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ABSTRACT. In this paper, we prove conditional stability for an inverse problem in
diffractive optics of determining a periodic curve from far field observations on a
segment, in the case of perfect reflection. Our proof is based on a Carleman estimate
for the Laplace operator.

§1. Introduction.

We consider the scattering by the perfectly reflecting periodic structure and we
discuss the two dimensional modelling. According to Bao [3], Bao, Dobson and
Cox [4], Hettlich and Kirsch [14], Petit [19], we can formulate the problem as

follows. Let f € C?(R) be 27r-periodic, f(z) < 0 for z € R. We set

(1.1) Qs = {(z,9);y > f(z), z € R},

Then we regard 0Q; = {(z,y);y = f(z), z € R} as a periodic interface which
we should determine by scattering data. For this, we introduce an incident field

u! (z,y; k) given by

(1.2) u! (z,y; k) = exp{ik(zsin — ycosh)}.
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Here : = v/—1 and k > 0 is a wave number. Throughout this paper, we assume

(1.3) 0< 8] < g

and

(1.4) 0<k< L
. -

Then the resulting scattering field u® (z, y; k) satisfies the Helmholtz equation with

the perfect reflection boundary condition:

(1.5) Au’ + k*u® =0 in Qy.
(1.6) u® +ul =0 on 0Qj .
(1.7) u® is bounded as y — oo.

Moreover throughout this paper, we pose the (k sin @)-quasi-periodicity condition

for u°:

(1.8) u® (z + 27, y; k) = exp(2mik sin 0)u® (z, y; k)

for all (z,y) € R? (see e.g., [3], [4], [14]). For the unique existence of u° satisfying
(1.5) - (1.8), see Kirsch [16], [17], Wilcox [21], for example.

We can state our inverse problem.

Inverse Problem of Diffractive Optics. Determine y = f(z), z € R from the
measurements

u’(x,0;k), € (0,2m),

where u® satisfies (1.5) - (1.8).
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For this inverse problem, the uniqueness is proved for a lossy medium (i.e. Imk >

0) by Bao [3], and for the case of k¥ € R by Hettlich and Kirsch [14]. We further

refer to Ammari [2]. See Bruckner, Cheng and Yamamoto [7] for the uniqueness in

our inverse problem with discrete observations u(t;, 0; k) where {¢;};en C (0,27).

Moreover Bao and Friedman [5] proved local stability around a fixed fo. To the
authors’ knowledge, however, there are no global stability results.

By the (k sin 6)-quasi-periodicity, setting
(1.9) u=u(z,y; k) = v’ (z,y; k) + v’ (z,y; k),

we can rewrite (1.5) - (1.8) in terms of the total field w:

(1.10) Au+k*u=0 inQy

(1.11) u=0 on 0

(1.12) u(z + 2m,y; k) = exp(2mik sin 0)u(z, y; k).
(1.13) u — u! is bounded as y — .

Since k is fixed such that (1.4) is true, we simply write u(z, y) in place of u(z, y; k).
Then our inverse problem is equivalent to: determine y = f(x), z € R from the

measurements

(1.14) u(z,0), z € (0,27),

where u satisfies (1.10) - (1.13).
The purpose of this paper is to establish the conditional stability, which implies
conditional well-posedness by combining with the uniqueness result by Bao [3] for

the inverse diffractive optics problem in the case of (1.4).
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Our method originates from other inverse problem of determining a part of a
boundary (Bukhgeim, Cheng and Yamamoto [9], [10]) where the Cauchy problem
for the Laplace equation is used for determining a part and conditional stability
is proved. The point of the method in [9], [10], is that one needs not assume the
boundary condition on the whole boundary of the domain under consideration. This
is essential for the application to the present inverse problem. As for determination
of parts of boundaries, we refer also to Alessandrini and Rondi [1], Beretta and
Vessella [6], Rondi [20], where more general elliptic equations are considered but
the boundary conditions must be assumed on the whole boundary, so that their
method is not applicable to our present inverse problem.

On the other hand, the method in Bukhgeim, Cheng and Yamamoto [9], [10]
relies on the maximum principle, so that discussions for the general Helmholtz
equation are difficult. Therefore, in this paper, for the stability, we have to assume
(1.4), which admits us to estimate interior values of a solution to the Helmholtz
equation by the boundary values.

Furthermore the conditional stability is very helpful for convergence rates of
Tikhonov’s regularized solutions (see, e.g., Cheng and Yamamoto [12]), and in a
succeeding paper, we will apply the conditional stability to the Tikhonov regular-
ization.

This paper is organized as follows:

Section 2. Main result for conditional stability
Section 3. A generalized maximum principle

Section 4. Bounds of solutions to the forward problem
Section 5. First part of the proof

Section 6. Second part of the proof
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Section 7. Third part of the proof

Section 8. Concluding remarks.

§2. Main result.
For fixed positive constants My, M, k, and ag, a such that 0 < M < ag < a and

0< Kk <1, we set

F :{f € C*T(R); || f|lco+r[0,0m] < Mo, f is (2m)-periodic,

d&if & f ,
Lo=2temn, j=012s
(2.1) £(0) = f(27) = —ao, —a < f(z) < —M,0< z < 27r}

as an admissible set of unknown surfaces. Here and henceforth let

Gh@) - Zh@)

djf dz3 dxz3
©[0.27 sup

1£llgs+ [0,27] = Z ‘ dxi C0,27] 0<:c,m’§27r,m7ém’ |z — z'|*
Let us set
(2:2) Qf ={(z,y);y > f(z), z€R}
for f € F.

For f; € F, j = 1,2, let us consider

(2.3) Auj + k2Uj =0 in ij
(2.4) u; =0 on 08y,

u; is (k sin @)-quasi-periodic, that is,
(2.5) uj(z + 2m,y) = exp(2mik sin 0)u;(z,y).
We further assume that
(2.6) u; —u' is bounded as y — oo.

We are ready to state our main result on the conditional stability in determining

fl)fZEf:
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Theorem 2.1. We assume (1.4). Then there ezists a constant C = C(k,6,F) > 0

such that

C

(2.7) 1f1 = fallcjo,2n <

1
log log M(u1—u2) () gt

0,27

provided that fi, fo € F.

§3. A generalized maximum principle for the Helmholtz equation.

For the Helmholtz equation
(3.1) Av+Ek*v=0 in D,

the maximum principle does not hold in general. However in the case where £ > 0

is small, we prove

Lemma 3.1. Let D C [0,27] X R be a domain and let
(3.2) 0<k< :
. < 5

Then for a solution v € C2(D) N C(D) to (3.1), we have

_1
(3-3) ey < (1 —47%k*) "2 [[vllo(om)-

Proof. The proof is based on the argument for the proof of a lemma in Zhou [22].

Let
2 1 4
w(x,y):27r _§$ ) ($7y)€D
and let 0 < k < % Then
A@? — 287jo][%, 35 (2, )
_ 2 2 2 _ 2 2 2 2 2 o)
=2vAv + 2|Vv|* + 2k ||v||C(§) = —2k“v° 4 2|Vv|® 4 2k ||v||C(§) >0 onD.
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Therefore the maximum principle (e.g. [13]) yields

o(z, 1)’ — 20 v]}2, 5 (2, )

< sup (v(z,y)* = 2823, pyw(z,y)) < ( sup Ju(z,y)])*
(z,y)€0D (z,y)€EOD

Here we note that w(z,y) > 0, (z,y) € 0D, because z € [0,27]|. Consequently we

obtain

(1= 4mR)ol ) < (1~ 28 max (e )l ) < oll2gon)
:r7y

which is (3.3). Thus the proof of Lemma 3.1 is complete.

§4. Bounds of solutions to the forward problem.
In this section, we will prove upper and lower bounds of solutions to the Helmholtz

equation, which are uniform in f € F.

Lemma 4.1. Let u = u(z,y) satisfy

(4.1) Au+k’u=0  inQy
(4.2) u=0 on 08y

(4.3) u s (k sin 0)-quasi-periodic
(4.4) u — ul is bounded as y — oo.

Moreover we choose My > 0 such that

M2
(4.5) 0< M; < -
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Then there exist constants My > 0 and m > 0 dependent only on F and M; such

that

(4.6) ||u||02(sz_f) < My

and

(4.7) lulle(0,2n]x[= 01,00 = ™ >0
forall f € F.

For proving this lemma, we need some results about the forward problem.

Lemma 4.2. Suppose that 0 < 7 < 1 is constant and a (27)-periodic function
f € C3t7(R) satisfies

@f gy =PI

(0= 25(2m), 1 =0,1,2,3, f(0) = f(2m) = —ap,

—a< f(z) <—M,0<z<2m.
Let w = w(z,y) satisfy

(Aw + k2w =0 in Qy,
w=20 on 01y,

w s (k sin 0)-quasi-periodic,

|l w — ul is bounded as y — co.

Then there exist constants M3 = M3(f, ag,a, M) > 0 and my; = my(f,ap,a,m) >0

such that
(4.8) ||w||02(sz_f) < M3
and

(4.9) |lw||c((0,27]x [ 7,07) = M1 > 0.
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Proof. We will use the integral equation method which is outlined in [16].
Since 0 < k < 5= and 0 < |f| < Z, we have that |n + kcosf| # k for all n € Z.

Therefore the free space quasi-periodic Green function can be defined as

G(z,y = I EE:Z — explia, (z1 — y1) +i8n|z2 — y2], TFY

where = = (z1,%2), ¥y = (y1,%2) € R?, o, = n + kcos and

k? — 01721, |an| <k
/Bn =
i a2 — k2, lan| > k.
By Theorems 4 and 5 in [16], we can express w® = w — u! as

(4.10) w3(z) :/0 ’ (81/(?3;) — z) G(Z,Y) lys=f ) V1 + ' (y1)%e(y1, f(y1))dyn,

and @(z1) = exp(—ik(cos0)z1)p(z1, f(x1)) satisfies

27
(4.11) P(z1) + K(z1,y1)3(y1)dy; = —e RGO f (@)
0
Here
Kf($1,y1)
(4.12)

. _m 0 .
—etkcosO(y1—z1) <(9V—(y) + ’L> G(z1, f(xl),ylay2)|y2=f(y1)\/m'

It can be shown that the Green function G(z,y) has the same singularity as the
fundamental solution ®(z,y) = iHél)(k|x — y|) of the two dimensional Helmholtz
equation and ® — G is analytic in [(0,27) x R] x [(0,27) x R] ([16]). Here HS"(:)
is the Hankel function of the first kind and of order zero (e.g., Kress [18]).

It is easy to verify that the integral operator in (4.11) is a compact operator from
C?*7(0,27] to C?T7[0,2x]. Since the integral equation (4.11) is uniquely solvable

([16]), we know that there exists a constant M5 > 0 such that

1@ll2+0,2m) < M.
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Coming back to (4.10), we can have that there exists a constant M3 > 0, which

may depend on f, such that ||w||Cz(Q—f) < Ms3. Thus the proof of (4.8) is complete.
Next we will prove (4.9). If it is not true, then we have w(zy,z2) = 0 for

(x1,z2) € [0, 2] x[—M7,0]. By the unique continuation for the Helmholtz equation,

w(z1,z2) = 0 for (z1,z3) € Q. This is a contradiction. The proof of Lemma 4.2

is complete.

Proof of Lemma 4.1. We will prove (4.6). Assume that (4.6) is not true. Then

there exists a sequence {f,}nen C F such that
(4.13) [unllg2 @) — o0, as n — oo,

where u,, is the solution to the problem (4.1) - (4.4) in the domain Qy, .
On the other hand, since f,, € F, there exists a subsequence of {f,}nen, which

we still denote by { fn }nen, such that
fn—49 in C3t%10,27]

as n — 00. By the arguments in Lemma 4.2, we know that there exists a unique
solution @, € C?*3[0,27] to the integral equation (4.11) with f = f,. Moreover it

can be directly verified that

||C5n - w||02+%[0,2ﬂ'] — 07 n — 09,

where 1 € C?+5[0,2x] is the unique solution to the integral equation (4.11) with

f=g-

Then we have that, for n € N,

lunllca @y < Clienllgres g om < Mo,
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where C > 0 and M) > 0 are constants which are dependent on F but independent
of n. This is a contradiction to (4.13). We complete the proof of (4.6).

The proof of (4.7) is similar to the proof of (4.6). Assume that (4.7) is not true.

Then there exists {f,}nen C F such that

||Un||c([0,27r]><[—M1,o]) —0

as n — oo.
Since f, € F, there exists a subsequence of {f,}nen, which we still denote by

the same notation, such that

fn—9 in C*%10,2x]

as n —» 0oQ.

It can be easily verified that

|un — vllc(o,20]x[=pry0)) —> 0 asn — oo,

where v is the solution to (4.1) - (4.4) in Q4. Then we have

v(zy,z2) =0, (x1,22) € [0,27] X [—M7,0].

By the unique continuation for the Helmholtz equation, we can obtain that

v(z1,22) =0, (x1,z2) € Qq.

This is a contradiction. The proof of (4.7) is complete.

§5. First part of the proof; Cauchy problem for the Helmholtz equation.

Let

(5'1) 'y:{(x,y);y:f(ac), 0§$§2ﬂ-}a
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where we set

f(z) = max{f(z), f2(z)},

and let 2 denote the domain bounded by [0, 27| x {0}, v, = 0 and = = 2.
We can prove that () satisfies the uniform interior cone condition.

In fact, it is sufficient to prove that at every intersection point of f; and fs, the

cone property holds. Let f;(z*) = fo(z*) with some z* € [0,2x]. If g—;(ac*) #

dfa

“2(z*), then the cone property is straightforward. Therefore we have to consider

the case of g—;(x*) = %(m*). We will prove that f = maxj—1 f; is C' at z*. In

fact, let {z, }nen be an arbitrary sequence converging to z*. Then

o flen) = (@) dfy L dfa
(5.2) lim — = E(Jj ) = E(a: ).

n— oo Ty — T

Let {z! } be any subsequence of {z,}. Then we can choose a subsequence {z'} of

{z],} satisfying, say, f(zl)) = fo(z]) for all n”. Hence

f(zy) — f(z7)

folal) — fole*) _ dfs

1 *
i dx

= lim

*
—x* n—oo x (l‘ )

lim
n—oo T

Since we can extract a subsequence converging to the unique limit from any subse-
quence, the limit (5.2) is true. Therefore we see that f is C' at x*. Thus () satisfies
the cone condition.

We set

ou ou
v =l — wa) O moaey + | (G~ G2 ) (20

L2(0,2m)

Set v = u; — us. Then in , it follows from (2.3) that Av + k%2v = 0. We will
estimate v on 7.

Since 2 satisfies the uniform interior cone condition, we can apply Theorem 6.2
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in Cheng and Yamamoto [11] in view of Lemma 4.1, so that we can prove:

There exist constants C > 0 and g € (0,1) dependent on F, k, 6, such

that

C
1 [#

(5.3) |lur — uzlcEy <
‘log a

13

Here and henceforth C' > 0 denotes a generic constant dependent on m, M, k, 6,

a, but independent of choices f;. On the basis of (5.3), we can prove

Lemma 5.1. There ezxist constants C > 0 and p € (0,1) dependent on F, k, 6,

such that

C

-

(5.4) Jur — uallo@) < ‘

1
-8 [reres [ ot v

Proof. We will estimate

|G -5)eo

L2(0,27)

by [[(u1 — u2)(+,0)||m1(0,2+). Noting that 0 > max;—; »{f;(z);z € R}, we apply

Theorem 2.1 in Bao [3], so that we see

(%_1;1 _ ‘%) (- 0) = B(u1 — us)(-,0),

where B is a pseudodifferential operator of order one, and

1Bgllz2(0,2x) < Cllgll 1 (0,27)-

Therefore

0 |G-

L2(0,27)

< Cll(u1 — u2)(+ 0) || 2 (0,27)-

Combination of (5.3) with (5.5) yields (5.4). Thus the proof of Lemma 5.1 is

complete.
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§6. Second part of the proof; construction of a family of subdomains.
In this section, we construct domains Qg, Qf (see (6.4), (6.8)) and a family of
domains 7, ;O (Q0), and establish a lower bound of derivatives of the Green function
for A in 77e_,a1§0 (Qp) with the homogeneous Dirichlet boundary condition. Such a
family is essential in completing the proof of Theorem 2.1 in Section 7 where we
estimate the solutions uw; and wus and establish estimation of the distance between

the two curves y = f;(z), j =1,2.

We set

Fo :{f € O (R); | fllestxi0,20) < Mo, f is (27)-periodic,

& f & f ,

—(0) = —(2 =0,1,2,3

d.’I/‘J() d.’I/‘J(Tr), J Pt e B
(6.1) —a§f(x)§—M,0§a:§27r}

We note that F = Fo N {f; f(0) = f(27) = —aop}.
We call K C R? a finite cone with verter (0,0) if K = By N {(Az, \y) € R%;\ >
0, (z,y) € By} where By, By C R? are open balls, (0,0) ¢ By and B; is centred
t (0,0). We set K(zo,y0) = K + (zo,%0) = {(z + 2o,y + v0); (z,y) € K}. Then
K (zo,y0) is a finite cone with vertex (zo,yo). Noting that f € F; satisfies the
uniform cone condition, we can take 6 € (0, ] such that for every f € Fy and for
every = € [0, 2], a finite cone K (z, f(x)) whose angle is 26y and whose centre line

is parallel to the y-axis, is contained in {(z,y);y > f(x)}. Therefore
(6.2) —a+zcotfy > f(xz) for 0 <z < atanfy

if f € Fp and f(0) = —a.

Here we recall (4.5), that is, 0 < M; < MTZ Set

~ M? - M
(6.3) fo(z) :min{—a—kxcotﬁo,?’ilax—M}
Ta
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for 0 <z < -3raM _ Thep

M2—Mia
~ 3raM
if f € Fo and f(0) = —a.
Let
3raM ~
Moreover we set
M
(6.5) Q0 = {({z, Ly); (z,y) € Qo} for . <e<1.
Then we can prove
(6.6) Qo C {(z,y);y > f(x)}, if f € Fyand f(0) = —La.

In fact,
Qo N {(z,y);y > —M} C {(z,9);y > f(z)}

by f € Fo. Let (z,y) € £Qo N {(z,y);y < —M}. Then

Q0N {(z,y);y < —M} C K(0,—/a)

by (6.3). Therefore, by the choice of 6y, it follows that y > f(x). Thus (6.6) is
seen.

We define a transform n =4, : (z,y) — (&1, &2) by

&1 =

(x — o)

I IS N

§2 =7y
for%gfgl. Then

Moy (€15 €2) = (£€1 + 2o, £E3).
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It follows from (6.6) that

(6.7) Neay () C {(2,9); f(x) <y <0}, if f € Foand f(zo) = —La.

In fact, let f € Fy and f(zo) = —fa. we set f(£1) = f(£1 + zo). Then f € Fo and

F(0) = —fa. Hence by (6.6), we obtain £Qy C {(&1,&); &2 > F(€1)}, that is,

Moy () = €20 + (20,0) C {(&1 + 20, &2); &2 > f&)}

={(£1,&2); 62 > f(&1 — wo) = f(&1)},

which is (6.7).

Moreover we will take a subdomain €, such that
(6.8) 9_6 C Qy, ||u||Lz(%) > com

if u satisfies

(6.9) ul|c2 ([0,2x]x [= M,0) < Ma,
(6.10) |lulle(ro,2x)x[—py,07) = ™ >0
and

(6.11) u(z + 2m,y) = exp(2miksin Q) u(z,y), 0<z<2r,—-M <y <0.

Here we recall (4.5). Here ¢y > 0 is a constant which depends only on My, My, Mo,
m, F.

We take sufficiently small d > 0 so that

2Mia m Ta
d d< ——, d< —
6.12) ST Yoy Y san
' Q< Mia u 3ma Q< 3raM
M YoM M? — Mia
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We set

3ma Mia d
_ o — (T2 _g4 2™ _ it Sl B
(6.13) 0 (M 377 d) % ( M’ 2

By (4.5), (6.3), (6.4) and (6.12), we can directly verify that Q) C Q.

Let u satisfy (6.9) - (6.11). First let
[u(, B)llcro,201 > m > 0
for —% < h < 0. Then we set
B(z,h;d) = {(z,y); |z — 2 + (y — h)* < d*}.

Then we see that

3ma
. f h—— —2d — —2d
(6.14) QDU{ (7, h;d) N {y < } <T< S }

In fact, the set at the right hand side is included in ( — 3d, 37“1 — d) X (h —d,h— %)
Moreover by d < 22112 ip (6.12) and —2 < h <0, we have — 22 < h—d < h—2 <
—2 and (6.14) is seen.

2

Since

M

Ta 3ma 2ma
— —2d,— —2d|| = — > 2
there exists

(6.15) k€ VM& —2d, 3LMG - 2d] such that |u(z*, h)| > m > 0,

in view of (6.11). Then by (6.9) and d < g7 in (6.12), we apply the mean value

theorem to have

m
>
u(z, )| >

d
(z,y) GB(ﬁi,h;d)ﬂ{y<h—§},
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that is,
%
ullzz(ay) > (/ |u(:c,y)|2d:vdy>
B(wi,h;d)ﬂ{y<h—%
m dY|?  dm [« V3 ?
6.16 > |B(z¥, hyd) N Y Y S
(6.16) _2‘(%,,) {y< 2} 2(3 4)

Next we assume

lu(-, h)lcfo,2x) = ™ > 0

for —-M; < h< —g. Then, since —%a < —M;, we have (z,h) € Q_{) for 37 —3d <

z < 3% _ (. Therefore, if 7, satisfies (6.15), then by d < 2% — M in (6.12), we

have B(z}, h;d) N {y < h} C Q, so that

1
(6.17) |B(z3 b d) N Q| > 5[ B(zy, hi d)].
Moreover by (6.9) and d < g7~ in (6.12), we see that

(6.18) lu(z,y)| > 0

>0, (z,y) € B(zy, hyd) N Q.

Therefore, by (6.17) and (6.18), we have

N

|ullz2 (o) > (/ |U(J:,y)|2d:vdy>
B(z} ,h;d)NQ

m . L1 m T2
e M 2 > R — .
5 |B(z,, h; d) N Q| 5 ( ) d

(6.19) > :

Therefore taking

we see from (6.16) and (6.19) that (6.8) holds true.
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Moo (%) = {(£&1 + T, £62); (€1, 62) € U}

{(££1+x0,££2) 17 <& < 3% —d, _%a << _c_zi}

{(51’&) o %E TG a0t 3;;@ —t —Mj\lfe <& < —%d}
(6.20)

{(51’&) x0+% -3t <& <$0+37T7£_£d —M; <& < _%}
Consequently by (4.5) we obtain
(6:21) Nome (0) C {(2,9);9y > —M}.

Moreover

/ (e, y)Pdedy = £ / (l6r + w0, 62)[2derdE.
T ﬂEO(Q ) 6

Therefore if we further choose small d > 0, then, noting that the length of n, ;O (Q5)
in the z-direction is not shorter than 27 and taking (6.11) into consideration, sim-

ilarly to (6.8), we see that

C()M

(6.21) ||'U,||L2(,r’l (Q’ )) > Cofm > m,

if u satisfies (6.9) - (6.11).

On the other hand, since Q_() C Qo and 7, ;O is an isomorphism, we see that

(6.22) Moo () C Mg, (%) C 1y, ().

Since 0€) is approximated by C3-curves in the interior of €y, we see that there
exists the Green function with the same property as in the case of C3-domains (e.g.

Section 16 of Chapter 3 in Itd [15]). Let Go(z,y,&1,&2) and Goz, (2, y, &1, &2) be
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the Green functions for A in Qg and 77[;0 (Qp) respectively with the homogeneous

Dirichlet boundary condition. Then we directly see that

G@,mo ($, Y, £17 52) — EzGO(nl,wo (il?, y)7 77@,:50 (517 52))7

(6.23) (z,9), (€1, €2) € Mgy, ()

We consider a Dirichlet problem in 77[,;0 (Qo):

AT =0 inn, . ! (),
(6.24)
VoL (@0) = ¥

Then, since the domain 7, (QO) is parametrized by means of a linear function in
IS [%, 1] and g, we see that there exists a constant C = C(m, My, M1, M, k,0,a) >

0, independent of £ € [%, 1] and x( such that

(6.25) 102l 200, 2 @03y < CllY e o0, 2 (0)))-

Here 0, denotes the normal derivative on 8(77[,;0 (Q0)).

Moreover, in view of (6.22), (6.23) and the positivity o o (e.g. Theorem

18.2 in Chapter 4 in It6 [15]), since Q) C Qo and ¥ < ¢ < 1, we see

a

) 0G4, -
min {_Ti_(anyaglaé.Z); —La < Yy < _M’ (51’52) < nlﬂl’o (96)}

Zf mln{ aGO( y7£17£2) S S _¥7 (51752) € Q()}

2% min {—?(0 ¥, €1,&2); —a <y < —M, (£1,&) € 96}
(6.26)

=ug > 0.

Here pg > 0 depends only on a, My, M;, M and m, 0, k, and independent of

l e [%, 1] and z.
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§7. Third part of the proof; estimation of distance between two curves.

Let |(f1 — f2)(z)| take the maximum at a point zo € [0,27]. Without loss of

generality, we may assume that fo(zo) > f1(zo) and therefore

|f1 = fallcpo,2x] = fa(zo) — fi(zo)-

We recall that the curve v is defined by (5.1).
In this section, we will prove

Lemma 7.1. There exists a constant C > 0 such that

o) — Faleo)] < -
og

=

Zf ||u1 — ’U,2||C(7) S .
Once Lemma, 7.1 is proved, we can directly complete the proof of Theorem 2.1

by Lemma 5.1.
Henceforth we define the distance between a point (p, ¢) and the curve y = f(z)

by
(7.1) dist ((p, 9), /) = Inf (|t — p|> + |£(t) — af)?.

Then we prove

Lemma 7.2. There ezxists a constant mo = mo(M,a) > 0 such that

dist ((p, q), ) = mo|f(p) — 4

for all f € F and (p,q) € [0,27] X [—a,0].
df

2-(t). We note that for a parameter s, the

Proof of Lemma 7.2. We set f'(t) =
point (t + sf'(t), f(t) — s) is on the line normal to the curve y = f(z) at (¢, f(¢))
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and that if for (p, q) € [0, 27] X [—a, 0], in (7.1), the minimum is attained at ¢y € R,

then (p — to,q — f(to)) is orthogonal to the tangential vector (1, f'(¢0)). Therefore
dist ((p, q), f) = inf{|s|(|f'(t)|2 + 1)%;p = t + sf'(t),q = f(t) — 5,t,5 € R}
We choose A > 0 such that
A =max{My +a+ 27, 27w+ (a+ Mo)My}.

Then for any (p, q) € [0,27] x [—a, 0], if |t| > A, then

[V

(7.2) dist ((p, q), f) < ((t —p)* + (f(t) — 9)%)>.

In fact,

[V

dist ((p, q), f) = inf ((t — p)? + (f(t) — ¢)?)

< _gl< M
inf <|f(p) —q| < Mo+a

by f € F. On the other hand, |¢| > A yields that |t —p| > A — 27 for 0 < p < 27.

By the definition of A, we have

N

Mo+a<A—2m<|t—p| <((t—p)"+ (f(t) —)")>.

Therefore (7.2) is seen.

Hence we obtain

dist ((p, ¢), f) = min{|s|(|f'()|2 + 1)7;p =t + sf'(t),q = () — s,
(7.3)
1| <A, s € R},

Moreover we note that

{(t,s) e [-M A xRp=t+sf'(t),g= f(t) — s}

(7.4) is not empty for (p,q) € [0, 27] x [—a,0].
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In fact, we define a mapping Gy : (t,s) — (z,y) by
r=t+sf'(t),

y=f(t)—s.

Then we have to prove
Gf((_AaA) X (—CI,, -M + CL)) - [Oa 27T] X [—CL, 0]

for f € F.
Let (p, q) € [0, 27] X [—a, 0] be arbitrary. Then we have to prove the existence of
(t,8) € [-A,A] X [—a,—M + a] such that p =t + sf’(t) and ¢ = f(¢t) — s. For the

proof of (7.4), it is sufficient to verify the existence of a root t of

t=p+(q— f(t)f () = H().

By the definition of A, for fixed f € F and (p,q) € [0,2n] X [—a, 0], we can prove

that H maps [—A, A] into [—A, A]. In fact,
[H(®)] < Ipl +lg — FOIIF (O] < 27 + (@ + Mo) Mo < A.

Therefore the Brouwer fixed point theorem yields the existence of a fixed point
t = H(t) (e.g. Theorem 10.1 in Gilbarg and Trudinger [13]). On the other hand,
since s = f(t) —y, —a < f(t) < —M and 0 < —y < a, we have —a < s < —M +a.
Hence (7.4) follows.

Note that if p =t + sf’(t) and ¢ = f(t) — s for some ¢,s € R, then |f(p) — ¢| =
|f(t+sf'(t))—(f(t)—s)|. In view of (7.3), for the proof of the lemma, it is sufficient

to verify

{|f t+sf'(t) = () = )],
|/( If’( |2+1) ’

<p<?2m —-a<qg<0,p=t+sf'(t),g=f(t)—s,

—AStSA,—aSsS—M+a,f€f}<oo
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By the mean value theorem, we can choose x € (0,1) to obtain

[f(t+sf'(2) = (F(&) = s)| = |f(£) + f'(t + xsf'(£)sf'() — f(t) + 5]

<[s|(1+1£'(t + xsf ) (B)) < Is[(1 + Mg)

for f € F. Hence

{If t+sf'(t) — (f(t) —s)l.
Is|(|f'(£)12 +1)2 ’
<p<2m —-a<qg<0,p=t+sf(t),qg=f(t)—s,

—AStSA,—aSsS—M—l—a,fE}"}

1+ M

< - <14 M2
(If'@)P+1)2

Thus the proof of Lemma 7.2 is complete.

We set

f) = {(z,9);0 <z < 2m, f(z) <y <0}

Let D be the connected component of Q(f;) \ ©2(f2) which includes the segment
x = x9. By fi1, fo € F, the graphs of f; and f» intersect and so D is bounded by

the graphs of y = f1(z) and y = fa(x), 0 < z < 27. We set

(7.5) Dy, = {(z,y); dist ((z,y),0D) > h}
for h > 0.
If
(76) (2 = F)w0)| < =7,
0g 3

then we have already proved Lemma 7.1 with C = 1. Therefore we assume that

1
0g

(7.7) |(f1 = f2)(z0)| >

—
=
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We set

(7.8) A = (w0, f2(z0)), B = (0, f1(z0))-

We recall that we are assuming that fo(z9) > fi(xo), without loss of generality.

We further set

(7.9) h=

and

P = | zo, fo(zo) —
(7.10) <

Q= <l'0, fi(zo) +

We note that P,Q € D. Furthermore by Lemma 7.2, we see that
(7.11) PQ C Dy

(Here and henceforth, PQ denotes the segment connecting P and Q which includes
P and Q.) In fact, let (p,q) € PQ. Then, by (7.7), we see that |fi(p) — q|,

|f2(p) — q| > h, so that Lemma 7.2 implies

dist ((p, q), f1), dist ((p, q), f2) > moh,

that is, (p, q) € Dmyh-
By —a < fi1(zo) < —M, we can take £ € [%, 1] such that f(zo) = —fa. Noting

that f; € F, we apply (6.7) to obtain

(7.12) Nowy (R0) C {(z,9);y > f1(2)}.

For simplicity, we set

(7.13) E =1, 5, (Q0)
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and
(7.14) E' = n, . ().

Then by (6.4) and (6.21), we have

(715) {(il?(),y); fl(xo) <y< 0} C OF, m C OF
and
(716) ||u1||L2(EI) Z cim.

Moreover by (6.26), we obtain

_8GE
or

(717) ($07y7£17£2) Z Ko >0 if (l'o,y) € m and (5175-2) € EI,

where G is the Green function of A with the homogeneous Dirichlet boundary
condition in E.

We will consider a function w1 in the domain D. We have
(7.18) Auy + k?u; =0 in D.

Setting v; = 0D N 08Yy,, j = 1,2, we see from the remark before (7.5) that 0D =

v1 U~¥2. On 79, the condition (2.4) yields us = 0. Consequently

(7.19) ui| = [uz + u1 —uz| =[ur —uz| <6 on 7.
Therefore, since u; = 0 on 7;, we obtain |u;| < é on dD. By Lemma 3.1,
(7.20) luy| < (1 —4n%k?)~Y2§  in D.

Hence, by (7.20) and the Schauder interior estimate (e.g. Theorem 6.2 in Gilbarg
and Trudinger [13]), we have

Co

> 27929
mgh

8211,1
0xdy

‘8211,1
)

0x?

8211,1
) ayz

cé
(7.21) |Vuy| < ok in D,
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where C' > 0 depends only on k.

We choose
12
7.22 cl=.Z
(7.22) ce (32)
such that
2
1 1 1
(7.23) - T < 1) > 6",
210g3 lOgg

because § > 0 can be assumed to be sufficiently small. Then, by (7.7) and (7.21),

we obtain
(7.24) PQ| = fa(zo) ; f1(zo) > 6%
and

0%uy 2 0%uy 2 9%u, 2

8$2 ’ 8:178:1] ’ (91/2 )
(7.25) w2, [Vus[? < €829 in Dy

Furthermore let us take a sub-segment in PQ with the starting point P’ and the

end point Q' such that

(7.26) |PP'| = [QQ'| = - [PQ|.

-

In E, we will use the following Carleman estimate with non-homogeneous bound-

ary value (Lemma 2.4 in Bukhgeim [8]):

/ (Aplui|® + (Ap — 1)|Vui|?) e¥dzdy
E
(7.27)
g/ |Au, |2e¥ dxdy +/ (8,9 (Ju1|? + |Vur?) + 8|8, Vui||Vui|) e do
E OE
for real-valued ¢ € C?(E). Here and henceforth 8,1 and 0, denote the tangential

derivative and the normal derivative respectively.
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Let us choose the weight function v in the form:

Here s > 0 is a parameter,
Ay =k|*+1 inE,

(7.29)
Y1198 =0,
AU =0 inE,
(7.30)
VsE = to,
where
Yo € C*(0F), 0<1p <1,
(7.31)

Yo(€1,&2) =0, (&1,&) € PQ, Yo(é1,&) =1, (€1,&) € P'Q'.

Here we note that the segment P’Q’ is strictly included in PQ, and we can take

such 9. By (7.9), (7.10) and (7.23), we have

(7.32) |Vipo| < C6~" on OF
as well as (7.31). Therefore (6.25) yields

(7.33) 10,9 L2(am) < CO™ "

in view of (7.32), where the constant C > 0 is independent of 6.

Let

(7.34) U(£1,€2) = min U(z,y).

(z,y)EE’

Then, by (7.31), (7.17), (7.10) and (7.26), we obtain

oG
U(&1,&2) Z/ —8—VE($,y,§1,§2)¢0($,y)d0

oFE

oG oG
:/ - E(Jl'o,y,fl,ﬁz)ibo(xay)dUZ/ — E(Jl'o,y,fl,&)da
PQ (91/ P'Q’ (91/

> min (—aGE ($0,y,§1,f2)> |P'—Q'|

" (20,9)EP'Q’ ov
(7.35)

>po|P'Q’| = i/ﬁo(fz(ﬂvo) — fi(zo)).
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Now we return to (7.27). Since Au; = —k?u; in E, from (7.27), we obtain

min{|k|4,1}/ (Jur]? + |Vua [2)e¥ dody
E
(7.36)

< [ (@1 +50,9)(|ur + [Vur]?) + 818, Veur || Vs [} dor
oOF

By (7.35) and (7.16), the left-hand side of (7.36) can estimated from below as

follows:
winf(hf', 1} [ (f? + Vs 2)e? dody
E
> min{|k|*, 1}/ (Jur|® + |Vu |*) e¥ dzdy
EI
>cfm® min{|k|*, 1} exp(— |91 | Lo (1)) exp(s¥ (1, £2))
1
(7.37) >Cs3 exp (Zﬂos(fz(l'o) - fl(xo))>

with some C3 > 0 independent of §.

Next we will estimate the right-hand side of the inequality (7.36) from above.
Let us decompose F = PQ U (OE \ PQ). On PQ, we have that, according to

(7.11), (7.25) and (7.33),

| {01 + 50,9) (Jur|* + |Vui|?) + 8[0, Vui||Vuq|)e¥do
PQ

SCBS{52(1_R)(1 + 8)6—K, + 52(1—&)}

(7.38)
<Ce {6273%(1 + s5) + 07272} < Ce? 623",

Here we have used 1 + s < e® for s > 0.

By the maximum principle, we have 0 < ¥ < 1 in E. Hence, by \I’aE\W =0,

the strong maximum principle yields 8, % < 0 on 0F \ PQ. Therefore, by (7.25),
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we find that

/ (Butbr + 58, 0) (Jur ]2 + |Vu [2) + 8]0, Vu || Veur )0 dor
61\PQ

(7.39)

g/ {0t + V) + 80, Vur |[Vur|}do < C(Mo).
8E\PQ

Here we also used (4.5). Applying the estimates (7.37) - (7.39) into the inequality

(7.36), we obtain
(7.40) exp <%M03(f2(l'0) — fl(:co))> < O(1 + e256273%),
Now we can choose s > 0 such that
25623k — 1
that is,

2— 3k 1
41 = log —.
(7.41) 5 5 log 5

Since we can assume 0 < § < 1 and % <Kk < %, we have that log% > 0 and s > 0.

Now taking the logarithm of the both sides of (7.40) with s given by (7.41), we

obtain

falwo) = Fi(eo) < ; ¢
0g

S

Thus the proof of Lemma 7.1 is complete.
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