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Abstract

The adaptive weights smoothing (AWS) procedure was introduced in
Polzehl and Spokoiny (2000) in the context of image denoising. The
procedure has some remarkable properties like preservation of edges and
contrast, and (in some sense) optimal reduction of noise. The procedure
is also fully adaptive and dimension free. Simulations with artificial
images show that AWS is superior to classical smoothing techniques es-
pecially when the underlying image function is discontinuous and can be
well approximated by a piecewise constant function. However, the latter
assumption can be rather restrictive for a number of potential applica-
tions. Here the AWS method is generalized to the case of an arbitrary
local linear parametric structure. We also establish some important re-
sults about properties of the AWS procedure including the so called
“propagation condition” and spatial adaptivity. The performance of the
procedure is illustrated by examples for local polynomial regression in
univariate and bivariate situations.
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1 Introduction

Polzehl and Spokoiny (2000), referred to as PS2000 in what follows, offered a new method

of nonparametric estimation, Adaptive Weights Smoothing (AWS), in the context of im-

age denoising. The main idea of the procedure is to describe in a data-driven and iterative

way the largest local vicinity of every design point Xi in which the underlying model

function can be well approximated by a constant. The procedure possesses some re-

markable properties: it is fully adaptive in the sense that no prior information about

the structure of the model is required, it is also design adaptive and has no boundary

problem. A very important feature of the method is that it is dimension free and compu-

tationally straightforward. The results demonstrate that the new method is very efficient

in situations when the underlying model allows a piecewise constant approximation with

large homogeneous regions. This assumption seems to be reasonable e.g. in image anal-

ysis or for statistical inference in magnet resonance imaging, as shown in Polzehl and

Spokoiny (2001), referred to as PS2001. Some other applications to density, volatility,

tail index estimation can be found in Polzehl and Spokoiny (2002), referred to as PS2002.

However, for many applications the assumption of a local constant structure can be too

restrictive. A striking example is given by estimation of a smooth or piecewise smooth

univariate regression function where a piecewise constant approximation is typically too

rough. Local linear (polynomial) smoothing delivers much better results in this situation,

see Fan and Gijbels (1996).

The aim of the present paper is to propose an extension of the AWS procedure to

the case of varying coefficient regression models. Such models generalize classical non-

parametric models and have got much attention within the last years, see e.g. Hastie

and Tibshirani (1993), Fan and Zhang (1999), Caroll, Ruppert and Welsh (1998), Cai,

Fan and Yao (2000) and references therein. The traditional approach is based on a local

approximation of the varying coefficient model by a linear one in the varying parame-

ter. The model is estimated for every localization point independently by the local least

squares or local maximal likelihood. Accuracy of estimation is typically studied asymp-

totically as the localization parameter (bandwidth) tends to zero. Such an approach has

serious drawbacks of being unable to incorporate special important cases like a global

parametric model, a change-point model or more generally, models with inhomogeneous

variability w.r.t. the varying parameter. In this paper we propose a completely different
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approach based on the adaptive weights idea that allows to treat all the mentioned spe-

cial cases in a unified way and to get a nearly optimal accuracy of estimation in every

such situation.

The next section discusses the notions of global and local modeling. The basic idea

of the generalized AWS and the description of the procedure are given in Section 3. The

important special case of a local polynomial regression is discussed in Section 4. The

performance of the method is studied for some simulated examples of univariate and

bivariate regression in Section 5. Section 6 discusses theoretical properties of the proce-

dure. We particularly prove an important property of the procedure called a “propagation

condition” which means a free extension of every local model in a nearly homogeneous

situation. Then we show that this condition automatically leads to a nearly optimal ac-

curacy of estimation for a smooth regression function. Proofs and some technical results

are provided in the Appendix.

2 Local modeling by weights

This section discusses our approach to local linear modeling. We start specifying the

setup. Suppose that data Yi are observed at design points Xi from the Euclidean

space IRd , i = 1, . . . , n . In this paper we restrict ourselves to the regression setup

with fixed design. The target of statistical analysis is the mean regression function

f(x) = E(Y |X = x) . We will use a representation

Yi = f(Xi) + εi (2.1)

where εi can be naturally interpreted as additive random noise with zero mean. The

distribution of the εi ’s is typically unknown but in many situations noise homogeneity

can be assumed, that is, all the εi ’s are independent and satisfy Eεi = 0 and Eε2i = σ2

for some σ > 0 . For the case of exposition simplicity we restrict ourselves to this

homoscedastic situation. Heteroscedastic noise can be considered as well, see PS2001 for

some examples. We assume that an estimate σ̂2 of σ2 from the data is available, see

again PS2000 or PS2001 for specific examples.

A pure nonparametric estimate of the target function f(x) usually performs very

poorly, especially in case of a multivariate design. The reason is that the underlying

target function f(x) often is too complex to be estimated with a reasonable quality

without further specifications of its structure.
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The approach proposed in PS2000 and PS2001 can be called structural adaptation.

One assumes that the underlying model has a relatively simple structure in some vicinity

of every point Xi and the procedure attempts to recover this local structure using a

pilot estimate of the model function and then to utilize this estimated local structural

information for constructing a new improved estimate of the model function. These two

steps are iterated several times extending at each iteration the degree of locality for every

considered local model.

The original AWS method from PS2000 is based on the simplest local structural

assumption: the function f is nearly constant within some neighborhood U(Xi) of the

point Xi . In this paper the method is extended to the more general situation of a local

linear structure.

2.1 Global linear modeling

Suppose we are given a parametric family F = {fθ , θ ∈ Θ} where Θ is a subset of a

p -dimensional Euclidean space. A global parametric structure for the model (2.1) would

mean that the underlying function f belongs to the family F . The simplest example

is a one-parameter family given by fθ(x) ≡ θ . This family corresponds to a constant

approximation of the underlying function and it was used in a local form in PS2000.

In this paper we consider the more general situation of a linear parametric family. Let

ψ1(x), . . . , ψp(x) be some prescribed functions on IRd . We define

F = {fθ(x) = θ1ψ1(x) + . . .+ θpψp(x), θ ∈ IRp}.

Under the global parametric assumption f ∈ F , the corresponding parameter θ can be

easily estimated from the sample Y1, . . . , Yn . A natural estimate of θ is given by the

ordinary least squares method:

θ̂ = arginf
θ

n∑
i=1

(Yi − fθ(Xi))
2 .

For an explicit representation of this estimate vector notation is useful. Define vectors

Ψi in IRp with entries ψm(Xi) , m = 1, . . . , p , and the p× n -matrix Ψ whose columns

are Ψi . Let also Y stand for the vector of observations: Y = (Y1, . . . , Yn)> ∈ IRn . Then

θ̂ =

(
n∑

i=1

ΨiΨ
>
i

)−1 n∑
i=1

ΨiYi =
(
ΨΨ>

)−1
ΨY

provided that the p× p matrix ΨΨ> is nondegenerated.
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2.2 Local linear modeling

The global parametric assumption can be too restrictive in many situations and it does

not allow to model complex statistical objects. A standard approach in nonparametric

inference is to apply the parametric (linear) structural assumption locally.

Different possibilities to describe a local model centered at a given point are discussed

in PS2002. The most general one is localization by weights. Let, for a fixed x , a nonneg-

ative weight wi ≤ 1 be assigned to the observation Yi at Xi . The weights wi = wi(x)

determine a local model corresponding to the point x in the sense that every observation

Yi is used with the weight wi when estimating the local parameter θ at x . This leads

to the local (weighted) least squares estimate

θ̂(x) = arginf
θ∈Θ

n∑
i=1

wi(Yi − fθ(Xi))2 =
(
ΨWΨ>

)−1
ΨWY (2.2)

with W = diag{w1, . . . , wn} .

We mention two examples of choosing the weights wi . Localization by a bandwidth

is defined by the weights of the form wi(x) = Kl(li) with li = |ρ(x,Xi)/h|2 where h

is a bandwidth, ρ(x,Xi) is the Euclidean distance between x and the design point Xi

and Kl is a location kernel.

Localization by a window simply restricts the model to some subset (window) U of

the design space, that is, wi = 1(Xi ∈ U) and all data points Yi with Xi outside the

region U are not taken into account when estimating the value θ(x) .

We do not assume any special structure for the weights wi , that is, any configuration

of the weights is allowed. In what follows we identify the diagonal weight matrix W =

diag{w1, . . . , wn} and the local model defined by these weights.

3 Adaptive weights smoothing

This section describes the new method of locally adaptive estimation, the Adaptive

Weights Smoothing, starting from a preliminary discussion. The idea of the procedure is

to describe adaptively for every point Xi the largest possible neighborhood in which the

model function f(x) can be well approximated by a parametric function fθ from F .

The local model at Xi is described by weights wij assigned to every observation Yj .

The procedure is iterative. At every iteration step, the procedure tries to extend

the local model at each design point. We first illustrate the idea for the local constant
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structural assumption as considered in PS2000. Here the estimate θ̂i = f̂(Xi) is defined

as the mean of the observations Yj with some weights wij :

f̂(Xi) =
n∑

j=1

wijYj

/ n∑
j=1

wij . (3.1)

These weights wij are calculated iteratively. For the initial step, the estimate f̂ (0)(Xi)

is computed from a smallest local model defined by a bandwidth h(0) , that is,

f̂ (0)(Xi) = θ̂
(0)
i =

n∑
j=1

Kl

(
l
(0)
ij

)
Yj

/ n∑
j=1

Kl

(
l
(0)
ij

)
with l

(0)
ij =

∣∣ρ(Xi, Xj)/h(0)
∣∣2 . In other words, the algorithm starts with the usual kernel

estimate with the bandwidth h0 , which is taken very small. If Kl = 1(u ≤ 1) as in

PS2000, then for every point Xi the weights wij vanish outside the ball U (0)
i of radius

h(0) with the center at Xi , that is, the local model at Xi is concentrated on U
(0)
i . Next,

at each iteration k , a ball U (k)
i with a larger bandwidth h(k) is considered and every

point Xj from U
(k)
i gets a weight w

(k)
ij which is defined by comparing the estimates

f̂ (k−1)(Xi) and f̂ (k−1)(Xj) obtained in the previous iteration. The weights are then

used to compute new improved estimates f̂ (k)(Xi) due to (3.1).

One possible interpretation of this procedure is that at each iteration step the location

penalty l
(k)
ij is relaxed by increasing h(k) at cost of introducing a data-driven statistical

penalty which comes from comparison of different local models.

Note that under the local constant assumption f(x) = θ , the value θ uniquely deter-

mines the model function and the comparison of the values f̂ (k−1)(Xi) and f̂ (k−1)(Xj) is

equivalent to a comparison of two model functions. The extension of this approach to the

more general local parametric assumption leads to a check of homogeneity for two local

models W
(k−1)
i = diag

{
w

(k−1)
i1 , . . . , w

(k−1)
in

}
and W

(k−1)
j = diag

{
w

(k−1)
j1 , . . . , w

(k−1)
jn

}
,

to specify the weight w
(k)
ij . Now we discuss how a statistical penalty (distance) for two

local models can be computed.

3.1 Measuring the statistical difference between two local models

Consider two local models corresponding to points Xi and Xj and defined by diagonal

weight matrices Wi and Wj . We suppose that the structural assumption is fulfilled for

both, that is, the underlying regression function f can be well approximated by some

fθ ∈ F within every local model. However, the value of the parameter θ determining the
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approximating function fθ may be different for the two local models. We aim to develop

a rule to judge from the data, whether the local model corresponding to the point Xj and

described by Wj is not significantly different (in the value of the underlying parameter

θ ) from the model at Xi described by Wi . More precisely, we want to quantify the

difference between these two local models in order to assign a weight wij with which

the observation Yj will enter into the local model at Xi in the next iteration of the

algorithm.

A natural way is to consider the data from two local models as two different popu-

lations and to apply the two population likelihood ratio test for testing the hypothesis

θi = θj . Suppose that the errors εi are normally distributed with parameters (0, σ2) .

The log-likelihood L(Wi, θ, θ
′) for the local regression model at Xi with the weights Wi

is, for any pair θ, θ′ ∈ Θ , defined by

L(Wi, θ, θ
′) =

1
2σ2

n∑
l=1

wil

[
(Yl − Ψ>l θ

′)2 − (Yl − Ψ>l θ)
2
]

=
1

2σ2

n∑
l=1

wil

[
2(Yl − Ψ>l θ

′)Ψ>l (θ − θ′)− (θ − θ′)>ΨlΨ
>
l (θ − θ′)

]
yielding

L(Wi, θ̂i, θ
′) =

1
2σ2

(θ̂ − θ′)>Bi (θ̂ − θ′),

with Bi = ΨWiΨ
> .

The classical likelihood-ratio test statistic is of the form

T ◦ij = max
θ
L(Wi, θ, θ

′) + max
θ
L(Wj , θ, θ

′)−max
θ
L(Wi +Wj , θ, θ

′)

= L(Wi, θ̂i, θ
′) + L(Wj , θ̂j , θ

′)− L(Wi +Wj , θ̂ij , θ
′) (3.2)

where θ̂i = argmaxθ L(Wi, θ, θ
′) is the maximum likelihood estimate (MLE) correspond-

ing to the local model described by the weight matrix Wi and similarly for θ̂j . Also

θ̂ij = argmaxθ L(Wi +Wj , θ, θ
′) is the local MLE corresponding to the combined model

which is obtained by summing the weights from the both models. The value T ◦ij char-

acterizes the difference between the two models in the statistical sense: if T ◦ij is larger

than some prescribed value λ , then these two models are significantly different in the

value of the underlying parameter θ .

The criterion based on T ◦ij has a serious drawback of giving more weight to the

“smaller” model. For instance, in the “unbalanced” situation when the model Wi is
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much “larger” than Wi (that is, Bi � Bj ), the distribution of T ◦ij is mostly determined

by the distribution of θ̂j . This feature is not desirable when we define new weights

wij for the model centered at Xi . To avoid this problem, we standardize the weights

Wj = {wjl} by multiplying with some factor α and then optimize the test statistic w.r.t.

this factor α . The use of the factor α leads to the test statistics

Tij(α) = L(Wi, θ̂i, θ
′) + L(αWj , θ̂j , θ

′)− L(Wi + αWj , θ̂ij , θ
′)

where

θ̂ij = argmax
θ

L(Wi + αWj , θ, θ
′) =

(
Ψ(Wi + αWj)Ψ>

)−1
Ψ(Wi + αWj)Y.

The use of θ′ = θ̂j yields

Tij(α) = L(Wi, θ̂i, θ̂j)− L(Wi + αWj , θ̂ij , θ̂j)

= (θ̂i − θ̂j)>ΨWiΨ
>(θ̂i − θ̂j)− (θ̂ij − θ̂j)>Ψ(Wi + αWj)Ψ>(θ̂ij − θ̂j)

≤ (θ̂i − θ̂j)>ΨWiΨ
>(θ̂i − θ̂j).

Moreover,

lim
α→+∞

Tij(α) = Tij = (θ̂i − θ̂j)>ΨWiΨ
>(θ̂i − θ̂j) = (θ̂i − θ̂j)>Bi(θ̂i − θ̂j). (3.3)

Indeed, simple algebra provides

Tij(α) = (2σ2)−1
[
(θ̂i − θ̂j)>Bi(θ̂i − θ̂j) + (θ̂ij − θ̂j)>αBj(θ̂ij − θ̂j)

]
= (2σ2)−1(θ̂i − θ̂j)>Bi(Bi + αBj)−1αBj(θ̂i − θ̂j) → Tij , α→∞.

We consider the value Tij as a ‘statistical penalty’, that is, when computing the new

weight wij at the next iteration step we strongly penalize for a large value of Tij .

For the case of a one-dimensional parameter θ , that is, with p = 1 , the expression for

the statistical penalty can be simplified. Indeed, Ψ is a vector in IRn and Bi = Ψ>WiΨ

is a number yielding Tij = Bi|θ̂i − θ̂j |2/(2σ2) .

3.2 Penalization for extending a local model

An important feature of the original AWS method from PS2000 is its stability against

iteration. It turns out that the generalization of the local constant procedure to the

local linear case requires to introduce an additional penalty to prevent from leverage
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problems. To clarify the idea, suppose for the moment that for every iteration step k ,

each local model W (k)
i is restricted to the ball U (k−1)

i of the radius h(k−1) centered

at Xi . Suppose also that the first k − 1 iterations of the algorithm have been carried

over. As a result, we obtain for every point Xi a local model described by the weights

w
(k−1)
ij for each Xj ∈ U (k−1)

i . At the next iteration the procedure tries to extend every

local model by increasing the bandwidth h(k) and assigning the weights wij = w
(k)
ij

for every point Xj from the larger neighborhood U
(k)
i of Xi with the radius h(k) . If

Xj ∈ U (k)
i \U (k−1)

i , then giving Xj a significantly positive weight wij can be interpreted

as including the point Xj into the local model centered at Xi . In some cases, including

even one point Xj with a relatively large value ρ(Xi, Xj) into the local model at Xi

may significantly change the estimate θ̂i . Such leverage problem does not arise in the

local constant modeling but it becomes crucial for local linear (polynomial) regression.

To prevent from this danger, we introduce a special penalty for including an influence

point.

To measure the influence of the observation Yj at Xj in the local model described by

the weight matrix Wi , one can consider the extended model obtained by adding a single

observation at the point Xj and look at the relative difference between the original and

the extended model. This leads to the value

γij = tr
{(

ΨW iΨ
>
)−1 (

ΨW iΨ
> + ΨjΨ

>
j

)}
− p

= Ψ>j

(
ΨW iΨ

>
)−1

Ψj = (trWi)Ψ>j
(
ΨWiΨ

>
)−1

Ψj .

Here Ψj ∈ IRp is the j th column of Ψ and, for a diagonal matrix W , we denote

W = (trW )−1W . A large value of γij means that Xj is a leverage point. To make the

procedure more stable w.r.t. such influential points, we additionally penalize for including

points with a large value γij , i.e. assign small weights even when the difference θ̂i − θ̂j

is statistically insignificant and the statistical penalty sij is small.

For adjusting the penalty term one can use the ‘propagation’ principle which means

a free extension of the model in the homogeneous situation when the coefficients of the

linear model do not vary with location. In that situation, neither the statistical penalty

nor the penalty for extending the model would significantly affect the estimate leading

after the first k − 1 iterations to the classical location weights w
(k−1)
ij,ho = Kl

(
l
(k−1)
ij

)
=

Kl

(∣∣ρ(Xi, Xj)/h(k−1)
∣∣2) . The influence of the point Xj within the local homogeneous
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model described by W
(k−1)
i,ho is given by

γij,ho = γj

(
W

(k−1)
i,ho

)
=
(
trW (k−1)

i,ho

)
Ψ>j

(
ΨW

(k−1)
i,ho Ψ>

)−1
Ψj

where W
(k−1)
i,ho = diag{w(k−1)

i1,ho , . . . , w
(k−1)
in,ho } . This value γij,ho can be used for adjusting

the penalty for extending the model. Namely, we assign to every observation Yj at Xj

the penalty

e
(k)
ij = τ−1

(
γij

γij,ho
− 1
)

+

where a+ means max{0, a} and τ is a numerical tuning parameter.

3.3 Defining weights

Using the previously described methods, we compute for every pair (i, j) the penalties

l
(k)
ij , s

(k)
ij and e

(k)
ij . It is natural to require that the influence of every such factor is

independent of the other factors. This suggests to define the new weight w(k)
ij using the

product

w̃
(k)
ij = Kl

(
l
(k)
ij

)
Ks

(
s

(k)
ij

)
Ke

(
e

(k)
ij

)
,

where Kl,Ks and Ke are three kernel functions on the positive semiaxis satisfying the

condition Kl(0) = Ks(0) = Ke(0) = 1 .

In the algorithm presented below in this section, we use one more (memory) parameter

η ∈ (0, 1) which controls the rate of changing the weights for every local model within

the iteration process. Namely, we define the new weight w
(k)
ij as a convex combination

of the previous step weight w(k−1)
ij and the just defined product w̃(k)

ij :

w
(k)
ij = ηw

(k−1)
ij + (1− η)w̃(k)

ij .

3.4 The procedure

Now we present a formal description. Important ingredients of the method are:

- kernels Kl,Ks and Ke ;

- parameters λ, τ and η ;

- the initial bandwidth h(0) , the factor a > 1 and the maximal bandwidth hmax

- the estimated error variance σ̂2 .

The choice of the parameters is discussed in Section 3.5. The generalized procedure

reads as follows:
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1. Initialization: For every i define the diagonal matrix W
(0)
i with the diagonal en-

tries w
(0)
ij = Kl(l

(0)
ij ) and l

(0)
ij =

∣∣ρ(Xi, Xj)/h(0)
∣∣2 , that is, W (0)

i = diag{w(0)
i1 , . . . , w

(0)
in } .

Compute

N
(0)
i = trW (0)

i , B
(0)
i = ΨW

(0)
i Ψ>, Z

(0)
i = ΨW

(0)
i Y and θ̂

(0)
i =

(
B

(0)
i

)−1
Z

(0)
i .

Set k = 1 .

2. Iteration: for every i = 1, . . . , n define W
(k−1)
i,ho = diag

{
Kl

(
l
(k−1)
i1

)
, . . . ,Kl

(
l
(k−1)
in

)}
,

• calculate the adaptive weights: For every point Xj compute

γ
(k)
ij = N

(k−1)
i Ψ>j

(
B

(k−1)
i

)−1
Ψj ,

γ
(k)
ij,ho = tr

(
W

(k−1)
i,ho

)
Ψ>j

(
ΨW

(k−1)
i,ho Ψ>

)−1
Ψj

where Ψj is jth column of Ψ .

Compute the penalties

l
(k)
ij =

∣∣ρ(Xi, Xj)/h(k)
∣∣2 ,

s
(k)
ij =

1
2σ̂2λ

(
θ̂
(k−1)
i − θ̂

(k−1)
j

)>
B

(k−1)
i

(
θ̂
(k−1)
i − θ̂

(k−1)
j

)
,

e
(k)
ij = τ−1

(
γ

(k)
ij /γ

(k)
ij,ho − 1

)
+
.

(3.4)

Compute the value w̃
(k)
ij :

w̃
(k)
ij = Kl

(
l
(k)
ij

)
Ks

(
s

(k)
ij

)
Ke

(
e

(k)
ij

)
, (3.5)

Denote by W̃
(k)
i the diagonal matrix whose diagonal elements are w̃

(k)
ij , that is,

W̃
(k)
i = diag{w(k)

i1 , . . . , w
(k)
in } .

• Compute new estimate: Compute

N
(k)
i = ηN

(k−1)
i + (1− η)trW̃ (k)

i ,

Z
(k)
i = ηZ

(k−1)
i + (1− η)Ψ W̃ (k)

i Y,

B
(k)
i = ηB

(k−1)
i + (1− η)Ψ W̃ (k)

i Ψ>,

and the estimate θ̂
(k)
i (resp. f̂ (k)

i ) of θi (resp. of fi = f(Xi) ) by

θ̂
(k)
i =

(
B

(k)
i

)−1
Z

(k)
i , f̂

(k)
i = Ψ>i θ̂

(k)
i .

3. Stopping: Increase k by 1, set h(k) = ah(k−1) . If h(k) ≤ hmax continue with step 2.

Otherwise terminate.

By k∗ we denote the total number of iterations. Also define the final estimates

f̂i = f̂
(k∗)
i .
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3.5 Choice of parameters

The parameters of the procedure are selected similarly to PS2000. We briefly discuss

each of the parameters.

Kernels Ks , Kl and Ke : The kernels Ks and Kl must fulfill Ks(0) = Kl(0) =

Ke(0) = 1 , with Ks , Ke decreasing and Kl non-increasing on the positive semiaxis. We

recommend to take Ks(u) = e−uI{u≤6} . We also recommend to apply a compactly sup-

ported localization kernel Kl to reduce the computational effort of the method. PS2000

applied a uniform kernel, here we apply the triangle kernel Kl(u) = (1 − u)+ . We also

set Ke = Ks .

Initial bandwidth h(0) , parameter a and maximal bandwidth hmax : The

starting bandwidth h(0) should be taken possibly small. In the most of example we select

h(0) such that every starting local neighborhood U
(0)
i contains sufficiently many design

points to get an initial estimate of the parameter θi .

The parameter a controls the growth rate of the local neighborhoods for every point

Xi . It should be selected to provide that the mean number of points inside a ball U (k)
i

with radius h(k) grows exponentially in k with the factor agrow . If Xi are from the

unit cube in the space IRd , then the parameter a can be taken as a = a
1/d
grow . Our

default choice is agrow = 1.25 . The exponential grow of the design points within every

ball U (k)
i ensures that the number of iterations k∗ is at most logarithmic in the sample

size.

The maximal bandwidth hmax may be taken very large. However, this parameter can

be used to bound the numerical complexity of the procedure, see Section 3.6. In some

applications, the use of a very large final bandwidth hmax leads to some oversmoothing

of the underlying object. For such situations, a data-driven method of optimal stopping,

based, for instance, on cross-validation can be applied.

Parameter λ : The most important parameter of the procedure is λ which scales

the statistical penalty sij . Small values of λ lead to overpenalization which may result

in unstable performance of the method in the homogeneous situation. Large values of

λ may result in loss of adaptivity of the method (less sensitivity to structural changes).

A reasonable way to define the parameter λ for a specific application is based on the

condition of free extension, which we also call the “propagation condition”. This con-

dition means that in a homogeneous situation, i.e. when the underlying parameters for
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every two local models coincide, the impact of the statistical penalty in the computed

weights wij is negligible. This would result in a free extension of every local model. If

the value hmax is sufficiently large, at the end of iteration process all the weights wij

will then be close to one and every local model will essentially coincide with the global

one. Therefore, one can adjust the parameter λ simply selecting the minimal value of

λ still providing a prescribed probability of getting the global model at the end of it-

eration process for the homogeneous (parametric) model θ(x) = θ using Monte-Carlo

simulations. The theoretical justification is given by Theorem 6.1 in Section 6.1, that

claims that the choice λ = C log n with a sufficiently large C yields the “propagation”

condition whatever the parameter θ is.

Our default value is λ = qα(χ2
p) , that is the α -quantile of the χ2 distribution with p

degree of freedom, where α depends on the specified linear parametric family. Defaults

for the case of local polynomial regression are given in Section 5.

Parameter τ : The optimal choice of τ depends on the method of smoothing. For the

local constant AWS considered in PS2000, there are no influential points (see Section 4.1).

For local polynomial smoothing the choice of τ is discussed in more details in Section 4.

Parameter η and the control step: A value η ∈ (0, 1) can be used to control

the stability of the AWS procedure w.r.t. iterations. An increase of η results in a higher

stability, however, it decreases the sensitivity to changes of the local structure. The use

of the memory parameter also guarantees that the estimates θ̂
(k)
i are well defined, that

is, all the matrices B(k)
i are positive definite. Our default choice is η = 1/2 .

The original AWS procedure from PS2000 did not involve the “memory” parameter

η (it corresponds to η = 0 ). Instead it contained one additional control step in which

the new estimate θ̂
(k)
i is compared with all the previous estimates θ̂

(k′)
i for k′ < k . If

the difference θ̂
(k)
i − θ̂(k′)

i became significant, the new estimate was not accepted and the

previous step estimate was used. This control step is a very useful device for proving

some theoretical properties of the procedure, because it ensures that the gained quality

of estimation will not be lost in further iterations, see Section 6 for more details. In the

local linear case this control step would accept the estimate θ̂
(k)
i only if

(2σ̂2)−1
(
θ̂
(k′)
i − θ̂

(k)
i

)>
B

(k′)
i

(
θ̂
(k′)
i − θ̂

(k)
i

)
≤ η∗, k′ = 1, . . . , k − 1, (3.6)

that is, when the new estimate θ̂
(k)
i lies inside all confidence ellipsoids of previous esti-

mates at the point Xi . However, our numerical results (not reported here) indicate that
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the usefulness of the control step for practical purpose is questionable. The use of the

“memory” parameter η can be regarded as a soft version of the control step.

3.6 Computational complexity of the algorithm

We start with the following two important remarks. First note, that every estimate is

defined as θ̂
(k)
i =

(
B

(k)
i

)−1
Z

(k)
i using the matrix B

(k)
i and the vector Z

(k)
i . Similarly,

the new weights w̃
(k)
ij are computed on the basis of the same statistics B

(k−1)
i , Z(k−1)

i

and N
(k−1)
i from the previous step of the procedure. Therefore, the whole structural

information is contained in these three basis elements. During the adaptation step, we

compute for every i the weights w̃
(k)
ij with different j only with the aim to compute

the new elements B
(k)
i , Z

(k)
i and N

(k)
i . This reduces the memory requirements for

the algorithm to O(np2) or even to O(np) for local polynomial modeling, see the next

section, while keeping all the weights w(k)
ij would lead to the memory requirement O(n2) .

Secondly we notice, that the localization kernel Kl usually has a compact support,

say, [0, 1] . This immediately implies that for every local model at Xi , all the weights

w̃
(k)
ij for the points Xj outside the ball U (k)

i = {x : ρ(Xi, x) ≤ h(k)} vanish. Therefore, it

suffices at each step to compute the weights w̃(k)
ij for pairs Xi, Xj with ρ(Xi, Xj) ≤ h(k) .

Denote by Mk the maximal number of design points Xj within a ball of radius h(k)

centered at a design point. At the k step there are at most Mk positive weights w̃
(k)
ij

for any Xi .

Therefore, for carrying out the k th adaptation step of the algorithm, we have to

compute the penalties l
(k)
ij , s

(k)
ij and e

(k)
ij and the value w̃

(k)
ij , for every pair (i, j) with

ρ(Xi, Xj) ≤ h(k) due to (3.5). This requires a finite number of operations depending on

the number of parameters p only, and the whole k th adaptation step of the algorithm

requires of order nMk operations.

To obtain the estimate we need, for every point Xi , to compute the d × d -matrix

B
(k)
i = ηB

(k−1)
i +(1−η)Ψ W̃ (k)

i Ψ> , the vector Z(k)
i = ηZ

(k−1)
i +(1−η)Ψ W̃ (k)

i Y and the

value N
(k)
i = ηN

(k−1)
i + (1− η)trW̃ (k)

i . It is clear that the complexity of computing all

these values is of order Mk . Computing θ̂
(k)
i =

(
B

(k)
i

)−1
Z

(k)
i requires a finite number

operations depending on p only. Therefore, the complexity of the whole estimation step

is again of order nMk .

Since typically the numbers Mk grow exponentially, the complexity of the whole
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algorithm is estimated as

n(M1 + . . .+Mk∗) � nMk∗

where k∗ is the number of iteration steps.

4 Local polynomial regression

In this section we specify the procedure for nonparametric estimation of a regression

function with univariate and multivariate covariates. The underlying regression function

is assumed to be smooth or piecewise smooth leading to a polynomial approximation of

the function within each local model.

4.1 Local constant regression

First we briefly consider a special cases of the above procedure corresponding to the local

constant AWS procedure from PS2000.

The local constant approximation corresponds to the simplest family of basis func-

tions {ψm} consisting of one constant function ψ0 ≡ 1 . The major advantage of this

method is that the dimensionality of the regressors plays absolutely no role. In this

situation Ψ = (1, . . . , 1) and, for every diagonal matrix W = diag(w1, . . . , wn) , it

holds ΨWΨ> = trW and ΨWY =
∑n

l=1wlYl . Hence, for the local constant case,

the B
(k)
i ’s coincide with the N

(k)
i ’s. The statistical penalty s

(k)
ij can be written in

the form s
(k)
ij = (2σ2)−1N

(k−1)
i

∣∣θ̂(k−1)
i − θ̂

(k−1)
j

∣∣2 . Also, for all i and k , it holds

γ
(k)
ij = trW (k−1)

i /trW (k−1)
i ≡ 1 , and similarly for γ

(k)
ij,ho . Therefore, the penalty eij

is always zero and can be dropped.

The weights w̃
(k)
ij can be computed as w̃

(k)
ij = Kl(l

(k)
ij )Ks(s

(k)
ij ) that essentially co-

incides with the proposal from PS2000 if the uniform kernel Kl is applied. A small

difference remains in the use of the memory parameter η and in a slightly different form

of the statistical penalty.

4.2 Local polynomial univariate regression

Local linear (polynomial) smoothing is known to be much more accurate when estimating

a smooth function, see e.g. Fan and Gijbels (1996). A generalization of the original AWS

to the local linear (polynomial) regression therefore is of special importance. We describe

the corresponding procedure in more details.
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One can specify the basis functions as ψ1(x) = 1 , ψ2(x) = x , . . . , ψp(x) = xp−1 .

However, to improve the numerical stability of the procedure it is, for every local model,

useful to apply the basis functions centered at the reference point Xi , that is, the func-

tions (Xi − x)m . This requires to slightly modify the description of the procedure.

Denote by Ψ(Xi) the p×n matrix with the entries (Xi−Xl)m for m = 0, 1, . . . , p−1

and l = 1, . . . , n .

First we describe the estimation step of the algorithm. This step is performed similarly

to the case described in Section 3.4. The only difference is that the family of basis

functions (or, equivalently, the matrix Ψ ) depends on the central point Xi . Suppose

that at the k th step of the procedure, for a point Xi , the diagonal weights matrix W̃
(k)
i

has been computed. Next we compute the p -vector Z(k)
i = ηZ

(k−1)
i +(1−η)Ψ(Xi)W̃

(k)
i Y

with the entries Z(k)
i,m of the form

Z
(k)
i,m = ηZ

(k−1)
i,m + (1− η)

n∑
l=1

w̃
(k)
il (Xi −Xl)mYl m = 0, . . . , p− 1,

and the matrix B
(k)
i = ηB

(k−1)
i +(1−η)Ψ(Xi)W̃

(k)
i Ψ>(Xi) whose entries are of the form

B
(k)
i,mm′ = b

(k)
i,m+m′ for m,m′ = 1, . . . , p where

b
(k)
i,m = ηb

(k−1)
i,m + (1− η)

n∑
l=1

w̃
(k)
il (Xi −Xl)m m = 0, . . . , 2p− 2,

The estimate θ̂
(k)
i in to the local model at Xi , is of the form θ̂

(k)
i =

(
B

(k)
i

)−1
Z

(k)
i .

For carrying out the k th adaptation step, we have to compare two estimates corre-

sponding to the local models W (k−1)
i and W

(k−1)
j . Note however, that this comparison

can be done only if the both estimates are computed for the same basis system. Thus,

the comparison requires to recompute the estimate for the local model W (k−1)
j w.r.t. the

basis centered at the point Xi . Let θ̂j = (θ̂j,0, . . . , θ̂j,p−1)> be the estimate for the local

model at Xj . This estimate leads to a local approximation of the unknown regression

function by the polynom f̂j(x) = θ̂j,0 + θ̂j,1(x − Xj) + . . . + θ̂j,p−1(x − Xj)p−1 . Now

we represent this polynom as a linear combination of the basis functions (x − Xi)m ,

m = 0, . . . , p− 1 , that is, we have to find new coefficients θ̂ij = (θ̂ij,0, . . . , θ̂ij,p−1)> such

that

f̂j(x) = θ̂ij,0 + θ̂ij,1(x−Xi) + . . .+ θ̂ij,p−1(x−Xj)p−1.

The coefficients θ̂ij,m can be computed from the formula θ̂ij,m = (m!)−1dmf̂j(Xi)/dxm .
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The k th adaptation step of the procedure can be performed as follows. Suppose that

all the estimates θ̂(k−1)
i = (θ̂(k−1)

i,0 , . . . , θ̂
(k−1)
j,p−1 )> have been computed in the previous step.

Next, for a fixed i and every j , we compute the estimates θ̂(k−1)
ij by

θ̂
(k−1)
ij,m =

p−m−1∑
q=0

(
q +m

q

)
θ̂
(k−1)
j,q+m(Xi −Xj)q. m = 0, 1, . . . , p− 1.

The estimate θ̂
(k−1)
ij is used in place of θ̂(k−1)

j for computing the statistical penalty s
(k)
ij

in (3.4). For computing the extension penalty, we apply Ψ(Xi) in place of Ψ and Ψj

has to be replaced by Ψj(Xi) which is the jth column of Ψ(Xi) . The remaining steps

of the procedure are performed similarly to the basic algorithm.

4.3 Local linear multiple regression

Let X1, . . . , Xd be points in the d -dimensional Euclidean space IRd . Classical linear

regression leads to an approximation of the regression function f by a linear combination

of the constant function ψ0(x) = 1 and d coordinate functions ψm(x) = xm , so that the

family {ψm} consists of p = d+1 basis functions. Our procedure attempts to apply this

approximation locally for adaptively selected local models. The global linear modeling

arises as a special case if the underlying model is entirely linear.

Similarly to the univariate case, we adopt for every design point Xi a local linear

model with centered basis functions ψm(x,Xi) = Xim − xm for m = 1, . . . , d . The

corresponding p×n matrix Ψ(Xi) has columns Ψl(Xi) = (1, Xi1−Xl1, . . . , Xid−Xld)>

for l = 1, . . . , n . At the estimation step one computes the estimates θ̂(k)
i of the parameter

θ ∈ IRp for every local model, leading to a local linear approximation of the function f

by the linear function f̂j(x) with

f̂j(x) = θ̂j,0 +
d∑

m=1

θ̂j,m(xm −Xj,m).

This linear function can be rewritten in the form

f̂j(x) = θ̂j,0 +
d∑

m=1

θ̂j,m(Xi,m −Xj,m) +
d∑

m=1

θ̂j,m(xm −Xi,m).

Therefore, only the first coefficient of the vector θ̂j has to be corrected when the basis

system Ψ(Xi) is used in place of Ψ(Xj) . This means that at the k th adaptation step,

the vector θ̂
(k−1)
j is replaced by θ̂

(k−1)
ij where θ̂

(k−1)
ij,m = θ̂

(k−1)
j,m for m = 1, . . . , d and

θ̂
(k−1)
ij,0 = θ̂

(k−1)
ij,0 +

∑d
m=1 θ̂j,m(Xi,m −Xj,m) . The rest of the procedure is carried through

similarly to the univariate case.
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4.4 Local quadratic bivariate regression

Finally we shortly discuss the bivariate case with d = 2 for local quadratic approxi-

mation. The case of a larger d can be handled similarly. The family {ψm} of basis

functions contains one constant function equal to 1, two linear coordinate functions x1

and x2 and three quadratic functions x2
1, x

2
2 and x1x2 . It is useful to utilize the notation

m = (m1,m2) , |m| = m1 +m2 and xm = xm1
1 xm2

2 for x = (x1, x2)> ∈ IR2 and integers

m1,m2 . The family of basis functions can now be written in the form {ψm(x), |m| ≤ 2} .

For numerical stability the centered functions ψm(Xi − x) should be used within each

local model.

At the k th estimation step one computes the entries θ̂(k)
i,m of the vector θ̂(k)

i . At the

k th adaptation step we additionally need, for every i , to recompute the vectors θ̂
(k−1)
j

for the basis system Ψ(Xi) . Similarly to the univariate case, we get

θ̂
(k−1)
ij,m =

∑
m′:|m′|≤2−|m|

(
m+m′

m

)
θ̂
(k−1)
j,m+m′(Xi −Xj)m′

, |m| ≤ 2.

Here
∑

m′:|m′|≤2−|m| means the sum over the set of all pair m′ = (l′1, l
′
2) with m′

1 +m′
2 ≤

2−m1−m2 and
(

m
m′

)
=
(
m1

m′
1

)(
m2

m′
2

)
. Particularly, θ̂(k−1)

ij,m = θ̂
(k−1)
j,m for all m with |m| = 2 ,

and θ̂ij,0 = f̂j(Xi) .

The rest of the procedure remains as before.

5 Numerical results

We now demonstrate the performance of the method for artificial examples in univariate

and bivariate regression. The aim of this study is to illustrate two important features

of the procedure: adaptability to large homogeneous regions and sensitivity to sharp

changes in the local structure of the model. We also try to give some hints about the

choice of the degree of local polynomial approximation.

Our univariate simulations are conducted as follows:

• Data are generated as (Xi, Yi) with Yi = f(Xi) + εi . Sample size is n = 1000 .

The design is chosen as an equidistant grid on (0, 1) . Errors εi are i.i.d. Gaussian

with an unknown standard deviation σ .

• Local linear ( p = 1 ), local quadratic ( p = 2 ) and local cubic ( p = 3 ) AWS

estimates are computed for each of 1000 simulated data sets. The parameters

applied are given in Table 1.
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Table 1: Parameters for AWS procedure in univariate regression

p λ η τ hmax

1 qχ2;.65,1 .5 4.5 0.25
2 qχ2;.92,2 .5 13.5 0.25
3 qχ2;.92,3 .5 40 0.25

• For a comparison a penalized cubic smoothing spline is fitted using the R-library

pspline. The smoothing parameter is determined by generalized cross validation.

See Heckman and Ramsey (2000) or the documentation of the R-library pspline

(http://www.r-project.org/) for details.

Remark 5.1. The choice of the penalized cubic smoothing spline as the competitor for

our procedure is explained by the excellent numerical results delivered by this method for

many situations. We also tried other more sophisticated procedures like wavelets, point-

wise adaptive procedures, Markow Random Fields methods but the numerical results

(not reported here) were always in favor of smoothing splines, see also PJ2000.

5.1 Univariate Example 1

Our first example is based on a piecewise smooth function given by

f(x) =


8x : x < .125

2− 8x : .125 ≤ x < .25
44(x− .4)2 : .25 ≤ x < .55

.5 cos(6π(x− .775) + .5 : .55 ≤ x

see the top left of Figure 1 for a graph. The upper row of Figure 1 shows plots of the first

data set for σ = .125, .25 and .5, respectively, together with a graph of the regression

function. The bottom row reports the results in form of box-plots of Mean Absolute

Error (MAE) obtained for the four procedures in 1000 simulation runs.

Figure 2, providing pointwise estimates of the Mean Absolute Error for three of

the procedures in case of σ = .125, illustrates the behaviour of the procedures in their

dependence on the features of the regression function. Note that especially the local

linear AWS is superior to the cubic smoothing spline both near the discontinuities and

within smooth regions. Local quadratic AWS seems to be more flexible near the first

singularity, e.g. x = .125, and it behaves excellent for the rest of the design. Advantages

are due to the local adaptivity of the AWS procedures in contrast to the global nature

of the smoothing spline.
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Figure 1: Univariate Example 1: Simulated data sets for σ = .125, .25 and .5 (upper
row) and Box-Plots of MAE for local linear, local quadratic and local cubic AWS and
penalized cubic smoothing splines, obtained from 1000 simulation runs (lower row).

Figure 2: Example 1: Estimated pointwise Mean Absolute Error for local linear AWS,
local quadratic AWS and penalized cubic smoothing splines in case of σ = 0.125.

5.2 Univariate example 2

The second univariate example uses a smooth regression function with varying second

derivative:

f(x) = sin(2.4π/(x+ .2)) .
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Figure 3: Univariate Example 2: Simulated data sets for σ = .125, .25, .5 and 1 (upper
row) and Box-Plots of MAE for local linear, local quadratic and local cubic AWS and
penalized cubic smoothing splines, obtained from 1000 simulation runs (lower row).

The upper row of Figure 3 provides a view of a data set for σ = .125, .25, .5 and 1,

respectively, and a graph of the regression function. The bottom row contains box-plots

of Mean Absolute Error obtained for the four procedures in 1000 simulation runs.

Figure 4 again gives pointwise estimates of the Mean Absolute Error. Results are

shown for local quadratic and cubic AWS and the penalized cubic smoothing splines in

case of σ = .25. Note that the AWS procedures are superior in regions where the regres-

sion function is highly fluctuating or very smooth and loose compared to the smoothing

spline only in case of medium fluctuation, i.e. for x ∈ (.05, .2). For small values of x the

spline suffers from high bias while for large values variability dominates. AWS delivers

a good compromise, but with a little price for adaptation that can be seen in the region

where the global smoothing parameter of the spline is nearly optimal.

5.3 Bivariate Example

We provide a bivariate example to demonstrate the behaviour of our procedure. Data

are generated on a equidistant grid of 100 × 100 points in [−1, 1]2 using the regression



22 varying coefficient regression modeling by aws

Figure 4: Example 2: Estimated pointwise Mean Absolute Error for local quadratic AWS,
local cubic AWS and penalized cubic smoothing splines in case of σ = .25.

Table 2: Parameters for AWS procedure in bivariate regression

p λ η τ hmax

0 qχ2;.966,1 .5 – 0.2
1 qχ2;.966,3 .5 13.5 0.3
2 qχ2;.966,6 .5 100 0.4

function:

f(x, y) = (4x2 + 8y3)sign(4x2 − 4xy − 6y3).

The regression function is piecewise cubic with a discontinuity of varying strength along

4x2 − 4xy − 6y3 = 0.

Table 2 provides the parameters used in the bivariate example. The upper left of

Figure 5 shows a perspective plot of the data. The other three panels provide plots of

the estimated surface obtained by local constant, local linear and local quadratic Adap-

tive Weights Smoothing. Local constant smoothing is not flexible enough to reasonably

approximate the smooth part of the surface and introduces artificial segmentation. How-

ever the discontinuity is recovered rather well. The behavior of the local linear AWS is

similar but the quality of approximation within the smooth part of the surface is drasti-

cally improved. The segmentation effect is only slightly observed. Local quadratic AWS

delivers an almost perfect estimation quality both within smooth regions and near the

edge.

For the global L1 -risk (Mean Absolute Error) of the considered estimates we got the
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Figure 5: Bivariate Example: Perspective plots of data (upper left), local constant (upper
right), local linear (lower left) and local quadratic (lower right) reconstruction.

following results: 0.090 for local constant AWS, 0.040 for local linear AWS, 0.030 for

local quadratic AWS.

5.4 Summary

The results of the simulation study can be summarized as follows. The performance of

the method is completely in agreement with what was aimed: it is adaptive to variable

smoothness properties of the underlying function and sensitive to discontinuities outper-

forming the classical smoothing methods. It demonstrates excellent results for a small

or moderate noise and it is stable with respect to the large noise.

The local linear AWS seems to be a reasonable compromise for many situations com-

bining a good approximating properties with very good quality of change-point or edge

estimation. In situations with large homogeneous regions, local polynomial approxima-

tion of a higher order can be slightly preferable. The choice of the polynomial degree can

be also done automatically using global cross-validation type criteria.

The procedure is rather stable w.r.t. to the choice of parameters as long as λ is not
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chosen too small or too large.

6 Some important properties of AWS

This section discusses some properties of the AWS procedure. In particular we establish

the “propagation condition” which means a free extension of every local model in a

homogeneous situation, leading to a nearly parametric estimate at the end of iteration

process. Further we discuss the rate of estimation for a smooth function θ(x) . We

start by listing some attractive features of the method which directly follow from the

construction and are also justified by our numerical results.

AWS applies in a unified way to a broad class of regression models: This

means that the procedure is able to adapt to the unknown and variable function structure

without requiring any specific prior information like the degree of smoothness of the

underlying regression function. Modeling by weights allows to proceed in a unified way

with parametric and change point models, and also with models whose parameters vary

smoothly.

Weak model assumptions: The procedure does not require any specific informa-

tion about the noise distribution. The noise variance can be estimated from the data.

If some prior information about the noise distribution or about the model is available,

it can be easily incorporated in the method allowing a better estimation of the (local)

noise variance. However, the present procedure is designed towards regression-like mod-

els with additive noise. Specific noise models like binary-response, exponential or Poisson

etc. require a special treatment, see PS2002 for more details.

AWS is design adaptive and has no boundary problem: The method pro-

ceeds with the given “design” X1, . . . , Xn , no assumptions or restrictions are imposed

on it. The random design can be treated similarly to the case of a deterministic design.

The local polynomial modeling applied in the algorithm does not suffer from nonregular

design. This feature is important in connection with change point and edge estimation.

The produced estimate does not indicate the usual Gibbs effect (high variability) near

discontinuities like most of the other nonparametric methods.

AWS applies for high dimensional models: The procedure is described for the

case of a design in a finite dimensional Euclidean space IRd . This assumption however

was only made for convenience of exposition. The dimensionality d of the regressors plays
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absolutely no role for the procedure. Moreover, the procedure can be formulated for the

design in an arbitrary metric space X . Only the number p of parameters entering into

the description of the underlying parametric model is essential. However, for local linear

or local polynomial modeling, the number of parameters grows dramatically with the di-

mension d , and the procedure can face the so called “curse of dimensionality” problem:

in high dimension, pure nonparametric modeling leads to strong oversmoothing. Specif-

ically for the AWS method, if the number of parameters becomes too high (say, more

than 6) then the procedure looses sensitivity to structural changes. For such situation,

combining the procedure with some dimension reduction methods can be useful.

AWS is computationally straightforward and the numerical complexity can

be easily controlled: Indeed, AWS requires of order nMk∗ operations with k∗ being

the number of iterations and Mk being the corresponding size of the typical neighborhood

U
(k)
i at the step k . Therefore, the complexity of the method can be controlled simply

by restricting k∗ , or, equivalently the largest bandwidth hmax , see Section 3.4.

Now we turn to the more involved properties of the method which require a theoretical

justification.

6.1 Behaviour inside homogeneous regions. Propagation condition

The procedure is designed to provide a free extension of every local model within a

large homogeneous region. An extreme case is given by a fully parametric homogeneous

model. In that case, a desirable feature of the method is that the final estimate at

every point coincides with high probability with the fully parametric global estimate.

This property which we call the “propagation” condition is proved here under some

simplifying assumptions.

The analysis of the properties of the iterative estimates θ̂(k)
i is very difficult. The main

reason is that every estimate θ̂
(k)
i solves the local likelihood problem for the local model

defined by the weights w
(k)
ij which are random and depend on the same observations

Y1, . . . , Yn . To tackle this problem we make the following assumption:

(A0) for every step k an independent sample Y1, . . . , Yn is available so that the weights

w
(k)
ij are independent of the sample Y1, . . . , Yn for every k .

This assumption can be realized by splitting the original sample into k∗ subsamples.

Since the number of steps is only of logarithmic order this split can change of the quality
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of estimation only by a logarithmic factor. Of course, such a split is only a theoretical

device, the use of the same sample for all steps of the algorithm still requires a further

justification.

In our study we restrict ourselves to the case of the varying coefficient model with

homogeneous Gaussian noise:

(A1) The observations Y1, . . . , Yn follow the model Yi = f(Xi) + εi where ε1, . . . , εn

are i.i.d. N (0, σ2) .

To simplify the presentation we also assume that

(A2) The statistical penalty s
(k)
ij is defined via the likelihood ratio test statistic T ◦ij

from (3.2) in Section 3.1.

In our procedure the statistic Tij from (3.3) is applied. However, an essential difference

between Tij and T ◦ij only occurs in the situations where the local models Wi and Wj

are strongly unbalanced, which do not meet in the specific cases considered here.

(A3) The extension penalty e
(k)
ij is set to zero, that is, Ke(e

(k)
ij ) = 1 .

Again, this assumption is not restrictive because the extension penalty does not matter

as long as the propagation condition is studied.

We first consider the homogeneous situation with θi = θ which corresponds to a

global linear model f(x) = θ1ψ1(x) + . . .+ θpψp(x) .

Theorem 6.1. Let (A0), (A1), (A2) and (A3) be fulfilled. Suppose that θ(Xi) ≡ θ , i.e.

f = Ψθ . If λ ≥ C log n with constant C depending on the kernel Ks only, then for

every iteration k

P

(
min

i,j=1,...,n
Ks(s

(k)
ij ) > 1/2

)
≥ 1− 1/n.

Proof. Define b by the equation Ks(b) = 1/2 . Theorem 7.2 from the Appendix yields

for every iteration k

P

(
min

i,j=1,...,n
Ks(s

(k)
ij ) > 1/2

)
= P

(
max

i,j=1,...,n
T

(k)
ij ≤ bλ

)
≥ 1−

n∑
i,j=1

qp(bλ− p)

where qp(u) is defined by log qp(u) = −u/2 + 0.5p log(1 + u/p) . It is easy to see that

qp(u) fulfills log qp(u) ≤ −2 log n for u ≥ Cp log n with some constant Cp depending

on p only. This yields the assertion as soon as bλ − p ≥ Cp log n , or, equivalently,

λ ≥ (p+ Cp log n)/b .
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This result means that the statistical penalty entering in the weights w
(k)
ij at every

iteration k does not restrict a free extension of any local model.

Corollary 6.1. Let the assumptions (A0), (A1), (A2) and (A3) be fulfilled and θ(Xi) ≡

θ . If λ ≥ C log n and if hmax is sufficiently large then the last step estimate θ̂i = θ̂
(k∗)
i

fulfills for every z ≥ 0

P
(
(2σ2)−1(θ̂i − θ)>ΨΨ>(θ̂i − θ) > p+ z

)
≤ qp(z)

where log qp(u) = −u/2 + 0.5p log(1 + u/p) .

Proof. If hmax is sufficiently large then the location penalty Kl(l
(k)
ij ) at the final iteration

k = k∗ fulfills Kl(l
(k)
ij ) ≈ 1 for every pair (i, j) . By Theorem 6.1 the statistical penalty

Ks(s
(k)
ij ) ≥ 1/2 , hence w

(k)
ij ≥ 1/2 for all (i, j) . This yields ΨW

(k)
i Ψ> ≥ 0.5ΨΨ> and

the result follows from Theorem 7.1 from the Appendix.

Due to this result the final estimate θ̂i = θ̂
(k∗)
i delivers the same quality of estimation

as the global LSE θ̂ = (ΨΨ>)−1ΨY . In fact, one can show an even stronger assertion:

with a high probability it holds θ̂i ≈ θ̂ . The explanation is as follows. Our way of

computing the statistical penalty s
(k)
ij does not take into account that two “local” models

Wi and Wj have nonzero intersection. This means that there are some points Xl such

that the weights w
(k)
il and w

(k)
jl are simultaneously positive and hence, the estimates

θ̂
(k)
i and θ̂

(k)
j are dependent and positively correlated. In the homogeneous situation,

for every two fixed points, this dependence grows with iteration, so that the estimates

θ̂
(k)
i and θ̂

(k)
j become more and more positively correlated. In the extreme case they are

almost identical at the end and the statistical penalty vanishes.

The propagation condition can be easily extended to the case of a large homogeneous

region G in X . Define for every x ∈ G the distance from x to the boundary of G ,

i.e. ρG(x) = min{ρ(x,Xj) : Xj /∈ G} . At every step k we consider only internal points

Xi ∈ G which are separated from the boundary with the distance 2h(k) :

G(k) = {Xi ∈ G : ρG(Xi) ≥ 2h(k)}.

The next result claims the propagation condition (free extension) for all such points.

Theorem 6.2. Let the assumptions (A0), (A1) and (A2) be fulfilled. Suppose that

θ(Xi) ≡ θ for all Xi from some region G in X . If λ ≥ C log n for some constant C
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depending on the kernel Ks only, then for every iteration k

P

(
min

(i,j): Xi∈G(k), ρ(Xi,Xj)≤h(k)
Ks(s

(k)
ij ) > 1/2

)
≥ 1− 1/n.

Proof. It suffices to note that if Xi ∈ G(k) then the local model W (k)
i as well as all

the models W
(k)
j for all Xj with ρ(Xi, Xj) ≤ h(k) are homogeneous. Hence, the result

follows again by Theorem 7.2.

6.2 Accuracy of estimation for a varying coefficient model

Here we consider the case of an arbitrary function f which allows a good linear approx-

imation in a neighborhood of a point x ∈ X . We first show that this condition ensures

a free extension of all the local models within this neighborhood.

Let a design point x = Xi for some i be fixed, and let h be some bandwidth used

in the iteration procedure. We define Uh(x) = {x′ : |x′ − x| ≤ h} . We consider the

following conditions which are specified for the fixed point x and the bandwidth h :

(A4) It holds |Ψ>j [θ(Xj)− θ(x)] | ≤ δ for some δ ≥ 0 and all Xj ∈ Uh(Xi) .

(A5) The kernel Kl is compactly supported on [0, 1] .

(A6) Define W ∗
i = diag{w∗i1, . . . , w∗in} with w∗ij = Kl(|ρ(Xi, Xj)/h|2) , N∗

i = trW ∗
i and

B∗
i = ΨW ∗

i Ψ
> . It holds

N∗
i ΨiΨ

>
i ≤ CB B

∗
i .

Condition (A4) means that the function f(Xj) can be approximated by a linear function

Ψ>j θ(x) with the precision δ for every Xj ∈ Uh(x) . Condition (A6) guarantees a certain

design regularity in a neighborhood of the reference point x . The next result claims the

propagation condition (free extension) for the local models W
(k)
i as long as h(k) ≤ h

provided that δ is sufficiently small.

Theorem 6.3. Let the assumptions (A0) through (A6) be fulfilled. Let λ ≥ C log n for

some constant C depending on the kernel Ks only. If

2σ−2pδ2(N∗
i +N∗

j ) ≤ bλ/6, Xj ∈ Uh(x), (6.1)

where b is defined by K(b) = 1/2 , then for every iteration k with h(k) ≤ h

P

(
min

j: Xj∈Uh(Xi)
Ks(s

(k)
ij ) ≥ 1/2

)
≥ 1− 1/n. (6.2)
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If h = h(k) , then it holds with a probability of at least 1− 2/n

P

(∣∣∣f̂ (k)
i − fi

∣∣∣ >√pCBδ + σ
√

2CBλ/N∗
i

)
≤ 2/n. (6.3)

The proof is given in the Appendix. The result (6.3) indicates that the first k

iterations of the procedure (for h(k) ≤ h ) lead to a reasonable quality of estimation of the

function f(·) . However, the procedure has to prevent from losing the obtained quality

of estimation during further iterations. This is precisely what the control step of the

original AWS procedure from PS2000 does, see the discussion at the end of Section 3.5.

The procedure presented here applies this control step in a soft form, however we only

show how the hard control step (3.6) can be used for proving the rate result.

Theorem 6.4. Let the conditions of Theorem 6.3 be fulfilled and let the procedure involve

the control step from (3.6) with η∗ ≥ λ . Then the last step estimate f̂i = Ψ>i θ̂
(k∗)
i fulfills

with a probability of at least 1− 2/n∣∣∣f̂i − fi

∣∣∣ ≤√pCBδ + σ
√

2CBλ/N∗
i + σ

√
2CBη∗/N∗

i .

Proof. Let h = h(k) for some k . The control step (3.6) ensures that

(2σ2)−1
(
θ̂
(k)
i − θ̂

(k∗)
i

)>
B

(k)
i

(
θ̂
(k)
i − θ̂

(k∗)
i

)
≤ η∗.

This yields by (A6)

N
(k)
i

∣∣f̂ (k)
i − f̂i

∣∣2 = N
(k)
i

(
θ̂
(k)
i − θ̂

(k∗)
i

)>
ΨiΨ

>
i

(
θ̂
(k)
i − θ̂

(k∗)
i

)
≤ CB

(
θ̂
(k)
i − θ̂

(k∗)
i

)>
B

(k)
i

(
θ̂
(k)
i − θ̂

(k∗)
i

)
≤ 2σ2CBη

∗.

By Theorem 6.3 N
(k)
i ≥ 0.5N∗

i with a high probability and the assertion follows directly

from (6.3).

6.3 Rate of estimation for a smooth function f(·) . Spatial adaptivity

Here we briefly discuss one important special case of the result of Theorem 6.4. Namely,

we suppose that f(·) is a smooth function in IRd and consider the polynomial basis

{ψm} of degree less than a given integer number s . In the univariate case d = 1 there

are exactly p = s basis functions, e.g. 1, u− x, . . . , (u− x)s−1 . We also suppose that

(A4s) The function f(·) is s times continuously differentiable and |f (s)(u)| ≤ Ls! for

some constant L and all u ∈ Uh(x) .



30 varying coefficient regression modeling by aws

(A7) For some positive constants CX1 ≤ CX2 holds for all h ∈ [h(0), hmax]

CX1 ≤ N∗
h/(nh

d) ≤ CX2.

where N∗
h =

∑n
j=1Kl(|ρ(Xi, Xj)/h|2) .

Note that condition (A4s) ensures (A4) with δ = Lhs . We now apply Theorem 6.4

to this situation with η∗ = λ . The result is formulated as a separate statement.

Theorem 6.5. Suppose that (A0), (A1), (A2), (A3), (A4s), (A5), (A7) are fulfilled and

(A6) holds for all h ∈ [h(0), hmax] . If λ ≥ C log n for some fixed C , then

P
(∣∣f̂i − fi

∣∣ > C1(λσ2/n)s/(d+2s)Ld/(d+2s)
)
≤ 2/n

where the constant C1 depends on CX1, CX2 and CB only.

Proof. The bound (6.3) and condition (A7) imply with a high probability∣∣∣f̂i − fi

∣∣∣ ≤√pCBδ + 2σ
√

2CBλ/N∗
i ≤

√
pCBLh

s + 2σ
√

2CBλ/(CX1nhd).

Optimizing this expression w.r.t. h leads to the choice h = C2{λσ2/(nL2)}1/(d+2s) .

With this choice the condition (6.1) is fulfilled in view of (A7) provided that C2 is not too

large. The use of such selected h results in the accuracy of order {λσ2/n}s/(d+2s)Ld/(d+2s)

as required.

The accuracy shown in Theorem 6.5 is optimal in rate for the problem of estimation of

a smooth function f up to a logarithmic factor λ . Therefore, this result means that our

procedure is pointwise adaptive in the sense that it automatically adapts to the unknown

local smoothness degree measured by the exponent s and the Lipschitz constant L . As

shown in Lepski, Mammen and Spokoiny (1997) this property automatically leads to rate

optimality in the Sobolev and Besov function classes Bs
p,q .

7 Appendix

Here we present some general results on large deviation probabilities for local likelihood

ratio test statistics in Gaussian regression.

We consider the varying coefficient regression model Yi = f(Xi) + εi with Gaussian

homogeneous errors εi ∼ N (0, σ2) . The local model W is described by the weights

w1, . . . , wn . Local linear modeling assumes the linear structure of the model function f
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within the local model W : f(x) = θ1ψ1(x)+ . . .+θpψp(x) for a given system {ψm(x)} .

The corresponding local MLE θ̂ can be represented in the form θ̂ =
(
ΨWΨ>

)−1
ΨWY

with the notation from Section 2.2. The local likelihood ratio test statistic is defined for

a given θ by L(W, θ̂, θ) = (θ̂ − θ)>B(θ̂ − θ)/(2σ2) where B = ΨWΨ> .

7.1 Linear parametric case

Define θ = B−1ΨWf . Then Ψθ is the best linear approximation of f within the

local model W . In the homogeneous case f = Ψ>θ , it obviously holds θ = θ . The

first result we present shows that θ̂ is a good estimate of the vector θ . This particularly

implies a nice properties of the estimate in a homogeneous situation when the local linear

assumption is fulfilled and θ is the true parameter.

Theorem 7.1. For every z ≥ 0

P
(
2L(W, θ̂, θ) > p+ z

)
≤ qp(z)

where

qp(z) = exp (−0.5z + 0.5p log(1 + z/p)) . (7.1)

Proof. The model equation Y = f + ε immediately implies that θ̂i = B−1
i ΨWiY =

θi + B−1
i ΨWiε . Therefore, θ̂i − θi = B−1

i ΨWiε does not depend on θ , and we assume

without loss of generality that θ = 0 , so that the observations Yi coincide with the noise

εi . This obviously implies Eθ̂ = 0 . The covariance matrix V of the estimate θ̂ can be

represented as

V = Eθ̂θ̂> = EB−1Ψεε>Ψ>B−1 = σ2B−1DB−1

where D = ΨW 2Ψ> . Therefore, the estimate θ̂ can be represented as θ̂ = V 1/2ζ where

ζ is a standard Gaussian random vector in IRp . This yields

L(W, θ̂, θ) = (2σ2)−1ζ>V 1/2BV 1/2ζ = 0.5ζ>Rζ

with R = B−1/2DB−1/2 . Since wi ≤ 1 , it holds D ≤ B and ‖R‖ ≤ 1 , that is, the

largest eigenvalue of R does not exceed one. Now the desired result follows from the

general result for Gaussian quadratic forms in Lemma 7.1.

Lemma 7.1. Let a symmetric p× p -matrix R fulfill ‖R‖ ≤ 1 . Then

P
(
ζ>Rζ ≥ p+ z

)
≤ qp(z).
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Proof. Let r1, . . . , rp be the eigenvalues of R satisfying rm ≤ 1 for all m . It holds for

every µ < 1 by simple algebra

log E exp(µζ>Rζ/2) = log
p∏

m=1

1√
1− µrm

= −1
2

p∑
m=1

log(1− µrm) ≤ −0.5p log(1− µ).

Now the exponential Chebyshev inequality implies

log P
(
0.5ζ>Rζ ≥ (p+ z)/2

)
≤ −µ(p+ z)/2 + log E

(
0.5µζ>Rζ

)
≤ −0.5µ(p+ z)− 0.5p log(1− µ).

This expression is maximized by µ = z/(p+ z) leading to

log P
(
ζ>Rζ ≥ p+ z

)
≤ −0.5z + 0.5p log(1 + z/p)

as required.

Next we consider the likelihood ratio test statistic T ◦ij defined in Section 3.6 for two

local models Wi and Wj .

Theorem 7.2. Let f = Ψ>θ . Then for every z ≥ 0

P
(
T ◦ij > p+ z

)
≤ qp(z).

Proof. We use the representation 2T ◦ij = σ−2(θ̂i − θ̂j)>Bi(Bi + Bj)−1Bj(θ̂i − θ̂j) . Note

that

Cov(θ̂i − θ̂j) ≤ 2 Cov(θ̂i) + 2 Cov(θ̂j) = 2Vi + 2Vj ≤ 2σ2(B−1
i +B−1

j ).

Now the result follows from Lemma 7.1 similarly to the proof of Theorem 7.1.

7.2 Sufficient conditions for free extension

Now we consider the general situation of a varying coefficient model. We show that if the

difference between two local models defined in terms of the Kullback-Leibler distance, is

sufficiently small, then T ◦ij is with a large probability smaller then bλ for some b ≤ 1 .

Theorem 7.3. Let b ∈ (0, 1] be such that z = bλ/2− p > 0 . Then the condition

∆ := 0.5σ−2(θi − θj)>Bi(Bi +Bj)−1Bj(θi − θj) ≤ bλ/6 (7.2)

with θi = B−1
i ΨWif and θj = B−1

j ΨWjf implies

P
(
T ◦ij > bλ

)
≤ qp(z) + e−bλ/12.
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Proof. We use the decomposition

θ̂i − θ̂j = ξi − ξj + θi − θj

where ξi = B−1
i ΨWiε and similarly for ξj . This implies with Bij = Bi(Bi +Bj)−1Bj

2σ2T ◦ij = (ξi − ξj)>Bij(ξi − ξj) + (θi − θj)>Bij(θi − θj) + 2(θi − θj)>Bij(ξi − ξj). (7.3)

The result of Theorem 7.2 implies

P
(
σ−2(ξi − ξj)>Bij(ξi − ξj) > p+ z

)
≤ qp(z).

Next, ζij = σ−2(θi − θj)>Bij(ξi − ξj) is a Gaussian random variable with zero mean

satisfying

Eζ2
ij = σ−4(θi − θj)>Bij Cov(ξi − ξj)Bij(θi − θj)

≤ 2σ−2(θi − θj)>Bij(θi − θj) ≤ 4∆. (7.4)

Here we have used that Cov(ξi − ξj) ≤ 2σ2Bij , see the proof of Theorem 7.2. This and

condition (7.2) imply

P (ζij > bλ/3) ≤ e−bλ/12.

Since p+ z = bλ , we finally obtain

P
(
T ◦ij > bλ

)
≤ P

(
0.5σ−2(ξi − ξj)>Bij(ξi − ξj) ≥ p+ z

)
+ P (ζij > bλ/3)

≤ qp(z) + e−bλ/12

as required.

The next assertion delivers some sufficient conditions ensuring (7.2). More precisely,

we consider the situation when the function f can be well approximated by a lin-

ear function Ψ>θ within both local models Wi and Wj . If |f(Xl) − Ψ>l θ| ≤ δ for

some small positive δ and all Xl entering with positive weight in the model Wi , then

(f−Ψ>θ)>Wi(f−Ψ>θ) =
∑

l wil|f(Xl)−Ψ>l θ|2 ≤ Niδ
2 with Ni =

∑
l wil and similarly

for the model Wj .

Lemma 7.2. The condition

(f − Ψ>θ)>Wi(f − Ψ>θ) ≤ δ2Ni
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implies

(θi − θ)>Bi(θi − θ) ≤ pδ2Ni .

If, in addition, (f − Ψ>θ)>Wj(f − Ψ>θ) ≤ Njδ
2 , then

(θi − θj)>Bij(θi − θj) ≤ 2pδ2(Ni +Nj)

where Bij = Bi(Bi +Bj)−1Bj .

Proof. The use of Bi = ΨWiΨ
> and θi = B−1

i ΨWif gives

(θi − θ)>Bi(θi − θ) = (f − Ψ>θ)>WiΨ
>B−1

i ΨWi(f − Ψ>θ)

Define A = W
1/2
i Ψ>B−1

i ΨW
1/2
i . Then

trAA> = trW 1/2
i Ψ>B−1

i ΨWiΨ
>B−1

i ΨW
1/2
i = trB−1

i ΨWiΨ
> = trIp = p.

Therefore, by the Cauchy-Schwarz inequality

|(θi − θ)>Bi(θi − θ)|2 ≤ ‖W 1/2
i (f − Ψ>θ)‖2 trAA> ≤ Niδ

2p.

and the first assertion follows.

Since Bij ≤ Bi and similarly Bij ≤ Bj , it holds

(θi − θj)>Bij(θi − θj) ≤ 2(θi − θ)>Bi(θi − θ) + 2(θj − θ)>Bj(θj − θ).

and the second assertion follows as well.

7.3 Separability condition

Now we present some sufficient conditions for separability of two local models. Namely,

we aim to establish conditions that ensure T ◦ij ≥ Aλ where A is the length of the support

of the kernel Ks (Ks(u) = 0 for u > A ). With this conditions, it holds Ks(Tij/λ) = 0

and hence the new weight wij will be equal to zero.

Theorem 7.4. The condition

∆ := 0.5σ−2(θi − θj)>Bi(Bi +Bj)−1Bj(θi − θj) > Aλ (7.5)

implies with b = (∆−Aλ)/λ

P
(
T ◦ij < Aλ

)
≤ e

− b2λ
4(A+b) .
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Proof. Similarly to the proof of Theorem 7.3, the decomposition (7.3) and the condition

(7.4) imply

P
(
T ◦ij < Aλ

)
≤ P (∆+ ζij < Aλ) ≤ P (−ζij > bλ) ≤ e−b2λ2/(4∆).

Proof of Theorem 6.3

The propagation condition (6.2) follows similarly to the proof of Theorem 6.2. The only

difference is that in the local smooth case we apply Theorems 7.3 and 7.2 instead of

Theorem 7.2. Let k be such that h(k) ≤ h and Xj ∈ Uh(Xi) . We apply Theorem 7.3

to the local models W
(k)
i and W

(k)
j . For this we have to check the condition (7.2)

using Lemma 7.2. It holds with θ = θ(x) by the assumptions (A4) and (A6) that

(f − Ψ>θ)>W (k)
j (f − Ψ>θ) ≤ N

(k)
j δ2 ≤ N∗

j δ
2 for every Xj ∈ Uh(Xi) . Lemma 7.2 yields

(
θ
(k)
i − θ

(k)
j

)>
B

(k)
ij

(
θ
(k)
i − θ

(k)
j

)
≤ 2pδ2(N∗

i +N∗
j )

so that the condition (7.2) is fulfilled by (6.1).

Theorem 7.3 now applies yielding

P

(
min

j=1,...,n
s

(k)
ij < 1/2

)
≤ n−1

provided that λ = C log n with a sufficiently large C .

The second assertion of the theorem follows from the next lemma.

Lemma 7.3. Let the assumptions (A4), (A5) and (A6) hold true for some h and x =

Xi . Let also the local model Wi be such that wij ≥ 0.5wij := Kl(lij) for all j . If

λ ≥ C log n for some fixed C , then

P

(
|f̂i − fi| > δ

√
pCB + σ

√
2CBλ/N∗

i

)
≤ 1/n.

Proof. Define W ∗
i = diag{w∗i1, . . . , w∗in} , B∗

i = ΨW ∗
i Ψ

> and N∗
i = trW ∗

i . Then the

conditions of the lemma yield Ni ≥ 0.5N∗
i and Bi ≥ 0.5B∗

i . Next, by Theorem 7.1

P
(
(θ̂i − θi)>Bi(θ̂i − θi) ≥ λσ2

)
≤ 1/n

for λ ≤ C log n with a sufficiently large C . This implies by (A6) with a high probability

(θ̂i − θi)>B∗
i (θ̂i − θi) ≤ 2λσ2
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that, in its turn implies in view of (A6)

N∗
i (θ̂i − θi)>ΨiΨ

>
i (θ̂i − θi) ≤ 2CBλσ

2

or equivalently

|f̂i − f i| ≤ σ
√

2CBλ/N∗
i

where f i = Ψ>i θi . Next, Lemma 7.2 and (A4) imply

(θi − θ)>B∗
i (θi − θ) ≤ pδ2N∗

i .

This and (A6) yield using the equality fi = Ψ>i θ

|f i − fi|2 = (θi − θ)>ΨiΨ
>
i (θi − θ) ≤ CB(θi − θ)>B∗

i (θi − θ)/N∗
i ≤ pCBδ

2

and the assertion follows.
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