.

In the ideal gas approximation in the absence of any con�ning potential all

opinions would in the long run spread over all real numbers and the individual

opinions would get arbitrarily far from each other. This is avoided by the mechanism

of the attraction to the current price.
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Slowing down the jump rate of the particles far away from the current price

naturally introduces long time memory e�ects that lead to special features in the

distribution of the price process. One of them is possible existence of resistances:

if there is a large population of traders in a vicinity of some price p far from (say

above) the current price p(t), then this population tends to persist for a long time,

unless the current price approaches this value. If that happens, e.g. due to the

presence of an upward drift, one observes a slow-down of the upward movement

of the price when it approaches this value. The market has a resistance against

increase of the price through this value, re
ected in multiple returns to essentially

the same extremal values for a long period, see Fig 2.
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Figure 2. Trading in between resistances

A further e�ect of the slowing down is the tendency of the creation of \bubbles"

in the presence of strong drifts. In this case one observes a fast motion of the price

accompanied by a depletion of the population below this price. E�ectively, a few

(buying) traders move with the drift, while most are left behind. Such a situation

can lead to a crash, if at some moment the drift is removed (due to external e�ects).

Such a scenario was played out in a simulation that is shown in Figure 3.
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Figure 3. A sequence of \bubbles"

Note that after the crash there was a strong increase of volatility.

The e�ect of pushing the opinions from the current price after the transaction

depletes the vicinity of the price and therefore increases the volatility. This e�ect

goes in the opposite direction as the attraction to the price and the interplay of

both e�ects can lead to a non-trivial quasi-equilibrium state. The e�ect of these

mechanisms on the price 
uctuation will be studied in forthcoming paper [3].

To illustrate the in
uence of di�erent e�ects discussed above, we present in

Fig. 4 and 5 simulation results of the crash-type scenario from Sect. 3.1 where three

di�erent parameters of the model were changed independently. All simulations are
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Figure 4. Crash scenario without slowdown

based on a discretized version of the di�usion model from Sect. 3.1 with the same

potential function V having two local minima (one metastable and one stable). All

simulations start with the same initial condition where all traders are located near

the metastable minimum.

Figure 4 shows simulations without the feature of slowing down rates as a func-

tion of the distance to the current price: 1) corresponds to the free gas approxi-

mation; 2) shows the same scenario with an additional drift towards the current

price; 3) and 4) are like 1) and 2) with a trading e�ect corresponding to g being

uniformly distributed on the interval [3; 10].

Figure 5 shows the same sequence of scenarios when the overall rate of updating

of trader i behaves like
�
pi� p(t)

�
�1:5

. Notice the increased volatility compared to

the previous picture. The volatility increase before the crash is particularly marked.

4. Possible extensions

The basic model we describe above allows for numerous extensions to capture

further important features.

4.1. Traders of di�erent type. We have assumed all traders to behave accord-

ing to the same stochastic rules. It is not diÆcult to modify this. First, rules can

be di�erent between buyers and sellers, generalizing the bias towards the price to

some more complicated function. Moreover, we could introduce di�erent species of

traders that follow di�erent rules (e.g. optimists vs. pessimists), and study the en-

suing e�ects. Even more challenging, we could try to introduce \intelligent agents"

that try to perform arbitrage on the price by estimating future price based on ob-

servation of the past price history. This goes beyond the original ideas of the model,
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Figure 5. Crash scenario with slowdown

but could be interesting when testing some basic principles of �nancial mathematics

in a speci�c controllable model context.

4.2. Coupling to external in
uences. To capture the evolution of prices over

longer time-scales, it will be indispensable to couple our model to external in
u-

ences. These should re
ect fundamental data on the particular stock considered

(such as dividend return, earnings, cash-
ow), as well as global macro-economic

data (interest rates, growth rates, etc.). Such e�ects are easily incorporated by

making the transition rates q(pi; p
0

i) time dependent. E.g., given the earnings at

time t, one may compute a �ctitious \fundamental value" (based e.g. on historic

price-earnings ratios), and assume that there should be a certain tendency for mar-

ket participants to adjust their subjective price towards this value. Changes in

earnings (expectations) then induce a change in the transition probabilities. Simi-

larly, other external e�ects exert their in
uence most naturally through the transi-

tion probabilities of our process. The key question of interest that our model is able

to answer is how such external e�ects are re
ected in the evolution of the price of

our commodity. Addressing this question via analytical and/or numerical methods

may in many respects be the most interesting and promising perspective that our

models provide.

5. Conclusions

We have presented a class of Markov models that allow a realistic modelling of

the price evolution of a commodity under trading. The basic model is a particle

system like model for the evolution of a large number of traders whose state space

is given by the collection of all opinions of all traders on the current value of

the traded commodity. The price process is inferred from this state according to
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rules analogous to those used in real markets. In the simplest case of independent

traders, explicit computations are possible, and we have analysed a crash scenario

in a bistable market in this context.

We discussed several basic mechanisms that we think should be taken into ac-

count when modelling �nancial markets. These include attraction to the price, rate

dependence from the distance to the price, and repulsion from the price of traders

having performed an interaction. These e�ects lead to interesting properties of the

price process which are observed in similar form in reality.

We hope to have motivated that the interacting particle systems have a place

in the modelling of �nancial and economic systems. For this to be fruitful, this

requires to chose interactions that take the special features of these systems into

account. Moreover, the questions that should be addressed are quite di�erent from

what is usually done in the theory of interacting particle systems. In particular the

analysis of the price process leads to rather interesting problems regarding order

statistics in the particle model. As we will discuss in a forthcoming article [3],

these problems are closely related to the study of interfaces and phase boundaries

in particle systems.
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