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Abstract

We use a numerical optimization method to determine the control parame-
ters frequency, power, and coil position for the radio frequency (RF) induction
heating of the growth apparatus during sublimation growth of SiC single crystals
via physical vapor transport (PVT) (also called the modified Lely method). The
control parameters are determined to minimize a functional, tuning the radial
temperature gradient on the single crystal surface as well as the vertical temper-
ature gradient between SiC source and seed, both being crucial for high-quality
growth. The optimization is subject to constraints with respect to a required
temperature difference between source and seed, a required temperature range at
the seed, and an upper bound for the temperature in the entire apparatus. The
numerical computations use a stationary mathematical model for the heat trans-
port, including heat conduction, radiation, and RF heating to solve the forward
problem, and a Nelder-Mead method for optimization. A minimal radial tem-
perature gradient is found to coincide with a minimal temperature at the single
crystal surface, and a maximal temperature gradient between source and seed is
found to coincide with a low coil position.

1 Introduction

Silicon carbide (SiC) has numerous industrial applications, e.g. as a semiconductor sub-
strate material in electronic and optoelectronic devices such as MESFETs, MOSFETs,
thyristors, P-i-N diodes, Schottky diodes, blue and green LEDs, lasers, and sensors.
SiC is especially suitable for use in high-temperature and intense-radiation environ-
ments. In spite of progress in the SiC growth technique, production of SiC devices is
still limited by the lack of availability of large-diameter, low-defect SiC boules (cf. e.g.
[MGH+01, OFK+02]).

SiC bulk single crystals are commonly grown by sublimation via the PVT method
(modified Lely method [TT78, Kon95]). We consider an RF induction-heated PVT
growth system, consisting of a graphite crucible containing polycrystalline SiC source
powder and a single-crystalline SiC seed (see Fig. 1). The apparatus is heated to
temperatures up to 3000 K, where the intended temperature at the SiC seed’s surface
can vary between 1900 and 3000 K, depending on the desired single crystal polytype
to be grown [TT78, Kon95].

Initially, the growth cavity is filled with an inert gas, typically argon. The high tem-
peratures then cause sublimation of SiC, adding species such as Si, Si2C, and SiC2

to the gas phase. To ensure SiC is transported from the source to the seed, the SiC
source must be kept at a higher temperature than the SiC seed, such that sublimation
is encouraged at the source and crystallization is encouraged at the seed. To that end,
the source powder is placed in the hot zone of the growth apparatus, whereas the seed
crystal is cooled by means of a blind hole.
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Figure 1: Setup of growth apparatus according to [PAC+99, Fig. 2].

The crystal’s defect density and growth rate are strongly influenced by the temperature
distribution (especially the temperature at the seed and the temperature difference
between source and seed), the mass transport, and the pressure and concentrations of
gas species [SBP98, RSD+99, SVK+00]. These internal control parameters can only
be tuned indirectly by varying external control parameters such as the geometrical
configuration of the setup, the power and frequency of the RF heater, the position of
the induction coil, and the inert gas pressure.

Due to the high temperatures, measurements inside the growth chamber are extremely
difficult and costly, and thus is the experimental optimization of the control parame-
ters. Therefore, theoretical modeling and numerical methods play a fundamental role
in improving growth conditions [PAC+99, KKZ+00, KP03, MZHS03, Phi03]. These
and numerous other recent publications address the forward modeling of PVT growth.
However, to the authors’ knowledge, reports on optimization techniques applied to PVT
growth are still scarce in the literature. An inverse finite-dimensional shape design prob-
lem to control the temperature at and temperature differences between finitely many
prescribed points inside the powder source and inside the growth chamber has been
solved in [KDK+01].

In the present paper, based on a stationary mathematical model for the heat transport
in the growth system, we use numerical optimization to adjust the control parameters
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power and frequency of the RF heater as well as the position of the induction coil such
that the profile of the temperature field is optimized subject to an objective functional,
controlling the radial temperature gradient at the seed crystal’s surface as well as the
vertical temperature gradient between source and seed.

The paper is organized as follows: We state the optimization problem in Sec. 2, including
a brief description of the forward model. We describe our numerical methods in Sec. 3,
and we present and discuss our numerical results in Sec. 4.

2 The Optimization Problem

Let 2πf be the angular frequency used for the induction heating with sinusoidal time
dependence, let P be the prescribed effective total heating power, and let zrim be the
upper coil rim (s. Fig. 1).

We use (f, P, zrim) as the control parameters of the considered optimization problem.
If T denotes the absolute temperature in the growth system, then the forward problem
consists of determining T = T (f, P, zrim) as the solution of a stationary heat transport
problem described subsequently in this section. Keeping all other quantities fixed, T is
indeed determined by (f, P, zrim).

The optimization problem now lies in finding a triple

(f, P , zrim) ∈ [fmin, fmax]× [0, Pmax]× [zmin, zmax] (2.1)

such that a suitable objective functional (f, P, zrim) 7→ J (
T (f, P, zrim)

)
becomes min-

imal at (f, P , zrim), aiming at selecting a temperature field advantageous for the SiC
growth process. The bounds of the intervals in (2.1) are called box constraints for the
control parameters.

We consider an axisymmetric setting, i.e., in particular, we assume the growth apparatus
as well as the temperature field to be cylindrically symmetric, merely depending on the
cylindrical coordinates (r, z) ∈ Ω, where Ω denotes the (2-dimensional) domain of the
whole growth apparatus. Subsequently, we repeatedly need to calculate the maximum
and minimum of functions defined on subsets of Ω. Hence, for S ⊆ Ω, f : S −→ R, we
introduce

max
S

(f) := max
{
f(x) : x ∈ S

}
, min

S
(f) := min

{
f(x) : x ∈ S

}
. (2.2)

The best choice for the objective functional J (T ) is not obvious, as the temperature
field has to satisfy various conditions to support low-defect growth. For example, one
aims at low radial temperature gradients on the growing crystal’s surface to enable
uniform growth under low thermal stress. One also needs to ensure a sufficiently large
temperature difference between source and seed, where a larger temperature difference
leads to a higher growth rate, but possibly also to a higher defect rate [MZPD02, Sec.
4], [SKM+00, Sec. 4].
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In the present paper, we consider minimization of the objective functional

J (T ) = Jα(T ) := α · Fr(T )− (1− α) · Fz(T ), T := T (f, P, zrim), (2.3)

where α ∈ [0, 1] is a weight factor, and Fr, Fz are suitable functionals measuring the
size of the (absolute value of) radial and vertical gradient of T , respectively. Possible
choices are the max-norm or the L2-norm (cf. the numerical experiments in Sec. 4.2),
where the corresponding versions of Fr read (s. (4.3) below for an L2-version of Fz):

Fr,max(T ) := max
Γ

(∣∣∣∣
∂T

∂r
· m

K

∣∣∣∣
)

, Fr,2(T ) :=

(∫

Γ

2π r

m

(
∂T

∂r
(r, z) · m

K

)2
dr

m

) 1
2

, (2.4)

where Γ denotes the horizontal lower surface of the SiC crystal (see Fig. 2). The units
m and K occur in (2.4) as it will be convenient to keep the values of the objective
functional unit-free.

gas

SiC crystal

graphite crucible

ΓA

SiC source powder

Figure 2: Enlargement of the reaction chamber of the setup depicted in Fig. 1.

The optimization is subject to a number of so-called state constraints: (a) The maximal
temperature in the apparatus must not surpass a prescribed bound Tmax; (b) the temper-
ature at the crystal surface needs to stay within a prescribed range [Tmin,seed, Tmax,seed];
(c) the temperature gradient between source and seed must be negative, and must
not surpass a prescribed value ∆max < 0. Thus, using the functionals (2.2), the state
constraints can be formulated as

max
Ω

(T ) ≤ Tmax, (2.5a)

Tmin,seed ≤ min
Γ

(T ) ≤ max
Γ

(T ) ≤ Tmax,seed, (2.5b)

max
A

(
∂T

∂z

)
≤ ∆max < 0, (2.5c)

where A denotes the part of the gas domain directly underneath the SiC crystal (see
Fig. 2). As (2.5c) ensures that ∂T

∂z
is negative, the negative sign in front of the second

term in (2.3) guarantees that the minimization (for small α) selects steeper negative
vertical temperature gradients (encouraging faster mass transport from source to seed
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and, thus, a higher growth rate). A large value of α means that the minimization
stresses the objective of a flat radial temperature gradient. In Sections 4.2.2 and 4.2.3,
we present results of numerical optimizations for both α = 1 and α = 0.5, where α = 0.5
leads to a simultaneous optimization of both the radial and the vertical temperature
gradient.

The numerical solution of the forward problem, i.e. the computation of the stationary
temperature field T (f, P, zrim), requires a mathematical model of the heat transport
mechanisms in the growth apparatus. We use the axisymmetric model for the tem-
perature evolution in induction-heated PVT growth systems previously developed in
[BKP+99, KPSW01, KP02, KP03]. We discard all time-dependent contributions, as,
in the present article, we only consider the stationary final state. The model includes
thermal conduction through solid materials as well as through the gas phase. Radiative
heat transfer between surfaces of cavities is included using the net radiation method for
diffuse-gray radiation as described in [KPSW01], where a band approximation model
is used to account for the semi-transparency of the SiC single crystal. The growth
apparatus is considered in a black body environment (e.g. a large isothermal room)
radiating at room temperature Troom, such that outer boundaries emit according to the
Stefan-Boltzmann law. For the two blind holes, we use black body phantom closures
(denoted by Γtop and Γbottom in Fig. 1) which emit radiation at Troom. We thereby al-
low for radiative interactions between the open cavities and the ambient environment,
including reflections at the cavity surfaces.

Induction heating causes eddy currents in the conducting materials of the growth ap-
paratus, resulting in heat sources due to the Joule effect. Assuming sinusoidal time
dependence of the imposed alternating voltage, the heat sources are computed via an
axisymmetric complex-valued magnetic scalar potential that is determined as the solu-
tion of an elliptic partial differential equation (PDE) (s. [KP03, Sec. 2]). To prescribe
the total heating power, we follow [KP02, Sec. II], ensuring that the total current is the
same in each coil ring.

Usually, during a physical growth run, the SiC source powder graphitizes and sinters,
and chemical reactions inside the solid parts of the graphite crucible lead to changes in
its porosity and can cause nonsealing joints. Moreover, accumulation of Si in the insula-
tion felt is observed. It is not feasible to account for these changes at the current stage
of numerical simulations. Hence, all simulations presented in this article are performed
for an idealized growth apparatus, treating all solid materials as homogeneous and pure.
Furthermore, it is assumed that the gas phase is made up solely of argon, which is a
reasonable assumption for simulations of the temperature distribution [KPSW01, Sec.
5].

3 Numerical Methods

Our algorithm for determining view factors and shadowing during radiative heat transfer
is based on [DNR+90] and is described in [KPSW01, Sec. 4]. A finite volume method
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is used for the numerical solution of the linear elliptic PDEs arising from the magnetic
scalar potential problem as well as for the numerical solution of the nonlinear elliptic
PDEs governing the heat transfer. The resulting discrete nonlinear systems are solved
by Newton’s method.

The numerical solution of the above-described optimization problem, consisting of find-
ing optimal control parameters (f, P, zrim) that minimize the objective functional (2.3),
is accomplished by the Nelder-Mead method [Kel99, Sec. 8.1.1]. The Nelder-Mead
method constitutes a derivative-free method, i.e. the algorithm just needs the solution
T of the heat transport problem as a function of the three control parameters (f, P, zrim).
This function is provided numerically using a finite volume approximation as explained
above. The Nelder-Mead algorithm proceeds iteratively, aiming at reducing the ob-
jective functional in each step. More precisely, the Nelder-Mead algorithm starts with
four initial values (fik , Pik , zrim,ik), k ∈ {1, . . . , 4}, forming a simplex in the (f, P, zrim)-
domain. In each iterative step, the simplex corner where the objective functional is
worst is replaced such that a new simplex is formed. To enforce the box constraints
(2.1), we proceed as follows: If (f, P, zrim) as calculated by the current iteration of the
Nelder-Mead method violates one (or more) of the box constraints (e.g. f > fmax), then
(f, P, zrim) is projected back into the admissible domain (e.g. by replacing (f, P, zrim)
with (fmax, P, zrim)) before proceeding to the next iteration. To account for the state
constraints (2.5), a penalty functional is introduced into the objective functional (2.3).
Hence, the modified objective functional reads

Jα(T ) = α · Fr(T )− (1− α) · Fz(T ) +
4∑

i=1

λi · Hi(T ),

where the Hi denote the penalty functionals corresponding to the different constraints,
and the λi ∈ R+ are parameters that must be chosen sufficiently large to enforce the
constraints. For instance, H1(T ) := max

{
0, maxΩ(T )− Tmax

}
/K, and H2, H3, H4 are

defined correspondingly. For each i, we found λi = 50 to be a suitable choice for our
purposes.

All simulations were performed using the software WIAS-HiTNIHS 1 which is based on
the program package pdelib [FKL01], and which uses the sparse matrix solver Pardiso
[SGF00, SG03].

4 Numerical Results and Discussion

4.1 General Setting

We present numerical results for forward problems, computing stationary solutions
T (f, P, zrim) given (f, P, zrim) (s. Sec. 4.2.1), as well as numerical results for optimization
problems, minimizing functionals Jα

(
T (f, P, zrim)

)
(s. Sec. 4.2.2 and Sec. 4.2.3). For all

1High Temperature Numerical Induction Heating Simulator; pronunciation: ∼hit-nice.
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Nelder-Mead optimization computations presented below, we use the box constraints
(2.1) with

fmin = 1 kHz, fmax = 400 kHz, Pmax = 20 kW, zmin = 8 cm, zmax = 40 cm
(4.1)

and the state constraints (2.5) with

Tmax = 3300 K, Tmax,seed = 3000 K, ∆max = − 10

1.2

K

cm
= −833.3

K

m
, (4.2)

where Tmax is chosen to avoid the destruction of the graphite crucible, Tmax,seed is cho-
sen according to the largest temperature values still being desirable for the growth of
particular SiC polytypes [TT78, Kon95], and ∆max is chosen such that, if the verti-
cal temperature gradient were constant between the SiC source powder and the single
crystal, then the temperature of the source would always be at least 10 K above the
temperature of the crystal. Concerning the state constraint Tmin,seed, we present results
for both Tmin,seed = 2500 K and Tmin,seed = 2300 K.

All numerical computations presented in the following were performed for the growth
system [PAC+99, Fig. 2] displayed in Fig. 1, consisting of an axisymmetric container
having a radius of 8.4 cm and a height of 25 cm placed inside of 7 hollow rectangular-
shaped copper induction rings. The geometric proportions of the coil rings are provided
in Fig. 3.

1 cm

8 mm3.0 cm

1.5 cm

1.8 cm2 cm

turns of copper
induction coil

growth
container

Figure 3: Geometric proportions of induction coil rings.
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The material data used for the following numerical experiments are precisely the data
provided in the appendices of [KPSW01] and [KP03], respectively.

4.2 Results

4.2.1 Forward Problem

In preparation of our discussion of optimization results presented subsequently in Sec-
tions 4.2.2 and 4.2.3, we investigate the form of the functional dependence (f, P, zrim) 7→
Jα

(
T (f, P, zrim)

)
, as well as the restrictions imposed by the constraints (2.5), by study-

ing results of three series of forward computations. As before, T (f, P, zrim) denotes the
solution of the stationary heat transfer problem given (f, P, zrim). In each series, we
compute T = T (f, P, zrim), keeping the frequency fixed (at f = 5 kHz, f = 10 kHz,
f = 20 kHz, respectively), varying P between 5 and 12 kW in steps of 0.1 kW, and
varying zrim between 9 and 24 cm in steps of 1 mm.

For each solution, we compute the objective functional J1(T ) := Fr,2(T ) (cf. (2.4))
as well as the functionals maxA

(
∂T
∂z

)
(T ), maxΩ(T ), minΓ(T ), and maxΓ(T ) that are

controlled by the state constraints (2.5). Interpolating the plotted functions bilinearly
between the vertices of the rectangular P -zrim-grid used for the computation series,
the results are depicted in Figures 4 and 5. Figure 4 shows contour plots of Fr,2(T ),
restricted to the part of the (P, zrim)-plane where the state constraints given by (2.5)
and (4.2) together with Tmin,seed = 2300 K (for Column (a)) and Tmin,seed = 2500 K
(for Column (b)) are satisfied. For the 10-kHz-series, Fig. 5 depicts contour plots of the
functionals maxA

(
∂T
∂z

)
(T ), maxΩ(T ), minΓ(T ), and maxΓ(T ), illustrating how the state

constraints values chosen in (4.2), together with Tmin,seed = 2300 K or Tmin,seed = 2500
K, effect the domain restrictions in the (P, zrim)-plane.

In each case, we find that the admissible region in the (P, zrim)-plane constitutes a
distorted triangle, where each side of the triangle corresponds to a cut-off caused by a
state constraint. Comparing Columns (a) and (b) in Fig. 4 shows that the cut-off at the
lower side of the triangular regions is due to Tmin,seed ≤ minΓ(T ). Similarly, the upper
side of the admissible regions is owing to maxA

(
∂T
∂z

) ≤ ∆max, and the right-hand side
cut-off is caused by maxΩ(T ) ≤ Tmax, whereas, for the considered constraints values,
maxΓ(T ) ≤ Tmax,seed has no restricting effect. For the 10-kHz-series, these findings are
readily verified from Fig. 5.

For all three frequencies, Fig. 4 shows that, within each admissible region, Fr,2(T )
increases with both P and zrim. The same holds for the maximal and minimal tem-
peratures at the crystal’s surface (s. (3)(a), (3)(b) in Fig. 5), since the hot zone of the
crucible is shifted upwards as zrim increases. This dependence of the hot zone’s location
on zrim also explains the results found in (1)(a) and (1)(b) of Fig. 5: The absolute value
of the vertical temperature gradient between SiC source and crystal as measured by∣∣maxA

(
∂T
∂z

)∣∣ decreases with zrim (Fig. 5(1)(a)), since, if the crucible’s hot zone is fur-
ther below the crystal, then the heat flux towards the crystal follows a vertical route,
whereas it follows a more radial route if the crucible’s hot zone is located more to the
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Figure 4: Contour plots of Fr,2

(
T = T (f, P, zrim)

)
, T being the solution of the heat

transfer problem, where f is kept fixed in each row. Each plot is restricted to the
part of the (P, zrim)-plane where the state constraints given by (2.5) and (4.2) together
with Tmin,seed = 2300 K (for Column (a)) and Tmin,seed = 2500 K (for Column (b)) are
satisfied (cf. Fig. 5).
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domain: Contour plots of maxA

(
∂T
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)
(T ), maxΩ(T ) in Row (1); minΓ(T ), maxΓ(T )

in Row (3); Fr,2(T ) in Row (2); T = T (f, P, zrim), f = 10 kHz, being the solution of
the heat transfer problem. Values of used constraints are emphasized (cf. (4.2)).
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side of the crystal. The maximal temperature in the apparatus maxΩ(T ) increases with
P , but, for 10 cm ≤ zrim ≤ 22 cm, as portrayed in Fig. 5(1)(b), it is almost independent
of zrim and the location of the hot zone.

Comparing the plots in Row 2 of Fig. 5 to those in Row 3 of Fig. 5 shows that the
isolevels of Fr,2(T ) are almost parallel to the isolevels of the maximal and minimal
temperatures at the crystal’s surface. This is further illustrated by the shapes of the
lower cut-off edges of the admissible regions depicted in Fig. 4. Figure 4 also shows
that, in general, Fr,2(T ) does not depend monotonically on f , as, for fixed (P, zrim), the
values for Fr,2(T ) in Row 2 of Fig. 4 are slightly higher than the corresponding values
in Rows 1 and 3 of Fig. 4.

4.2.2 2-Dimensional Optimization

In the current section, our main goal is to assess the performance and reliability of
the Nelder-Mead method, when applied to the present optimization problem. We thus
restrict the optimization to cases that were examined by forward computations such
as discussed in the previous Sec. 4.2.1. Namely, we keep f = 10 kHz fixed, letting the
Nelder-Mead method adjust P and zrim to minimize the respective objective functional.
Then, in the following Sec. 4.2.3, we proceed to the 3-dimensional case, where (f, P, zrim)
all are determined by the Nelder-Mead method.

For the present 2-dimensional optimization, we consider four series of numerical experi-
ments, using the Nelder-Mead method to minimize three different objective functionals,
namely J1,2 := Fr,2, J1,max := Fr,max, and J0.5,2 := 1

2
Fr,2− 1

2
Fz,2, where Fr,2 and Fr,max

were defined in (2.4), and

Fz,2(T ) :=

(∫

A

2π r

m

(
∂T

∂z
(r, z) · m

K

)2
d(r, z)

m2

) 1
2

(4.3)

is the L2-norm of the vertical temperature gradient, computed over the region A between
SiC source and seed (s. Fig. 2). As explained in Sec. 2, J0.5,2 favors a combination
of a small radial temperature gradient and a large vertical temperature gradient to
encourage mass transport from source to seed, increasing the growth rate.

Three optimization series are performed subject to the box constraints given by (2.1)
and (4.1), and subject to the state constraints given by (2.5) and (4.2) completed
with Tmin,seed = 2500 K. In the fourth optimization series, J0.5,2 is minimized using
Tmin,seed = 2300 K, keeping all other constraints as before.

Each of the four series consists of 9 Nelder-Mead computations, varying the initial data
(Pik , zrim,ik) (cf. description of Nelder-Mead method in Sec. 3 above). The results are
displayed in Fig. 6, where, for each of the 4 · 9 Nelder-Mead computations, the found
solution (P , zrim) is marked by a dot in the contour plot of the corresponding forward
problem. Some solution values almost coincide, so that the corresponding dots can not
be distinguished in the plots. Such multiple dots are marked by labeled arrows in the
pictures.
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(a): Fr,2

(
T (10 kHz, P, zrim)

)
[1]

Tmin,seed = 2500 K

(b): (1
2
Fr,2 − 1

2
Fz,2)

(
T (10 kHz, P, zrim)

)
[1]

Tmin,seed = 2500 K

(c): Fr,max

(
T (10 kHz, P, zrim)

)
[1]

Tmin,seed = 2500 K

(d): (1
2
Fr,2 − 1

2
Fz,2)

(
T (10 kHz, P, zrim)

)
[1]

Tmin,seed = 2300 K

Figure 6: The locations of results of 2-dimensional Nelder-Mead computations (keeping
f = 10 kHz fixed) is indicated in the contour plots of the respective minimized functional
(dots on lower edge of respective admissible region). In each picture, a star marks the
location where the smallest value of the considered objective functional occurred during
the 10-kHz-series of forward computations discussed in Sec. 4.2.1. Plots (a), (b), (c)
use Tmin,seed = 2500 K, whereas plot (d) uses Tmin,seed = 2300 K as well as a different
P -zrim-scale as indicated by the dotted lines.

It is seen in all four cases that, while every solution found by the Nelder-Mead method is
located on the lower cut-off edge of the admissible region (determined by the constraint
Tmin,seed ≤ minΓ(T ), cf. Sec. 4.2.1 above), the found solution is not unique, but depends
on the initial data. This ambiguity in the found solutions is particularly prominent
in Figures 6 (a) and (c), i.e. in the minimizations of J1,2 and J1,max. Apparently, de-
creasing the objective functional, the Nelder-Mead algorithm follows the main gradient
direction, which is virtually perpendicular to the lower edge of the corresponding ad-
missible region, finally hitting the lower edge. However, as the objective functionals are
almost constant parallel to the lower edge (even showing local minima at both ends of
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the edge in Fig. 6 (a)), the Nelder-Mead method is, in general, not able to determine
the absolute minimum on the lower edge.

The situation is somewhat better when minimizing J0.5,2 (s. Figures 6 (b) and (d)),
where a distinct gradient is still present on the lower edges, with the absolute minimum
at the lowermost corner (i.e. for maximal P and minimal zrim). As indicated by the
labeled arrows, in Fig. 6 (b), 7 out of 9 solutions are at the absolute minimum, and,
likewise, 8 out of 9 solutions in Fig. 6 (d).

We note that the ambiguity in the found solutions is not that critical as, for all found
solutions, the value of the objective functional is close to the absolute minimum as can
be seen from both Fig. 6 and the following Tab. 1. Table 1 also compares the values of
the objective functionals minimized by the Nelder-Mead method to the smallest value
of the same functional that occurred during the 10-kHz-series of forward computations
discussed in Sec. 4.2.1 above. The smallest value was attained at (P, zrim) = (9.5
kW, 14.3 cm) for the computations depicted in Figures 6 (a) – (c), and at (P , zrim)
= (9.6 kW, 10.6 cm) for the computation depicted in Fig. 6 (d), where it is recalled
that the series of forward computations were performed at steps of 0.1 kW and 0.1
cm, respectively. The respective location is marked by a star in Figures 6 (a) – (d).
We note that one Nelder-Mead optimization took about 8 hours of computing time,
whereas each forward computation took some 5 minutes, resulting in approximately 26
days for each row shown in Fig. 5.

Nelder-Mead: Forward Problem:
Figure Objective Functional J (T ) Range of J (T ) Best J (T )
6 (a) J1,2 := Fr,2 11.73 – 11.97 11.75
6 (b) J0.5,2 := 1

2
Fr,2 − 1

2
Fz,2 1.917 – 2.153 1.958

6 (c) J1,max := Fr,max 422.2 – 436.7 423.4
6 (d) J0.5,2 := 1

2
Fr,2 − 1

2
Fz,2 -0.194 – -0.08 -0.166

Table 1: Ranges of values of the objective functionals J (T ) occurring in the solutions
of the 2-dimensional Nelder-Mead optimizations considered in Fig. 6 compared to the
best value of J (T ) found in the corresponding forward computation.

We conclude that, in spite of the non-uniqueness in the found solutions due to the
shape of the objective functionals on the admissible regions as determined by the state
constraints, the Nelder-Mead algorithm effectively minimizes the objective functional
in all considered cases.

Finally, we point out that Figures 6 (b) and (d) reveal that the behavior of the functional
J0.5,2 is similar to that shown by Fr,2, as its value also increases with both P and zrim.
However, the isolevels of J0.5,2 are no longer quite parallel to the isolevels of minΓ(T ).
On the other hand, comparing Figures 6 (a) and (c) shows that the behavior of Fr,2

and Fr,max is almost identical.
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4.2.3 3-Dimensional Optimization

For each of the four series of 2-dimensional Nelder-Mead optimizations considered in the
previous Sec. 4.2.2, we conducted a corresponding series of 3-dimensional Nelder-Mead
optimizations, controlling f in addition to P and zrim. As in Sec. 4.2.2, we minimize the
objective functionals J1,2, J1,max, and J0.5,2 subject to the box constraints given by (2.1)
and (4.1) (now also relevant for f) and the state constraints given by (2.5) and (4.2)
together with Tmin,seed = 2500 K. For J0.5,2, we also consider Tmin,seed = 2300 K. In a
new fifth series, we also minimize J1,2 using Tmin,seed = 2300 K. In each series, we have
27 Nelder-Mead computations, varying the initial values (fi, Pi, zrim,i). As explained
in Sec. 3 above, each Nelder-Mead computation actually needs four initial values, and
we generate the remaining three by successively replacing fi, Pi, zrim,i by a smaller
value: fi is replaced by max{fmin, fi− 0.2 · (fmin + fmax)}, and Pi and zrim,i are replaced
analogously.

For each series, the 5 results with the smallest values for the objective functional J (T )
and the result with the largest value for J (T ) are collected in a table (Tables 2 – 6
below).

fi Pi zrim,i f P zrim J1(T ) max
Ω

(T ) min
Γ

(T ) max
Γ

(T ) max
A

�
∂T
∂z

�
[kHz] [kW] [cm] [kHz] [kW] [cm] [1] [K] [K] [K] [K/m]

400 5 28 248 11.4 23.9 358 2637 2500 2505 - 841.6

100 15 16 152 9.35 23.9 359 2631 2500 2505 - 839.4

100 15 32 282 12.3 23.5 360 2655 2500 2505 - 866.4

100 5 16 127 8.76 23.8 361 2632 2500 2505 - 847.3

400 15 32 399 14.4 23.3 361 2672 2500 2505 - 894.0

10 15 24 10.6 7.68 17.9 434 2957 2500 2506 -1058

Table 2: Optimal parameters and functional values as computed by the Nelder-Mead
method for Tmin,seed = 2500 K, α = 1, J1 = Fr,max.

fi Pi zrim,i f P zrim J1(T ) max
Ω

(T ) min
Γ

(T ) max
Γ

(T ) max
A

�
∂T
∂z

�
[kHz] [kW] [cm] [kHz] [kW] [cm] [1] [K] [K] [K] [K/m]

400 10 24 314 12.7 24.1 9.80 2630 2500 2505 - 834.1

400 15 24 400 14.2 24.1 9.81 2628 2500 2505 - 838.5

400 5 32 332 13.1 24.0 9.82 2633 2500 2505 - 840.4

100 5 32 161 9.57 24.0 9.85 2630 2501 2506 - 835.6

100 10 32 182 10.1 23.6 9.86 2647 2500 2505 - 857.1

10 5 24 5.34 8.93 16.1 12.1 3128 2500 2506 -1130

Table 3: Optimal parameters and functional values as computed by the Nelder-Mead
method for Tmin,seed = 2500 K, α = 1, J1 = Fr,2.

We still find that, for all computed solutions, minΓ(T ) is close to the minimal admissible
value, (2500 K in Tables 2 – 4, 2300 K in Tables 5 and 6). This corresponds to the
fact that all solutions found during the 2-dimensional computations of Sec. 4.2.2 were
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fi Pi zrim,i f P zrim J0.5(T ) Fr,2(T ) max
Ω

(T ) min
Γ

(T ) max
Γ

(T ) max
A

�
∂T
∂z

�
[kHz] [kW] [cm] [kHz] [kW] [cm] [1] [1] [K] [K] [K] [K/m]

400 15 16 280 16.4 16.1 1.18 10.6 3299 2500 2505 -1343

100 10 24 84.5 10.9 15.6 1.19 10.7 3289 2500 2505 -1366

100 15 24 186 13.9 16.1 1.19 10.6 3283 2500 2505 -1344

400 15 32 393 19.0 16.0 1.19 10.6 3294 2500 2505 -1341

400 15 24 390 19.0 16.0 1.19 10.6 3299 2501 2506 -1342

10 15 24 10.2 8.53 16.0 2.29 11.8 3114 2500 2506 -1177

Table 4: Optimal parameters and functional values as computed by the Nelder-Mead
method for Tmin,seed = 2500 K, α = 0.5, J0.5 = 1

2
Fr,2 − 1

2
Fz,2.

fi Pi zrim,i f P zrim J1(T ) max
Ω

(T ) min
Γ

(T ) max
Γ

(T ) max
A

�
∂T
∂z

�
[kHz] [kW] [cm] [kHz] [kW] [cm] [1] [K] [K] [K] [K/m]

100 10 16 165 7.98 22.7 7.47 2459 2300 2304 - 845.8

400 5 16 273 10.2 21.4 7.54 2526 2300 2304 - 940.9

400 10 16 337 11.8 19.8 7.62 2611 2300 2304 -1054

100 15 24 216 10.0 19.2 7.64 2656 2300 2304 -1099

100 5 32 106 7.16 20.9 7.65 2538 2301 2305 - 977.0

10 15 32 2.85 8.87 15.6 8.88 2863 2300 2304 -1128

Table 5: Optimal parameters and functional values as computed by the Nelder-Mead
method for Tmin,seed = 2300 K, α = 1, J1 = Fr,2.

fi Pi zrim,i f P zrim J0.5(T ) Fr,2(T ) max
Ω

(T ) min
Γ

(T ) max
Γ

(T ) max
A

�
∂T
∂z

�
[kHz] [kW] [cm] [kHz] [kW] [cm] [1] [1] [K] [K] [K] [K/m]

100 5 32 84.9 10.3 12.9 -0.520 7.71 3296 2300 2304 -1467

100 5 16 72.9 10.0 12.7 -0.517 7.73 3299 2301 2304 -1471

100 10 16 66.8 9.86 12.7 -0.509 7.75 3291 2300 2304 -1471

100 10 24 87.7 10.3 13.0 -0.508 7.71 3291 2301 2304 -1465

100 10 32 155 12.1 13.3 -0.508 7.66 3295 2300 2304 -1456

10 15 32 3.37 12.5 10.0 0.014 8.33 3225 2300 2304 -1396

Table 6: Optimal parameters and functional values as computed by the Nelder-Mead
method for Tmin,seed = 2300 K, α = 0.5, J0.5 = 1

2
Fr,2 − 1

2
Fz,2.

located on the lower edge of the admissible region (cf. Fig. 6), recalling that the lower
edge was determined by the minimal admissible value for minΓ(T ) (cf. Fig. 5).

Moreover, the ambiguity in the found solutions observed during the 2-dimensional op-
timizations is also present in the 3-dimensional results. Comparing the values for J (T )
in Tables 2 – 6 with the corresponding values in Tab. 1, we find that the best values
found in the 2-dimensional optimizations at f = 10 kHz are usually close to the least
favorable values found in the corresponding 3-dimensional optimizations, while the best
values are considerably improved in the 3-dimensional case. Except for the series min-
imizing J1,2 with Tmin,seed = 2300 K (Tab. 6), the best values of J (T ) correspond to
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frequencies f over 100 kHz (4-th column of Tables 2 – 6).

In Sec. 4.2.2, keeping f = 10 kHz fixed, we found that increasing P and zrim increased
both the temperature at the SiC crystal’s surface Γ and the objective functionals. On
the other hand, the temperature at Γ and the objective functionals were decreased
when raising f from 10 kHz to values over 100 kHz due to an intensified skin effect:
As the frequency rises, the heat sources are concentrated in an ever thinner region
of the graphite crucible, reducing the efficiency of the heat transport to the crystal.
This explains that, in each of the Tables 2 – 6, where the single crystal’s temperature
is virtually constant within each table, a higher frequency f corresponds to either a
higher power P or a higher coil position zrim.

Examining the values of zrim in Column 6 of Tables 2 – 4 and 6 reveals that in four
of the five series, the variation in zrim among the five best results is much less than
the corresponding variation in f and P . This indicates that the shape of the isotherms
inside the gas phase as measured by the considered objective functionals is tuned more
effectively by adjusting the coil position than by controlling power or frequency. More-
over, the values for zrim are considerably lower in Tables 4 and 6 (where α = 0.5) than
in Tables 3 and 5 (where α = 1). Recalling that α = 0.5 means that the objective func-
tional has one contribution Fr,2(T ) to minimize the radial temperature gradient and
one contribution −Fz,2(T ) to maximize the absolute value of the vertical temperature
gradient, it is seen that a lower coil position is advantageous for maximizing Fz,2(T ),
as was already noted when evaluating Fig. 5(1)(a) in Sec. 4.2.1 above.

In Tables 4 and 6, where α = 0.5, an additional column is provided, displaying the
radial contribution Fr,2(T ) (Column 8). Comparing the values for Fr,2(T ) in Tab.
3 with those for J1(T ) = Fr,2(T ) in Tab. 4 (Row 1: Fr,2(T ) equals 9.80 and 10.6,
respectively) and, analogously, for Tables 5 and 6 (Row 1: Fr,2(T ) equals 7.47 and 7.71,
respectively), demonstrates only a small increase in the radial gradient for α = 0.5. At
the same time, comparing the vertical gradients for the best results as measured by
maxA

(
∂T
∂z

)
(last column in each table) shows that optimization of J0.5(T ) increases the

absolute value of the vertical gradient by more than 50 percent (Row 1, Tables 3 and
4: maxA

(
∂T
∂z

)
equals -834.1 K/m and -1343 K/m, respectively; Row 1, Tables 3 and 4:

maxA

(
∂T
∂z

)
equals -845.8 K/m and -1467 K/m, respectively). In this context, we also

observe that, for α = 1, the best optimization results all show a value for maxA

(
∂T
∂z

)
that

is close to the largest admissible value of -833.3 K/m (first row of Tables 2, 3, and 5).
A similar behavior was not present in our 2-dimensional optimization results depicted
in Fig. 6, where the upper edge of each triangular region corresponds to maxA

(
∂T
∂z

)
=

-833.3 K/m, but the optimization results were, in general, not close to the upper edge.

Summarizing the results of the previous paragraph, we conclude that the radial and the
vertical gradient can be effectively tuned simultaneously.

The effect of the respective minimizations of J1(T ) := Fr,2(T ) and of J0.5(T ) :=
1
2
Fr,2(T ) − 1

2
Fz,2(T ) on the shape of the temperature distribution between SiC source

and crystal, is portrayed in Fig. 7. In Fig. 7(a), one has the stationary solution for a
generic, unoptimized situation, using f = 10 kHz, P = 10 kW, and zrim = 24 cm (i.e.
the coil position of Fig. 1). Figures 7(b) and (c) display the solutions with the lowest
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(a): T (f = 10.0 kHz, P = 10.0 kW, zrim = 24.0 cm)

SiC crystal

SiC powder

3002 K
3007 K

3012 K

3022 K

3042 K

(b): T (f = 165 kHz, P = 7.98 kW, zrim = 22.7 cm)

SiC crystal

SiC powder

2304 K

2314 K

2334 K

(c): T (f = 84.9 kHz, P = 10.3 kW, zrim = 12.9 cm)

SiC crystal

SiC powder

2299 K

2304 K

2314 K

2324 K

2364 K

Figure 7: The stationary solution for the temperature field T (f, P, zrim) is portrayed
inside the gas phase between SiC source and SiC crystal for three different choices of
(f, P, zrim): (a) is a generic, unoptimized situation, zrim being as in Fig. 1; (b) and (c)
show results of Nelder-Mead optimizations, where J1 = Fr,2 was minimized for (b) and
J0.5 = 1

2
Fr,2− 1

2
Fz,2 was minimized for (c) (cf. first rows of Tables 5 and 6, respectively).

In each picture, the isotherms are spaced at 5 K, and they are chosen such that one
isotherm passes through the lower outer corner of the SiC crystal.

values for J1(T ) and J0.5(T ), respectively, found by the 3-dimensional Nelder-Mead
computations (cf. first rows of Tables 5 and 6, respectively).
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The main difference between the generic solution of Fig. 7(a) and the optimized solutions
shown in Figures 7(b),(c) is the gained homogeneity of the temperature inside the SiC
crystal in the optimized solutions (favorable with respect to low thermal stress and
few crystal defects) as well as the isotherms below the crystal’s surface becoming more
parallel to that surface (as intended by the minimization of Fr,2). As expected, in
Fig. 7(c), the maximization of Fz,2 leads to an increased number of isotherms between
the crystal and the source powder, having the desirable side effect of flattening the
isotherms further.

Finally, to provide an impression of the performance of the Nelder-Mead method as
applied during the computations presented above, in Fig. 8, we have plotted the best
value of the objective functional depending on the number of iterations for four dif-
ferent numerical optimizations. As explained in Sec. 3, in each iterative step of the
Nelder-Mead method, one of four points that constitute the corners of a simplex in
the (f, P, zrim)-domain is replaced. More precisely, the point with the largest value for
the objective functional is replaced, aiming at finding a new point where the value is
lower. However, in general, it occurs that the new value is not lower than all values
corresponding to the points that were kept fixed, resulting in the plateaus present in
Fig. 8. The initial data for Figures 8(1)(a),(b) correspond to the first row of Tab. 2,
whereas the initial data for Figures 8(2)(a),(b) correspond to the first row of Tab. 3.

We found that, in most cases, the Nelder-Mead method converged rapidly as depicted in
Fig. 8. However, we note that, in a few cases, letting n denote the number of iterations,
we observed a slower convergence due to (f(n), P (n), zrim(n)) drifting in and out of the
admissible region at the boundary defined by Tmin,seed ≤ minΓ(T ).

Comparing Fig. 8(1)(a) with Fig. 8(1)(b) and Fig. 8(2)(a) with Fig. 8(2)(b), it can be
seen that the minimization of the max-norm and of the L2-norm of the radial temper-
ature gradient show an almost identical convergence behavior.

5 Conclusions

We used a stationary numerical model for the heat transfer in induction-heated PVT
growth systems, to numerically optimize the temperature field in the gas phase between
SiC source powder and single crystal, controlling frequency and power of the induction
coil as well as the coil position. The numerical optimization was accomplished em-
ploying the Nelder-Mead method that was shown to be effective in minimizing the
radial temperature gradient at the crystal’s surface and in simultaneously maximizing
the absolute value of the vertical temperature gradient between SiC source and crys-
tal. However, ambiguous solutions occur due to flat regions and local minima of the
considered objective functionals.

Our results indicate that the shape of the isotherms inside the gas phase as measured
by the considered objective functionals is tuned more effectively by adjusting the coil
position than by controlling power or frequency, where the maximal absolute value for
the vertical temperature gradient between source and seed was achieved for a low coil
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Figure 8: Comparison of convergence rate of Nelder-Mead method for two different
objective functionals and two choices of initial data: In each case, the value of the best
objective functional J1 is depicted as a function of the number of iterations n.

position.

Furthermore, the minimal radial temperature gradient at the crystal’s surface always
occurred for a temperature distribution that established the lowest admissible temper-
ature at the crystal’s surface. We thus conclude that it might be desirable to grow SiC
single crystals at the lowest possible temperature in view of reducing radial thermal
stress. This dovetails well with the original findings of [TT78, Sec. 3], where a low
growth temperatue was found to be advantageous with respect to a low defect rate,
with respect to avoiding graphite wall sublimation, and with respect to reducing im-
purities. A low growth temperature was also found to be favorable with respect to
reducing graphitization of the powder source [LCNW03].
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