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ABSTRACT In this paper we analyse a fully practical piecewise linear finite 

element approximation; involving numerical integration, backWa.rd Euler time 

discretisation and possibly regularization and relaxation; of the following 

degenerate parabolic equation arising in a model of reactive solute transport 

in porous media: Find u(x,t) such that 

u = 0 on 80 x (0,T] u( ·, o) = g( •) in n 
d for known data n c IR , 1 :S d :S 3, f, g and a monotonically increasing 

<p e c0 (1R)nC1 (-oo,O]v(O,oo) satisfying <p(O) = 0, which is only locally Holder 

continuous, with exponent p e (0, 1), at the origin; e.g. <p(s) = [s]P. This 
+ 

lack of Lipschitz continuity at the origin limits the regularity of the 

unique solution u and leads to difficulties in the finite element error 

analysis. 
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1. INTRODUCTION 

This is the second of two papers, in which we sfudy finite element 

approximations of degenerate parabo lie systems and equations, as they arise 

in the modelling of reactive solute transport in porous media. Here we 

concentrate on a quas istationarily described equilibrium adsorption reaction, 

leading to 

v = cp(u) 

in Q 
T 

( 1. la) 

( 1. lb) 

supplemented by initial and boundary conditions for the unknown function u, 

the dissolved concentration. Here n is a bounded domain in IRd, 1 :S d :S 3, 

[0, Tl a fixed time interval and Qt - Q x (0, t], for t e (0, T]. For more 

remarks on the model we refer to the introduction of part 1 and for a 

complete account to the literature cited there. The parameter functions El, g,, 

~· p are given and fulfill: 

a e + v. g, = o , 
t 

e(x,t) ~ e > o, 
0 

p(x) ~ p > 0 
0 

in Q 
T 

( 1. 2) 

and further conditions such that the linear part of ( 1. 1) defines a uniformly 

parabolic operator. The nonlinearity cp the adsorption isotherm is 

monotone non-decreasing, but there are typical examples, which are not 

Lipschitz continuous at u = 0 such as is the Freundlich isotherm 

cp(u) = auP for u ~ 0, where a e IR+ and p e (0,1). (1.3)· 

Thus in general equation ( 1. 1) is degenerate, exhibiting a finite speed of 

propagation property, such that a front given by the boundary of the support 

of u, is preserved. In fact, there is a close relation between equation ( 1. 1) 

and the well-investigated (generalised) "porous medium equation" (see e.g. 

Aronson (1986)) which reads 

a [¢(u)] - ~u = f 
t 

in Q 
T 

( 1. 4a) 

with ¢(u) = sgn(u) juj 11
m for some m > 1; i.e. (a model problem of) (1.1) is 

of the form (1.4a), and (1.1) and (1.4a) are equivalent if we assume that for 
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some a. > 0 

¢'(u) ~a. for all u e ~. u * 0. 

A sufficient condition for the finite speed of propagation property is 

1/¢ e L1 (0,o) for some o > 0, 

( 1. 4b) 

( 1. 5) 

see Watanabe ( 1988), which has also been proven to be necessary in the 

one-dimensional case, see Peletier ( 1974). This condition is satisfied by 

( 1. 3), see also section 2. A common desription of chemical non-equlibrium has 

the form of relaxation kinetics, 1. e. 

a v = k(rp(µ)-v) 
t 

( 1. 6) 

with a rate parameter k > 0. Equations ( 1. la), ( 1. 6) in general form a 

degenerate system with th~ aforementioned property. In part 1 we gave a 

fairly complete order of convergence analysis in energy norms for Galerkin 

finite element approximations of the system (1.la), (1.6); based on a 

technique which is at least applicable for time independent and smooth El, g:, 

~· However, the fact that we analysed the Galerkin procedure assumes in 

addition that the system is not convection-dominated, where we would 

.encounter all the well-known difficulties. This analysis has been presented 

for a model problem, to which we will restrict ourselves later on. 

One may expect that for k -7 co (Pk) ( 1. la), ( 1. 6) approximates 

(P) = ( 1. 1). This may be called a kinetic approximation and will be made 

rigorous in section 2. The aim of this paper is to exploit the kinetic 

approximation as a proof technique device (and possibly also as an 

algorithmic device) to study order of convergence estimates for problem (P) 

on the basis of the results of part 1 for the relaxed problem (P ). There it 
k 

turned out to be advantageous to introduce a regularized system (P ) 
k,C 

. obtained by substituting rp by a Lipschitz continuous q> , differing only near c 
u = 0. The relaxation and regularization is a proof device insofar as the 

order of convergence estimates, established for the finite element 

approximation of (P ) for appropriate k = O(h-0 ), c = O(hµ), where h is the 
k,C 
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mesh parameter, then carry over to the corresponding finite element 

approximations of (P ), the regularized version of (P)' and (P). The e 

situation is different, if we improve on the estimates by ~aking a 

non-degeneracy condition into account. Then we cannot dispense with the 

regularization. The non-degeneracy condition describes the minimal growth of 

u away from the front. In the one-dimensional case the following result has 

been established by Aronson et al. ( 1983). We will assume later on, that cp is 

Holder continuous near u = 0 with exponent p e (0, 1]. If in addition the 

exponent is sharp, i.e. 

then: 

(N. D.) 

where 

for u e [O,o ] and for some a, o > O 
0 0 

A ( t) s Ce, e 

t 
A (t) - J m(n (s)) ds, e - e 

0 

n ( t) = { x e n u ( x, t) e ( o , e 11 < l-p > ) } , 
e 

and fil is the Lebesgue measure. 

( 1. 7) 

( 1. 8a) 

( 1. 8b) 

( 1. 8c) 

For ease of exposition we will develop our results for the following 

model problem, which keeps the specific difficulty of the non-Lipschitz 

nonlinearity, but reduces the handling of standard terms: 

(P) Find u(x,t) such that 

au+ a [cp(u)] - ~u = f in Q 
t t T 

u = 0 on an x (O,T] u(•,0) = g(•) in 0, 

where we make the following assumptions on the given data: 

Assumptions ( Dl) : n c !Rd, 1 s d s 3, with either n convex polyhedral 

or an e C1 ' 1 , f e L0
\QT), g e L00 (n)rili~(n) and cp e c°CIR) is suc'h that 

( i) cp( O) = O, cp( s) > 0 \:/ s > 0 and cp is monotonically increasing ( 1. 9a) 

(ii) cp e C1 (-co,O]u(O,co) (1.9b) 

5 



(iii) there exist Le~+ and c, p e (0,1] such that 
0 

for all a, b e [ 0, c ] . 
0 

( 1. 9c) 

The layout of this paper is as follows. In the next section we establish 

the existence and uniqueness of a solution to (P) by firstly establishling 

these results for a regularised relaxed version (P ) . 
k,C 

In section 3 we 

consider a continuous in time continuous piecewise linear finite element 

approximation in space to (P). In section 4 we consider a more practical 

approximation employing numerical integration on the nonlinear term. Finally 

in section 5 we consider a fully practical approximation involving 

discretisation in time using the backward Euler method. 

The most complete order of convergence analysis until now for the finite 

element approximation of the porous medium equation, involving time 

discretisation and numerical integration has been given by Nochetto & Verdi 

( 1988). Contrary to our approach they consider this approximation directly, 

taking regularization but not relaxation of the problem into account. A 

proviso in the comparison lies in the fact that in some places we require the 

mesh to be (weakly) acute, whereas they do not. In their main error bound, 

(3. 4), -2 4 the term c h n: appears, where T is the time step size. This gives 

the unnatural feature of an error bound deteriorating for fixed h (and c) as 

T -7 0. Our approach, firstly leads to their resulting error bounds with a 

less severe time step constraint; that is, T s Ch as opposed to their 

restrictions T = Ch l+p and -c = Ch 41
< 
3

-P> on not assuming and assuming ( N. D. ) , 

respectively. Furthermore, under some additional assumptions we can improve 

on their error bounds in some cases. More details about these comparisons are 

given at the end of.section 5. 

Finally, we note that one could employ alternative forms of relaxation, 

not considered here. The description of a physically caused non-equilibrium 

may lead to 
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av= k(u-cp-1 (v)). 
t 

For a nonlinearity of the type (1.3), -1 
<p is Lipschitz continuous, 

( 1. 10) 

i.e. 

( 1. la), ( 1. 10) is a regular system. This type of relaxation was used by Verdi 

& Visintin ( 1988) for the Stefan problem. 

Throughout the paper we adopt the standard notation for Sobolev spaces. 

1 are equivalent on H (n). 
0 

, 2 
The standard L inner product over n is denoted by ( •, •). Throughout C 

denotes a generic positive constant independent Qf c the regularisation 
_, 

parameter, k the relaxation parameter and h the mesh spacing. 
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2. THE CONTINUOUS PROBLEM 

In this section we establish existence and uniqueness of.· a solution to 

(P). In doing so we will develop various bounds that will be useful in 

analysing the error in the finite element approximation of (P). Firstl_y we 

introduce a regularized version of (P ): c 
(P) Find u (x,t) such that c c 

a u + a [ <p ( u ) l - .6u = f in Q 
tC t CC C T 

Uc= 0 on an x (0,T] uc(•,O) = g(•) inn, 

where <pc e C~(~) is such that 

( i) 

(ii) 

<p (s) - <p(s) for s ft (O,c11<1-p>) c 
<p (s) is strictly monotonically increasing on [0, c11Cl-p)] 

c 

(iii) form e IN there exists a M(m) e ~+: 

-1 <p (b)-<p (a) ~ M(m)c (b-a) c c for -m s a s b s m. 

(2.la) 

(2. lb) 

(2.lc) 

Note that M can be chosen independently of m, if <p' is bounded in·~\(O,o) for 

some o > 0. In addition we set 
s 

~ (s) - J <p (~) d~ . 
£ c (2.2) 

0 

It is a simple matter to deduce from the conditions (2. 1) that for all I a I, 

[<p (a)-<p (b)](a-b) c c (2.3a) 

and 

( 11< 1-p>) _ ( 11< 1-p>) < L p/C 1-p> 
<pc c - <p c - c . (2.3b) 

with Las in Cl.Sc). The simplest choice for <p is the linear regularization c 
<pc(s) = c-l/(l-p)<p(c11<1-p>)s for s e (O,c11<1-p>). (2.4) 

In addition it is useful to consider the following problem in which the 

reaction process is relaxed in time with k > 0 being the given relaxation 

parameter. 

8 



(P ) Find {u (x,t),v (x,t)} such that 
k,e k,e k,e 

a u + a v - ~ u = f in Q 
t k, e t k, e k, e T 

u = 0 on an 
k,C 

a v = k(~ (u )-v ) in Q 
t k, £ e k, c k, c . T 

u (• O) = g(•) v (• O) = ~ (g(•)) inn. 
k, £ I k, £ I £ 

The above problem has been studied in part 1. We adopt the notion of 

weak solution defined there and below we ~ecall some of the results. 

Theorem 2.1 

Let the Assumptions (Dl) hold. Then for all e e (0, e ] and k > 0 there 
0 

exists a unique weak solution { u , v } to ( P ) such that 
k, e k, e k,e 

-u ::s u ::s u and 
- k,C 

Y.. :::5 v :::5 v 
k,e 

in Q 
T 

I 1
2 \7u 2 + 

k 8 L (Q ) 
' T 

I 2 au 2 + tkclLco> 
' T 

2 1a v- I en :s C(k), 
t k,e L (QT) 

(2.5a) 

(2.5b) 

where y, u, y_, v e C(Q) are all independent of e and k. Furthermore, if g and 

f ~ 0 one can take y = y_ = 0. 

Proof: This result with y, u, y_, v e C[O, Tl, all independent of c and 

uniformly bounded in k, is proved in Theorem 2.1 of part 1 in the case 

v· (•,0) = g(•) e Len(O) for all k > 0 and e e (0, e ]. That proof is easily 
k,e 0 

adapted to the present case. Furthermore, noting Remark 2.1 of part 1 yields 

- -the above choice of y, u, y_, v. We note for later purposes that 1! and u 

depend only on n, I f I en and I g I en L (Q ) L (0). 
T 

Cl 

Lenuna 2.1 

Under Assumptions (Dl) we have for all e e (0, e ], k > 0 and t e (0, T] 
0 

that 

e I \7~ ( u ) I 22 + ( ~ ( u ( •, t)), 1) + k I~ ( u )-vk I 22, > + e k,C L (Q ) c. k,C c k,C ,e L Q T · T 

+ Iv ( • I t) 12
2 n + k -l I a v 12

2 :s c. 
k,C L (u) t k,C L (QT) 

(2.6) 
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Proof: This result is proved in Lemma 2. 2 of part 1 in the case 

v ( •, 0) = g( •) e L 00
(n) for all k > 0 and e e (0, e ] . That proof is easily 

k,f; . 0 

adapted to the present case. o 

and 

For k e R+ = R+ u {co} and for sufficiently smooth w we set 
e 

llw11 2 
E (k,t) 

1 

t 
llwll 2 

E ( k, t) 
2 

- llwll
2 

+ Xl'VJw(•,s)dsl 2
L2Cn> + k-1 l'Vwl 2

2 • E (k,t) ~' L (Q ) 
1 0 t 

Lemma 2.2 

Let the Assumptions (Dl) hold. For 0 < k < k and for all e e (0, e ] 
2 1 0 

let {u ,v } be the unique weak solution to (P ), i = 1, 2. Then for all 
k k k ,e 

i i 1 

t e (O,T] we have that 

+ c I <p cu J -<p cu J 12
2 + c11 v -v 11 2 

C k,e f; k,C L(Q) k,C k,CE(k,t) 
1 2 t 1 2 11 

s Ck-2 I 8 v I 22 s Ck-1 • 
2 t k , C L (Q ) 2 

2 T 
(2.7) 

Proof: Let u e 
k,C 

and v e 
k,C 

- v -v 
k ,C· k ,C 

Then subtracting the 
1 2 

t 
first equation in (P ) from that in (P ) , multiplying by Jeu ( • ,o-)dO", 

k2, c k , c k, c 
1 s 

integrating over Qt, where s is the integration variable in time, and 

performing integration by parts yields that 
t t I e u I 22 + XI 'V Je u ( •, s) ds I 22 n = -SC e v ( •, s)), e u ( •, s)) ds. 

k, C L (Q ) k, C L (u) k, C k, C 
t 0 0 

(2.8) 

t 
Repeating the above, but multiplying by eu ( •, s) in place of Jeu ( • ,o-)do-

k, c k,C 
s 

yields that 
t 

x I eku, .J . , t) 1
2
L2. ( n) + I 'Ve u 1

2 
2 = - SC a e v ( • ' s ) ) , e u ( • , s ) ) ds . 

~ u k C L CQ ) s k, C k, C , t . 0 
(2.9) 

Combining (2.8) and (2.9), and noting (2.3a) yields that 
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lieu 11 2 + [M(m) ]-1c l<p. (u )-<p (u ) 1
22 

k,CE(k,t) C k,C C k,C L(Q) 
2 1 1 2 t 

t 
:s II e u II 2 + J ( <p ( u ( • , s )) -<p ( u ( • , s ) ) , e u ( • , s ) ) ds 

k, C E (k , t) C k , C C k , c k, C 
2 1 0 1 2 

t 
= ( k-1-k -l) JC a v ( •, s), e u ( •, s)) ds :s Ck -2 I a v I 22 

1 2 s k , £ k, £ 2 t k , C L (Q ) ' 
0 2 2 T 

(2.10) 

where [inf y ,sup u] ~ [-m,m], see Theorem 2.1. 

Finally, subtracting the second equation in from that in 

(P ) , multiplying by ev and integrating over Q yields that 
k t £ k, £ t 

1 

llev 11 2 
k,C E·(k ,t) 

1 1 

t 
= JC <p ( u ( • , s) ) -<p ( u ( • , s) ) , e v ( • , s) ) ds + c k , £ c k , £ k, £ 

0 1 2 
t 

+ ( 1-k -lk ) JC <p ( u ( • , s) )-v ( • , s) , e v ( • , s)) ds 
1 2 c k , £ k , c k, c 

0 2 2 

:s Cc -lk -2 I a v I 22 . 
2 t k , £ L (Q ) 

2 T 
(2. 11) 

Combining (2. 10) and (2. 11) yields the first inequality in (2. 7). The second 

inequality then follows from the bound (2.6). o 

Assumptions ( D2): In addition to the Assumptions (Dl) we assume that 
1 2 2 f EH (O,T;L (Q)), g EH (Q) and that k ~ k. 

0 

Lemma 2.3 

Under Assumptions (D2) we have for all c e (O,c] and t e (0,T] that 
0 

I vu c • t) 12
2 . + I a u j 22 + c I a v I 22 + c I a [ Cu ) l I 22 + 

k £ ' L (Q) t k £ L (Q ) t k £ L (Q ) t <pc k C L {Q ) 
' ' T ' T ' T 

+ k-1 [1a u (•,t) 12
2 n + cla v (•,t) 12

2 n) + 1vca u ) 12
2( )] :s c. t k,£ L (u) t k, £ L Cu t k,£ L Q 

T 

Proof: The result (2.12) is proved in Lemma 2.3 in part 1. o 

We will prove existence of solutions of problems 

following sense. 
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Definition: u is a weak solution to (P ) if u e L2(0, T; H1 (0)) ls such 
£ £ £ 0 

that <pc(uc) e L2
(QT) and for all test functions Tl e L2(0, T; H~(n) )n 

H1 (0,T;L2(0)) with TJ(•,T) = 0 inn 

J { - [u + <p (u )]a Tl+ Vu .VTJ - fTJ} dxdt - ([g(•) + <p (g(•))],TJ(•,0)) = o. 
£ £ £ t £ £ 

QT 

A similar definition holds for (P) with u and <p (u ) replace by u and <p(u). 
£ £ £ 

Remark 2.1 

For problem (P ) we will also use the stronger notion defined in part 1: 
£ 

u e L2(0,T;H1
(n))nH1 (0,T;L2(n)) is such that <p (u) e H1 (0,T;L2(n)) and for 

£ 0 £ £ 

all Tl e L 2 (0, T; H1 (n)) 
0 

J { a [ u + <p ( u ) ] Tl + Vu . VTJ - f TJ } dxd t = 0, t £ £ £ £ 

LellUila 2.4 

Let the Assumptions (Dl) hold. Then for all c e (0, c ] if there exists a 
0 

weak solution u of (P ) , then it is unique. Furthermore, if it is a solution 
£ £ 

in the sense of Remark 2.1, then 

Proof: Let 1 2 e = u -u 
£ c' where 1 u, 

£ 

(2.13) 

u2 are two weak solutions of (P ) . Then 
£ £ 

T 
subtracting the two defining equations and choosing TJ(•,t) - Je(•,s)ds yields 

t 
T 

lel~2co > + XIVJe(•,s)dsl~2cm ~ O 
T 0 

and hence uniqueness. 

If u is a so lutioh in the sense of Remark 2. 1, then we can choose Tl -
£ 

u in Remark 2. 1 and obtain 
£ 
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Noting that 

Ja [<p (u )]u = [(cp (u (•,T)),u (•,T)) - (cp~(g),g)] -
t cc c cc c c;. 

QT 

- (<I> (u (•,T)) - <I> (g(•)),1) 2: -X llm (g)l22n + lgl2~ ] 
C C C .,, C L (u) L CO) , 

since 0 s <I> (s) s <p (s)s for all s e IR; the desired result (2. 13) then c c 

follows from a Gron wall inequality. o 

Theorem 2.2 

Let the Assumptions (Dl) hold. Then for all c e (0, c ] there exists a 
0 

unique weak solution u to (P) and for all k > 0 and t e (0,T] we have that c c 

and 

2 llu -u II 
C k,C E (oo,t) 

2 

In addition 

(2.14a) 

l '\7u 1 2 s c 
C L (Q ) 

T 
(2.14b) 

usu s u - c in Q T' (2.14c) 

- 0 -where ~, u e C (0) are independent of c. Moreover, if g and f 2: 0 then u 2: 0 c 

in Q. 
T 

Proof: Firstly, we establish the existence of a weak solution to (P ) . Let c 

k ~ co as n ~ co and let {u , v } be the unique weak solution to (P ) . 
n k ,c k ,c k ,c 

n n n 

It follows from (2. 7) that {u , v } is Cauchy in L2 (Q ) x L2 (Q ) and 
k ,C k ,C T T 

n n 

therefore· {u , v } ~ {u , v } in L2 (Q ) x L2 (Q ) as n ~ co. In particular 
k ,c k ,.C c C T T 

n n 

the bounds (2.5a) hold true for the limit. 

We next restrict ourselves to Assumptions (D2) and show the existence of 

a solution in the sense of Remark 2. 1. Due to Lemma 2. 3 { u } is bounded in 
k ,c 

n 

L2 (0,T;H1 (n)) and in H1 (0,T;L2 (n))(){l}:l}(•,O)=g(•)} and {v } is bounded in 
0 k ,c 

n 
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1 2 H (O,T;L (n))n{71:71(•,0)=<p (g(•))}. Therefore {u ,v } converges weakly 
c k ,£ k ,£ 

n n 

in the corresponding spaces to { u , v } . Thus we have shown all the properties c c 
in Remark 2.1, if we can verify that v = <p (u ). Because of (2. lc) and 

c c c 

(2. 5a) it follows from uk ,c ~ uc in L2
(QT) that <pc(uk ,c) ~ <pc(uc) in 

n n 

Furthermore, ca v )/k 
t k , C n 

= <p ( u ) -v and the left hand side c k ,c k ,£ 
n n n 

2 converges to zero in L (Q ) due to (2. 6). Hence passing to the limit yields 
T 

v - <p (u ) . Therefore under Asssumptions (D2) there exists a solution u to c c c . c 
(P ) , in the sense of Remark 2. 1, satisfying (2. 14c). Uniqueness follows from c 
Lemma 2. 4. (2. 14b) follows from (2. 13) and (2. 14a) follows directly from 

(2.7) by letting k ~ oo. 
1 

We now weaken the assumptions to ( Dl) and approximate the data with 

gJ e H2(n) and fJ e H1 (0,T;L2(n)) such that gJ and fJ are uniformly bounded 

independently of j and 

gJ ~ g, <pc(gJ) ~ <pc(g) in L2(Q) (2.15) 

Then there exist corresponding solutions uJ of problem (P ) , in the sense of c c 
Remark 2. 1. Let e u = u J _u 1 and e v = v J _v 1 • Subtracting the corresponding 

c c c £ 
T 

solutions and using the · test function 71(•,t) - Jeu(•,s)ds and performing 

integration by parts yields 
T 

t 

leul 2
2 + XIV'feu(•,t)dtl 2

2 n + cl<p CuJ)-<p Cu1
) 1

2
2< > L (Q ) L (u) . £ C C C L Q 

T 0 T 

:s c I c gJ+"' c CgJl l - c g1+"' cc g1l l I ~2<'2> + c I rl-rt I ~2<oT>' (2.16) 

where we have noted (2. 3a). Therefore {uJ} is Cauchy in L2 (Q ) and {uJ} ~ 
C T C 

{u } in L2(Q ) . Next we note that .the bounds (2. 5a) hold for {uJ} with u and 
C T C -

u independent of j (and c), see (2. 15) and the proof of Theorem 2.1 . 

. Therefore we conclude, as above, that <p (uJ) ~ <p (u ) in L2
(Q ) . In addition, 

c C C C T 

it follows from (2. 13) that {uJ} is bounded in L 2 (0, T; H1 (n)) and therefore 
c 0 

weakly convergent in this space. This enables us to pass to the limit j ~ oo 

in the defining equation for a weak solution and hence conclude the existence 
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proof and that (2. 14b) holds. Uniqueness and the bound (2. 14c) follow as 

above. 

Finally, we need to prove the bound (2. 14a). Firstly, ·we appro~imate the 

data as in (2. 15) for problem (P ) and establish (2. 14a) for {u , u , v } 
k, C C k,C k, C 

replaced by {uJ,uJ ,vJ }. With a similar proof as for (2.16) we conclude 
C k,C k, C 

the analogous stability result for (P ) . 
k,C 

Furthermore, noting that (2.6) 

holds independently of (D2), we can pass to the limit j ~ co in (2. 14a) and 

hence obtain the desired result. o 

Lemma 2.5 

Under Assumptions (D2) we have for all c e (0,c ] that 
0 

II u -u 11
2 + c I(/) ( u )-tn ( u ) I 22 + c I <p ( u )-v I 22 

C k,C E (oo,t) ..,..C C ..,..C k,C L (Q) C C k C L (Q) 2 t , t 

s Cc-1k-2 . (2.17) 

Proof: The result follows from the first inequality in (2. 14a) and from 

(2.12). 0 

Theorem 2.3 

Let the Assumptions (Dl) hold. Then there exists a unique weak solution 

u to (P) and for all c e (0,c] and t e (0,T] we have that 
0 

llu-u 11 2 + clcp(u)-cp (u ) 122 s CA (t) cCl+p)/Cl-p) 
C E

2
Coo,t) C C L (Qt) C 

(2.18) 

· In addition, the bounds (2. 14c) hold for u and if g and f 2: 0 then u 2: 0 in 

Q. 
T 

Proof: To prove existence of a weak solution to (P) we let c ~ 0 in (P ). Due c 

to (2.14a) the unique weak solution u to (P ) is such that {u ,cp (u )} is c c c c c 

the limit of a sequence .{u ,<p (u )} 
k ,c c k ,c 

n n 

15 

with respect to II • II 
E (co,t) 

2 
and 



I· IL2CQ > for k
0 

~ co, where 
t 

u 
k ,£ 

n 
is the unique weak solution to (P ) . We 

k ,£ 
n 

apply Lemma 2. 1 of part 1 to u -u and let k ~ co to cone lude for 
k ,£ k ,e n 

n i n j 

e 2: e 2: e > 0 that 
0 J 1 

llu -u 11 2 + c l'P (u )-<p (u ) 122 ::s CeCl+p)/Cl-p>. 
c c E Cco,t) J c e c c L (Q > J 

1 J 2 1 1' j J t 

Thus {u } is Cauchy in L 2 (Q ) , i.e. u ~ u in L2(Q ) . The bounds (2. 14c) c
1 

T C T 

also hold true for the limit and due to .(2. 14b) we have also weak convergence 

in L2(0,T;H1
(n)). Therefore to pass to the limit in the weak formulation we 

0 

only have to show that <p (u ) ~ <p(u) in L2 (Q ) • This is done as in the e e T 
1 1 

proof of Theorem 2.2 of part 1: We have from (1.9), (2.1) and (2.3b) that 

l<p(u)-<pc (uc) IL2CQ > ::S· l<p(u)-<p(ue) IL2CQ > + l<p(uc )-<pc (uc) IL2CQ > 
1 1 T 1 T 1 1 1 T 

::s CI u-u I P2 + Ccp/Cl-p) 
C L (Q ) _ 1 

1 T 

and hence the desired result. Uniqueness follows as for (P ) , see Lemma 2. 4, c 
with <p replaced by <p. e 

Finally to show (2. 18), for convenience we repeat a simplified version 

u of the proof of Lemma 2. 1 of part 1: Let e = u-u and c e v - cp ( u) -<p ( u ) . e e 

Using once again the primitive of eu as a test function yields that 

and therefore 

t 
= -J(ev(•,s),eu(•,s))ds 

0 

-1 I 12 + [M(m)] e <p(u)-cpc(uc) L2CQ > 
t 

t 
::5 J(m(u(• s))-m (u (• s)) c~-u)(• s))ds· ..,.. , ..,..£ £ ' , "::. , , 

0 

where <: = <p- 1 (cp(u)) if cp(u) e (0,<p(cp/Cl-p))) and <: = u otherwise, and e 
[inf g , sup u] s;; [-m, m]. Hence the desired result (2. 18) follows from 

noting (1.8) and (2.3). o 
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Lemma 2.6 

Under Assumptions (D2) we have for all t e (0, T] that the unique weak 

solutions u and u of (P) and (P ) are such that 
k,8 k,8 

( i) On choosing 8 = Ck-Cl-p) :s 8 
0 

II u-u II :s Ck-Cl+p)/2 
k,8 E (oo,t) ' 

2 
I <p ( u) -cp ( u ) I 2( ) :S Ck -p. 

8 k,8 L Q 
t 

(2. 19a) 

The above also holds true with u . and cp (u ) replaced by u and cp(uk), 
k,8 e k,e k 

respectively; where u is the unique weak solution of (P ). 
k k 

(ii) On assuming (N.D.) and choosing e = Ck-2 C1-p)/C 3-pl :s e 
0 

I ( ) ( ) I <_ Ck-< 1+p)IC3-p). 
cp u -cp e uk e L 2 co > 

' t 
II u-u II :s Ck - 2/< 3 -p>, 

k,e E
2

Coo,t) 

(2.19b) 

Proof: The desired results follow immediately from (2. 17), (2. 18) and Theorem 

2.2 of part 1. o 

Problem (P) is strongly related to a degenerate problem, which has been 

investigated intensively, the (generalised) porous medium equation 

aw - 6[~(w)] = f 
t 

(2.20) 

where ~: !R -7 IR is continuous and strictly increasing, and without loss of 

generality ~(0) = 0. The (classical) porous medium equation is given by 

~(w) = sgn(w) lwlm for some m > 1. A change of variables yields ( 1. 4a) with 

<I> = ~- 1 . Obviously (P) is of the form ( 1. 4a). On the other hand, ( 1. 4a) can 

be written in the form of (P), if we assume that </> satisfies ( 1. 9) and, as 

Nochetto & Verdi (1988), for some a> 0 

</>'(s) 2:: a for alls e !R, (2.21) 

where we allow for </>' ( 0) = oo; as we can substitute a u by a8 u in the 
t.. t 

definition of (P), which amounts to substituting cp by cp/a. and scaling t by 

1/a. Actually, we can even cast problem ( 1. 4a) in the form of (P) if we only 

assume for every m > 0 

</>' (s) 2:: a(m) > 0 for all s e [-m, m]. (2.22) 

17 



This condition is satisfied, if e.g. f3 e C1 (1R) and {3'(s) > 0 for s ~ O. The 

above statement can be seen as follows . As already noted, we can substitute 

a u by cxB u in the definition of problems (P ) , (P ) and (P) without 
t t k,e e 

affecting the developed theory. In particular the bounds g, u for the 

u-component are independent of a and <p. Choose m = max { II ull ex> n , 
- L (u) 

llull CX) n} 
L Cu) 

and a= a(m) according to (2.23). This a we take in the definition of (P) and· 

<p = <pea> defined by 

rpca.> (s) "' { 
</>(-m) + am 
<f>(s) - as 
<f>(m) - am 

s :s -m 
Is I :s m 
s ~ m 

(2.23) 

Then <pea> satisfies ( 1. 9), if </> does so, and as the solution of (P) fulfills 

Ca) II ull oo :s m, we have that au + <p ( u) = <f>( u), 1. e. the solution of ( 1. 4a) 
L (Q ) 

T 

is the solution (P). 

The existence result for (P) in Theorem 2. 3 is not new. It is quite 

comparable to the basic results for the generalised porous medium equation, 

(compare e.g. Sacks ( 1983)). What is of importance for the following, is the 

precise information about its approximation by (P ) . k,e 

18 



3. A CONTINUOUS IN TIME FINITE ELEMENT APPROXIMATION 

We now consider the continuous piecewise linear finit~ element 

approximation to (P ) . We make the following assumptions on the data and 
k,C 

triangulation: 

Assumptions (D3): In addition to the assumptions (D2) we assume that the 

constant M in (2. le) can be chosen uniformly for all s e IR. (In view of the 

bounds (2. 14c) for u, see Theorem 2. 3, this is always achievable by changing 

cp(s) for Isl i?: m = max{-y,u}) Let Oh be a polyhedral approximation to O 

defined by oh = u K with dist(80, anh) ~ Ch2
; 

KETh 
h where T is a partitioning 

consisting of regular simplices K with h = diam(K) and h = max · h . For ease 
K KETh K 

h of exposition we assume that n ~ n. 

We introduce 

sh { C(Oh) xlK is 
h - X E : linear for all K e T } 

and sh - { X e sh : x = 0 on anh}. 
0 

h -h -h -In the analysis that follows we extend x e S from n to n \.0 by zero. Let 

1l 
h 

Co(O) denote 

w E c0 (o), 1l we sh satisfies 
h 

the interpolation operator such that 

h (ll w) (x ) = w(x) for all nodes x of the partition T . 
h l l 1 

for any 

Let p0 : L 2 (0) -7 Sh denote the L 2 projection such that for any w e L 2 (0), 
h 

P0 w E sh satisfies 
h 

(w-P~w,x) = 0 V Xe Sh. 

Let p 1 : . H1 ( n) -7 Sh denote the H1 semi-norm projection such that for any 
h 0 0 

w e H1 (n), P1w e Sh satisfies 
0 h 0 

h V x e S. 
0 

We recall the standard approximation results, for all·K e Th 

2-ml I I w-llh w I wm,q(K) ~ ChK w w2, ~CK> for m = 0 and 1 and 

V q e [1,oo] if d ~ 2 and V q e (3/2,oo] if d =3 
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(3.lb) 

and 

( 3. le) 

where in (3. la) we note the imbedding w2' 1 (K) c c0 (i<) in· the case d = 2, see 

for example p300 in Kufner et al. (1977). 

Another result that will be useful later is that 

h \:/ x e S . 
0 

(3.2) 

This result is proved in Elliott (1987), p68, with h replaced by Ch on the 

righthand side of (3. 2). However, it is easy to see from this proof that C 

can be taken as 1. 

The approximation to (P ) we wish to consider first is: 
k,C 

(Ph ) Find uh e H1 (0,T;Sh) and vh e H1 (0,T;Sh) such that 
k,C k,C 0 k,C 

(8 uh + 8 vh ,x) + (Vuh ,Vx) = (f,x) \:/Xe Sh 
t k, c t k, c k, c 0 

Ca vh ,x) = k(~ (uh )-vh ,x) v x e sh 
t k,C C k,C k,C 

uh (•,O) = Plg(•) vh (•,0) = poh[~.Jg(•))]. 
k,C h k,C ~ 

Theorem 3.1 

Let the Assumptions (D3) hold. Then for all c e (0,c] and h > 0 there 
0 

exists a unique solution {uh ,vh } to (Ph ) and 
k,C k,C k,C 

lluh II co >' llvh II co :S C(k,h). 
k , C L (QT k , C L (QT) 

(3.3) 

Proof: See the proof of Theorem 3.1 in part 1. a 

Firstly, we have the following analogue of Lemma 2.3. 
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Lemma 3.1 

Under Assumptions (D3) we have for all e e (0, e ] , h > O and t e (0, Tl 
0 

that 

I 'iJuh c • , t) 122 n + I a uh 122 + e I a vh 122 + e I a [ c uh ) l I 22 + 
k, e L Cu) t k e L C Q > t k e L < Q > t <p e k e L c Q ) 

' T ' T ' T 

+ k -l (· 1 a uh c • , t) 1
2

2 n + e 1 a vh c • , t) 1
2

2 n + 1 'V ca uh ) 1
2

2 ] 
t k,C L (u) t k,C L (u) t k,C L (Q) 

T 
-2 4 

:S C ( 1 +kc h ). (3.4) 

Proof: See the proof of Lemma 3. 1 in part 1. o 

In order to analyse the approximation it is convenient to 

introduce the associated linear problem : 

(Ph'•) Find uh,• e H1 (0,T;Sh) and vh,• e H1 (0,T;Sh) such that 
k,C k,C 0 k,C 

h* h* h* h (8 U' + 8 V' ,x) + ('iJu' ,'iJX) = (f,X) V XE S 
t k,C t k,C k,C 0 

h • h • h Ca v ' , xl = k( <p Cu )-v ' , xl v x e s 
t k,e e k,e k,e 

uh,*c· O) = P1g(•) vh,•c. O) = P0 [m (g(•))]. 
k,C ' h k,C ' h .,..C 

Th . t d i f { h' • h' •} 1 i (Ph' • ) e ex1s ence an un queness o u , v so v ng 
k,C k,C k,C 

for all 

e e (0,e ] and h > 0 is easily established and we have the following result. 
0 

Lemma 3.2 

that 

Under Assumptions (D3) we have for all e e (0, e ] , h > 0 and t e (0, T] 
0 

h • h 2 -2 h • h 2 11 u ' -u II + k e I 'iJ ( u ' -u )( • , t) I 2( n) + 
k,C k,C E (k,t) k,C k,C L u 

2 
h 2 h • h 2 + e I <p ( u ) -<p ( u ) I + ell v ' -v II 

e k,e e k,C 2 k,C k,C E (k,t) 
L (Q ) 1 

t 
-1 h • 2 

:S Ce I u -u ' I . 
k,C k,C 2 

L (Q ) 
t 

(3.5) 

Proof: See the proof of Lemma 3.2 in part 1. a 
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Lemma 3.3 

Under Assumptions (D3) we have for all£ e (0,£ ], h > O and t e (O,T] 
0 

that 
t 

I h •12 2 h. 2 u -u, 2, + h IVJ(u -u, )(•,s)dsj 2 n 
k,e k,e L Q) k,e k,e L (u) 

t 0 

::s Ch 4 [I u I 22 2 + I g 122 ] ::s Ce -1h 4 
k,£ L (0,t;H {Q)) H cm (3.6a) 

and 
h • 2 Iv cu -u , H • , t) I 2 n 

k,e k,e L (u) 

(3.6b) 

Proof: The first set of inequalities in (3. 6a&b) are proved in Lemma 3. 3 of 

part 1. The second inequalities in (3. 6a&b) follow from noting (2. 12) and 

under the stated assumptions on n that for re [l,oo] 

I uk,£ I Lr co, T;H2 cm > 

:s c[1atuk,c1Lr(O,T;L2 <11» + \atvk,C\Lr(O,T;L2 <11» + \f\Lr(O,T;L2 <11»]. 

and hence from (2. 12) that 

I 1
2 -1 u 2 2 ::s Ce 

k,e L (O,T;H (Q)) 
and 1

2 -1 u oo 2 ::s Ce k. I k,£ L (0, T;H (Q)) 
(3.7) 

D 

One could approximate directly the problem (P ) 
£ 

without relaxing the 

reaction process by introducing 

(Ph) Find uh e H1 (0,T;Sh) such that 
£ £ 0 

h h h catue + 8t[~8 (uc)J,xl + (Vuc,Vx) = (f,x) 

uh(• 0) = P1g(•) 
£ ' h 

In addition one could approximate (P) without relaxing the reaction process 

or regularizing by introducing the problem (Ph), the same 

replaced by ~· We have the following result. 
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Theorem 3.2 

Let the Assumptions (D3) hold. Then for all £ e (0, £ ] and h > O there 
0 

exist unique solutions uh to (Ph) and uh to (Ph). In addition for all 
£ £ 

t e (O,T] we have that 

II uh -uh 112 + £I <p (uh )-cp (uh ) I 22 + £I <p (uh )-vh I 22 
£ k,£ E (co,t) £ £ £ k,£ L (Q ) £ £ k,£ L (Q ) 

2 t t 

:S Ck-2 18 vh 12 2 :S Ce-1k-2 ( l+ke-2 h4 ) 
t k,£ L (Q ) 

T 
(3.8a) 

and 

(3.8b) 

Proof: Existence and uniqueness of solutions to 

discrete analogues of Theorems 2. 2 and 2. 3. The first inequality in (3. Sa) 

and (3. 8b) are discrete analogues of the first inequality in (2. 14a) and 

(2. 18), respectively, and are proved in similar ways. The second inequality 

in (3.8a) follows from (3.4). a 

Theorem 3.3 

Under Assumptions (D3) we have for all e e (0, e ] , h > 0 and t e (0, T] 
0 

that 

(3. ea·) 

(3.9b) 

Proof: The result (3.9a) follows directly from (2.18), (2.17), (3.6) and 

(3.5). The result (3.9b) follows directly from (3.9a) and (3.8a). a 
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Corollary 3. 3 

Let the Assumptions ( D3) hold, then for all h > O and t e ( O, T]: 

(i) Under no assumptions on non-degeneracy, we have on choosing 

c = Ch 4 < l-p)/( 3 -P> :S c and k = Ch-41 <3 -P> that 
0 

lu-uh I 2 :S Ch2C1+p)IC 3 -p> 
k,C L (Q) ' 

t T 
jJ(u-uh ) ( • s)ds I 1 :S Ch(l+p)IC 3-P> 

0 
k, c ' H en> 

and 

l<p(u)-<p (uh ) I 2 + I (u)-vh I 2 :S Ch4plC 3 -p>. 
C k,C L (Q) <p k,C L (Q) 

T . T 

(ii) Assuming (N. D.) and choosing c = Ch2c 1-p> IC 2-p> 

k = Ch Cp-3 >1 <2-p> we have that 

I u-uh I 2 :S Ch 21c 2-p>' 
k, c L (QT) 

t 
IJCu-uh ) (., s)ds I 1 n :S Ch11<2 -p> 

k, C H ( ) 
0 

and 

:S c 
0 

(3.lOa) 

(3. lOb) 

(3. 10c) 

and 

(3. lla) 

(3. llb) 

(3. llc) 

Proof: Noting the non-d~generacy condition (N.D. )e(l.8a) in the case of 

(3.11); (3.10a&c) and (3. lla&c) follow directly from (3.9a&b). (3. lOb) and 

(3. llb) follow from (2. 18), (2. 17), (3. 6) and (3. 5). o 

Theorem 3.4 

Let the Assumptions (D3) hold. Then· for all h > 0 and t e (0, Tl the 

unique solutions uh to (Ph) and uh to (Ph) satisfy the following error bounds 
c c 

( ) ( 3 0 ) { Uh vh ( uh ) } 1 d b ( ) { h ( h ) ( h ) } i . 1 for k,c' k,c' <pc k,c rep ace y a uc, <pc uc , <pc uc 

with c = Ch 4< t-p>l< 3 -P> :S c and ( b) {uh, <p( uh), cp( uh)}. 
0 

and h h h 
(ii) (3. 11), assuming (N. D.) holds, for {uk,c' v k,c' cpc(uk,c)} replaced by 
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Proof: The above error bounds follow by combining (3. 8) with (3. 10) and 

(3.11). D 

Remark 3.1 

If we know that u satisfies the non-degeneracy condition (N. D. ) , then 

h from the error estimates above it is better to approximate (P) by (P ) , with 
£ 

h the appropriate choice of e, rather than (P ). o 
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4. A MORE PRACTICAL CONTINUOUS IN TIME FINITE ELEMENT APPROXIMATION 

The standard Galerkin approximation analysed above is not practical as 
. h 

it requires the term (cp (u ) , xl to be integrated exactly. This is obviously 
C k,C 

difficult in practice and it is computationally more convenient to consider a 

scheme where numerical integration is applied to all the terms and the 

initial ·data is interpolated as opposed to being projected. Below we 

introduce and analyse such a scheme. 

For all w , w e c0 cnh) we set 
1 2 

Cw , w )h = J TC (w w ) 
1 2 nh h 1 2 

as an approximation to ( w , w ) . On setting 
1 2 

lwlh = [(w,w)h]~ for we c0 cnh), 

we recall the well-known results 

and for m = 0 or 1 

I h I l+m J -v -v - ( -v , -v ) ~ C h 11-v II 1 ( nh 11-v II m( nh> h ,/\.1 ,/\.2 ,/\.1 ,/\.2 2 ,/\.1 H u ) ,/\.2 H u 
0 

We make the following assumptions on the data. 

h 'v' x e S, 

Assumptions ( D4): In addition to the Assumptions (03) we assume that 

1 0 - 2 2 f e H (0,T;C (O))nL (0,T;H (0)). 

A more practical approximation to (P ) than (Ph ) is then 
k,C k,£ 

Ah ""h 1 h Ah 1 h (P ) Find u e H (0,T;S) and v e H (0,T;S) such that 
k,C k,£ 0 k,£ 

"'h "'h h ""h h h (8 u + 8 v ,x) + (Vu ,VX) = (f,X) 'v' Xe S 
t k, c t k, c k, c 0 

"'h h ""h ""h h h ca v ,x) = k(cp (u )-v ,x) 'v' x es 
t k,C C k,C k C 

""h "'h u (•,O) =TC g(•) v (•,O) = n [~ (g(•))]. 
k,£ h k,£ h £ 

We have the following analogues of Theorem 3.1 and Lemmas 3. 1. 
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Theorem 4.1 

Let the Assumptions (D4) hold. Then for all c e (0, c ] , h > O there 
0 

"'h "'h "'h "'h "'h exists a unique solution {u , v } to (P ) and llu II" co llv II co 
k,E k,C k,E k,C L {Q )' .k,C L {Q) 

T T 

~ C(k,h). 

Proof: See the proof of Theorem 4.1 in part 1. o 

Lemma 4.1 

Under Assumptions (D4) we have for all c e (0, c ] , h > O and t e (0, T] 
0 

that 

"'h 2 "'h 2 
1vuk,c(., t) IL2CO> + 1a u I 2 + t k, E L {QT) 

+ c I a ~h 122 + c I a n: [ c ~h ) l I 22 + 
t k C L (Q ) t h <pc k C L (Q ) 

' T ' T 
-1 [ "'h 2 "'h 2 

+ k I a u c ·, t) I 2 n + c I a v c ·, t> I 2 n t k, C L { u) t k, C L { u) 
+ 1vca ~h ) 12

2 ] ~ c. t k,E L {Q) 
T 

(4.2) 

.Proof: See the proof of Lemma 4.1 in part 1. o 

Assumptions ( D5): In addition to the Assumptions (D4) we assume that 

The triangulation Th is such that ( i) for d = 2 it is weakly acute; that 

is, for any pair of adjacent triangles the sum of opposite angles relative to 

the common side does not exceed n:; and (ii) for d = 3 the angle between the 

vectors normal to any two faces of the same tetrahedron must not exceed n:/2, 

see Kerkhoven & Jerome (1990). 

From the above it is easy to deduce that the stiffness matrix 

· {(Vx1, VxJ)}~,J=l; where {x/~=l are the internal nodes of the partitioning 

and x e Sh is such that x ( x ) = o
1
J, i, j = 1 ~ I; is an M-matrix. From this 

j 0 j i 

property one can deduce that· 

v x e s~, (4.3) 
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see §2.4.2 of Nochetto (1991). 

Corollary 4. 1 

.... h "h 
Let the Assumptions ( D5) hold. Then the unique solution { u , v } to 

k,C k,C 

(P:, e), C E (0, c
0

] and h > 0, satisfies the bounds (2. 5a). In particular, if 

g and f ~ 0 then ""h v ~OinQ. 
k,C T 

Proof: See the proof of Corollary 4.1 in part 1. a 

We now have the analogue of Lemma 2.1. 

Lemma 4.2 

that 

Under Assumptions (DS) we have for all c e (0, c ] , h > 0 and t e (0, T] 
0 

.... h 2 
e I 'Vrr [ <p ( u ) ] I 2 + 

h C k, C L (Q ) 

.... h h Ah Ah 2 
( iP ( u ( • , t) ) , 1) + k Irr [ <p ( u ) ]-v I 2 + e k, C h C k, C k, C L (Q ) 

T T 
.... h 2 

+ Iv c ·, t) I 2 n + k,C L (u) 
(4.4) 

Proof: See the proof of Lemma 4.2 in part 1. 

We now prove the analogue of Lemma 4. 2 for the solution {uh , vh } of 
k,C k,C 

Lemma 4.3 

Under Assumptions (D5) we have for all c e ( 0, e ] , and for all h > 0, 
0 

-1 2 provided Mc kh ::s 1, and t e (0, Tl that 

e I 'V [ rr <p (uh ) ] I 22 + ( iP (uh ( • , t) ) , 1) + k I <p (uh )-vh I 22< > + 
h c · k, e L co > e k, c c k, c k, c L o T T 

I h 12 -11 h 12 + v (.' t) 2 n + k a v 2 ) ::s c. 
k,C L (u) t k,C L (QT 

(4.5) 
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Proof: See the proof of Lemma 4.3 in part 1. o 

Lemma 4.4 

Under Assumptions (D5) we have for all e e (0, e ] , and for all h > O, 
0 

-1 2 provided e h s C, and t e (0,T] that 

h "'h 2 I h "'h 2 h "'h 2 II u -u II + e <p ( u )-<p ( u ) I 2 + ell v -v II k,e k,e E Ck,t) e k,e e k,e L CQ > k,e k,e E (k,t) 
. 2 t 1 

s C[e-1+11~h<pe(g)11:1cO>]h2.+ C[h4+1 CI-nh)<pe(g) l~2cml 
< c -1h2 - e . (4.6) 

Proof: The first inequality in (4.6) is proved in Lemma 4.4 of part 1. From 

(3. 2), (3. la) and (2. le) we have that 

I ( I-nh)<pe(g) 1~2 cO> = :S 2 [ I ( I-nh)q>e(nhg) l~2cm + l<pe(g)-<pe(nhg) 1~2 cO>] 

:S 2h2 IV[n <p (n g)] l-22cn + Ce-2h4 
:S Ce-1h2, 

h e h L u) 
(4.7a) 

since from (4.3) it follows using a Young's inequality that 

M-1
ejV[nh<pe(nhg)] l~2CQ) :S (V(nhg),V[nh<pe(nhg)]) 

= - (~g,Trh<pe(nhg)) - (V(g-nhg),V[nh<pe(nhg)]) 

s C( l+e-1h2
). (4. 7b) 

Noting these bounds yields the second inequality in (4.6). o 

We now improve on the bound (4. 6) in the physically interesting case of 

"'h given data g and f 2:: 0 yielding u, u 2:: 0 in Q . 
k,£ T 

Assumptions (D6): In addition to the Assumptions (D5) we assume that 

( i) n c !Rd, d = 1 or 2, and Th is a quasi-uniform partition if d =2; (ii) g 

2 and f 2:: 0 and (iii) <p e C (0,oo) such that <p''(s) :S 0 for alls> 0 and there 

exist ans such that <p(s) 2:: sq>'(s) for alls e (0,s ). 
0 0 

We set <p to be the following quadratic regularization of <p e 
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for s ~ o 
for s e [O,o] (4.8) 
for s :s 0 

where a = o-1<p' (o) - o-2<p(o), b 

<p e C1 (!R). 

l/( l-p) th t = e so a 

E 

As (ii) ~ u ~ 0 in QT, see Theorem 2.3, we can choose <p(s) for s < 0 as 

we please. As (iii) holds it follows for e sufficiently small that 

0 < b :s C e-1 and -C e<p-2 )/(l-p) :s a :s 0, see (2. 3b), and hence <p satisfies 
1 2 E 

the conditions (2. lb&c). Extending <p so that <p(s) = <p (s) for s :s 0, we have 
E 

that (1.9) holds and <p satisfies (2. la). Therefore all the results proved so 
E 

far in this paper hold under the Assumptions ( 06). We note for example that 

<p(s) = sP for s ~ 0 with p e (0,1) satisfies (1.9) and (iii) above. 

From (i) we have the discrete Sobolev imbedding result 

lxlLoo<rl> :s C[ln(l/h)lrlxlH1cn> :s C[ln(l/h)lrjVxlL2cn> v x es~, 

where r = O if d = 1 and r = M if d = 2; see for example p67 in Thomee 

( 1984). As noted in part l, the quasi-uniformity restriction is not really 

restrictive in practice. 

Lenuna 4.5 

-Under Assumptions ( 06) there exists an e :s E such that we have for all 
0 0 

e e (0,e] and for all h, provided Me-1kh2 :s 1, and t e (0,T] that 
0 

h Ah 2 h Ah 2 
II u -u II + e In [ <p ( u )-<p ( u ) ] I 2< > :s 

k,E k,E E (k,t) h E k,E E k,E L Q 
2 t 

Ck[ln(l/h)] 2re-2h 4 [ lu 1
22 2 +e-2/Cl-p)· IV(u -uh ) I\ 2 ] + 

k,E L (0,t;H (Q)) k,E k,E L (O,t;L (0)) 

-1 2 4 2r I c l 
1
2 + Ck[e +llnh<pe(g)llH1cn>lh + C[ln(l/h)] (I-nh)<pe g L1cn> 

:s Ck[ ln( 1/h)] 2r E - 3h 4{ l+E -< 4- 2p)/( t-p)kh 4 [ 1 +e-2kh2]} 

and 
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h ""h 2 div -v II 
k,C k,C E

1
(k,t) 

:s c [ h 2 +c In [ cp (uh )-cp ( ~h ) ] 1
22 ) +ck -l I (I -n ) cp ( g) 122 n ] 

h C k, C C k, C L (Q h C L ( ) 
t 

:s C[k-1h2+clrr [cp (uh )-cp (~h )] 122 ], 
h c k, c C k, C L (Q ) 

t 
(4.9b) 

where r = 0 if d = 1 and r = M if d = 2. 

Proof: The first inequalities in (4.9a) and (4.9b) are proved in Lemma 4.5 in 

part 1. We note, in a similar manner to (4.25) in part 1, that 

(4.10a) 

since from (4.8) we have that -cp~'(•) :s Cc(p-2)/(l-p) and hence from (2.lc) 

and (3. la) it follows using a Young's inequality that 

l(cp''(n g)V(rr g),V(n g))I = ICV[cp'(n g)LV(rr g))I ch h h ch h 

:s ICcp~(nhg),~g) I + IJcp~(nhg)Vg.nl + ICcp~'(nhg)V(nhg),V(g-nhg)) I 

an 
(4.10b) 

where n is the outward unit normal to an. From (3. le), (3. 7), (3. 5) and 

(3.6a) and an inverse inequality we have that 

1vcuk c-u: c) l~2(Q ) :s 2[ 1vcu -P
1
u ) 1

2
2 + IVCP~uk c-u: c) l~2(Q ) ] , , T k, C h k, C L (QT) , , T 

:s Cc - 1h2 + Ch-2 I P1u -uh I 22 
h k,C k, C L (Q ) 

T 

:s Cc -1h 2 + Ch-2 [ I u -uh' • 122 + I uh, •-uh I 22 ] 
k,C k,C L (QT) k,C k,C L (QT) 

and from (3.5) and (3.6b) 

IVCu -uh ) 12co 2 
k,C k,C L (O,t;L (Q)) 

h• 2 h• h 2 :s 2 [ Iv ( u -u ' ) I CX> 2 + 1 v ( u ' -u ) I CX> 2 ] 
k,C k,C L (O,t;L en» k,C k,C L (O,t;L en» 

(4. 11a) 

:s Cc -l kh 2 [ 1+c-2kh2] . ( 4. 11 b) 
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Hence it follows that 

( 4. 12) 

The second inequality in (4. 9a) then follows from the bounds (4. 10a), (4. 12), 

(4.7b) and (3.7). The second inequality in (4.9b) follows from (4.7a). o 

One can also consider the corresponding direct approximations without 

relaxing the reaction: 
Ah Ah 1 h 

(P) Find u e H (0,T;S) such that 
£ £ 0 

""'h ""'h h ""'h h h (8 u +a[~ (u )],x) + (Vu ,Vx) = (f,X) V Xe S 
t£ t £ £ £ 0 

"'h u (•,O) =Tl g(•). 
£ h 

Ah 
and (P ), the same as (Ph) with ~ replaced by ~· We have the following 

£ £ 

results. 

Theorem 4.2 

Let the Assumptions (D4) hold. Then for all c e (0, c ] and h > 0 there 
0 

"'h (p"h) and u""'h to (P .... h). exist unique solutions u to Moreover, for all t e (0, T] 
£ £ 

we have that 

ll~h-~h 112 
£ k,£ E (oo,t) 

2 

and 

"h "h 2 "'h ""h 2 + £ In [ ~ ( u ) -~ ( u ) ] I 2 + £ In [ ~ ( u ) ] -v I 2 
h £ £ £ k,£ L (Q ) h £ £ k,£ L (Q ) 

t t 

:S Ck -2 I a ~h 122 :S Cc -1k -2 
t k,£ L (Q ) 

T 

..... h ..... h 2 ..... h ..... h 2 c ( 1 +p) / ( 1-p) 
II u -u II + c I n [ ~ ( u ) -~ ( u ) ] I 2< > :s c . 

£ E
2

Coo,t) h £ e L Qt 

(4. 13a) 

(4.13b) 

""'h "'h In addition under the Assumptions (05) u and u satisfy the first bound e 
""'h ""'h in (2. 5a). In particular, if g and f ::: 0 then u and u 2: 0 in Q • 

C T 
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Proof: Existence and uniqueness of solutions to (Ph) and (Ph) follow from c 
discrete analogues of Theorems 2. 2 and 2. 3. The first inequality in (4. 13a) 

and (4. 13b) are discrete analogues of the first inequality in (2~ 14a) and 

(2.18), respectively, and are proved in similar ways. The second inequality 

in (4. 13a) ·follows from (4. 2). The first bound in (2. 5a) follows from (4. 13), 

h the equivalence of norms on S and Corollary 4.1. o 

Theorem 4.3 

Under Assumptions (D5) we have for all c e (0,c] and for all h > 0, 
0 

-1 2 provided c h ~ C, and t e (0,T] that 

"'h 2 "'h 2 "'h 2 
lu-u I 2 + clcp(u)-cp (u ) I 2 + clcp(u)-v I 2 

k,C L (Qt) C k,C L (Qt) k,C L (Qt) 

~ C[A (t) cCl+p)/(l-p) + c-1 (k-2+h2 )]. 
c 

(4.14) 

Under Assumptions ( D6) there exists an c s c such that we have for all 
0 0 

- -1 2 c e (0, c ] , and for all h, provided Mc kh s 1, and t e (0, Tl that 
0 

and 

lu-~h 122 s C[A (t) cCl+p)/Cl-p) + c-lk-2 ] + 
k,C L (Q ) C 

t 

+ Ck[ ln( 1/h)] 2r c -3h 4 { l+c-< 4- 2P>IC l-p)kh 4 [ 1 +c-2kh2]} 

"'h 2 "'h 2 
c lcp(u)-vk, c IL2COt> + c lcp(u)-nh[cpc(uk, c)] IL2CQt) 

~ C[A (t) cC1+p)IC1-p) + c-1k-2 + k-1h2 + h2] + 
£ 

where r = 0 if d = 1 and r = M if d = 2. 

(4. 15a) 

(4.15b) 

Proof: The results (4. 14) and (4. 15a) follow immediately from combining (3. 9) 

with (4. 6) and (4. 9a), respectively. (4. 15b) follows similarly from (3. 9) and 

(4.9) after noting (3.2), (4.5) and (4.13a). o 
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Corollary 4. 3a 

Let Assumptions (D5) hold, then for all h > O and t e (0,T]: 

( 1.) u d ti d h l-p n er no as sump ons on non- egeneracy and on c oos ing c = Ch s e 
0 

and 

-1 k = Ch , we have that 
"'h t ... . 

lu-u I 2 + IJ(u-uh )(. t s)ds I 1 n s Ch(l+p)/2 
k, C L (QT) O k, £ H ( u) 

(4. 16a) 

and 

. "'h "h 
l<p(u)-rr [<p (u ) ] I 2 + l<p(u)-v I 2 ~ ChP. (4. 16b) 

h C k,C L (Q) k,C L (Q) 
T T 

(ii) On assuming (N. D.) and choosing c = Ch2Cl-p)IC 3~P> ~ c and k = Ch-1 we 
0 

have that 
"'h t ... ( 

l u-u I 2 + IJCu-uh ) ( •, s)ds I 1 n s Ch21 3-p) 
k C L ( Q ) k, £ H Cu) 

' T 0 
(4. 17a) 

and 

(4.17b) 

Proof: The results follow directly from (4. 14), (4. 6), (2. 18), (2. 17), (3. 6), 

( 3. 5 ) , ( 3. 2) and ( 4. 4) . a 

Corollary 4. 3b 

Under Assumptions (D6) we have for all t e (0,T] 

( i) Under no assumptions on non-degeneracy and on choosing 

s c and k = C{h2[ ln( l/h) ]r} - 21
<5 - 2P> 

0 
we 

have for all p e (~,1] and h sh 
0 

l u-~h I 2 s C{h2[ ln( 1/h) ]r} Cl+p)/(S-2p> 
k,£ L (Q) ' 

T 

(4.18a) 

t ,.. 
IJCu-uh )(•,s)dsl 1 n s C{h2[ln(l/h)]r} 31

C
2<5 - 2P>l 

k,£ H (u) 
0 

(4.18b) 

and 

I () [ ("h )JI I () "h I ~c{h2[ln(l/h)]r}q1cs-2p>, <p u -rr <p u 2 + <p u -v 2< > -
h £ k, £ L (QT) k, £ L QT 

(4. 18c) 

where q = min{2p,3/2}. 
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(ii) Assuming (N. D.) and. on choosing c = C{h2[ ln( l/h) ]r} 4 <t-p)/Ct3-7P> :s e 
0 

and k -- C{h2( ln( l/h) ]r}-2(3-p)/(13-7p), h ( we ave for all p e 1/3,l] and 

h :s h 
0 

lu-~h I 2 :s C{h2[ln(l/h)]r}4/(13-7p) 
k,£ L (QT) 

t ..... 

lf(u-uh )( • s)ds I 1 :s C{h2[ 1 ( l/h) ]r}3(3-p)/[2(13-7p)] 
k, £ ' H en> n 

0 

and 

where q = min{2(p+l),3(3-p)/2}. 

(4. 19a) 

(4.19b) 

(4. 19c) 

Proof: The results follow directly from (4. 15), (4. 9), (2. 18), (2. 17), (3. 6) 

and (3. 5). D 

We note that (4. 18a&c) improve on (4.16a&b), and (4.19a&c) improve on 

(4. 17a&b). 

Theorem 4.4 

Let the Assumptions ( D5) hold. Then for all h > 0 and t e ( 0, T] the 

"'h Ah Ah Ah 
unique solutions u to (P ) and u to (P ) satisfy the following error bounds 

£ £ 
Ah Ah '""h Ah "'h Ah 

(i) (4.16) for {u ,v ,<p (u )} replaced by (a) {u ,n [<p (u )],<p (u )} 
k,£ k,£ £ k,£ £ h £ £ £ £ 

1 ""h ""h "h with e = Ch -p :S c and ( b) { u , n [ <p ( u ) ], <p ( u )} . 
0 h 

(ii) (4.17), assuming (N.D.) holds, for replaced by 

Finally, under Assumptions (D6) for all h :s h the following error 
0 

bounds hold: 

( i) ( 4. 18 ) with p 
Ah Ah Ah 

e (~, 1] for {u ,v ,<p (u )} 
k,£ k,£ £ k,£ 

replaced by (a) 

with e = C{h2[ ln( l/h) ]r} 2Cl-p)/CS-2p) "'h "'h '""h {u ,n [<p (u )],<p (u )} 
£ h £ £ £ £ 

-:s e and 
0 

(b) 

"'h "'h '""h {u ,n [<p(u )],<p(u )}. 
h . 
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"'h "'h "'h 
(ii) (4.19), assuming (N.D.) holds, with p e (1/3, 1] for {u ,v ,<p (u )} 

k,C k,C C k,e 

replaced. by {~h' Tr [<p (~h)], <p (~h)} with e = C{h2 [ ln( 1/h) ]r} 4 Cl-p)/Cl 3- 7P> 
e h e e c e -:s e . 

0 

Proof: The above error bounds follow by combining (4.13) with (4.16)-(4.19). 

D 
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5. A FULLY DISCRETE AND PRACTICAL FINITE ELEMENT APPROXIMATION 

In this section we analyse the fo !lowing fully discrete . practical 

approximation to (P ) with timestep -r = T/N : k,e 
.... h 't ""h n h ""h n h 

(P , ) For n = 1 ~ N find u ' e S and v ' e S such that k,e k,e o k,e 
-1(, (""h, n ""'h, n-1) + (v""h, n _ v""h, n-1) )h + ("u""h, n " ) = (fn )h V X E Sh 

-r uk , e - uk , e k , e k , e ' X v k, e' v X ' X o 
't-l(~h,n _ ~h,n-1 )h = k ( (~h,n) _ ~h,n )h V E Sh 

k,e k,e ,x <pe k,e k,e'x X 

~h,o(•) = n g(•) ~h,O(•) = n[<p~g_(•)], 
k,C h k,C ~ 

where fn(•) = f(•,n-r). 

A co h ,.. co h 
Let U e L (0,T;S) and V e L (0,T;S) be such that for n = 1 ~ N k,e o k,e 
" ""h " "'h n U ( • , t) = u ' n ( • ) and V ( • , t) = v ' ( • ) if t e ( ( n-1) -r, n-r] ; 

k,C k,8 k,8 k,C 
~ 0 h ~ 0 h and u e C ([0,T];S) and v e C ([O,T];S) be such that for n = 1 ~ N 

k,C 0 k,8 
~L ""h n "h n-1 u ( •, t) = [ (t-(n-1)-r)u ' ( •) + (n-r-t)u ' ( •) ]/-r 

k,8 k,8 k,8 
if t e [(n-1)-r,nT] 

and 

"L ""'h "'h n-1 V (•,t) = [(t-(n-lh)v ,n(•) + (n-r-t)v' (•)]/-r 
k,C k,C k,C 

if t e [ ( n-1 h, n-r] . 

Then (Ph'T) can be restated: for almost every t e (0,T] 
k,8 

calf + ar ,x)h +('VU ,'Vx) = (f,x)h v x Esh 
t k, e t k, 8 k,e o 

~ . h ,.. ,. h h ca v , xl = k C<p cu ) - v , xl v x e s 
t k, 8 e k,e k,e 

ff (• 0) = n g(•) V1- (• 0) = n[m g(•)] 
k, e ' h k, e ' "'e ' 

.... 
where f(•,t) - fn(•) = f(•,n-r) if t e ((n-1)-r,n-r], n = 1 ~ N. 

Theorem 5.1 

Let the Assumptions (D4) hold. Then for e e (0, e
0
], h and T > 0 there 

exists a unique solution {Uk,e' Vk,e} to (P::~). Moreover, if the Assumptions 

(D5) hold then 
,.. ,.. 

Y :S U :S U and 
k,E: 

ysv sv 
k,e 

(5. 1) 

where y, U, Y. and V e R are independent of h, -r, e and k. In particular, if g 

and f ~ 0 then one can take Y = Y. = 0. 
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Proof: See· the proof of Theorem 5.1 in part 1. o 

Lemma 5.1 

Under the Assumptions (D4) we have for all c e (0, c
0

], h, r > O and 

m = 0 -7 N that 

11~h -u 11 2 
k,C k,C E (k,m"t') 

2 

""h ... 2 ""h .... 2 
+ c I n [ <p ( u ) -cp ( U ) ] I + ell v -V II 

h C k,C C k,C 2 k,C k,C E (k,m"t') 
L (Q ) 1 

m"t' 

C~2{ 1a u""h 122 1 i ""h 2 ~ " + C r+ k - ) - I 'iJ Ca u ) I 2 + 
t k,C L (QT) t k,C L (QT) 

+ ia n [cp Cu ) l I 2 + ja v I 2 + ja [n fl I 2 . 
""h 2 ""h 2 2 } 

t h C k,C L (QT) t k,C L (QT) t h L (QT) 

Proof: See the proof of Lemma 5.1 in part 1. o 

Corollary 5. 1 

Under the Assumptions (D4) we have for all c e (0, c ] , h, r > 0 and 
0 

m = 0 -7 N that 

II ~h -U 112 I ... h ... 12 ""h ... 112 
k,C k,C E2(k,m"t') + c Trh[cpc(uk,C)-cpc(Uk,C)] L2(Q ) + cllvk,C-vk,C El(k,m"t') 

m"t' 

(5.2) 

Proof: The result (5. 2) follows immediately from Lemma 5. 1 and the bound 

(4.2). 0 

Below we will present an alternative bound to (5. 2). Firstly, we prove 

appropriate analogues of Lemmas 4.1 and 4.2. 
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Lerruna 5.2 

Under Assumptions (04) we have for all c e (0, c ] , 
0 

h, 'T: > 0 and 

te (O,T] that 

"" 2 "'L 2 "'L 2 1 vu ( • , t) I 2 n + I a u I 2 + E I a v I 2 + 
k,E L CH) t k E L (Q ) t k E L (Q ) , T , T 

N 
"'L "'L 2 + E 'T: L In [ <p (U ( • , n'T:) ) -<p ( U ( •, ( n-1 h) ) ] /1: I 2 n + 

n=l h E k,E E k,E L (~.:) 

+ k-1 [1a CJL (•,t) 122 n + c!a VL (•,t) 122 n] :S C[1+(k'T:)-1]. 
t k, 8 L ( u) t k, 8 L ( u) 

(5.3) 

Proof: We adapt the proof given for Lemma 2. 3 in part 1. We adopt the 

difference notation ( ""h,n+l ""h,n)/ u -u 1:, ( "'h,n "'h,n-1)/ - u -u 'T: and 
k,8 k,E k,E k,E 

m m 
L [ (an-an-l)an] = ~ [ (am)2 _ (ao)~ + L (an-an-1)2]. (5.4) 

n=l n=l 

N-1 

(5.5a) 

(5.Sb) 

and hence 

(k-102~h,n + 0+[~h,n + <p (~h,n)],x)h + (k-1'V0+~h,p + 'V~h,n+l,'Vx) 
t k,E t k,8 8 k,C t k,C k,C 

= (fn+l + k-lD+fn,x)h V X E Sh. (5. 6) 
t 0 

Choosing x = D+~h, n in (5. 6) and summing from n = 
t k, c; 

yields for m = 1 ~ N-1 that 
A m ~ A 

~ k-1[ 1o+uh,ml2 + 1:2 L jo2uh,nl2 - 1o+uh,ol2l + 
t k,E h t k,£ h t k,E h 

n=l 

~ m and noting ( 5. 4) 

"'h 1 2 -1 m +""h n 2 
+ ~ [ j 'Vu , m+ I 2 + ( 1:+2k h L j 'V(D U ' ) I 2 n 

k, c; L ( Q) t k, E L ( u) 
n=l 

n=l 

and hence 
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k-11D+~h,ml2 + "C ~ ID+~h,nl2 + IV~h,m+1 1 22 n + 2"C ~ (D+[<p (~h,n)] D+~h,n)h 
t k, e h t k, e h k, e L Cu) t c k, e ' t k, e n=O n=O 

:S ("C+k-1) ID+~h,012 + 2"C(D+[<p (~h,O)],D+~h,O)h + 
t k,e h t e k,e t k,e 

,... m 
+ IV'uh, 1122 + "t L lfn+l + k-1D+fnl2 . (5. 7) 

k, £ L (Q) t h n=l 
Next we note from the first equations in (Ph,"C) and the initial conditions 

k,e 

that 

and hence 

(l+k"C)(D+~h,O )h = 
t k c,x , 

h V x e S 

In addition it follows from (2. 3a) that for n = 0 ~ N-1 

M-\:ID+[ (~h,n)l 12 s CD+[ (~h,n)] D+~h,n)h. 
t 'Pe k,e h t 'Pe k,£ ' t k,c 

Choosing x = D+~h,o in (5.8b) and noting (5.9) and (3.la) yields that 
t k,c 

"CID+~h,012 + 2"C[k"C/(l+k"C)](D+[ (~h,O)] D+~h,O)h + IV~h,1122 
t k, E: h t <pc k, e ' t k, e k, C L (Q) 

:S l'V~h, 0122 + "Clfl 12 :s c. 
k, E: L (Q) h 

From (5.7), (5.9), (5.10) and the assumptions on fit follows that 
,., m . ,., ,., . m ,., 

k-1ID+uh,m12 + "C ~ ID+ uh, n 12 + IVuh, m+l 122 + £"C ~ ID+[ (uh,n)] 12 
t k, C h ~ t k, c h k, c L ( Q) ~ t <pc k, c h n=O n=O 

N 

(5.8a) 

(5.8b) 

(5.9) 

(5. 10) 

:S C [ 1 + ( k"C) -l + "C L I fn+l + k -lD ~ fn I:] :S C [ 1 + ( k"C) -l]. ( 5. 11) 
n=l · 

Choosing x = D+~h, n in (5. 5b) and summing from n = 1 ~ m and noting 
t k,C 

(5.4) yields form= 1 ~ N-1 that 

Hence noting (5.8a) we obtain form= 1 ~ N-1 that 

(5. 12) 

Combining (5. 11) and (5. 12) and noting (4. la) yields the desired result 

(5.3). a 
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Lemma 5.3 

Under the Assumptions ( D5) we have for all c e ( 0, c ] , h, -c > O and for 
0 

m = 0 ~ N that 

11~h -u 11 2 
k,C k,C E (k,m"C) 

2 

... h ... 2 
+ c 1 rr c cp cu ) -cp cu ) J I h E k,E C k,E 2 

L (Q ) 
m"C 

"'h ... 2 
+ div -V II k , E k, E E ( k, m"C) 

1 

""h ... _L ""h :'J.. Ah A ... h :'J.. 

(5.13) 

Proof: Let E - u -U , ~ -
u k,C k,C u u -u , E - v -V , k,C k,C v k,C k,£ v -v k,E k,C and 

E = f-f. Firstly, we note that 
f 

N n"C 

I ff -u 122 2 ff 2 2 if 2 k,c k,e L co> - I: c J (n-c-t) lat k,el dt ::s -r 18t k,elL2 co ,. 
T n=l n-l)T T 

(5.14a) 

and the equivalent result with U replaced by V. Hence it follows from (5. 3) 

that 

:'.L ... 2 ... L "" 2 2 1 
lu -U I 2 + elV -V I 2 :s C[-c +k- -c]. k,E: k,E L (Q ) k,C k,E L (Q ) 

T T 
(5.14b) 

Similarly, we have that IE 122 ::s C-c2. 
f L (Q ) 

T 

It follows from (Ph ) and (Ph'-c) that EL(•,O) = 0, EL(•,0) = 0 and for 
k,C k,C u v 

almost every t e (0,T] 

ca EL+ a EL,x>h + CVE ,vx> =CE ,x>h 
t u t v u f 

v 
L h ""h ... h ca E , x> = k c [ cp cu )-cp cu ) J - E , x> 

t v C k,E: C k,£ v 
t 

v 

Choosing x = JE ( •, cr)dcr in (5. 15a), integrating over 
u 

s 

where s is the integration variable in time yields that 
t t 
JIE (•,s) 12 ds + XIVJE (•,s)dsl

2
2 n = 

u h u L (u) 
0 0 

t s 
:'.L A L h J([u -U -E ](•,s) + JE (•,cr)dcr,E (•,s)) ds. k,C k,C v f u 

0 0 

Similarly choosing x = E in (5.15a) yields that 
u 

t 

XIE~(·,t) I~+ JIVEu(•,s) l~2cn>ds = 
0 

t 

X E sh 
0 

X E sh. 

(O,t) 

... ."'.L L h L h J[ ( [ u -u ](., s), a E (. , s)) + ( [ E -a E ](., s), E (., s)) ] ds. 
k,£ k,E: s u f s v u 

0 

From (5. 16), (5. 17), (5. 15b), (4. 2), (5. 3) and (5. 14b) it follows that 

41 

(5.15a) 

(5.15b) 

in time, 

(5.16) 

(5.17) 



t t t 

JIE (•,s) 1
2 

ds + XIVJE (•,s)dsl 2
2 n + k-1 [MIEL(•,t) 1

2 +JIVE (•,s) 1
22 n ds] 

u h u L (u) u h u L (u) 
0 0 0 

t Ah A h 
+ JC <p ( uk ( • , s) )-<p ( U ( • , s)) , E ( • , s)) ds 

O C ,C C k,C u 
t 

= s c [ c if -u ) + c VLk ~ -vk ) 1 c • , s ) , E c • , s ) ) h ds + 
O k,C k,C ,c;... ,C u 

t 
+ k -l f ( [ U -if ]( • , s) , 8 EL ( • , s) ) h ds + 

O k,C k,C s u 
t s 

+ J (k-1E (•,s) + JE (·,~)d~,E (•,s))hds 
f f u 

0 0 

:S C[c-1+(ki:)-1 ] [i:2 +k-1i:] :S C(c-1i:2 +c-1k-1i:+k-2 ). (5. 18) 

The desired result for u in (5. 13) then follows from (5. 18), (4. la) and 

(2.3a). 

Similarly choosing x = E in (5.15b) yields that 
v 

t -11 L 12 2 M k E ( • , t ) + J I E ( • , s ) I ds = 
v h v h 

0 
t Ah A h 
f(<p (u (•,s))-<p (U (•,s)),E (•,s)) ds + 
O C k,C C k,C v 

t 
-1 A .:'.L L h + k f C [ v -v l ( • , s ) , a E ( • , s ) ) ds . 

O k,C k,C s v 
(5.19) 

The desired result for v in (5. 13) then follows from (5. 19), the result for u 

in ( 5. 13 ) , ( 5 . 14 b) , ( 5 . 3 ) , ( 4. 2 ) and ( 4. 1 a) . a 

Theorem 5.2 

(a) Let the Assumptions (D5) hold. Then for the stated choices of c and 

k, we have that the error bounds (4. 16) and (4. 17) hold for t = mi:, m = 0 ~ 

N, with {~h , ~h , <p (~h )} replaced by {U , V , <p (U )} with T = Ck-1 
:S 

k,C k,C C k,C k,C k,C C k,C 

Ch. 

(b) Let Assumptions (D6) hold. Then for the stated choices of c and k, 

we have that the error bounds (4. 18) with T = Ck-1:S C{h2 [ ln( l/h) ]r}2/(S-2p> 

and p e (X,1] and (4.19) with T = Ck-1 :S C{h2 [ln(l/h)]r} 2 < 3~p)/Cl3-7P> and 

""'h "h "h p e (1/3, 1] hold for h :S h and t = mi:, m = 0 ~ N, with {u ,v ,<p (u )} 
0 k,C k,C £ k,£ 

A A A 

replaced by { U , V , <p ( U ) } . 
k,£ k,£ c k,£ 
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Proof: These results follow from balancing the terms (5. 13), (4. 14), (4. 15a), 

(4. 9a), (4. 6), (3. 5), (3. 6a), (2. 17) and (2. 18). We note that using (5. 2) in 

place of (5.13) leads to a more restrictive bound on -r. o 

Finally.we extend the above results to the problems: 

(Ph,T) For n = 1 ~ N find ~h,n e Sh such that 
£ £ . 0 

T-1((~:,n _ ~:,n-1) + [<p£(~:,n) <p£(~:,n-1)],X)h + (V~:,n,VX) = (fn,X)h 

\I x e sh 
0 

~h,O(•) =Tr g(•). 
£ h 

d ( P .... h IL) th b 1 ( p" h, L) ith 1 d b an , e same as pro em w <p rep ace y <p. 
£ £ 

Theorem 5.3 

Let the Assumptions (D4) hold. Then for all e e (0, e ] , h and T > 0 
0 

A "h T ... "'h L there exist unique solutions U to (P ' ) and U to (P ' ) . Moreover, for m = 
£ £ 

0 ~ N we have that 
.... ,_ 2 A ,., 2 A A 2 

II U -U II + e Irr [ <p ( U )-<p ( U ) ] I 2 + e I Tr [ <p ( U ) ]-V I 2 > 
£ k, £ E (co, mT) h £ £ C k, £ L ( Q ) h £ £ k, £ L ( Q 

2 g g 

(5.20a) 

and 

llU-U 11 2 + c Irr [ (U)- (U ) ] 122 :S CeCl+p)/Cl-p). 
c E (co,mT) h 'P 'Pc £ L (Q ) 

2 mT 

(5.20b) 

Moreover, under the Assumptions (D5) we have ( i) the first bound in 
... ... 

(5. 1) holds true for U and U. In particular, if g and f 2:: 0 then U and U 2:: 
£ c 

0 in QT; (ii) on choosing T :S Ch, the following error bounds hold for t = m-r, 

m = 0 ~ N, and the stated choices of c (a) (4. 16) and (4. 17) with 
"'h "h "'h ,. ... ,.. 

{u , v , <p (u )} replaced by {U , rr [<p (U ) ], <p (U )} and (b) (4. 16) with 
k,£ k,£ £ k I£ £ h c c c E 

"'h "h "'h ... ,., ,., 
{u ,v ,<p (u )} replaced by {U,Tr [<p(U)],<p(U)}. 

k,£ k,£ £ k,£ h 
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In addition, under the Assumptions (00) we have that the following error 

bounds hold for t = mT, m = 0 ~ N, and the stated choices of c (i) (4. 18) for 

Pe (~,1] and T ~ C{h2 [ln(1/h)]r} 2/CS-2
p) with {~h ;~h ,<p (~h )} replaced 

k,C k,C C k,C 

by (a) { U , rr [ <p ( U ) ], <p ( U )} and ( b) c h c c c c 
p E ( 1/3, 1], 

A A A 

{U,rr [cp(U)],cp(U)}; 
h 

and 

(ii) 

h 

(4. 19) for 

h 
0 

with 

Ah T .... "h T Proof: Existence and uniqueness of solutions to (P ' ) and U to (P ' ) follow £ . 

as in the proof of Theorem 5.1 of part 1. The first inequality in (5.20a) and 

(5. 20b) are discrete analogues of the first inequality in (2. 14a) and (2. 18), 

respectively, and are proved in similar ways. The second inequality in 

(5.20a) follows from (5.3). The first bound in (5.1) follows from (5.20) and 

the equivalence of norms h on S . The above error bounds follow by combining 

(5.20) with Theorem 5.2. o 

As stated in sections 1 and 2, problem (P) is equivalent to the 

generalised porous medium equation, whose finite element approximation by 
Ah T 

(P ' ) is analysed in Nochetto & Verdi ( 1988). There the error bounds (4. 16a) c 
Ah 

and (4. 17a) for u replaced by U are proved under the same choices of c, 
k,£ £ 

but with T = Ch1
+p and T = Ch4/C 3-P>, respectively. Therefore Theorem 5. 3 

above improves on these results as we require only T s Ch. As stated 

previously we have assumed that the mesh is (weakly) acute, whereas they do 

not. Furthermore, under additional assumptions we have the improved error 

bounds (4.18) and (4.19). 
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