Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Attractors of non invertible maps

H.G. Bothe

submitted: 20th December 1993

Institut für Angewandte Analysis und Stochastik Mohrenstraße 39 D – 10117 Berlin Germany

> Preprint No. 77 Berlin 1993

1991 Mathematics Subject Classification. 58F12, 58F15. Key words and phrases. Attractors, non invertible maps, solenoids.

Herausgegeben vom Institut für Angewandte Analysis und Stochastik Mohrenstraße 39 D — 10117 Berlin

Fax:

+ 49 30 2004975 $c{=}de; a{=}d400; p{=}iaas{-}berlin; s{=}preprint$ e-mail (X.400): e-mail (Internet): preprint@iaas-berlin.d400.de

CONTENTS

1

 $\mathbf{2}$

10

- 1. Results
- 2. Proof of Theorem 1
- 3. Proof of Theorem 2

ABSTRACT. For mappings $f: S^1 \times \mathbb{R}^n \to S^1 \times \mathbb{R}^n$ $(n \ge 2)$ of the form $f(t, x) = (\Theta t, \lambda x + v(t))$, where $\Theta \in \mathbb{Z}, \Theta \ge 2, \lambda \in (0, 1), v \in C^1(S^1, \mathbb{R}^n)$ we consider the open subset $S_{n,\Theta,\lambda}$ of $C^1(S^1, \mathbb{R}^n)$ which consist of all v for which the restriction of f to its attractor is injective. It is shown that for $\lambda < \min(\frac{1}{2}, \Theta^{-2/(n-1)})$ this set $S_{n,\Theta,\lambda}$ is dense in $C^1(S^1, \mathbb{R}^n)$ and that for each odd n it is not dense provided $\lambda \ge 64\Theta^{-2/(n-1)}$.

•

1. Results

Let $S^2 = \mathbb{R} \pmod{1}$ be the unit circle. The Cartesian product $V = S^1 \times \mathbb{R}^n$ can be regarded as an open (n+1)-dimensional solid torus. We always assume $n \ge 2$. For an integer $\Theta > 1$, a real $\lambda \in (0,1)$ and a C^r mapping $v: S^1 \to \mathbb{R}^n$ $(r \ge 0)$ we consider the mapping

$$f: V \to V$$

which is given by

$$f(t,x) = (\Theta t, \lambda x + v(t)) \quad (t \in S^1, x \in \mathbb{R}^n).$$

If we want to point out that f is determined by Θ, λ, v we shall write $f = f_{\Theta,\lambda,v}$. Since $0 < \lambda < 1$ this mapping has a compact attractor which will be denoted by Λ_f or by Λ . To visualize this attractor we consider a compact solid torus $V_{\rho} = S^1 \times \mathbb{D}_{\rho}^n$, where \mathbb{D}_{ρ}^n is the compact ball in \mathbb{R}^n with radius p and centre o and where

$$ho \geq rac{1}{1-\lambda} \sup_{t\in S^1} (v(t)),$$

or, equivalently

$$v(t) + \lambda \rho \le \rho \quad (t \in S^1).$$

Then $f(V_{\rho}) \subset V_{\rho}$ and

$$\Lambda = \bigcap_{i=0}^{\infty} f^i(V_{\rho}).$$

The image $f(V_{\rho})$ is obtained by stretching V_{ρ} in the direction of S^1 , contracting it in the direction of \mathbb{D}_{ρ}^n and wrapping it around in V_{ρ} exactly Θ times without folds. (Self intersection of $f(V_{\rho})$ are not excluded.) If f is injective in V_{ρ} , i.e. if $f(V_{\rho})$ has no self interpretitions, then the images $f^i(V_{\rho})$ (i = 1, 2, ...) form a nested sequence of solid tori, and $f^i(V_{\rho})$ for i large is thin and runs around in V_{ρ} exactly Θ^i times. As mentioned above Λ is the intersection of these tori, and this intersection is the well known solenoid. So Λ has a simple structure in this case. If the restriction of f to Λ is known to be injective, then, by compactness of Λ , there is a neighbourhood of Λ on which f is injective, and it can be shown that Λ is a solenoid in this case too.

In this paper we look for conditions under which a mapping $f_{\Theta,\lambda,v}$ is injective on its attractor. The result concerns the C^1 case and can roughly speaking, be stated as follows. If for a fixed Θ the number λ is sufficiently small, then generically for all v the restriction of $f_{\Theta,\lambda,v}$ to its attractor is injective.

Theorem 1. For n, Θ, λ as above let $S_{n,\Theta,\lambda}$ be the set of all $v \in C^1(S^1, \mathbb{R}^n)$ for which $f_{\Theta,\lambda,v}$ is injective on its attractor. If $\lambda < \frac{1}{2}$ and $\lambda < \Theta^{-2/(n-1)}$ then $S_{n,\Theta,\lambda}$ is open and dense in $C^1(S^1, \mathbb{R}^n)$.

As easily senn the set

$$\{\lambda \in (0,1) | \mathcal{S}_{n,\Theta,\lambda} \text{ dense in } C^1(S^1,\mathbb{R}^n) \}$$

is an open interval $(0, \lambda_n, (\Theta))$, and the theorem is equivalent to the inequality

$$\lambda_n(\Theta) \ge \min(\frac{1}{2}, \Theta^{-2/(n-1)}).$$

Theorem 2. For each odd dimension $n \geq 3$

$$\lambda_n(\theta) \le 32\theta^{-2/(n-1)}$$

holds for all $\theta \geq 2$.

Remark 1. If $f_{\theta,\lambda,v}$ is injective on its attractor Λ , then for each $t \in S^1$ the section $(\{t\} \times \mathbb{R}^n) \cap \Lambda$ is a Cantor set, and by standard methods it is easy to see that the Hausdorff dimension of this Cantor set is $\log \theta / \log \frac{1}{\lambda}$. The Hausdorff dimension of a subset of \mathbb{R}^n can not exceed n, and therefore $\lambda > \theta^{-1/n}$ implies that for any $v \in C^0(S^1, \mathbb{R}^n)$ the restriction of $f_{\theta,\lambda,v}$ to its attractor can not be injective, and therefore

$$\lambda_n(\theta) \le \theta^{-1/n}.$$

Remark 2. Let $\varepsilon > 0$ be fixed. If n and θ are sufficiently large (the lower bound for θ depends on n), then the factor 32 in Theorem 2 can be replaced by $8 + \varepsilon$. This fact can easily be derived from our proof below. Modifying this proof (the set \mathfrak{P}_r e.g.) a further reduction of this factor is possible.

2. Proof of Theorem 1

Let n, Θ, λ be fixed such that $\lambda < \frac{1}{2}, \lambda < \Theta^{-2/(n-1)}$.

Since our attractors are compact it is not hard to see that for any $r \ge 0$ the set of all $v \in C^r(S^1, \mathbb{D}^n_{\alpha})$ with injective restriction to its attractor is open in $C^r(S^1, \mathbb{D}^n_{\alpha})$. This holds for $0 < \alpha \le \infty$, where $\mathbb{D}^n_{\infty} = \mathbb{R}^n$. Therefore $S_{n,\theta,\lambda}$ is open, and we have only to prove that $S_{n,\Theta,\lambda}$ is dense in $C^1(S^1, \mathbb{R}^n)$. Moreover it is sufficient to prove, as we shall do below, that for an arbitrary α ($0 < \alpha < \infty$) the intersection $S_{n,\Theta,\lambda} \cap C^1(S^1, \mathbb{D}^n_{\alpha})$ is dense in $C^1(S^1, \mathbb{D}^n_{\alpha})$. Therefore for the rest of the proof in addition to n, θ and λ the positive real numbers α and $\rho > \frac{\alpha}{1-\lambda}$ will be fixed. Then $f_{\theta,\lambda,v}(V_{\rho}) \subset \text{Int } V_{\rho}$ for any $v \in C^r(S^1, \mathbb{D}^n_{\alpha})$, and

$$\Lambda_{f_{\theta,\lambda,v}} = \bigcap_{i=0}^{\infty} f_{\theta,\lambda,v}^{i}(V_{\rho}).$$

If m is a proper multiple of θ , i.e. $m = \theta m'$ with $m' \in \mathbb{Z}$, m' > 1, we consider the points $t_i = \frac{i}{m}$ and arcs $I_i = [t_{i-1}, t_i]$ in S^1 $(i \in \mathbb{Z})$. The family of these arcs will be denoted by \mathcal{P}_m and called a Markov partition of S^1 . Of course $t_i = t_{i'}$, $I_i = I_{i'}$ if and only if $i \equiv i' \pmod{m}$, so that \mathcal{P}_m consists of the m arcs I_1, \ldots, I_m . Moreover

$$\theta t_i = t_{\theta i}, \quad \theta I = [t_{\theta(i-1)}, t_{\theta i}] = I_{\theta(i-1)+1} \cup \cdots \cup I_{\theta i}.$$

If \mathcal{P}_m is fixed, then each $v \in C^0(S^1, \mathbb{R}^n)$ which is linear on each arc of \mathcal{P}_m is determined by the *m* points $v_i = v(t_i)$ in \mathbb{R}^n (i = 1, ..., n), and we identify this

piecewise linear v with the point (v_1, \ldots, v_m) in \mathbb{R}^{mn} . So \mathbb{R}^{mn} is embedded in $C^0(S^1, \mathbb{R}^n)$ and those $v \in \mathbb{R}^{mn}$ which belong to $C^0(S^1, \mathbb{D}^n_{\alpha})$ are just the points in $(\mathbb{D}^n_{\alpha})^m$. This set (\mathbb{D}^n_{α}) , when regarded as a subset of $C^0(S^1, \mathbb{R}^n)$, will be denoted by \mathcal{V}_m .

For $v \in C^0(S^1, \mathbb{R}^n)$ we define

$$|v|_0 = \sup_{t\in S^1} |v(t)|$$

and for $v \in C^1(S^1, \mathbb{R}^n)$

$$|v|_1 = \max(|v|_0, |\dot{v}|_0),$$

where $\dot{v} = \frac{dv}{dt} : S^1 \to \mathbb{R}^n$. If \mathcal{P}_m is a Markov partition and $v \in C^0(S^1, \mathbb{R}^n)$ is C^1 on each arc I_i of \mathcal{P}_m , then we define

$$|v|_1 = \max(|v|_0, \sup \{ |\dot{v}(t)| | t \in \bigcup_{I_i \in \mathcal{P}_m} \operatorname{Int} I_i \}).$$

Obviously for $v \in C^1(S^1, \mathbb{R}^m)$ the two definitions of $|v|_1$ coincide. If $v \in \mathcal{V}_m$ then, as easily seen,

$$|v|_1 \leq 2m |v|_0,$$

and $||_0$ and $||_1$ define the same topology in \mathcal{V}_m which coincides with the natural topology of $(\mathbb{D}^n_{\alpha})^m$.

Lemma 1. If $v_0 \in C^1(S^1, \mathbb{D}^n_{\alpha})$ and $\varepsilon > 0$, then there is a positive integer m and a mapping $v_1 \in \mathcal{V}_m$ such that $|v_0 - v_1| < \varepsilon$.

Lemma 2. The set $S_m = \{v \in \mathcal{V}_m | f_{\theta,\lambda,v} |_{\Lambda_{f_{\theta,\lambda,v}}} \text{ injective} \}$ is open and dense in \mathcal{V}_m .

Lemma 3. If $v_0 \in C^1(S^1, \mathbb{D}^n_{\alpha}), v_2 \in \mathcal{V}_m, |v_0 - v_2|_1 < \varepsilon$ for some $\varepsilon > 0$, then for each $\delta > 0$ there is a $v \in C^1(S^1, \mathbb{D}^n_{\alpha})$ such that $|v - v_0|_1 < \varepsilon, |v - v_2|_0 < \delta$.

These three lemmas easily imply Theorem 1: Let $v_0 \in C^1(S^1, \mathbb{D}^n_{\alpha})$ and ε be given. We have to find a $v \in C^1(S^1, \mathbb{D}^n_{\alpha})$ such that $|v - v_0|_1 < \varepsilon$ and the restriction of $f_{\theta,\lambda,v}$ to its attractor is injective.

By Lemma 1 we find a v_1 in some \mathcal{V}_m such that $|v_0 - v_1| < \varepsilon/2$. Now we apply Lemma 2 to get a $v_2 \in \mathcal{S}_m$ such that $|v_1 - v_2|_0$ is so small that $|v_0 - v_2|_1 < \varepsilon$. Since the set of all $v \in C^0(S^1, D^n_\alpha)$ with an injective restriction $f_{\theta,\lambda,v}|_{\Lambda_{f_{\theta,\lambda,v}}}$ is open in $C^0(S^1, D^n_\alpha)$ we can apply Lemma 3 to find a $v \in C^1(S^1, D^n_\alpha)$ with the property required above.

Lemma 1 is almost obvious and its proof can be omitted. To prove Lemma 3 we merely have to smoothen the corners of v_2 . Therefore it remains to prove Lemma 2.

Proof of Lemma 2. We choose a fixed Markov partition \mathcal{P}_m of S^1 with arcs I_i and partitioning points t_i . If $k \geq 1$ in an integer let $\mathcal{V}_m(k)$ be the set of all $v \in \mathcal{V}_m$ for which the mapping $f_{\theta,\lambda,v}$ is injective on the neighbourhood $f_{\theta,\lambda,v}^{k-1}(V_{\rho})$ of the attractor $\Lambda_{f_{\theta,\lambda,v}}$. As easily seen $\mathcal{V}_m(k)$ consists of all $v \in \mathcal{V}_m$ with the following property. If s_1, s_2 are points in S^1 such that $\theta^{k-1} \cdot s_1 \neq \theta^{k-1} \cdot s_2$ but $\theta^k \cdot s_1 = \theta^k \cdot s_2$, then

3

 $f_{\theta,\lambda,v}^k(D(s_1)) \cap f_{\theta,\lambda,\mu}^k(D(s_2)) = \emptyset$, where $D(s_i)$ are the meridional disks $\{s_i\} \times \mathbb{D}_{\rho}^n$ of V_{ρ} . Obviously $\mathcal{V}_m(k) \subset \mathcal{V}_m(k+1)$, and

$$\mathcal{S}_m = \bigcup_{k=1}^{\infty} \mathcal{V}_m(k).$$

The complement $\mathcal{V}_m(k)$ will be denoted by $\mathcal{W}_m(k)$. In $\mathcal{V}_m = (\mathbb{D}^n_{\alpha})^m$ we consider the Lebesgue measure which will be denoted by vol. Since a subset of \mathcal{V}_m whose complement has measure 0 must be dense in \mathcal{V}_m , Lemma 2 is an immediate consequence of $\lambda < \theta^{-2/(m-1)}$ and the following lemma.

Lemma 2'. There is a real γ such that

vol
$$\mathcal{W}_m(k) \leq \gamma \theta^{2k} \lambda^{k(n-1)}$$
 $(k = 1, 2, ...).$

By \mathcal{J}_k we denote the set of all pairs (I, J) of arcs in S^1 such that $\theta^{k-1}I, \theta^{k-1}J$ are different arcs of our Markov partition \mathcal{P}_m and $\theta^k I = \theta^k J$. The number of elements in \mathcal{J}_k is bounded by

$$#\mathcal{J}_{k} = \frac{m}{\theta} \cdot \theta^{k} \cdot \theta^{k-1}(\theta-1) < m\theta^{2k}.$$
 (1)

For $(I, J) \in \mathcal{J}_k$ we consider the sets

$$\mathcal{W}(I,J) = \{ v \in \mathcal{V}_m | f^k_{\theta,\lambda,v}(I \times \mathbb{D}^n_\rho) \cap f^k_{\theta,\lambda,v}(J \times \mathbb{D}^n_\rho) \neq \emptyset \}.$$

This definition implies

$$\mathcal{W}_m(k) = \bigcup_{(I,J)\in\mathcal{J}_k} \quad \mathcal{W}(I,J).$$

This last equation together with (1) reduces the proof of Lemma 2' to the proof of the following lemma.

Lemma 2". There is a real γ which does not depend on k, I, J and for which the following inequality holds

vol
$$\mathcal{W}(I,J) \leq \gamma \lambda^{k(n-1)}$$
.

Let (I, J) be a fixed pair in \mathcal{J}_k . We write $I = [s_1, s_2]$, $J = [s_3, s_4]$ and define for each $v \in \mathcal{V}_m$ four points $x_{v,j}$ $(1 \le j \le 1)$ in \mathbb{D}_{ρ}^n by

$$f^{\boldsymbol{k}}_{\boldsymbol{\theta},\boldsymbol{\lambda},\boldsymbol{v}}(s_{j},o) = (\boldsymbol{\theta}^{\boldsymbol{k}}s_{j}, x_{\boldsymbol{v},j}) \quad (1 \leq j \leq 4),$$

where o denotes the centre of \mathbb{D}_{ρ}^{n} . The four points $p_{j} = (\theta^{k}s_{j}, x_{v,j})$ are the end points of the two segments $f^{k}(I \times \{o\}), f^{k}(J \times \{o\})$ in the cylinder $Z = \theta^{k}I \times \mathbb{D}_{\rho}^{n} = \theta^{k}J \times \mathbb{D}_{\rho}^{n}$ (see Fig. 1). The image $f^{k}(I \times \mathbb{D}_{\rho}^{n})$ is the union of all *n*-disks in Z which are parallel to the bottom of Z, whose centres lie on $f^{k}(I \times \{o\})$ and whose radius in $\rho\lambda^{k}$. The cylinder $f^{k}(J \times \mathbb{D}_{\rho}^{n})$ is obtained similarly from $f^{k}(J \times \{o\})$. If, as above, the points in \mathbb{R}^{mn} are identified with the elements of $C^{0}(S^{1}, \mathbb{R}^{n})$ which are linear on each arc of \mathcal{P}_{m} , then the mapping $v \to (x_{v,1}, \ldots, x_{v,4})$ of $\mathcal{V}_{m} = (\mathbb{D}_{\alpha}^{n})^{m}$ to $(\mathbb{D}_{\rho}^{n})^{4}$ can be extended to a linear mapping $\varphi : \mathbb{R}^{mn} \to \mathbb{R}^{4n}$. This extension is characterized by

$$\varphi(v) = (x_1, \ldots, x_4) (v \in \mathbb{R}^{mn}, x_j \in \mathbb{R}^n),$$
$$x_j = \sum_{l=1}^k \lambda^{l-1} v(\theta^{k-l} s_j) \qquad (1 \le j \le 4).$$

Later in the proof of Lemma 2" we shall need the following lemma.

Fig. 1

Lemma 4. There is a real γ_0 which depends on λ but not on k, I, J such that for any compact subset Q of $(\mathbb{D}_{\rho}^n)^4$ we have

vol
$$(\varphi^{-1}(Q) \cap (\mathbb{D}^n_{\alpha})^m) \leq \gamma_0$$
 vol Q ,

where vol denotes the Lebesgue measure in \mathbb{R}^{mn} or in \mathbb{R}^{4n} , respectively.

Proof of Lemma 4. Let $\delta = \lambda/(1-\lambda)$. (Here we apply $\lambda < \frac{1}{2}$ so that $\delta > 0$.) The lemma will be proved if we have found a 4n-dimensional linear subspace L of \mathbb{R}^{mn} such that $\varphi|_L : L \to \mathbb{R}^{4n}$ is regular with determinant at least δ^{4n} , where the determinant is defined with respect to the natural metrics in L and \mathbb{R}^{4n} . To define L we consider the arcs $\theta^{k-1}I$, $\theta^{k-1}J$. These arcs belong to \mathcal{P}_n , and we

can write

$$\theta^{k-1}I = [t_{i_1}, t_{i_2}], \quad \theta^{k-1}J = [t_{i_3}, t_{i_4}],$$

where t_{i_1}, \ldots, t_{i_4} are partitioning points of $\mathcal{P}_m(1 \leq i_j \leq m)$. Since $\theta^{k-1}I \neq \theta^{k-1}J$ but $\theta^k I = \theta^k J$ we get actually four points t_{i_j} , i.e. no two of them coincide. Now let L be the space of all $v = (v_1, \ldots, v_m) \in \mathbb{R}^{mn}$ for which $v_i = o$ unless i is one of the four indices i_1, \ldots, i_4 .

We can identify L with the tensor product $\mathbb{R}^4 \otimes \mathbb{R}^n$, where for $\mu = (\mu_1, \ldots, \mu_4) \in \mathbb{R}^4$, $x \in \mathbb{R}^n$ the product $\mu \otimes x$ is identified with $v = (v_1, \ldots, v_m)$ given by

$$v_i = \begin{cases} \mu_j x & \text{if } i = i_j \\ o & \text{otherwise.} \end{cases} (1 \le j \le 4),$$

Moreover, each $\mu = (\mu_1, \ldots, \mu_4) \in \mathbb{R}^4$ will be identified with the function $\mu : S^1 \to \mathbb{R}$ which is linear on each arc of \mathcal{P}_m and satisfies

$$\mu(t_i) = \left\{ egin{array}{cc} \mu_j & ext{if } i=i_j & (1\leq j\leq 4), \\ 0 & ext{otherwise} \end{array}
ight.$$

for the end points of these arcs. Then, if $\xi : \mathbb{R}^4 \to \mathbb{R}^4$ denotes the maps given by

$$\xi(\mu) = (\nu_{\mu,1}, \ldots, \nu_{\mu,4}),$$

$$\nu_{\mu,j} = \sum_{l=1}^{k} \lambda^{l-1} \mu(\theta^{k-l} s_j) \quad (1 \le j \le 4),$$

we get

$$|P|_L = \xi \otimes id : L = \mathbb{R}^4 \otimes \mathbb{R}^n \to \mathbb{R}^{4n} = \mathbb{R}^4 \otimes \mathbb{R}^n,$$

where the equation on the right hand side is realized by

$$(\nu_1,\ldots,\nu_4)\otimes(x_1,\ldots,x_n)=(\nu_1x_1,\ldots,\nu_4x_1,\ldots,\nu_1x_n,\ldots,\nu_4x_n).$$

To prove det $\varphi|_L \geq \delta^{4n}$ it is sufficient to prove det $\xi \geq \delta^4$. To this end we consider the 16 points $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_4)$ in \mathbb{R}^4 , where $|\varepsilon_j| = 1$. Their convex hull is a cube Kwith volume 2^4 . The images $\xi(\varepsilon) = (\nu_{\varepsilon,1}, \ldots, \nu_{\varepsilon,4})$ are given by

$$\nu_{\varepsilon,j} = \sum_{l=1}^{k} \lambda^{l-1} \varepsilon(\theta^{k-l} s_j) = \varepsilon_j + \sum_{l=2}^{k} \lambda^{l-1} \varepsilon(\theta^{k-l} s_j) = \varepsilon_j + \sum_{l=1}^{k-1} \lambda^l \varepsilon(\theta^{k-l-1} s_j).$$

(Here we apply $\varepsilon(\theta^{k-1}s_j) = \varepsilon(t_{i_j}) = \varepsilon_j$.) So we have

$$\nu_{\varepsilon,j} = \varepsilon_j + \nu'_j$$

with

$$|\nu'_j| \leq \sum_{l=1}^{\infty} \lambda^l = \frac{\lambda}{1-\lambda} = 1-\delta.$$

If F_{ϵ} denotes the part

$$F_{\varepsilon} = \{ (\nu_1, \ldots, \nu_4) \in \mathbb{R}^4 | \nu_j \varepsilon_j \ge \delta \}$$

of \mathbb{R}^4 , then $\xi(\varepsilon) \in F_{\varepsilon}$, and it is a simple geometric fact that the convex hull $\xi(K)$ of the 16 points $\xi(\varepsilon)$ contains the cube $K' = \{(\nu_1, \ldots, \nu_4) \in \mathbb{R}^4 | |\nu_j| \le \delta\}$ whose volume is $(2\delta)^4$. (See Fig. 2 where the situation is illustrated in the 2-dimensional case.) Now det $\xi \ge \delta^4$ is implied by vol $(K) = 2^4$, vol $\xi(K) \ge (2\delta)^4$.

We continue the proof of Lemma 2" with the definition of a function $d^* : \mathbb{R}^{4n} \to \mathbb{R}$:

$$d^*(x_1,\ldots,x_4) = \inf_{0 \le \tau \le 1} |x_1 + \tau(x_2 - x_1) - (x_3 + \tau(x_4 - 3))| \qquad (x_j \in \mathbb{R}^n).$$

If [t',t''] denotes the arc $\theta^k I = \theta^k J$ in S^1 and t is the point $t' + \tau(t'' - t')$ in [t',t''], then $x_1 + \tau(x_2 - x_1), x_3 + \tau(x_4 - x_3)$ are the points at which the segments $f^k(I \times \{o\}), f^k(J \times \{o\})$ pierce the disk $\{t\} \times \mathbb{D}_{\rho}^n$. Therefore $d^*(x_1, \ldots, x_4)$ may be regarded as the vertical distance between these segments. Since $f^k(I \times \mathbb{D}_{\rho}^n)$ is the $\rho\lambda^k$ -neighbourhood of $f^k(I \times \{o\})$ with respect to this distance and the same holds for $f^k(J \times \mathbb{D}_{\rho}^n)$ and $f^k(J \times \{o\})$, the function d^* characterizes the set $\mathcal{W}(I, J)$ by

$$\begin{aligned} \mathcal{W}(I,J) &= \{ v \in \mathcal{V}_m | d^*(x_{v,1},\ldots,x_{v,4}) \leq 2\rho\lambda^k \} \\ &= \{ v \in \mathcal{V}_m | d^*(\varphi(v)) \leq 2\rho\lambda^k \}. \end{aligned}$$

So we get the inclusion

$$\mathcal{W}(I,J) \subset (\mathbb{D}^n_{\alpha})^m \cap \varphi^{-1}(\{x \in \mathbb{R}^{4m} | d^*(x) \le 2\rho\lambda^k\}).$$
(2)

This inclusion suggests to look for the structure of the sets $\{x \in \mathbb{R}^{4n} | d^*(x) \leq x\}$

7

 ε } ($\varepsilon > 0$ small), and we are led to introduce the further set

$$\{x \in \mathbb{R}^{4n} | d^*(x) = 0\}$$

As easily seen this set is contained in

 $F = \{(x_1, \ldots, x_4) \in \mathbb{R}^{4n} | x_1 - x_3, x_2 - x_4 \text{ linearly dependent in } \mathbb{R}^n \}.$

It will turn out below that F has a simple shape (it is an (n + 1)-dimensional cone over a smooth manifold), and we relate the sets $\{x \in \mathbb{R}^{4n} | d^*(x) \leq \varepsilon\}$ to F by showing that, for ε small, they lie close to F. Indeed, the following lemma proves

$$\{x \in \mathbb{R}^{4n} | d^*(x) \le \varepsilon\} \subset N_{2\varepsilon}(F), \tag{3}$$

where $N_{\varepsilon}(F)$ denotes the closed ε -neighbourhood of F in \mathbb{R}^{4n} .

Lemma 5. For $(x_1, ..., x_4) \in \mathbb{R}^{4n}$

dist
$$((x_1, \ldots, x_4), F) \leq 2d^*(x_1, \ldots, x_4)$$
.

Proof of Lemma 5. Obviously we may assume $|x_1 - x_3| \le |x_2 - x_4|, x_1 \ne x_3, x_2 \ne x_4$. First we consider the case $x_3 = x_4$. let the points $y, z \in \mathbb{R}^n$ be determined by (see Fig. 3)

- (i) $(y, x_2, x_3, x_3) \in F$, i.e. y, x_2, x_3 collinear, (ii) $y - x_1 \perp x_1 - x_2$, i.e. the scalar product $(y - x_1, x_1 - x_2)$ vanishes, (iii) z, x_1, x_2 collinear
- (iv) $z x_3 \perp x_1 x_2$, i.e. $(z x_3, x_1 x_2) = 0$.

Fig. 3

Then $d^*(x_1, x_2, x_3, x_3) \ge |z - x_3|$, and by $|x_1 - x_3| \le |x_2 - x_4|$ we have $|y - x_1| \le 2|z - x_3|$. Therefore

$$\begin{array}{rcl} {\rm dist}\;((x_1,x_2,x_3,x_3),F)&\leq&|(x_1,x_2,x_3,x_3)-(y,x_2,x_3,x_3)|\\ &=&|y-x_1|\\ &\leq&2|z-x_3|\\ &\leq&2d^*(x_1,x_2,x_3,x_3). \end{array}$$

To prove the lemma in the general case we introduce the point $x^* = x_2 - (x_4 - x_3)$. Then

$$d^*(x_1, x^*, x_3, x_3) = d^*(x_1, x_4, x_3, x_4),$$

dist $((x_1, x^*, x_3, x_3), F) = \text{dist} ((x_1, x_2, x_3, x_4), F),$

and the general case is reduced to the special case considered above.

Using (2) and (3) we get

$$\mathcal{W}(I,J) \subset (\mathbb{D}^n_{\alpha})^m \cap \varphi^{-1}(N_{4\lambda^k}(F)).$$
(4)

The set $\varphi(\mathbb{D}^n_{\alpha})^m$ is contained in the subset $(\mathbb{D}^n_{\rho})^4$ of \mathbb{R}^{4n} , and we get the further inclusion

$$\mathcal{W}(I,J) \subset (\mathbb{D}^n_{\alpha})^m \cap \varphi^{-1}((\mathbb{D}^n_{\rho})^4 \cap N_{4\lambda^k}(F)).$$

We shall show that there is a real γ_1 such that for each $\varepsilon > 0$

$$\operatorname{vol}\left(N_{\varepsilon}(F) \cap (\mathbb{D}_{\rho}^{n})^{4}\right) \leq \gamma_{1} \varepsilon^{n-1}, \tag{5}$$

where vol denotes the Lebesgue measure in \mathbb{R}^{4n} . Since neither F nor $(\mathbb{D}_{\rho}^{n})^{4}$ depends on k, I, J, the number γ_{1} is also independent of k, I, J. This inequality (5) (with $\varepsilon = 4\lambda^{k}$) together with (4) and Lemma 4 (with $Q = N_{4\lambda^{4}}(F) \cap (\mathbb{D}_{\rho}^{n})^{4}$) immediately implies Lemma 2" (with $\gamma = \gamma_{0}\gamma_{1}$) and therefore Lemma 2 and Theorem 1.

So we must prove (5). To this aim we describe the set F. If $\sigma : \mathbb{R}^{4n} \to \mathbb{R}^{2n}$ is the projection which is defined by

$$\sigma(x_1,\ldots,x_4) = (x_1 - x_3, x_2 - x_4),$$

then $F = \sigma^{-1}(F_0)$, where

$$F_0 = \{ (x_1, x_2) \in \mathbb{R}^{2n} |_{x_1, x_2} \text{ linearly dependent in } \mathbb{R}^n \}.$$

This set F_0 is a cone with vertex o, i.e. $x \in F_0$ and $\tau \in \mathbb{R}$ imply $\tau x \in F_0$. To find a basis of this cone we consider the neighbourhood $B = \mathbb{D}_1^n \times \mathbb{D}_1^n$ of o in \mathbb{R}^{2n} . The boundary of B is

$$\partial B = (\partial \mathbb{D}_1^n \times \mathbb{D}_1^n) \cup (\mathbb{D}_1^n \times \partial \mathbb{D}_1^n) = (S^{n-1} \times \mathbb{D}_1^n) \cup (\mathbb{D}_n^1 \times S^{n-1}),$$

where $S^{n-1} = \partial \mathbb{D}_1^n$ is the (n-1)-dimensional unit sphere. Each of the sets

$$F_0 \cap (S^{n-1} \times \mathbb{D}_1^n) = \{(x, \tau x) | x \in S^{n-1}, -1 \le \tau \le 1\}$$

$$F_0 \cap (\mathbb{D}_1^n \times S^{n-1}) = \{(\tau x, x) | x \in S^{n-1}, -1 \le \tau \le 1\}$$

is a smooth compact *n*-dimensional manifold, and $(x, \tau) \mapsto (x, \tau x), (\tau, x) \mapsto (\tau x, x)$ $(x \in S^{n-1}, \tau \in [-1, 1])$ define homeomorphisms $S^{n-1} \times [-1, 1] \to F_0 \cap (S^{n-1} \times \mathbb{D}_1^n), [-1, 1] \times S^{n-1} \to F_0 \cap (\mathbb{D}_1^{n-1} \times S^{n-1})$, respectively. Both manifolds have the same boundary

$$F_0 \cap (S^{n-1} \times S^{n-1}) = \{(x, \tau x) | x \in S^{n-1}, \tau = \pm 1\}$$

and no further common points. Therefore their union $F_0 \cap \partial B$ is a topological manifold without boundary, and this manifold is a basis of the cone F_0 . So F_0 is the cone over an *n*-dimensional topological manifold which is the union of two smooth compact *n*-dimensional manifolds with common boundary, and it is not

hard to see that $F_0 \setminus \{0\}$ is a smooth (n+1)-dimensional manifold. The codimension of F_0 in \mathbb{R}^{2n} is n-1, and we can find a real γ' such that for any $\varepsilon > 0$ we have

$$\operatorname{vol}\left(N_{\varepsilon}(F_0) \cap (\mathbb{D}_{2o}^n)^2\right) \leq \gamma' \varepsilon^{n-1},$$

where vol denotes the Lebesgue measure in \mathbb{R}^{2n} . Since $\sigma((\mathbb{D}_{\rho}^{n})^{4}) \subset (\mathbb{D}_{2\rho}^{n})^{2}$ this inequality shows that there is a γ_{1} which satisfies (5).

3. PROOF OF THEOREM 2

We fix an odd integer $n = 2n'+1 \ge 3$. The main part in the proof of the theorem will be the proof of the following lemma.

Lemma 6. Let $r \geq 1$ be an integer, and let

$$\theta_r = 2^{2n'+2} \binom{n}{n'} r^{n'}, \qquad \lambda > \frac{1}{2} r^{-1}.$$

Then there is a non empty open subset \mathcal{U}_r of $C^1(S^1, \mathbb{R}^n)$ such that for any $v \in \mathcal{U}_r$ the restriction of $f_{\theta_r,\lambda,v}$ to its attractor is not injective.

Before proving this lemma we show how it implies Theorem 2. Since $\frac{1}{2}r^{-1} = 2^{1+2/n'} {n \choose n'} \theta_r^{-1/n'}$, as an immediate consequence of the lemma we get

$$\lambda_n(\theta_r) \le 2^{1+2/n'} {n \choose n'}^{1/n'} \theta_r^{-1/n'}.$$

For $n' \to \infty$ the value $\binom{n}{n'}^{1/n'}$ tends from below to 4, and it is easy to see that

$$\lambda_n(\theta_r) \le 24\theta_r^{-1/n'}.$$

If $\theta_r \leq \theta < \theta_{r+1}, \quad r \geq 3$, then

$$\lambda_n(\theta) \le \lambda_n(\theta_r) \le 24\theta_r^{-1/n'} = 24\left(\frac{\theta}{\theta_r}\right)^{1/n'} \theta^{-1/n'} < 24\left(\frac{\theta_{r+1}}{\theta_r}\right)^{1/n'} \theta^{-1/n'}$$
$$\le 24\frac{r+1}{r} \theta^{-1/n'} \le 32\theta^{-1/n'}$$

If $2 \leq \theta < \theta_3$ then we use $\lambda_n(\theta) \leq \theta^{-1/n}$ (see Remark 1). So we get

$$\begin{aligned} \lambda_{n}(\theta) &\leq \theta^{-1/(2n'+1)} &= \theta^{(n'+1)/[n'(2n'+1)]} \theta^{-1/n'} \\ &< \theta_{3}^{(n'+1)/[n'(2n'+1)]} \theta^{-1/n'} \\ &= 2^{2(n'+1)^{2}/[n'(2n'+1)]} {n \choose n'}^{(n'+1)/[n'(2n'+1)]} 3^{(n'+1)/(2n'+1)} \theta^{-1/n'} \\ &\leq 2^{8/3} \cdot 3^{2/3} \cdot 3^{2/3} \cdot \theta^{-1/n'} \\ &< 32\theta^{-1/n'}. \end{aligned}$$

Therefore for each $\theta \geq 2$ we have $\lambda_n(\theta) \leq 32\theta^{-1/n'}$, and since 1/n' = 2/(n-1) the theorem is proved.

In the proof of Lemma 6 we shall apply the following Lemma 8. Let $\mathfrak{Q}(\rho)$ be the set of all *n*-dimensional cubes Q in \mathbb{R}^n whose edges are parallel to the axes of \mathbb{R}^n and have length ρ . The *k*-dimensional skeleton of a cube Q, i.e. the union of its *k*-dimensional faces, will be denoted by $S_k(Q)$. **Lemma 7.** Let Q', Q'' be q-dimensional cubes in \mathbb{R}^q , where q = 2q' is even. We assume that Q', Q'' intersect, that Q', Q'' have the same edge length and that the edges of both cubes are parallel to the axes of \mathbb{R}^q . Then $S_{q'}(Q') \cap S_{q'}(Q'') \neq \emptyset$.

Lemma 8. If $Q'(\tau), Q''(\tau)$ ($\tau \in [0,1]$) are two continuous families of cubes in $\mathfrak{Q}(\rho)$, then $Q'(0) \cap Q''(0) \neq \emptyset, Q'(1) \cap Q''(1) = \emptyset$ implies that there is a $\tau_0 \in [0,1]$ such that $S_{n'}(Q'(\tau_0)) \cap S_{n'}(Q''(\tau_0)) \neq \emptyset$.

The proof of Lemma 7 is easy and can be omitted. The topological background of Lemma 8 is the fact that for two cubes Q', Q'' of $\mathfrak{Q}(\rho)$ with $Q' \cap Q'' \neq \emptyset, S_{n'}(Q') \cap S_{n'}(Q'') = \emptyset$ these two n'-dimensional skeletons must be linked as indicated for n = 3, n' = 1 in Figure 4.

Fig. 4

Proof of Lemma 8. We define

$$\tau_0 = \sup\{\tau \in [0,1] | Q'(\tau) \cap Q''(\tau) \neq \emptyset\}.$$

Then $Q'(\tau_0) \cap Q''(\tau_0) \neq \emptyset$, but Int $Q'(\tau_0) \cap$ Int $Q''(\tau_0) = \emptyset$. If H_1, \ldots, H_{2n} are the (n-1)-dimensional Hyperplanes in \mathbb{R}^n each of which contains an (n-1)dimensional face of $Q'(\tau_0)$, then there is at least one H_i such that $Q'(\tau_0), Q''(\tau_0)$ lie on different sides of H_i . (Otherwise the interiors of the two cubes would intersect.) Let F', F'' be the (n-1)-dimensional faces of $Q'(\tau_0), Q''(\tau_0)$, respectively, which lie in H_i . Then $F' \cap F'' \neq \emptyset$, and since n-1 = 2n' is even we can apply Lemma 1. So we get $S_{n'}(F') \cap S_{n'}(F'') \neq \emptyset$ and therefore $S_{n'}(Q'(\tau_0)) \cap S_{n'}(Q''(\tau_0)) \neq \emptyset$. **Proof of Lemma 6.** Let $\mathfrak{Q}_r (r \geq 1$ an integer) be the lattice of all cubes from $\mathfrak{Q}(r^{-1})$ whose vertices belong to the point lattice $(r^{-1}\mathbb{Z})^n$ in \mathbb{R}^n . By \mathfrak{P}_r we denote the set of all $Q \in \mathfrak{Q}_r$ with $Q \subset I^n, Q \cap S_{n'}(I^n) \neq \emptyset$, where I^n is the cube $[-1,1]^n$ in \mathbb{R}^n . Since an *n*-dimensional cube has $2^{n-n'}\binom{n}{n'}$ n'-dimensional faces and since the edge length of I^n is 2, the number $\#\mathfrak{P}_r$ of cubes in \mathfrak{P}_r can be estimated by

$$\#\mathfrak{P}_{r} \leq 2^{n'+1} \binom{n'}{n} (2r)^{n'} = 2^{2n'+1} \binom{n}{n'} r^{n'}.$$

We fix numbers θ_r , λ as in the lemma and consider the set $S^1 \times I^n$ which can be regarded as a solid torus with corners in $S^1 \times \mathbb{R}^n$. Then we define \mathcal{U}_r to be the set of all $v \in C^1(S^1, \mathbb{R}^n)$ with the following two properties.

- (i) If $t \in S^1, Q \in \mathfrak{P}_r$, then there is a $t' \in S^1$ such that the cube $f_{\theta_r,\lambda,\nu}(\{t'\} \times I^n)$ contains the cube $\{t\} \times Q$ in its interior.
- (ii) There is a $t^* \in S^1$ such that

$$f_{\theta_r,\lambda,\nu}(\{t^*\}\times I^n)\cap f_{\theta_r,\lambda,\nu}((S^1\backslash\{t^*\})\times I^n)=\emptyset.$$

Using an compactness argument it is not hard to see that \mathcal{U}_r is open in $C^1(S^1, \mathbb{R}^n)$.

To prove that \mathcal{U}_r is not empty, i.e. to find a mapping v in $C^1(S^1, \mathbb{R}^n)$ which belongs to \mathcal{U}_r , we remark first that $\theta_r > 2\#\mathfrak{P}_r$ and that λ times the edge length of I^n is greater than the edge length of the cubes in \mathfrak{P}_r . Let $\mathfrak{P}_r = \{Q_1, \ldots, Q_p\}$, and let z_i be the centre of Q_i . We decompose [0,1] in the θ subintervals $I_i = [\frac{i-1}{\theta}, \frac{i}{\theta}]$ $(1 \leq i \leq \theta)$. Since $\theta \geq 2p$ it is easy to find a $v \in C^1(S^1, \mathbb{R}^n)$ such that $v(t) = z_i$ for all $t \in I_{2i}$ $(1 \leq i \leq p)$. Obviously for such a v the mapping $f_{\theta_r,\lambda,v}$ has the property (i). Then to get property (ii) we define $t^* = \frac{1}{2\theta}$ and modify v in the interval I_1 so that the equation of (ii) is satisfied.

To prove Lemma 6 we must show that for $v \in \mathcal{U}_r$ the restriction of $f_{\theta_r,\lambda,v}$ to its attractor Λ is not injective. Therefore we shall construct points $x' \neq x''$ in Λ with $f_{\theta_r,\lambda,v}(x') = f_{\theta_r,\lambda,v}(x'')$.

In the first step of the construction we apply (i) to find points t'_1, t''_1 in S^1 such that

 $t_1' \neq t_1'', \theta t_1' = \theta t_1''$ $f_{\theta_r,\lambda,v}(\{t_1'\} \times I^n) \cap f_{\theta_r,\lambda,v}(\{t_1''\} \times I^n) \neq 0.$

Obviously t'_1 can not coincide with the point t^* of (ii).

In the second step we denote the point t^* of (ii) by t_1^* and coinsider the point t_1^{**} for which the arcs $[t_1', t_1^*], [t_1'', t_1^{**}]$ have the same length so that $\theta t_1^* = \theta t_1^{**}$. By (ii) the cubes

$$f_{\theta_r,\lambda,v}(\{t_1^*\} \times I^n), \quad f_{\theta_r,\lambda,v}(\{t_1^{**}\} \times I^n)$$

are disjoint, and we consider the following two families of cubes

$$Q'(\tau) = f_{\theta_{\tau},\lambda,v}(\{t'_{1} + \tau(t^{*}_{1} - t'_{1})\} \times I^{n})$$

$$\tau \in [0,1]$$

$$Q''(\tau) = f_{\theta_{\tau},\lambda,v}(\{t''_{1} + \tau(t^{**}_{1} - t''_{1})\} \times I^{n}).$$

Since $Q'(0) \cap Q''(0) = \emptyset$, $Q'(1) \cap Q''(1) \neq \emptyset$ we can apply Lemma 8 and find a value τ_0 such that for

$$s_1' = t_1' + \tau_0(t_1^* - t_1'), \quad s_1'' = t_1'' + \tau_0(t_1^{**} - t_1'')$$

we have

$$s_1' \neq s_1'', \quad \theta s_1' = \theta s_1'',$$

$$S_n(f_{\theta_r,\lambda,\nu}(\{s_1'\}\times I^n))\cap S_n(f_{\theta_r,\lambda,\nu}(\{s_1''\}\times I^n))\neq \emptyset.$$

This implies that there are cubes Q'_1, Q''_1 in \mathfrak{P}_r for which

$$f_{ heta_r,\lambda,v}(\{s_1'\} imes Q_1') \cap f_{ heta_r,\lambda,v}(\{s_1''\} imes Q_1'')
eq \emptyset,$$

and applying (i) we find points $t_1', t_2'' \in S^1$ such that $\theta t_2' = s_1', \theta t_2'' = s_2''$

$$f_{\theta_r,\lambda,v}(\{t'_2\} \times I^n) \supset \{s'_i\} \times Q'_1, \quad f_{\theta_r,\lambda,v}(\{t''_2\} \times I^n) \supset \{s''_1\} \times Q''_1.$$

These points t'_2, t''_2 have the following properties

$$\begin{aligned} \theta t_2' \neq \theta t_2'', \quad \theta^2 t_2' = \theta^2 t_2'', \\ f_{\theta_r,\lambda,v}^2(\{t_2'\} \times I^n) \cap f_{\theta_r,\lambda,v}^2(\{t_2''\} \times I^n) \neq \emptyset, \end{aligned}$$

and we conclude the second step of the construction with the remark that $\theta t'_2$ can not be the point t^* .

In the third step we consider the point $t_2^* \in S^1$ for which $\theta t_2^* = t_1^* = t^*$ and the arc $[t_2', t_2^*]$ does not contain any further point t with $\theta t = t^*$. Then there is a unique point t_2^{**} for which the arcs $[t_2', t_2^*], [t_2'', t_2^{**}]$ have the same length so that $\theta^2 t_2^* = \theta^2 t_2^{**}$. By (ii)

$$f^2_{\theta_{\tau},\lambda,\upsilon}(\{t_2^*\}\times I^n)\cap f^2_{\theta_{\tau},\lambda,\upsilon}(\{t_2^{**}\}\times I^n)=\emptyset,$$

and as in the second step we find points $s'_2 \in [t'_2, t^*_2], s''_2 \in [t''_2, t^{**}_2]$ such that

$$heta s_2' \neq heta s_2'', \quad heta^2 s_2' = heta^2 s_2'',$$

$$S_n(f^2_{\theta_r,\lambda,v}(\{s'_2\}\times I^n))\cap S_n(f^2_{\theta_r,\lambda,v}(\{s''_2\}\times I^n))\neq \emptyset.$$

Then there are cubes Q'_2, Q''_2 in \mathfrak{P}_r such that

$$f^2_{\theta_r,\lambda,\nu}(\{s'_1\}\times Q'_2)\cap f_{\theta_r,\lambda,\nu}(\{s''_2\}\times Q''_2))\neq \emptyset,$$

and by (i) we find $t'_3, t''_3 \in S^1$ such that $\theta t'_3 = s'_2, \theta t''_3 = s''_2$,

$$f_{\theta_r,\lambda,v}(\{t'_3\}\times I^n)\supset \{s'_2\}\times Q'_2, \quad f_{\theta_r,\lambda,v}(\{t''_3\}\times I^n)\supset \{s''_2\}\times Q''_2.$$

So we have

$$\theta^2 t'_3 \neq \theta^2 t''_3, \quad \theta^3 t'_3 = \theta^3 t''_3$$

 $f^3_{\theta_r,\lambda,\upsilon}(\{t'_3\} \times I^n) \cap f^3_{\theta_r,\lambda,\upsilon}(\{t''_3\} \times I^n) \neq \emptyset.$ Continuing in this way we find points $t'_1, t'_2, \ldots, t''_1, t''_2, \ldots$ such that

$$\theta^{k-1}t'_{k} \neq \theta^{k-1}t''_{k}, \quad \theta^{k}t'_{k} = \theta^{k}t''_{k}$$

$$f^{k}_{\theta_{r},\lambda,\nu}(\{t'_{k}\} \times I^{n}) \cap f^{k}_{\theta_{r},\lambda,\nu}(\{t''_{k}\} \times I^{n}) \neq \emptyset \quad (k = 1, 2, \dots).$$

$$(7)$$

To get the points x', x'' we consider $\overline{t}'_k = \theta^{k-1}t'_k, \overline{t}''_k = \theta^{k-1}t''_k$ and the centres x'_k, x''_k of the cubes $f^{k-1}_{\theta_r,\lambda,v}(\{t'_k\} \times I^n), f^{k-1}_{\theta_r,\lambda,v}(\{t''_k\} \times I^n)$ in $\{\overline{t}'_k\} \times \mathbb{R}^n$ or in $\{\overline{t}''_k\} \times \mathbb{R}^n$, respectively. All these points x'_k, x''_k belong to a compact subset of $S^1 \times \mathbb{R}^n$, and we can find a sequence $k_1 < k_2 < \ldots$ of indices for which the sequences $(x'_{k_j}), (x''_{k_j}), (j = 1, 2, \ldots)$ converge to points x', x'', respectively. To see that x', x'' lie in Λ we consider a compact subset K of $S^1 \times \mathbb{R}^n$ such that $S^1 \times I^n \subset K, f_{\theta_r,\lambda,v}(K) \subset K$. Then $x', x'' \in \bigcap_{k=1}^{\infty} f^k_{\theta_r,\lambda,v}(K) \subset \Lambda$. Now we show $x' \neq x''$. If $\overline{t}', \overline{t}''$ are the projections of

x', x'', respectively, to S^1 , then $\overline{t}' = \lim_{j \to \infty} \overline{t}'_{k_j}, \overline{t}'' = \lim_{j \to \infty} \overline{t}''_{k_j}$. By (6) we have $\overline{t}'_{k_j} \neq \overline{t}''_{k_j}$ but $\theta \overline{t}'_{k_j} = \theta \overline{t}_{k_j}$ and therefore dist $(\overline{t}'_{k_j}, \overline{t}''_{k_j}) \geq \theta^{-1}$ which implies dist $(\overline{t}', \overline{t}'') \geq \theta^{-1}$ and hence $x' \neq x''$. Finally we prove $f_{\theta_r,\lambda,\nu}(x') = f_{\theta_r,\lambda,\nu}(x'')$. By (7) the cubes $f^k_{\theta_r,\lambda,\nu}(\{t'_{k_j}\} \times I^n), f^k_{\theta_r,\lambda,\nu}(\{t''_{k_j}\} \times I^n)$ with centres $f_{\theta_r,\lambda,\nu}(x'_{k_j}), f_{\theta_r,\lambda,\nu}(x''_{k_j})$, respectively, and edge length λ^{k_j} intersect so that the distance between these two points is at most $\sqrt{n}\lambda^{k_j}$. Since

$$f_{\theta_r,\lambda,\upsilon}(x') = \lim_{j\to\infty} f_{\theta_r,\lambda,\upsilon}(x'_{k_j}), \quad f_{\theta_r,\lambda,\upsilon}(x'') = \lim_{j\to\infty} f_{\theta_r,\lambda,\upsilon}(x''_{k_j}),$$

this implies $f_{\theta_{\tau},\lambda,\nu}(x') = f_{\theta_{\tau},\lambda,\nu}(x'')$.

Veröffentlichungen des Instituts für Angewandte Analysis und Stochastik

Preprints 1992

- 1. D.A. Dawson, J. Gärtner: Multilevel large deviations.
- 2. H. Gajewski: On uniqueness of solutions to the drift-diffusion-model of semiconductor devices.
- **3.** J. Fuhrmann: On the convergence of algebraically defined multigrid methods.
- 4. A. Bovier, J.-M. Ghez: Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions.
- 5. D.A. Dawson, K. Fleischmann: A super-Brownian motion with a single point catalyst.
- 6. A. Bovier, V. Gayrard: The thermodynamics of the Curie–Weiss model with random couplings.
- 7. W. Dahmen, S. Prößdorf, R. Schneider: Wavelet approximation methods for pseudodifferential equations I: stability and convergence.
- 8. A. Rathsfeld: Piecewise polynomial collocation for the double layer potential equation over polyhedral boundaries. Part I: The wedge, Part II: The cube.
- 9. G. Schmidt: Boundary element discretization of Poincaré-Steklov operators.
- 10. K. Fleischmann, I. Kaj: Large deviation probability for some rescaled superprocesses.
- 11. P. Mathé: Random approximation of finite sums.
- 12. C.J. van Duijn, P. Knabner: Flow and reactive transport in porous media induced by well injection: similarity solution.
- 13. G.B. Di Masi, E. Platen, W.J. Runggaldier: Hedging of options under discrete observation on assets with stochastic volatility.
- 14. J. Schmeling, R. Siegmund-Schultze: The singularity spectrum of self-affine fractals with a Bernoulli measure.
- 15. A. Koshelev: About some coercive inequalities for elementary elliptic and parabolic operators.
- 16. P.E. Kloeden, E. Platen, H. Schurz: Higher order approximate Markov chain filters.

- 17. H.M. Dietz, Y. Kutoyants: A minimum-distance estimator for diffusion processes with ergodic properties.
- 18. I. Schmelzer: Quantization and measurability in gauge theory and gravity.
- **19.** A. Bovier, V. Gayrard: Rigorous results on the thermodynamics of the dilute Hopfield model.
- 20. K. Gröger: Free energy estimates and asymptotic behaviour of reactiondiffusion processes.
- 21. E. Platen (ed.): Proceedings of the 1st workshop on stochastic numerics.
- 22. S. Prößdorf (ed.): International Symposium "Operator Equations and Numerical Analysis" September 28 October 2, 1992 Gosen (nearby Berlin).
- 23. K. Fleischmann, A. Greven: Diffusive clustering in an infinite system of hierarchically interacting diffusions.
- 24. P. Knabner, I. Kögel-Knabner, K.U. Totsche: The modeling of reactive solute transport with sorption to mobile and immobile sorbents.
- 25. S. Seifarth: The discrete spectrum of the Dirac operators on certain symmetric spaces.
- 26. J. Schmeling: Hölder continuity of the holonomy maps for hyperbolic basic sets II.
- 27. P. Mathé: On optimal random nets.
- 28. W. Wagner: Stochastic systems of particles with weights and approximation of the Boltzmann equation. The Markov process in the spatially homogeneous case.
- 29. A. Glitzky, K. Gröger, R. Hünlich: Existence and uniqueness results for equations modelling transport of dopants in semiconductors.
- **30.** J. Elschner: The *h*-*p*-version of spline approximation methods for Mellin convolution equations.
- **31.** R. Schlundt: Iterative Verfahren für lineare Gleichungssysteme mit schwach besetzten Koeffizientenmatrizen.
- **32.** G. Hebermehl: Zur direkten Lösung linearer Gleichungssysteme auf Shared und Distributed Memory Systemen.
- **33.** G.N. Milstein, E. Platen, H. Schurz: Balanced implicit methods for stiff stochastic systems: An introduction and numerical experiments.
- 34. M.H. Neumann: Pointwise confidence intervals in nonparametric regression with heteroscedastic error structure.

35. M. Nussbaum: Asymptotic equivalence of density estimation and white noise.

Preprints 1993

- 36. B. Kleemann, A. Rathsfeld: Nyström's method and iterative solvers for the solution of the double layer potential equation over polyhedral boundaries.
- 37. W. Dahmen, S. Prössdorf, R. Schneider: Wavelet approximation methods for pseudodifferential equations II: matrix compression and fast solution.
- 38. N. Hofmann, E. Platen, M. Schweizer: Option pricing under incompleteness and stochastic volatility.
- **39.** N. Hofmann: Stability of numerical schemes for stochastic differential equations with multiplicative noise.
- 40. E. Platen, R. Rebolledo: On bond price dynamics.
- 41. E. Platen: An approach to bond pricing.
- 42. E. Platen, R. Rebolledo: Pricing via anticipative stochastic calculus.
- **43.** P.E. Kloeden, E. Platen: Numerical methods for stochastic differential equations.
- 44. L. Brehmer, A. Liemant, I. Müller: Ladungstransport und Oberflächenpotentialkinetik in ungeordneten dünnen Schichten.
- **45.** A. Bovier, C. Külske: A rigorous renormalization group method for interfaces in random media.
- 46. G. Bruckner: On the regularization of the ill-posed logarithmic kernel integral equation of the first kind.
- 47. H. Schurz: Asymptotical mean stability of numerical solutions with multiplicative noise.
- 48. J.W. Barrett, P. Knabner: Finite element approximation of transport of reactive solutes in porous media. Part I: Error estimates for non-equilibrium adsorption processes.
- 49. M. Pulvirenti, W. Wagner, M.B. Zavelani Rossi: Convergence of particle schemes for the Boltzmann equation.
- 50. J. Schmeling: Most β shifts have bad ergodic properties.
- 51. J. Schmeling: Self normal numbers.

- 52. D.A. Dawson, K. Fleischmann: Super-Brownian motions in higher dimensions with absolutely continuous measure states.
- 53. A. Koshelev: Regularity of solutions for some problems of mathematical physics.
- 54. J. Elschner, I.G. Graham: An optimal order collocation method for first kind boundary integral equations on polygons.
- 55. R. Schlundt: Iterative Verfahren für lineare Gleichungssysteme auf Distributed Memory Systemen.
- 56. D.A. Dawson, K. Fleischmann, Y. Li, C. Müller: Singularity of super-Brownian local time at a point catalyst.
- 57. N. Hofmann, E. Platen: Stability of weak numerical schemes for stochastic differential equations.
- 58. H.G. Bothe: The Hausdorff dimension of certain attractors.
- **59.** I.P. Ivanova, G.A. Kamenskij: On the smoothness of the solution to a boundary value problem for a differential-difference equation.
- 60. A. Bovier, V. Gayrard: Rigorous results on the Hopfield model of neural networks.
- 61. M.H. Neumann: Automatic bandwidth choice and confidence intervals in nonparametric regression.
- 62. C.J. van Duijn, P. Knabner: Travelling wave behaviour of crystal dissolution in porous media flow.
- **63.** J. Förste: Zur mathematischen Modellierung eines Halbleiterinjektionslasers mit Hilfe der Maxwellschen Gleichungen bei gegebener Stromverteilung.
- 64. A. Juhl: On the functional equations of dynamical theta functions I.
- 65. J. Borchardt, I. Bremer: Zur Analyse großer strukturierter chemischer Reaktionssysteme mit Waveform-Iterationsverfahren.
- 66. G. Albinus, H.-Ch. Kaiser, J. Rehberg: On stationary Schrödinger-Poisson equations.
- 67. J. Schmeling, R. Winkler: Typical dimension of the graph of certain functions.
- 68. A.J. Homburg: On the computation of hyperbolic sets and their invariant manifolds.

- 69. J.W. Barrett, P. Knabner: Finite element approximation of transport of reactive solutes in porous media. Part 2: Error estimates for equilibrium adsorption processes.
- 70. H. Gajewski, W. Jäger, A. Koshelev: About loss of regularity and "blow up" of solutions for quasilinear parabolic systems.
- 71. F. Grund: Numerical solution of hierarchically structured systems of algebraic-differential equations.
- 72. H. Schurz: Mean square stability for discrete linear stochastic systems.
- 73. R. Tribe: A travelling wave solution to the Kolmogorov equation with noise.
- 74. R. Tribe: The long term behavior of a Stochastic PDE.
- 75. A. Glitzky, K. Gröger, R. Hünlich: Rothe's method for equations modelling transport of dopants in semiconductors.
- 76. W. Dahmen, B. Kleemann, S. Prößdorf, R. Schneider: A multiscale method for the double layer potential equation on a polyhedron.