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Abstract. We consider Glauber dynamics of classical spin systems of Ising type

in the limit when the temperature tends to zero in �nite volume. We show that

information on the structure of the most profound minima and the connecting

saddle points of the Hamiltonian can be translated into sharp estimates on the

distribution of the times of metastable transitions between such minima as well

as the low lying spectrum of the generator. In contrast with earlier results on

such problems, where only the asymptotics of the exponential rates is obtained, we

compute the precise pre-factors up to multiplicative errors that tend to 1 as T # 0.

As an example we treat the nearest neighbor Ising model on the 2 and 3 dimensional

square lattice. Our results improve considerably earlier estimates obtained by

Neves-Schonmann [NS] and Ben Arous-Cerf [BC]. Our results employ the methods

introduced by Bovier, Eckho�, Gayrard, and Klein in [BEGK1,BEGK2].

1. Introduction.

Controlling the transitions from metastable states to equilibrium in the stochastic

dynamics of lattice spin systems at low temperatures has been and still is a subject

of considerable interest in statistical mechanics. The �rst mathematically rigorous

results can be traced back to the work of Cassandro et al. [CGOV] that initiated

the so-called �path-wise approach� to metastability. For a good review of the earlier

literature, see in particular [Va]. All the mathematical investigations in the subject

require some 'small parameter' that e�ectively makes the timescales for metastable

phenomena 'large'. The somewhat simplest of these limiting situations is the case

when a system in a �nite volume � � Zd is studied for small values of the tempera-

ture T = 1=�. In systems with discrete spin space one is then in the situation where

the dynamics can be considered as a small perturbation of a deterministic process,

a situation very similar to what Freidlin and Wentzell [FW] called 'Markov chains

with exponentially small transition probabilities'. Consequently, most of the work

concerning this situation [OS1,OS2,CC,BC,N,NS] can be seen as extensions and im-

provements of the large deviation approach initiated by Freidlin and Wentzell. This

consists essentially in identifying the most likely path (in the sense of a sequence

of transitions) and proving a large deviation principle on path-space. While this

approach establishes very detailed information on e.g. the typical exit paths from

metastable states, the use of large deviations methods entails a rather limited preci-

sion. Results for e.g. exit times � are therefore typically of the following type: For

any " > 0,

P
�
e�(��") < � < "�(�+")

�
" 1; as � " 1

where � can be computed explicitly. Similarly, one has results on eigenvalues of the

generator that are of the form

lim
�"1

��1 ln�i(�) = 
i

with explicit expressions for the 
i (see e.g. [FW,S]). From many points of view, the

precision of such results is not satisfactory, and rather than just exponential rates, one

would in many situations like to have precise expressions that also provide the precise

pre-factors. This is particularly important if one wants to understand the dynamics

of systems with a very complex structure of metastable states, and in particular



2

disordered systems. (For a rather dramatic illustration, see e.g. [BBG1,BBG2] where

aging phenomena in the random energy model are studied.) Another drawback of

the large deviation methods employed is that they are rather heavy handed and

require a very detailed knowledge of the entire energy landscape, a requirement that

frequently cannot be met.

In two recent papers [BEGK1,BEGK2] a somewhat new approach to the problem

of metastability has been initiated aiming at improving the precision of the results

while reducing at the same time the amount of information necessary to analyze a

given model. To achieve this goal, the attempt to construct the precise exit paths is

largely abandoned, as are, to a very large extent, large deviation methods.

The general structure of this approach is as follows. In [BEGK2] the notion of a set
of metastable points is introduced. The de�nition of this set employs only one type

of objects, namely Newtonian capacities (which may also be interpreted as escape
probabilities). If such a set of metastable points can be identi�ed, [BEGK2] provides

a general theorem that yields precise asymptotic formula for the mean exit time
from each metastable state, shows that this time is asymptotically exponentially

distributed (in a strong sense), and states that each mean exit time is the inverse of

one small eigenvalue of the generator. While [BEGK2] assumes reversibility of the

dynamics, in [E] is shown that almost the same results can be obtained in the general

case. Thus, the analysis of metastability is essentially reduced to the computation

of Newtonian capacities. The great advantage of such a result is that capacities

are particularly easy to estimate, due to the fact that they verify a particularly

manageable variational principle. This fact is well known and has been exploited

in the analysis of transience versus recurrence properties of Markov chains (see e.g.

[DS]); however, its particular usefulness in the context of metastability seems to have

been noticed only in [BEGK1] where it was used in the context of reversible discrete

di�usion processes motivated from certain mean �eld spin systems.

In this short paper we will show that the approach is even more e�cient and simple

in the context of the zero temperature limit of Glauber dynamics of spin systems in

�nite volume. We will show that in rather general situations, capacities in this limit

can be computed virtually exactly in terms of properties of the energy landscape, and
therefore all interesting properties of the dynamics can be inferred from a (not overly

detailed) analysis of the energy landscape generated by the Hamiltonian considered.

As a particular application that should illustrate the power of our approach, we apply

the general results to the Ising model (in two and three dimension).

2. The general setting and the main theorem.

In this section we set up the general context to which our results will apply. It will

be obvious that Glauber dynamics of �nite volume spin systems at low temperatures

provide particular examples. We will consider Markov processes on a �nite state

space 
 (the con�guration space). To de�ne the dynamics, we need the following

further objects.
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(1) A connected graph G on 
. We denote by E(G) the set of the edges in G.
(2) A Hamiltonian H : 
! R also called energy.
(3) The Gibbs measure Q(x) := 1

Z
exp(��H(x)), where Z is the normalization

factor called partition function, and � is the inverse temperature.

We consider transition probabilities P (x; y) such that if fx; yg 2 E(G), P (x; y) > 0,
and P (x; y) = 0 if x 6= y and fx; yg 62 E(G). We assume moreover that the transition

probabilities are reversible with respect to the Gibbs measure, i.e.

Q(x)P (x; y) = Q(y)P (y; x): (2.1)

We will also make the simplifying assumption that any existing transition in the

graph is reasonably strong, i.e. we assume that there exists a constant C > 0 such

that1

P (x; y) + P (y; x) � C 8 fx; yg 2 E(G); (2.2)

by reversibility, (2.2) is equivalent to

P (x; y) �
C

1 + exp(��(H(y)�H(x)))
8 fx; yg 2 E(G): (2.3)

To be able to state our results we need some further notations.

(1) Given a one-dimensional subgraph !, we write ! : x ! I if the subgraph

has one end in x and the other end in I. One dimensional subgraphs have a

natural parameterization !0; : : : ; !K, where K := j!j � 1, 8k = 0; : : : ; K � 1
q(!k; !k+1) > 0 and ! : !0 ! !K.

(2) Let eH(f!g) := maxz2!H(z). For x 2 
 and I � 
, we introduce the

communication height, bH(x; I), between x and I asbH(x; I) := min
!:x!I

eH(f!g): (2.4)

Moreover we de�ne the set of saddle points for x and I by

Sx;I :=
n
z 2 
 ; 9 ! : x! I with z 2 ! and H(z) = bH(x; I)

o
(2.5)

(3) Furthermore, we de�ne the set of points

DI
x := fz ; H(Sz;x) < H(Sz;I)g (2.6)

These will be the points that are 'closer' to x than to I.

(4) For any set A � 
, we de�ne its outer boundary @A as the set of all points

in A from which an edge of G leads to its complement, Ac.

(5) For z 2 @DI
x, let �pz :=

P
y02DI

x
P (z; y0) and p̂z :=

P
x02
nDI

x
P (z; x0). We let

Cx;I :=
X
z2Sx;I

p̂z�pz

p̂z + �pz
: (2.7)

(6) Let Wx := fy ; H(y) < H(x)g. For x 2 
, we set �(x) := H(Sx;Wx
)�H(x).

If x is not a local minimum of the Hamiltonian, �(x) = 0. If x is a global

minimum of the Hamiltonian, we set �(x) =1.

1The constant C will typically be of the order of the inverse of the maximum coordination number

of the graph G.
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(7) For the process Xt starting at x, we de�ne the hitting time to the set I � 

as �xI := inff0 < t 2 N ; Xt 2 Ig.

(8) We denote by fM the set of all local minima of H. We call a subset M� fM
a set of metastable states, if a point that realizes the absolute minimum of

H is contained in M and if, for all y 2 fMnM, �(y) < minx2M �(x). It is

important to realize that for given H, M may often be chosen in di�erent

ways. The idea will be that we will observe the process only at its visits to

M. Thus, the actual choice of M will depend on how much information we

want to retain about the detailed behavior of the process. Note that this

de�nition implies that for all z 62 M, bH(z;M) � bH(z;Wz).
(9) Finally, for x 2 M, we need to de�ne the quantity

Nx := #
n
z 2 
 :

�
H(z) = H(x)

	
\
� bH(x; z) < bH(x;Mnx)

	o
;

which represents the degeneracy of the minima of the Hamiltonian.

We can now formulate the main general result of this paper in the general setting.

Let us consider some set M of metastable points. To be able to formulate concise

and general results, we make some further assumptions that will be true for �generic�

Hamiltonians.2

(h1) For any x 6= y 2 M, �(x) 6= �(y).
(h2) For any x 6= y 2 M, Sx;y consists of isolated single points3.

Theorem 2.1. Let M be a set of metastable states for the Hamiltonian H satisfying
the conditions (h1) and (h2) above. For x 2 M, setMx := fy 2 M ; H(y) < H(x)g =
M\Wx. Let �(x) := �x

Mx
, S := Sx;Wx

and Cx := Cx;Wx
. Then there exists Æ > 0,

independent of �, such that for any x 2 M,

(i)

E �(x) = NxC
�1
x e��(x)(1 + o(e��Æ)) (2.8)

(ii) there exists an eigenvalue �x of 1� P such that

�x =
1

E �(x)
(1 + o(e��Æ)) (2.9)

(iii) if �x is the right-eigenvector of P corresponding to �x, normalized so that
�x(x) = 1, then

�x(y) = P

�
� yx < �

y

fMx

�
+ o(e�Æ�)) (2.10)

(iv)

P (�(x) > t E �(x)) = e�t(1+o(e
��Æ))(1 + o(e��Æ)) (2.11)

In Section 5, we will apply Theorem 2.1 to a well known situation, the kinetic Ising

model, in the limit of vanishing temperature.

2Note that for any Hamiltonian, one may select di�erent sets of metastable points. The require-

ments (h1) and (h2) depend on the Hamiltonian as well as on the choice ofM.
3 In the appendix we will explain how one can proceed to obtain comparable results in the case

when this condition is not satis�ed.
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Let us anticipate our main result about the kinetic Ising model, referring to Section

5 for precise de�nitions and notation.

Theorem 2.2. Consider the kinetic Ising model with Metropolis dynamics in dimen-
sion d = 2 or d = 3 in a torus �d(l) with diameter l. The magnetic �eld 0 < h < 1
is chosen such that 2(d� 1)=h is not an integer. Then,

the two con�gurations �1 (all minus spins) and +1 (all plus spins) form a metastable
set (if the magnetic �eld h is positive, +1 is stable), and

� In dimension 2, let `2 := d 2
h
e and �2 := 4`2 � h (`22 � `2 + 1) be the diameter

and the activation energy of the �critical droplet�, respectively. Then,

E �(�1) =
3

8

1

`2 � 1
e��2(1 + o(e��Æ)) =

3

16
he��2(1 + o(h) + o(e��Æ)) (2.12)

� In dimension 3, let `3 := d
4
h
e and

�3 :=
�
6`23 � 4`3 + 4`2

�
� h

�
`33 � `23 + `22 � `2 + 1

�
be the diameter and the activation energy of the �critical droplet�, respectively.
Then,

E �(�1) =
1

16

1

(`3 � `2 + 1)(`2 � 1)
e��3(1 + o(e��Æ)) =

1

256
h2e��3(1 + o(h) + o(e��Æ))

(2.13)

Here as in Theorem 2.1, Æ > 0 is independent of � (but depends on arithmetic
properties of h).

Remark. Note that in our model we �ip at most one spin per time step. In

continuous time dynamics the mean transition times would be lowered by a factor

1=j�j.

The above Theorem shows how the results of Theorem 2.1 can be applied (via the

analysis of the energy landscape carried out for the Ising model in [NS] and [AC,BC])

to the so-called Freidlin-Wentzell regime. Notice that the methods of [BEGK2] can

be applied in a very similar way to situations where the volume grows with � to com-

pute �exactly� the probability of �rst appearance of a critical droplet (a preliminary

problem for the in�nite-volume metastability carried out in [DeSc]).

3. Basic tools.

Theorem 2.1 relies on Theorem 1.3 in [BEGK2] that links relative capacities of

metastable sets to mean exit times and to the low lying spectrum of 1 � P . The

additional work needed to prove Theorem 2.1 will be to estimate capacities in terms

of the Hamiltonian H, and to show that the hypotheses of Theorem 1.3 in [BEGK2]

are satis�ed in our setting.

Let us state Theorem 1.3 in [BEGK2] specialized to our case.
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In their context, a set M 2 
 is called a set of metastable points in the sense of

[BEGK2] if

supx6=y2M P
�
�xy < �xx

�
infz2
 P (�

z
M
� � zz )

! 0 as � !1: (3.1)

The set M is generic in the sense of [BEGK2] if for any x; y 2 M, and I � M,
P(�xI <�xx )
P(�yI <�

y
y )

tends either to zero or to in�nity, as � " 1, and if the absolute minimum

of the Hamiltonian is not degenerate.

Theorem 3.1. (Theorem 1.3 in [BEGK2]) Let M be a generic set of metastable
states in the sense of [BEGK2], and let for x 2 M, Mx and �(x) be de�ned as in
Theorem 2.1. Then, for any x 2 M, the following holds:

(i)

E �(x) =
Nx

P
�
�x
Mx

< �xx
�(1 + o(1)) (3.2)

(ii) for any x 2 M, there exists an eigenvalue �x of 1� P such that

�x =
1

E �(x)
(1 + o(1)); (3.3)

moreover, the eigenvalues of 1 � P not corresponding to any x 2 M are in
the interval (cj
j�1 infz2
 P (�

z
M

< � zz ) ; 2] for some positive constant c.
(iii) if �x is the right-eigenvector of P corresponding to �x, normalized so that

�x(x) = 1, then

�x(y) = P
�
� yx < �

y

Mx

�
+ o(1) (3.4)

(iv) for any x 2 M, for any t > 0,

P (�(x) > t E �(x)) = e�t(1+o(1))(1 + o(1)): (3.5)

Here o(1) stands for a small error that depends only on the small parameters intro-
duced via (3.1) and the non-degeneracy condition following it.

We leave it to the reader to verify that this theorem is indeed a special case of the

more general result stated in [BEGK2].

Theorem 2.1 will follow from Theorem 3.1 since in the �nite-volume and � ! 1

regime, we compute P
�
�x
Mx

< �xx
�
and show that local minima of the Hamiltonian

are metastable states giving at the same time the value of the nucleation rate in the

limit � !1.

The key estimate is the following Lemma.

Lemma 3.2. 8x; y 2 fM such that Sx;y is a set of isolated single points,

P
�
�xy < �xx

�
= Cx;ye

��(H(Sx;y)�H(x))(1 + o(e��Æ)): (3.6)

We will explain in the appendix how our method can be extended to situations where

the saddles are degenerate. In this case the pre-factor Cx;y does not have the nice

form in (2.7) but can still be computed explicitly in terms of small �local variational

problems�.
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Lemma 3.3. Let x be a minimum for the Hamiltonian. Then, x is a metastable
state (in the sense of [BEGK2]) in the set M := fy ; �(y) � �(x)g.

Clearly, Theorem 2.1 immediately follows from Theorem 3.1, Lemma 3.2 and Lemma

3.3.

4. Proof of Lemmata 3.2 and 3.3.

In order to prove Lemmata 3.2 and 3.3, we make use of many ideas contained in

[BEGK1].

The following Lemma corresponds to Theorem 6.1 in [Li].

Lemma 4.1. (Dirichlet representation).

Let Hx
y := fh : 
! [0; 1] ; h(x) = 0; h(y) = 1g and

�(h) :=
1

Z

X
x0;x002


e��H(x0)P (x0; x00)[h(x0)� h(x00)]2: (4.1)

Then,

e��H(x)

Z
P
�
�xy < �xx

�
=

1

2
inf
h2Hx

y

�(h) (4.2)

Proof. See [Li], Chapter II.6. �

Note that the left-hand side of (4.2) has the potential-theoretic interpretation of the

Newtonian capacity of the point y relative to x (i.e. the electric charge induced on

the grounded site x when the potential is set to 1 on the site y). The Dirichlet form
is just the electric energy, and the minimizer h� is the equilibrium potential, with the

probabilistic interpretation h�(z) = P
�
� zy < � zx

�
.

The strength of this variational representation comes from the monotonicity of the

Dirichlet form in the variables P (x0; x00), expressed in the next Lemma, known as

Rayleigh's short-cut rule (see Lemma 2.2 in [BEGK1]):

Lemma 4.2. Let � be a subgraph of G and let eP� denote the law of the Markov chain

with transition rates, for u 6= v, de�ned by eP�(u; v) := P (u; v)Iffu; vg 2 E(�)g. If
x and y are vertices in �, then

P
�
�xy < �xx

�
� eP� ��xy < �xx

�
(4.3)

Proof. The proof follows directly from Lemma 4.1 and can be found in [BEGK1]. �

The following Lemma corresponds to Lemma 2.3 in [BEGK1] and is a well known

fact (see e.g. [DS]).

Lemma 4.3. (The one dimensional case).
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Let ! be a one-dimensional subgraph of G, K := j!j�1 and let f!ngn : f0; : : : ; Kg !

 be such that 8n � K, q(!n; !n�1) > 0

eP! ��!0!K < �!0!0
�
=

"
K�1X
n=0

e��(H(!0)�H(!n))

P (!n; !n+1)

#�1
(4.4)

Remark: Lemmata 4.2, 4.3 and (2.2) immediately give the following bound: 8x0; I
s.t. Sx0;I is made of simple points,

P

�
�x

0

I < �x
0

x0

�
�

"
K�1X
n=0

e��(H(x0)�H(!n))

P (!n; !n+1)

#�1
�

� C

"
K�1X
n=0

�
e��(H(x0)�H(!n)) + e��(H(x0)�H(!n+1))

�#�1
�

C

2
e��(H(Sx0;I)�H(x0))

�
1� e��Æ

�
(4.5)

for any choice of the subgraph ! : x0 ! I having its maximum energy in Sx0;I . The

constant C is the same as in (2.3).

Proof of Lemma 3.2. Let � := H(Sx;y)�H(x).

We consider the surface Z := @Dy
x. Notice that:

(1) S := Sx;y � Z

(2) 9Æ > 0 such that 8z 2 Z n S, H(z) � H(S) + Æ.
(3) Z is the outer boundary of a connected set that contains x.

Remark: In what follows, any other surface with properties 1, 2, and 3 would give

the bounds we need for the proof. The quantity C 0x;y de�ned with respect to the new

surface di�ers from Cx;y by a factor 1 + o(e��Æ).

We set Dx := Dy
x, Dy := 
 n (Z [Dx), Z

� := @Z \Dx and Z+ := @Z \Dy.

(1) The upper bound.

We use Lemma 4.1 with h(x0) := 0 if x0 2 Dx and h(y0) := 1 if y0 2 Dy; we choose

h(z) for z 2 Z in an optimal way. In the rest of the space we choose h(x) = 1.

We have

P
�
�xy < �xx

�
�
Ze�H(x)

2
�(h) =

=
X
z2Z

e��(H(z)�H(x))P (z; x)
�
�pzh

2(z) + p̂z(1� h(z))2
�
+ o(e��Æ); (4.6)

where we used reversibility. The small error comes from the mismatch on the bound-

ary of Dx that lies higher than the saddle hight.

The quadratic form �ph2 + p̂(1 � h)2 has a minimum for h = p̂

p̂+�p
. Hence, we can

saturate the inequality (4.6) and get

(l.h.s. of (4.6)) � Cx;ye
���

�
1 + e��Æ

�
: (4.7)
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(2) The lower bound.

We consider the subgraph � obtained by cutting all the connections to the vertices

in Z n S.

We use Lemma 4.2 to bound the original process by the restricted process.

We use (4.5) to estimate the probability to reach x0 2 Z� and the probability to go

from y0 2 Z+ to y:

By the strong Markov property at time �x
S
, we haveeP� ��xy < �xx

�
=

X
z2S

eP� (�xz � �x
S[x)

eP� �� zy < � zx
�

= e���
X
z2S

eP� (� zx < � z
S
) eP� �� zy < � zx

�
; (4.8)

where we used reversibility.

Now, eP� (� zx < � z
S
) =

X
x02Z�

P (z; x0) eP� ��x0x < �x
0

S

�
: (4.9)

We bound the last factor using a standard renewal argument (see e.g. [BEGK1]

Corollary 1.6) that yields if z0 2 Dx the last term is exponentially close to 1:

eP� ��x0S < �x
0

x

�
=

eP� ��x0S < �x
0

x[x0

�
eP� ��x0x[S < �x

0

x0

� � e���
P

z2S
eP� (� zx0 < � zx[S)eP� ��x0x < �x

0

x0

�
�

jSje���

Ce��(��Æ
0) (1� e��Æ

0

)
� e��Æ; (4.10)

where we used (4.5). By putting together (4.9) and (4.10) we geteP� (� zx < � z
S
) � �pz

�
1� e��Æ

�
(4.11)

We use the same procedure to bound the last term in (4.8):eP� �� zy < � zx
�
�
X
y02Z+

P (z; y0) eP� �� y0y < � y
0

x

�
: (4.12)

Again, the same arguments leading to (4.10) show that the last term in this sum is

exponentially close to 1:

eP� �� y0x < � y
0

y

�
�

jSje��(H(z)�H(y0))

e��(H(Sy;y0)�H(y0)) (1� e��Æ
0

)
� e��Æ (4.13)

We put together (4.12) and (4.13) and get

eP� �� zy < � zx
�
�

p̂z

p̂z + �pz
(1� e��Æ) (4.14)

Going back to (4.8), we get from (4.11), (4.14)eP� ��xy < �xx
�
� Cx;ye

���
�
1� e��Æ

�
(4.15)

�
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Proof of Lemma 3.3. For any z 62 M we know that by de�nition of M, we have

that �(z) < minx2M �(x) � �. In view of Lemma 4.1 and the lower bound (4.5)

we only need to show that this implies that bH(z;M)�H(z) < �. Now let u 62 M

be the point that realizes the minimum of the energy among the states such thatbH(z; u) < bH(z;M). For such a point, by de�nition, bH(u;M)� H(u) = �(u) < �.

But clearly, bH(z;M)�H(z) � bH(u;Wu)�H(u) < �(x), and we are done. �

5. The Ising case.

In this section we want to illustrate the strength of Theorem 2.1 in a well known

context, namely the stochastic Ising model on the d-dimensional lattice. In this case

the state space is 
 = f�1;+1g�, where � = �(L) is a torus in Zd with side-length

L. For � 2 
, the Hamiltonian is then given by

H(�) � H�(�) = �
1

2

X
<i;j>2�

�i�j � h
X
i2�

�i; (5.1)

where the �rst sum concerns all the pairs of nearest neighbor sites in �.

Let �i be the con�guration that di�ers from � only in the value of the spin of site i and
[a]+ denote the positive part of the real number a. We will consider for de�niteness

only the case of the Metropolis dynamics, i.e. the transition probabilities are chosen

P (�; �0) =
e��[H(�0)�H(�)]+

j�j
; if �0 = �i; i 2 � (5.2)

P (�; �) = 1�
X
i2�

P (�; �i) (5.3)

and all others are zero.

We will use the estimate given in Theorem 2.1 to analyze this dynamics in a �nite

volume �, under a positive magnetic �eld, in the limit when � " 1.

Let �1 and +1 be the con�gurations full of minuses or full of pluses, respectively.

We will show in Lemma 5.2 that f�1;+1g is a set metastable states. Apart from

this characterization, we will only use the description of the energy landscape given

in [NS], [AC,BC] and [N] in dimension 2, 3 or larger, respectively. We will show that

the methods of Theorem 2.1 allow to improve the known estimates without requiring

further analysis of the energy landscape. In dimension 2 and 3, the improvement

amounts to the computation of the exact (including the pre-factor C�1;+1) asymptotic

value of the expected transition time ��+ needed to reach +1 starting from �1 (that

by Theorem 3.1 is the inverse of the spectral gap of P ). In higher dimension, where

our knowledge of the energy landscape is not so detailed, we cannot compute the

pre-factor but we show that it is a constant independent of �, while previous results

only gave sub-exponential bounds.
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We remark that, unlike the exponential factor exp(���(�1)) (that only depends

on the graph structure), the pre-factor C�1;+1 is related to the particular Glauber

dynamics we choose.

We consider 0 < h < 1 and assume that 8k � d� 1, 2k
h
is not an integer.

We set `d := d
2(d�1)

h
e.

A d-dimensional parallelepiped with all sides of length `� 1 or ` is called quasi-cube
in dimension d with maximal side-length `.

Given a d-dimensional parallelepiped (l1 � l2 : : : � ld) and a (d � 1)-dimensional

con�guration �d�1 2 Z(l2�l3:::�ld), let us consider a con�guration where the sites in the

parallelepiped as well as the sites of the form l1+1; i2; : : : ; id where �
d�1(i2; : : : ; id) =

+1 have plus spin and all other sites have minus spins. For such a con�guration,

as well as for all its rotations and translations, we say that �d�1 is attached to the

parallelepiped.

Following [N], we introduce a set Bd(v) in a recursive way: let B1(v) be the set of

con�gurations where the pluses form a slab with volume v, Bd(v) is de�ned as the set

of all con�gurations with volume v in the form of the d-dimensional quasi-cube with

maximal volume v0 � v with a (d � 1)-dimensional con�guration � 2 Bd�1(v � v0)
attached to one of its largest faces. Heuristically, these con�gurations are as close as

possible to a cube. It is easy to see that the energy is constant in every set Bd(v);
we will denote this energy by H(Bd(v)).

We make use of the following Theorem

Theorem 5.1. (Theorem 3 in [N])

In the whole d-dimensional lattice Zd, Bd(v) is a subset of the the minimizer of the
Hamiltonian in the manifold with volume v.

This result can be transported to the torus �(L) only for su�ciently small values

of v=Ld. For large values of v, the boundary conditions a�ect the shape of the

minimizing con�gurations. Let m := min
�
v � 1;H(Bd(v)) � H(�1)

	
. We take

L so large that the con�gurations in Bd(v) are minima of the energy among the

con�gurations with volume v for all v � m. Clearly, such an L exists, since the

con�gurations winding around the torus have at least magnetization L.

We de�ne the set �Bd of the candidate saddles in dimension d in a recursive way:

(1) in one dimension it is the set of con�gurations consisting of a single plus spin

in the sea of minuses.

(2) in dimension d it is the set of con�gurations in which the pluses form a quasi-

cube with one side of length `d � 1 and all other sides of length `d with a

(d� 1)-dimensional candidate saddle attached on one of the squared (d� 1)-
dimensional faces.

Notice that H( �Bd) = maxv�Ld H(Bd(v)).
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Clearly, all the candidate saddles have the same volume v�d and are in Bd(v�d). More-

over, each � 2 Bd(v) is connected to a con�guration in Bd(v + 1) and to one con�g-

uration in Bd(v � 1).

Hence, the candidate saddles are saddles between �1 and +1 since from any candi-

date saddle there exist a path leading to �1 and a path leading to +1 both reaching

their maximum energy in the starting point.

The following lemma was communicated to us by E. Olivieri [dHNOS].

Lemma 5.2. The set M := f�1;+1g is a metastable set.

Proof. We have to show that for some Æ > 0, for any � 6= �1, �(�) < �(�1), i.e. for
any � 62 f�1;+1g, there exists a con�guration �0 such that

(1) H(�0) < H(�)� Æ

(2) bH(�; �0)�H(�) < bH(�1;+1)�H(�1)� Æ.

For � 2 
, let j�j and }(�) be the number of pluses and the number of pairs of nearest
neighbors with di�erent spin (namely, the perimeter, or cardinality of the contour),

respectively. It is a well known fact that the Hamiltonian of the Ising model can be

written as

H(�) = }(�)� hj�j+H(�1) (5.4)

Let m := minfk � 1; 9� with j�j = k and H(�) � H(�1)g. Let ! : �1 ! +1 be a

monotone one-dimensional subgraph such that !k 2 B
d(k) that reaches its maximal

energy in S(�1;+1). Clearly, H(!m) < H(�1). Let � [ � denote the con�gu-

ration where (� [ �) (x) := �(x) _ �(x) and � \ � denote the con�guration where

(� \ �) (x) := �(x) ^ �(x).

A direct computation shows that

}(�) + }(�) � }(� [ �) + }(� \ �): (5.5)

Since � is neither +1 nor �1, there exists at least one pair of nearest neighbour sites

i; j such that �(i) = �1 and �(j) = +1. By translation invariance we may assume

that the �rst occupied site in the sequence !k is i and the second is j. Thus in the

�rst step, �\!1 6= �1 and H(�[!1)�H(�) < H(!1)�H(�1), while in the second

step � [ !2 = � [ !1, so that j� \ !kj < k for all k � 2. We choose �0 = � [ !m.

In order to prove point 2. we notice that for k � m,

H(� [ !k)�H(�) = }(� [ !k)� }(�)� h (j� [ !kj � j�j)

� }(!k)� }(� \ !k)� h (j!kj � j� \ !kj)

= H(!k)�H(� \ !k) < H(!k)�H(�1); (5.6)

since by de�nition, j� \ !kj < m.

For k = m, from (5.6) we get point 1. since

H(� [ !m)�H(�) < H(!m)�H(�1) � 0 (5.7)

By putting together (5.7) and (5.6), we see that the energy of the con�guration �0

is lower than the energy of � and that the maximal energy in the one-dimensional

subgraph � [ !k : � ! �0 is lower than bH(�1;+1). �
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In the next Theorem, we use the results of [NS] and [BC] to describe the energy

landscape.

Theorem 5.3. (from [NS] and [BC]). In dimension 2 and 3,

(1) The set of saddles between �1 and +1 coincides with the set of candidate
saddles.

(2) If 2(d� 1)=h is not an integer, the saddles are simple.

Conjecture 5.4. Theorem 5.3 holds in any dimension.

We de�ne D+ as the set of all states that are larger than a candidate saddle (namely

of the form � [ � 6= � for some candidate saddle �). By the same procedure of the

proof of Lemma 5.2, we can easily see that all con�gurations in D+ have the saddle

with +1 below the saddle with �1. We set Z := @D+ and D� := 
 n (D+ [ Z). For
any con�guration in Z, we de�ne �pz :=

P
y02D�

P (z; y0) and p̂z :=
P

x02D+
P (z; x0).

Notice that in a Metropolis dynamics, all the transitions associated with an energy

gain have probability 1=j�j. Hence, �pz (resp. p̂z) is exponentially close to the number
of nearest neighbor of z that are smaller (resp. larger) than z. Notice that Z is the

outer boundary of the connected set D� that contains �1. A direct computation

shows that the set of candidate saddles coincides with the set of minima in Z. Hence,

in dimensions 2 and 3, and whenever the Conjecture 5.4 holds, C�1;+1 is exponentially
close to the factor X

z2S�1;+1

�pzp̂z

�pz + p̂z
; (5.8)

computed with respect to Z.

Let

�d := 2

dX
k=2

��
k`k�1k � (k � 1)`k�2k

�
� h

�
`kk � `k�1k

��
+ 2� h (5.9)

be the activation energy of the candidate saddle in dimension d.

Theorem 5.5. For the Ising model on a (su�ciently large) d� dimensional torus
�(l), in dimension d > 3, there exists a constant cd such that

E ��+ = cde
��d(1 + o(e��Æ)) (5.10)

If Conjecture 5.4 holds and sk=h is not an integer for all k = 1; : : : ; d� 1, then the

pre-factor cd is equal to 
d!
2d

3

�
1�

2

`2

� d�1Y
k=1

(`k+1 � `k + 1)
k

!�1
(5.11)

Lemma 5.6. The number of candidate saddles in dimension d contained in a d-
dimensional cube of side-length l � `d is

Nd(l) = 2d�1d! (l � `d + 1)
d

d�1Y
k=1

(`k+1 � `k + 1)
k

(5.12)

All the candidate saddles have �p = l�d, while p̂ can take the value l�d or 2l�d. The
fraction of candidate saddles with p̂ = l�d is 2

`2
, independently of d and l.
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Proof. Let Nd := Nd(`d).

The key observation is that the pluses of a candidate saddle are contained in exactly

one cube of side-length `d.

A d � dimensional cube of side-length l � `d contains (l � `d + 1)d of such cubes.

Hence, Nd(l) = (l � `d + 1)dNd.

Given a cube of side-length l, there are 2d possible choices for the incomplete face

and Nd�1(`d) ways to arrange the (d�1)-dimensional candidate droplet on this face.

Hence, Nd = 2dNd�1(`d) = 2d(`d � `d�1 + 1)d�1Nd�1.

Since N1 = 1, a simple calculation gives (5.12).

The computation of the number md(l) of candidate saddles with p̂ = l�d is very

similar: In dimension two, m2(`2) = 8 i.e. the number of con�gurations made of a

quasi-square plus a protuberance at one end of one of the longest sides. All other

candidate saddles have p̂ = 2l�d, since there are two neighbors of the protuberance

that can be occupied. All candidate saddles have �p = l�d, since we can void the

occupied site and reach a quasi-cube in D�. In general, for d > 1, the only sites

with d plus-neighbors are in an incomplete face of the d-dimensional critical cube.

Hence, md(`d) is equal the number of (d�1)-dimensional critical squares on the faces

of the d-dimensional critical cube times md�1(`d) namely, md(`d) = 2d(`d � `d�1 +
1)d�1md�1(`d�1). On the other hand, md(l) = 2d(l� `d + 1)dmd(`d). Thus, the ratio
md(l)=Nd(l) does not depend on d or on l and is equal to 2=`2. �

Corollary 5.7. The number of candidate saddles in dimension d contained in a
d-dimensional torus of side-length l � `d is

eNd(l) = 2d�1d! ld
d�1Y
k=1

(`k+1 � `k + 1)
k

(5.13)

= d!2
d2+d�2

2 h�
d2�d
2 (1 + o(h)) (5.14)

All the candidate saddles have �p = l�d, while p̂ can take the value l�d or 2l�d. The
fraction of candidate saddles with p̂ = l�d is 2

`2
, independently of d and l.

Proof. The result is a straightforward consequence of lemma 5.6 and of the fact that

the number of d-dimensional cubes of side-length `d that can be put into the torus

is ld.

The estimate in (5.14) comes from the approximation `d � `d�1 + 1 = 2
h
(1 + o(h))

and hence (5.14). �

Proof of Theorems 2.2 and 5.5: The results of Theorem 2.2 are straightforward con-

sequences of Theorem 2.1, Lemma 5.3, Lemma 5.2, and Corollary 5.7. In higher

dimension, the corresponding result comes from Theorem 2.1 and Lemma 5.2. If

conjecture 5.4 holds, Corollary 5.7 gives the estimate in 5.11. �

In conclusion, let us notice that the form of the quantities P
�
�xy < �xx

�
in the case of

the Metropolis dynamics may o�er an interpretation in terms of �free energy of the
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set of saddle points�. Indeed, every point in Z gives a contribution to the pre-factor

Cx;y that does not depend on � and can be bounded by a constant c. With the

arguments in the proof of Lemma 3.2, we get

P
�
�xy < �xx

�
� cN e��� = c exp (��(�� T logN )) ; (5.15)

where N is the number of saddles between x and y and T = ��1. The logarithm

of N can be interpreted as an entropy. This interpretation could be related to the

results by Schonmann and Shlosman (see [ScSh]) on the connections between Wul�

droplets and the metastable relaxation of kinetic Ising model.

6. Appendix.

In this appendix we brie�y explain how our general approach can be generalized

to situations than the saddles are more complicated when the isolated single points

assumed in Section 2. The point we want to make is that in such a case it is still

possible to localize the problem to the understanding of the neighborhood of the

saddle points and to thus reduce the analysis of the capacities to a `local' variational

problem. Let us consider a situation when in the computation of a transition from

x to y we encounter a set of saddles Sx;y that can be decomposed into a collection of

disconnected subsets S(k), k = 1; : : : ; L. By de�nition, it must be true that each of

the sets S(k) is connected to two subsets R(k) and N (k) of Dy
x and Dx

y , respectively.

Let us de�ne

C(k) :=
X

i2N (k)

e��(H(x)�H(i))eP �� i
R
(k) < � i

N
(k)

�
(6.1)

where eP is the law of the chain where all the edges exiting from the sets S(k) not

leading to N (k) or R(k) are cut. Note that it is not di�cult to see that

C(k) = inf
h2HR

N

e�(h) (6.2)

Repeating the steps of the proof of Lemma 4.2, one obtains then that

Lemma 6.1. In the situation described above we have that

P
�
�xy < �xx

�
=

LX
k=1

C(k)
�
1 + o(e��Æ)

�
(6.3)
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