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Abstract

In this paper we present an e�cient algorithm for the numerical treatment

of the PDF transport equation. Using the partially stirred plug �ow model

in conjunction with the IEM mixing model we construct a numerical scheme

that is based on a time splitting technique and a stochastic chemistry approx-

imation. For this purpose a particle/sub-particle system is introduced. The

dynamics of this particle system is determined by a mixing step and a chem-

istry step. The chemistry step is solved by a jump process where forward and

reverse reactions are combined. Various numerical experiments are carried out

to study convergence with respect to particle number and sub-particle num-

ber. In case of a linear reaction, the comparison between analytical solution

and numerical approximation of the third moment reveals that the systematic

error is inversely proportional to the number of particles and sub-particles,

respectively. The performance of the algorithm is evaluated by studying the

combustion of a premixed stoichiometric mixture of n-heptane and air. The

stochastic chemistry algorithm is compared with a deterministic approach us-

ing the ODE solver DASSL and it is found, for the examples studied, that the

stochastic algorithm is more e�cient than the deterministic approach.
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1. Introduction

The numerical modelling of complex turbulent �ows is an important issue in many

engineering applications. The modelling of combustion by-products in internal com-

bustion engines or other combustion devices but also the prediction of material

properties during particle synthesis require a detailed description of the underlying

chemistry and of the interaction between turbulent mixing and chemical reactions.

In cases where chemical time scales and turbulent time scales are of the same or-

der of magnitude the probability density function (PDF) approach has been used

successfully in many cases [20, 2].

The PDF transport equation is usually solved by combining a particle method,

which approximates the distribution function, with an operator splitting technique,

which separates di�erent physical processes [23]. The numerical expense of this ap-

proach makes it necessary to reduce [19] or tabulate the chemistry [18, 21]. Both

methods su�er from various di�culties when large chemical mechanisms are in-

volved. In some applications the full PDF transport equation may be simpli�ed by

assuming spatial homogeneity. Models which are based on this assumption are often

called partially stirred reactor models. Such partially stirred models have been used,

for example, in [7] to study combustion of methane, in [6, 5] to model the formation

of NOx and in [22, 14] to model a stationary combustion device and an internal

combustion engine. An overview on this sort of models can be found in [12]. All

mentioned PDF models have in common that they are solved by a combined Monte

Carlo particle method and a splitting approach. Due to the spatial homogeneity

much fewer particles are required and therefore large chemical mechanisms, which

are necessary, e.g., for detailed soot modelling, are feasible [1].

In this paper we consider the simple partially stirred plug �ow model (PaSPFR),

where only two physical processes remain - chemical reaction and mixing. So far the

chemistry step for this model has been treated by some deterministic ODE-solver

(for example see [3, 4, 9]). Here we propose an alternative algorithm that uses some

stochastic chemistry approximation, which was developed in [15]. Our motivation

is the idea that, on the one hand, a less accurate chemistry approximation may be

su�cient in the context of a Monte Carlo particle method, and, on the other hand,

it will make the whole algorithm much faster. This would make it possible to use

the algorithm as a tool in the general spatially inhomogeneous situation, providing

an alternative to reducing or tabulating large chemical mechanisms.

Consider the PDF transport equation

@

@t
f(t;  )�

S+1X
k=1

@

@ k

�h
Rk( ) + CMk(f(t);  )

i
f(t;  )

�
= 0 ; t � 0 ; (1.1)

with initial condition

f(0;  ) = f0( ) : (1.2)

The components of the vector  correspond to the mass fractions Y1; : : : ; YS of

several chemical species and to temperature T :
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The termsMk represent themixing properties of the system. We use the well

known IEM or LMSE model (see [10]), with the de�nition

Mk(g;  ) =  k �
Z
: : :

Z
xk g(x) dx1 : : : dxS+1 ; k = 1; : : : ; S + 1 ; (1.3)

for any function g :

The terms Rk describe the reaction mechanism of the system, which consists

of a number I of elementary chemical reactions,

(��;1; : : : ; ��;S)  ! (���;1; : : : ; �
�

�;S) ; � = 1; : : : ; I : (1.4)

The stoichiometric coe�cients ��;i and ���;i of the species i in reaction � are non-

negative integer values. The speci�c de�nitions are (cf. [17, formula (2); Ch. II,

formulas (49), (52), (58)], [11])

Ri( ) = �
Wi

%
_!i ; i = 1; : : : ; S ;

and (cf. [17, formula (15)])

RS+1( ) =
1

cp %

SX
k=1

hkWk _!k ;

with the chemical production rate of the i-th species

_!i =
IX

�=1

(���;i � ��;i) q�

and the rate of progress of the �-th reaction

q� = [M�]

 
K�;f

SY
k=1

[Xk]
��;k
�K�;r

SY
k=1

[Xk]
��
�;k

!
:

Here [X] and W denote the vectors of the molar concentrations and the molecular

weights of the species, respectively. Moreover, % denotes the mass density, h is the

vector of speci�c enthalpies, and cp is the mean speci�c heat capacity. The numbers

K�;f and K�;r are the forward and reverse rate constants for the �-th reaction, which
are assumed to have the following Arrhenius temperature dependence,

K�;f = A�;f T
��;f exp(�E�;f=RT ) ;

(1.5)

K�;r = A�;r T
��;r exp(�E�;r=RT ) ;

where A�;f ; A�;r are pre-exponential factors, ��;f ; ��;r are temperature exponents

and E�;f ; E�;r are activation energies. The factor [M�] =
PS
k=1B�;k [Xk] takes into

account that, in some reactions, a �third body� is required for the reaction to proceed.

If no third body is needed, then [M�] = 1 :
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The paper is organized as follows. In Section 2 we discuss the stochastic pro-

cess corresponding to the solution of equation (1.1). In Section 3 we describe the

algorithm for solving equation (1.1), which is based on some particle approximation

and on a splitting technique. In Section 4 we introduce the stochastic chemistry

approximation procedure. Section 5 is devoted to numerical experiments. First

we consider the simple case of a linear reaction term, where an analytic solution of

equation (1.1) is available. In this case we study the order of convergence of the

algorithm with respect to various numerical parameters. Our second example is

combustion of n-heptane. This test case is of practical relevance, since n-heptane

is part of the reference fuel for internal combustion engines such as spark-ignition,

diesel, and gas turbine engines. Here we study convergence properties of the PDF

algorithm with stochastic chemistry approximation. The computational times for

the new algorithm are compared with those for the PDF algorithm with deter-

ministic chemistry approximation using the code DASSL [3] for solving systems of

di�erential/algebraic equations. Finally some conclusion are drawn in Section 6.

2. The stochastic process

The stochastic process 	(t) corresponding to the solution f(t) of equation (1.1) is

determined by the system of ordinary di�erential equations

d

dt
	k(t) = �Rk(	(t))� C [	k(t)� E	k(t)] ; k = 1; : : : ; S + 1 : (2.1)

The initial state 	(0) is distributed according to f0 (cf. (1.2)). Note that, according
to (1.3),

Mk(f(t);	(t)) = 	k(t)� E	k(t) ;

where E denotes mathematical expectation. As an illustration, we consider several

special cases.

The initial state is the only source of stochasticity of the process 	(t) : Thus, in
the case of a �double-delta� initial condition, i.e.

f0( ) = �1 Æ � (1)( ) + �2 Æ � (2)( ) ; (2.2)

there are only two di�erent trajectories  (1)(t) and  (2)(t) : The expectation in (2.1)

can be explicitly calculated so that the trajectories are determined by two deter-

ministic equations

d

dt
 
(1)

k (t) = �Rk( 
(1)(t))� C �2 [ 

(1)

k (t)�  (2)

k (t)] (2.3)

and

d

dt
 
(2)

k (t) = �Rk( 
(2)(t))� C �1 [ 

(2)

k (t)�  (1)

k (t)] ; (2.4)
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with initial conditions

 (1)(t) = � (1) ;  (2)(t) = � (2) : (2.5)

The solution is of the form

f(t;  ) = �1 Æ (1)(t)( ) + �2 Æ (2)(t)( ) :

In particular, if f0 is one delta-function, then the process is deterministic and the

only trajectory is determined as the solution of

d

dt
 k(t) = �Rk( (t)) ;  (0) = � :

Remark 2.1 The function

x(t) = eAt
�
x0 +

Z t

0
e�Ash(s)ds

�
(2.6)

solves the initial value problem

d

dt
x(t) = Ax(t) + h(t) ; x(0) = x0 :

In case of constant h and non-degenerate A ; solution (2.6) takes the form

x(t) = eAtx0 + (eAt � I)A�1h : (2.7)

Remark 2.2 Consider a random vector � with density p� ; and a non-degenerate

matrix A : Then the random vector � = A� + b has the density

p�(x) = jdetA
�1
j p�(A

�1(x� b)) : (2.8)

In case of a linear reaction term, (2.1) implies

d

dt
E	k(t) = �Rk(E	(t)) : (2.9)

This equation can be solved explicitly. Denoting its solution by g(t) ; equation (2.1)

takes the form

d

dt
	k(t) = �Rk(	(t))�C [	k(t)� gk(t)] ; (2.10)

which can also be solved explicitly. In particular, if the reaction is determined by

some matrix R ; one obtains from (2.9)

g(t) = E	(t) = e�RtE	(0)

and from (2.10), using (2.6),

	(t) = e�Rte�Ct
�
	(0) + C

Z t

0
eRseCsg(s)ds

�
(2.11)

= e�Rte�Ct
h
	(0) + (eCt � 1)E	(0)

i
= e�Rt

h
e�Ct	(0) + (1� e�Ct)E	(0)

i
:
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Note that

E	k(0) =
Z
xkf0(x)dx :

In the one-dimensional case applying (2.8) to (2.11) allows us to express

f(t;  ) through f0 : One obtains

f(t;  ) = e(R+C)t f0
�
e(R+C)t[ � e�Rt(1� e�Ct)E	(0)]

�
= e(R+C)t f0

�
e(R+C)t + (1� eCt)E	(0)

�
; (2.12)

with

E	(0) =
Z
x f0(x)dx : (2.13)

Note that, with the notations

R = k ; C =
C�

2�
; (2.14)

representation (2.12), (2.13) coincides with formulas (14)-(15) in [13].

Moments

mk(t) =
Z
xkf(t; x)dx = E	(t)k ; k = 1; 2; : : : ;

are derived directly from (2.11). One obtains, for example,

m1(t) = e�RtE	(0) = e�Rtm1(0) ;

m2(t) = e�2Rt
h
e�2Ctm2(0) + 2e�Ct(1 � e�Ct)m1(0)

2 + (1 � e�Ct)2m1(0)
2
i

= e�2Rt
h
e�2Ctm2(0) + (1 � e�2Ct)m1(0)

2
i

and

m3(t) = e�3Rt
h
e�3Ctm3(0) + 3e�2Ct(1� e�Ct)m2(0)m1(0)

+3e�Ct(1 � e�Ct)2m1(0)
3 + (1� e�Ct)3m1(0)

3
i

= e�3Rt
h
e�3Ctm3(0) + 3e�2Ct(1� e�Ct)m2(0)m1(0)

+(1 + 2e�Ct)(1� e�Ct)2m1(0)
3
i
: (2.15)
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3. The algorithm

In order to generate trajectories of the stochastic process, the expectation in (2.1)

has to be approximated. One introduces a system of particles

	(1)(t); : : : ;	(N)(t) (3.1)

determined by

d

dt
	(i)

k (t) = �Rk(	
(i)(t))� C

2
4	(i)

k (t)�
1

N

NX
j=1

	(j)

k (t)

3
5 ; k = 1; : : : ; S + 1 ; (3.2)

where 	(i)(0) ; i = 1; : : : ; N ; are independent and distributed according to f0 : In
general the system (3.2) is high-dimensional. Therefore, a splitting approach on

a time interval [s; s+�t] is applied, in order to decouple the e�ects of reaction and

mixing. The reaction step is

d

dt
~	(i)

k (t) = �Rk( ~	
(i)(t)) ; t � s ; ~	(i)

k (s) = 	(i)

k (s) ; (3.3)

and the mixing step is

d

dt
	(i)(t) = �C

2
4	(i)(t)�

1

N

NX
j=1

	(j)(t)

3
5 ; t � s ; 	(i)(s) = ~	(i)(s+�t) : (3.4)

One obtains from (3.4) that

d

dt

1

N

NX
i=1

	(i)(t) = 0 ;

and thus

d

dt
	(i)(t) = �C

2
4	(i)(t)�

1

N

NX
j=1

~	(j)(s+�t)

3
5 ;

which can be solved explicitly. Using (2.7) with A = �C I ; one obtains

	(i)(t) = e�C(t�s)	(i)(s) +
h
1 � e�C(t�s)

i 1

N

NX
j=1

~	(j)(s+�t) ;

so that

	(i)(s+�t) = e�C�t ~	(i)(s+�t) +
h
1� e�C�t

i 1

N

NX
j=1

~	(j)(s+�t) : (3.5)
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This leads to the following algorithm.

0. Determine the state of the system of particles (3.1) at time 0 according to the
initial density f0 :

1. Given the state of the system at time s ; each particle is moved according to

the reaction step (3.3).

2. Given the system ~	(1)(s + �t); : : : ; ~	(N)(s + �t) ; each particle is moved ac-

cording to mixing step (3.5).

3. If time exceeds termination time then STOP. Otherwise go to Step 1 .

Remark 3.1 Note that the same algorithm is obtained when the splitting approach

is applied directly to (2.1), and the particle approximation (3.1) is applied later. The

reaction step is

d

dt
~	k(t) = �Rk( ~	(t)) ; t � s ; ~	k(s) = 	k(s) ;

and the mixing step is

d

dt
	(t) = �C [	(t)�E	(t)] ; t � s ; 	(s) = ~	(s+�t) : (3.6)

One obtains from (3.6) that

d

dt
E	(t) = 0 ;

and thus

d

dt
	(t) = �C [	(t)� E ~	(s+�t)] ;

which can be solved explicitly. Using (2.7) with A = �C I ; one obtains

	(t) = e�C(t�s)	(s) +
h
1 � e�C(t�s)

i
E	(s) ;

so that

	(s+�t) = e�C�t ~	(s+�t) +
h
1� e�C�t

i
E ~	(s+�t) :

It remains to apply the particle approximation in order to obtain (3.5).

Functionals with respect to f(t;  ) are approximated using empirical averages

over the system (3.1), i.e.

Z
g( ) f(t;  ) d �

1

N

NX
i=1

g(	(i)(t)) ; (3.7)

for appropriate functions g :

There are two sources of systematic error - the parameter N of the particle

approximation, and the splitting parameter �t :
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Example 3.2 In case of a double-delta initial condition (2.2), there is no need in

introducing a system of particles (3.1), or even in the splitting procedure. Simply

the deterministic system (2.3)-(2.5) has to be solved. However, splitting allows one

to apply standard routines to the chemistry step. One obtains from (2.3)-(2.5),

d

dt
~ (i)

k (t) = �Rk( ~ 
(i)(t)) ; t � s ; ~ (i)

k (s) = � (i)

k ; i = 1; 2 ;

and

d

dt
 (1)(t) = �C �2 [ 

(1)(t)�  (2)(t)] ;
d

dt
 (2)(t) = �C �1 [ 

(2)(t)�  (1)(t)] ;

t � s ;  (i)(s) = ~ (i)(s+�t) ; i = 1; 2 ;

instead of (3.3) and (3.4).

Example 3.3 In case of a linear reaction term, one obtains from (3.3), using (2.11)

with C = 0 ;

~	(i)(�t) = e�R�t	(i)(0) :

Thus, (3.5) takes the form

	(i)(�t) = e�C�t ~	(i)(�t) +
h
1 � e�C�t

i 1

N

NX
j=1

~	(j)(�t)

= e�(C+R)�t	(i)(0) + e�R�t
h
1 � e�C�t

i 1

N

NX
j=1

	(j)(0) :

Compared to (2.11), there is only the approximation of the expectation. In particular,

�rst moments have no systematic error.

4. Stochastic chemistry approximation

The reaction step (3.3) is treated by the following stochastic algorithm, which has

been introduced and studied with respect to its convergence properties in [15] (see

also [16] concerning a simpli�ed version of the algorithm). Consider a stochastic

system

x =
�
N

(n)

1 (t); : : : ; N
(n)

S (t); T (n)(t)
�
; t � 0 ;

where N
(n)
j (t) � 0 denotes the approximate mole number of particles of type j =

1; : : : ; S ; and T (n)(t) > 0 denotes the approximate temperature at time t :

9



Step 0

The initial state of the system is determined as

N
(n)

j (0) = nXj(s) ; j = 1; : : : ; S ; T (n)(0) = T (s) ;

according to the initial conditions of the di�erential equation (3.3). Note that

n =
SX
j=1

N
(n)

j (0)

plays the role of an approximation parameter, which can be interpreted as the

number of �sub-particles�.

Step 1

Given the state x at time t ; the process remains there for a random waiting

time � such that

Prob(� � u) = exp(�u�(x)) ; u � 0 ;

where (cf. (1.4), (1.5))

�(x) =
IX

�=1

jQ�;f(x)�Q�;r(x)j ;

Q�;f(x) = 
(x)1�
P

S

j=1
��;j M�(x)K�;f(xS+1)

SY
j=1

��;j�1Y
i=0

(xj � i)
+ ; (4.1)

Q�;r(x) = 
(x)1�
P

S

j=1
��
�;j M�(x)K�;r(xS+1)

SY
j=1

��
�;j
�1Y

i=0

(xj � i)
+ ; (4.2)

M�(x) =

8>><
>>:
PS
k=1B�;k

xk

(x)

; if third body reaction with some species ;
p

RxS+1
; if third body reaction with all species ;

1 ; otherwise ;

and


(x) =
RxS+1

p

SX
j=1

xj :

The procedure stops when time t+ � exceeds the splitting step �t :

Step 2

At the moment t+ � ; a particular reaction is chosen according to the reaction

probabilities

P�(x) =
jQ�;f(x)�Q�;r(x)j

�(x)
; � = 1; : : : ; I :
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Step 3

Finally, the process jumps into the state

J�(x) =

(
J�;f(x) ; if Q�;f(x) � Q�;r(x) ;
J�;r(x) ; otherwise ;

where

J�;f(x) = (x1 � ��;1 + ���;1; : : : ; xS � ��;S + ���;S; xS+1 +�T�;f(x)) (4.3)

and

J�;r(x) = (x1 � �
�

�;1 + ��;1; : : : ; xS � �
�

�;S + ��;S; xS+1 +�T�;r(x)) : (4.4)

The temperature step is de�ned as

�T�;f(x) = �

PS
k=1Hk(xS+1) [���;k � ��;k]PS

k=1Ck(xS+1)xk
;

�T�;r(x) = �

PS
k=1Hk(xS+1) [��;k � ���;k]PS

k=1Ck(xS+1)xk
:

Then the procedure returns to Step 1.

Remark 4.1 The second products in (4.1), (4.2) assure that a reaction may only

occur if the mole numbers of the corresponding particles in the system are big enough

(cf. (4.3), (4.4)). Note that by de�nition a+ = a if a > 0 and a+ = 0 otherwise.

Thus these products are zero if xj < ��;j (or xj < ���;j ; respectively) for some

j = 1; : : : ; S : They are de�ned to be 1 in the case ��;j = 0 or ���;j = 0 ; respectively.

The basic theoretical result concerning this algorithm is that

lim
n!1

N
(n)

k (t)P
j N

(n)

j (t)
= Xk(s+ t) ; k = 1; : : : ; S ; t � 0 ;

and

lim
n!1

T (n)(t) = T (s+ t) ; t � 0 :

Note that

Yk(t) =
WkXk(t)P
jWj Xj(t)

; Xk(t) =
Yk(t)=WkP
j Yj(t)=Wj

:
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5. Numerical experiments

We consider two examples. In the simple case of a linear reaction term the an-

alytic solution of the PDF transport equation is known (cf. (2.12)). In this test

case we study the order of convergence with respect to di�erent numerical param-

eters. The second example is the combustion of a stoichiometric n-heptane

air mixture. This test case is of practical relevance, since n-heptane is part of

the reference fuel for internal combustion engines such as spark-ignition, diesel, and

gas turbine engines. Here we use two initial conditions which represent di�erent

combustion situations - a high temperature regime and a low temperature regime.

In both cases convergence of the algorithm with stochastic chemistry approximation

is shown. The computational times are compared with those for the PDF algorithm

with deterministic chemistry approximation using the code DASSL [3] for solving

systems of di�erential/algebraic equations. DASSL has been applied successfully to

combustion problems as part of the software package SENKIN [17]. All simulations

have been carried out on a Compaq AlphaServer GS80 733MHz at the Weierstrass

Institute in Berlin.

5.1. Linear reaction term

We consider the linear �rst order reaction

A
k
�! Products ;

with uniform initial distribution

f( ; 0) = �[0;1]( ) :

The reaction rate and mixing time are set to k = 1s�1 and � = 0:5s ; respectively,
and the constant is C� = 2 (cf. (2.14)). Calculations are performed in the time

interval [0; 5]s : We investigate the convergence behaviour studying the quantity

m3(t) =
Z 1

0
 3f( ; t)d :

The time evolution of this quantity can be obtained directly from the analytic so-

lution (2.15). At time t = 0s the initial value of m3 is 0.25. At t = 1:5s the third
moment has decayed to a value of 0:0013921, which reduces to 3:82 � 10�8 at the

end of the simulation interval t = 5:0s.

The approximate solution is calculated at some observation points (ti) ; which
are integer multiples of the splitting time step �t : A number L of independent

runs of the particle ensemble is used to construct con�dence bands with width

cstat(ti) : The product L�N = 131072 = 217 is kept �xed, in order to get con�dence
bands of roughly the same width for di�erent calculations. The error ctot(ti) is the
di�erence between the empirical third moment and the analytic third moment (cf.

(3.7)). In general the measured quantities depend on the number of repetitions L ;

12



the number of particles N ; the number of sub-particles n used for the stochastic

chemistry approximation, and on the time step �t :

First we note that in this simple example there is no error with respect to the

splitting step �t ; at least for N;n!1 (cf. Example 3.3).

Results concerning the error with respect to the particle number N are dis-

played in Table 1. Here the algorithm with deterministic chemistry approximation

is used. These results suggest an order N�1 in this particular situation (see Fig-

ure 1). Note that the systematic error reaches the level of the stochastic �uctuations

for N = 64 at t = 0:5 and for N = 128 at t = 5:0 : Thus, the choice N = 100 is

appropriate for our next study.

Table 1: Computational study for varying N

N cstat(0:5) � 104 ctot(0:5)� 104 cstat(5:0)� 108 ctot(5:0)� 108

1 5:735 240:40 0:079 3:8132
2 5:393 120:24 0:074 1:9081
4 5:048 60:217 0:0684 0:9567
8 4:793 30:00 0:0642 0:4776
16 4:644 14:95 0:0617 0:2389
32 4:639 7:622 0:0615 0:1227
64 4:612 3:878 0:0609 0:0632
128 4:624 2:041 0:0610 0:0341
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Figure 1: Order of convergence for Table 1
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Next we study the error with respect to the number of sub-particles n :

Here the algorithm with stochastic chemistry approximation is used. The other

parameters are �t = 0:1 and N = 100 : Results are displayed in Table 2. These

results suggest an order n�1 in this particular situation (see Figure 2). Note that

at time t = 0:5 the choice n = 320 is su�cient to reach the level of the N -error.

For t = 5:0 one needs many more particles (n = 16384) in order to reach the level

of the N -error. This is due to the very low concentration, which also explains the

behaviour of the error for small n ; where the smallest possible resolution is much

to big. Figure 2 shows this behaviour. Up to the point where n is small enough to

resolve m3 the order of convergence is n
�3 due to the third power in m3. Then one

can observe the order n�1 as it is expected from t = 0:5.

Table 2: Computational study for varying n

n cstat(0:5)� 104 ctot(0:5) � 104 cstat(5:0) � 108 ctot(5:0)� 108

10 5:578 44:63 441:1 47446
20 5:453 24:43 53:99 5960:8
40 4:879 13:33 6:85 741:21
80 5:002 9:958 0:863 90:34
160 4:821 5:084 0:204 10:845
320 4:657 3:552 0:138 2:30
640 4:409 1:460 0:105 0:942
1280 4:808 4:054 0:086 0:491
2048 4:599 0:053 0:075 0:291
4096 4:410 1:763 0:067 0:178
8192 4:748 2:677 0:066 0:119
16384 4:560 0:608 0:062 0:034
32768 4:641 1:366 0:062 0:037
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Figure 2: Order of convergence for Table 2
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5.2. Combustion of n-heptane

In this example we study the combustion of n-heptane. The combustion chemistry is

modelled by a reaction mechanism containing 107 chemical species and 808 reversible
reactions [8]. At time t = 0s we consider a homogeneous diluted mixture of n-

heptane, oxygen and nitrogen. The initial conditions for the concentrations are

deterministic, with

Xn�C7H16(0) = 0:0187 ; XO2(0) = 0:2061 ; XN2(0) = 0:7752 ;

and the concentration of the other 104 species being zero. The pressure is constant

at p = 1:0133 � 106 PA : We consider two di�erent random initial conditions

for the temperature. For the current simulations the numerical parameters are

chosen to be L = 4 (number of repetitions), N = 100 (number of particles), and

�t = 4:0�10�6 (splitting time step). The simulation time interval is [0; 2:0�10�4]s.
Tests have been carried out to certify that the splitting error and the error in N are

small enough.

5.2.1. High temperature regime

First we consider the case when temperature at time zero is distributed uniformly on

the interval [1300; 1700]K : Figure 3 shows the con�dence band for the temperature

curve produced by the algorithm with deterministic chemistry approximation, in

comparison with the temperature curve corresponding to the deterministic initial

condition T (0) = 1500K :

Figure 4 and Figure 5 show average temperature curves for the algorithm with

stochastic chemistry, in comparison with the average curve and con�dence bands

for the algorithm with deterministic chemistry. While the curves for stochastic

chemistry and n = 104 are still outside the con�dence band at the end of the time

interval, they completely �t the reference average curve for n = 105 :

A similar comparison is performed for the concentrations of the species n-heptane

in Figure 6, CO2 in Figure 7, CO in Figure 8, and OH in Figure 9. For most

of these species, the results for n = 104 are already satisfactory, i.e. are inside the

reference con�dence band for the algorithm with deterministic chemistry. However,

for CO one needs n = 105 sub-particles.

A comparison of the CPU-time for di�erent methods is given in Table 3. These

results show that even with n = 105 sub-particles the algorithm with stochastic

chemistry is faster than the algorithm with deterministic chemistry. In cases where

a lower of sub-particles is su�cient, the algorithm with stochastic chemistry is much

faster reaching a gain factor of 20 for n = 104 :
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Figure 3: Temperature evolution for deterministic and stochastic initial conditions
in the high temperature regime.

Table 3: Computational times (CT) for varying n with N = 100 and L = 4 (high
temperature regime).

n CT [s] CT

DASSL 72960 21h00m
1:0� 105 31254 8h40m
1:0� 104 3567 59m
1:0� 103 550 9m
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Figure 4: Temperature evolution for the high temperature regime.
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Figure 5: Close up of the �nal part of Figure 4.
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Figure 6: n-heptane evolution for the high temperature regime.
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Figure 7: CO2 evolution for the high temperature regime.
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Figure 8: CO evolution for the high temperature regime.
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Figure 9: OH evolution for the high temperature regime.
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5.2.2. Low temperature regime

Next we consider the case when temperature at time zero is distributed uniformly

on the interval [1200; 1500]K :

Figure 10 shows the average temperature curves for the algorithm with stochas-

tic chemistry, in comparison with the average curve and con�dence bands for the

algorithm with deterministic chemistry. Results for numbers of sub-particles n = 104

and n = 105 are inside the reference con�dence band.

A similar comparison is performed for the concentrations of the species n-heptane

in Figure 11, CO2 in Figure 12, CO in Figure 13, and OH in Figure 14.

For most of these species, satisfactory results are already obtained for n = 104 :
However, for OH one needs n = 106 sub-particles, which is clearly due to the very

low concentration.

A comparison of the CPU-time for di�erent methods is given in Table 4. These

results show that even with n = 106 sub-particles the algorithm with stochastic

chemistry is faster than the algorithm with deterministic chemistry. In cases where

a lower of sub-particles is su�cient, the algorithm with stochastic chemistry is much

faster reaching a gain factor of 15 (for n = 105) or even 150 (for n = 104).

Table 4: Computational times (CT) for varying n with N = 100 and L = 4 (low

temperature regime)

n CT [s] CT

DASSL 75950 21h00m
1:0� 106 54918 15h15m
1:0� 105 5695 1h34m
1:0� 104 560 9m
1:0� 103 61 1m
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Figure 10: Temperature evolution for the low temperature regime.
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Figure 11: n-heptane evolution for the low temperature regime.
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Figure 12: CO2 evolution for the low temperature regime.
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Figure 13: CO evolution for the low temperature regime.
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Figure 14: OH evolution for the low temperature regime.
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6. Concluding remarks

In this paper we presented a new numerical technique which combines a stochastic

chemistry approximation with a time splitting approach for the solution of the PDF

transport equation as it is used in turbulent combustion. We considered the partially

stirred plug �ow model (PaSPFR) combined with the IEM mixing model. The

algorithm is based on a combined particle/sub-particle system and a splitting scheme

for the corresponding stochastic process, which treats chemical reactions and mixing

separately. The chemistry step is approximated by a jump process where forward

and reverse reactions are combined. The mixing step is solved analytically.

Numerical experiments were carried out to assess the new algorithm. For this

purpose a simple case, a linear reaction, and a practically relevant case, the com-

bustion of a premixed stoichiometric mixture of n-heptane and air, were studied. In

the simple case the analytic solution of the third moment of the PaSPFR model was

used to investigate the numerical properties of the new algorithm. The systematic

error of the algorithm was found to be inversely proportional to the numbers of

particles and of sub-particles, respectively.

The combustion of n-heptane was studied to investigate the performance of the

new algorithm by comparing it with the standard deterministic chemistry algorithm

using the code DASSL. Two cases were examined, a complete ignition at elevated

temperatures and the degradation of n-heptane in the low temperature regime. In

both cases the convergence properties were studied and it was demonstrated that

the stochastic chemistry approximation led to a signi�cant gain in computational

speed while guaranteeing su�cient accuracy.

Finally we conclude that the stochastic chemistry approximation can be used to

accelerate also numerical solution of the inhomogeneous PDF. If further progress

is achieved this approach may be an alternative to existing reduction or tabulation

strategies which have been employed in conjunction with PDF methods.
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