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Abstract. In this paper, we prove conditional stability for an inverse problem in

di�ractive optics of determining a periodic curve from far �eld observations on a

segment, in the case of perfect reection. Our proof is based on a Carleman estimate

for the Laplace operator.

x1. Introduction.

We consider the scattering by the perfectly reecting periodic structure and we

discuss the two dimensional modelling. According to Bao [3], Bao, Dobson and

Cox [4], Hettlich and Kirsch [14], Petit [19], we can formulate the problem as

follows. Let f 2 C2(R) be 2�-periodic, f(x) < 0 for x 2 R. We set

(1.1) 
f = f(x; y); y > f(x); x 2 Rg:

Then we regard @
f = f(x; y); y = f(x); x 2 Rg as a periodic interface which

we should determine by scattering data. For this, we introduce an incident �eld

uI(x; y; k) given by

(1.2) uI(x; y; k) = expfik(x sin � � y cos �)g:
Typeset by AMS-TEX

1



2 G. BRUCKNER, J.CHENG AND M. YAMAMOTO

Here i =
p�1 and k > 0 is a wave number. Throughout this paper, we assume

(1.3) 0 < j�j < �

2

and

(1.4) 0 < k <
1

2�
:

Then the resulting scattering �eld uS(x; y; k) satis�es the Helmholtz equation with

the perfect reection boundary condition:

(1.5) �uS + k2uS = 0 in 
f :

(1.6) uS + uI = 0 on @
f :

(1.7) uS is bounded as y �!1.

Moreover throughout this paper, we pose the (k sin �)-quasi-periodicity condition

for uS :

(1.8) uS(x+ 2�; y; k) = exp(2�ik sin �)uS(x; y; k)

for all (x; y) 2 R
2 (see e.g., [3], [4], [14]). For the unique existence of uS satisfying

(1.5) - (1.8), see Kirsch [16], [17], Wilcox [21], for example.

We can state our inverse problem.

Inverse Problem of Di�ractive Optics. Determine y = f(x), x 2 R from the

measurements

uS(x; 0; k); x 2 (0; 2�);

where uS satis�es (1.5) - (1.8).
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For this inverse problem, the uniqueness is proved for a lossy medium (i.e. Imk >

0) by Bao [3], and for the case of k 2 R by Hettlich and Kirsch [14]. We further

refer to Ammari [2]. See Bruckner, Cheng and Yamamoto [7] for the uniqueness in

our inverse problem with discrete observations u(tj ; 0; k) where ftjgj2N � (0; 2�).

Moreover Bao and Friedman [5] proved local stability around a �xed f0. To the

authors' knowledge, however, there are no global stability results.

By the (k sin �)-quasi-periodicity, setting

(1.9) u = u(x; y; k) = uI(x; y; k) + uS(x; y; k);

we can rewrite (1.5) - (1.8) in terms of the total �eld u:

(1.10) �u+ k2u = 0 in 
f

(1.11) u = 0 on @
f

(1.12) u(x+ 2�; y; k) = exp(2�ik sin �)u(x; y; k):

(1.13) u� uI is bounded as y �!1.

Since k is �xed such that (1.4) is true, we simply write u(x; y) in place of u(x; y; k).

Then our inverse problem is equivalent to: determine y = f(x), x 2 R from the

measurements

(1.14) u(x; 0); x 2 (0; 2�);

where u satis�es (1.10) - (1.13).

The purpose of this paper is to establish the conditional stability, which implies

conditional well-posedness by combining with the uniqueness result by Bao [3] for

the inverse di�ractive optics problem in the case of (1.4).
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Our method originates from other inverse problem of determining a part of a

boundary (Bukhgeim, Cheng and Yamamoto [9], [10]) where the Cauchy problem

for the Laplace equation is used for determining a part and conditional stability

is proved. The point of the method in [9], [10], is that one needs not assume the

boundary condition on the whole boundary of the domain under consideration. This

is essential for the application to the present inverse problem. As for determination

of parts of boundaries, we refer also to Alessandrini and Rondi [1], Beretta and

Vessella [6], Rondi [20], where more general elliptic equations are considered but

the boundary conditions must be assumed on the whole boundary, so that their

method is not applicable to our present inverse problem.

On the other hand, the method in Bukhgeim, Cheng and Yamamoto [9], [10]

relies on the maximum principle, so that discussions for the general Helmholtz

equation are diÆcult. Therefore, in this paper, for the stability, we have to assume

(1.4), which admits us to estimate interior values of a solution to the Helmholtz

equation by the boundary values.

Furthermore the conditional stability is very helpful for convergence rates of

Tikhonov's regularized solutions (see, e.g., Cheng and Yamamoto [12]), and in a

succeeding paper, we will apply the conditional stability to the Tikhonov regular-

ization.

This paper is organized as follows:

Section 2. Main result for conditional stability

Section 3. A generalized maximum principle

Section 4. Bounds of solutions to the forward problem

Section 5. First part of the proof

Section 6. Second part of the proof
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Section 7. Third part of the proof

Section 8. Concluding remarks.

x2. Main result.

For �xed positive constants M0, M , �, and a0, a such that 0 < M � a0 � a and

0 < � < 1, we set

F =
n
f 2 C3+�(R); kfkC3+� [0;2�] �M0; f is (2�)-periodic,

djf

dxj
(0) =

djf

dxj
(2�); j = 0; 1; 2; 3;

f(0) = f(2�) = �a0; �a � f(x) � �M; 0 � x � 2�
o

(2.1)

as an admissible set of unknown surfaces. Here and henceforth let

kfkC3+�[0;2�] =

3X
j=0

djfdxj

C[0;2�]

+ sup
0�x;x0�2�;x6=x0

��� d3fdx3 (x)� d3f
dx3

(x0)
���

jx� x0j� :

Let us set

(2.2) 
f = f(x; y); y > f(x); x 2 Rg

for f 2 F .

For fj 2 F , j = 1; 2, let us consider

(2.3) �uj + k2uj = 0 in 
fj

(2.4) uj = 0 on @
fj

uj is (k sin �)-quasi-periodic, that is,

uj(x+ 2�; y) = exp(2�ik sin �)uj(x; y):(2.5)

We further assume that

(2.6) uj � uI is bounded as y �!1.

We are ready to state our main result on the conditional stability in determining

f1; f2 2 F :
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Theorem 2.1. We assume (1.4). Then there exists a constant C = C(k; �;F) > 0

such that

(2.7) kf1 � f2kC[0;2�] �
C���log log 1

k(u1�u2)(�;0)kH1(0;2�)
k

���
provided that f1; f2 2 F .

x3. A generalized maximum principle for the Helmholtz equation.

For the Helmholtz equation

(3.1) �v + k2v = 0 in D;

the maximum principle does not hold in general. However in the case where k > 0

is small, we prove

Lemma 3.1. Let D � [0; 2�]� R be a domain and let

(3.2) 0 � k <
1

2�
:

Then for a solution v 2 C2(D) \ C(D) to (3.1), we have

(3.3) kvkC(D) � (1� 4�2k2)�
1
2 kvkC(@D):

Proof. The proof is based on the argument for the proof of a lemma in Zhou [22].

Let

!(x; y) = 2�2 � 1

2
x2; (x; y) 2 D

and let 0 � k < 1
2�
. Then

�(v2 � 2k2kvk2
C(D)

!(x; y))

=2v�v + 2jrvj2 + 2k2kvk2
C(D)

= �2k2v2 + 2jrvj2 + 2k2kvk2
C(D)

� 0 on D:
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Therefore the maximum principle (e.g. [13]) yields

v(x; y)2 � 2k2kvk2
C(D)

!(x; y)

� sup
(x;y)2@D

(v(x; y)2 � 2k2kvk2
C(D)

!(x; y)) � ( sup
(x;y)2@D

jv(x; y)j)2:

Here we note that !(x; y) � 0, (x; y) 2 @D, because x 2 [0; 2�]. Consequently we

obtain

(1� 4�2k2)kvk2
C(D)

� (1� 2k2 max
(x;y)2D

j!(x; y)j)kvk2
C(D)

� kvk2C(@D);

which is (3.3). Thus the proof of Lemma 3.1 is complete.

x4. Bounds of solutions to the forward problem.

In this section, we will prove upper and lower bounds of solutions to the Helmholtz

equation, which are uniform in f 2 F .

Lemma 4.1. Let u = u(x; y) satisfy

(4.1) �u+ k2u = 0 in 
f

(4.2) u = 0 on @
f

(4.3) u is (k sin �)-quasi-periodic

(4.4) u� uI is bounded as y �!1.

Moreover we choose M1 > 0 such that

(4.5) 0 < M1 <
M2

a
:
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Then there exist constants M2 > 0 and m > 0 dependent only on F and M1 such

that

(4.6) kukC2(
f )
�M2

and

(4.7) kukC([0;2�]�[�M1;0]) � m > 0

for all f 2 F .

For proving this lemma, we need some results about the forward problem.

Lemma 4.2. Suppose that 0 < � < 1 is constant and a (2�)-periodic function

f 2 C3+� (R) satis�es8><>:
djf

dxj
(0) =

djf

dxj
(2�); j = 0; 1; 2; 3; f(0) = f(2�) = �a0;

� a � f(x) � �M; 0 � x � 2�:

Let w = w(x; y) satisfy 8>>>>>>>>><>>>>>>>>>:

�w + k2w = 0 in 
f ;

w = 0 on @
f ;

w is (k sin �)-quasi-periodic;

w � uI is bounded as y �!1.

Then there exist constants M3 =M3(f; a0; a;M) > 0 and m1 = m1(f; a0; a;m) > 0

such that

(4.8) kwkC2(
f )
�M3

and

(4.9) kwkC([0;2�]�[�M1;0]) � m1 > 0:
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Proof. We will use the integral equation method which is outlined in [16].

Since 0 < k < 1
2�

and 0 < j�j < �
2
, we have that jn+ k cos �j 6= k for all n 2 Z.

Therefore the free space quasi-periodic Green function can be de�ned as

G(x; y) =
i

4�

X
n2Z

1

�n
exp[i�n(x1 � y1) + i�njx2 � y2j]; x 6= y

where x = (x1; x2), y = (y1; y2) 2 R2 , �n = n+ k cos � and

�n =

8><>:
p
k2 � �2

n; j�nj � k

i
p
�2
n � k2; j�nj > k:

By Theorems 4 and 5 in [16], we can express wS � w � uI as

(4.10) wS(x) =

Z 2�

0

�
@

@�(y)
� i

�
G(x; y)jy2=f(y1)

p
1 + f 0(y1)2'(y1; f(y1))dy1;

and b'(x1) = exp(�ik(cos �)x1)'(x1; f(x1)) satis�es

(4.11) b'(x1) + Z 2�

0

Kf (x1; y1)b'(y1)dy1 = �e�ik(sin �)f(x1):

Here

Kf (x1; y1)

=eik cos �(y1�x1)
�

@

@�(y)
+ i

�
G(x1; f(x1); y1; y2)jy2=f(y1)

p
1 + f 0(y1)2:

(4.12)

It can be shown that the Green function G(x; y) has the same singularity as the

fundamental solution �(x; y) = i
4
H

(1)
0 (kjx� yj) of the two dimensional Helmholtz

equation and ��G is analytic in [(0; 2�)� R] � [(0; 2�)� R] ([16]). Here H
(1)
0 (�)

is the Hankel function of the �rst kind and of order zero (e.g., Kress [18]).

It is easy to verify that the integral operator in (4.11) is a compact operator from

C2+� [0; 2�] to C2+� [0; 2�]. Since the integral equation (4.11) is uniquely solvable

([16]), we know that there exists a constant M 0
3 > 0 such that

kb'kC2+� [0;2�] �M 0
3:
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Coming back to (4.10), we can have that there exists a constant M3 > 0, which

may depend on f , such that kwkC2(
f )
�M3. Thus the proof of (4.8) is complete.

Next we will prove (4.9). If it is not true, then we have w(x1; x2) = 0 for

(x1; x2) 2 [0; 2�]�[�M1; 0]. By the unique continuation for the Helmholtz equation,

w(x1; x2) = 0 for (x1; x2) 2 
f . This is a contradiction. The proof of Lemma 4.2

is complete.

Proof of Lemma 4.1. We will prove (4.6). Assume that (4.6) is not true. Then

there exists a sequence ffngn2N � F such that

(4.13) kunkC2(
fn
) �!1; as n!1;

where un is the solution to the problem (4.1) - (4.4) in the domain 
fn .

On the other hand, since fn 2 F , there exists a subsequence of ffngn2N, which

we still denote by ffngn2N, such that

fn �! g in C3+�

2 [0; 2�]

as n �! 1. By the arguments in Lemma 4.2, we know that there exists a unique

solution b'n 2 C2+�

2 [0; 2�] to the integral equation (4.11) with f = fn. Moreover it

can be directly veri�ed that

kb'n � b k
C
2+ k

2 [0;2�]
�! 0; n!1;

where b 2 C2+�

2 [0; 2�] is the unique solution to the integral equation (4.11) with

f = g.

Then we have that, for n 2 N ,

kunkC2(
fn
) � Ckc'nkC2+�

2 [0;2�]
�M 0

2;
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where C > 0 andM 0
2 > 0 are constants which are dependent on F but independent

of n. This is a contradiction to (4.13). We complete the proof of (4.6).

The proof of (4.7) is similar to the proof of (4.6). Assume that (4.7) is not true.

Then there exists ffngn2N � F such that

kunkC([0;2�]�[�M1;0]) �! 0

as n!1.

Since fn 2 F , there exists a subsequence of ffngn2N, which we still denote by

the same notation, such that

fn ! g in C2+�

2 [0; 2�]

as n �!1.

It can be easily veri�ed that

kun � vkC([0;2�]�[�M1;0]) �! 0 as n �!1;

where v is the solution to (4.1) - (4.4) in 
g. Then we have

v(x1; x2) = 0; (x1; x2) 2 [0; 2�]� [�M1; 0]:

By the unique continuation for the Helmholtz equation, we can obtain that

v(x1; x2) = 0; (x1; x2) 2 
g:

This is a contradiction. The proof of (4.7) is complete.

x5. First part of the proof; Cauchy problem for the Helmholtz equation.

Let

(5.1)  = f(x; y); y = f(x); 0 � x � 2�g;
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where we set

f(x) = maxff1(x); f2(x)g;

and let 
 denote the domain bounded by [0; 2�]� f0g, , x = 0 and x = 2�.

We can prove that 
 satis�es the uniform interior cone condition.

In fact, it is suÆcient to prove that at every intersection point of f1 and f2, the

cone property holds. Let f1(x
�) = f2(x

�) with some x� 2 [0; 2�]. If df1
dx
(x�) 6=

df2
dx
(x�), then the cone property is straightforward. Therefore we have to consider

the case of df1
dx
(x�) = df2

dx
(x�). We will prove that f = maxj=1;2 fj is C

1 at x�. In

fact, let fxngn2N be an arbitrary sequence converging to x�. Then

(5.2) lim
n!1

f(xn)� f(x�)

xn � x�
=
df1

dx
(x�) =

df2

dx
(x�):

Let fx0ng be any subsequence of fxng. Then we can choose a subsequence fx00ng of

fx0ng satisfying, say, f(x00n) = f2(x
00
n) for all n

00. Hence

lim
n!1

f(x00n)� f(x�)

x00n � x�
= lim
n!1

f2(x
00
n)� f2(x

�)

x00n � x�
=
df2

dx
(x�):

Since we can extract a subsequence converging to the unique limit from any subse-

quence, the limit (5.2) is true. Therefore we see that f is C1 at x�. Thus 
 satis�es

the cone condition.

We set

"1 = k(u1 � u2)(�; 0)kH1(0;2�) +

�@u1@y
� @u2

@y

�
(�; 0)


L2(0;2�)

:

Set v = u1 � u2. Then in 
, it follows from (2.3) that �v + k2v = 0. We will

estimate v on .

Since 
 satis�es the uniform interior cone condition, we can apply Theorem 6.2
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in Cheng and Yamamoto [11] in view of Lemma 4.1, so that we can prove:

There exist constants C > 0 and � 2 (0; 1) dependent on F , k, �, such

that

(5.3) ku1 � u2kC() �
C���log 1
"1

���� :

Here and henceforth C > 0 denotes a generic constant dependent on m, M , k, �,

a, but independent of choices fj. On the basis of (5.3), we can prove

Lemma 5.1. There exist constants C > 0 and � 2 (0; 1) dependent on F , k, �,

such that

(5.4) ku1 � u2kC() �
C���log 1

k(u1�u2)(�;0)kH1(0;2�)

���� :
Proof. We will estimate �@u1@y

� @u2

@y

�
(�; 0)


L2(0;2�)

by k(u1 � u2)(�; 0)kH1(0;2�). Noting that 0 > maxj=1;2ffj(x);x 2 Rg, we apply

Theorem 2.1 in Bao [3], so that we see�
@u1

@y
� @u2

@y

�
(�; 0) = B(u1 � u2)(�; 0);

where B is a pseudodi�erential operator of order one, and

kBgkL2(0;2�) � CkgkH1(0;2�):

Therefore

(5.5)

�@u1@y
� @u2

@y

�
(�; 0)


L2(0;2�)

� Ck(u1 � u2)(�; 0)kH1(0;2�):

Combination of (5.3) with (5.5) yields (5.4). Thus the proof of Lemma 5.1 is

complete.
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x6. Second part of the proof; construction of a family of subdomains.

In this section, we construct domains 
0, 

0
0 (see (6.4), (6.8)) and a family of

domains ��1
`;x0

(
0), and establish a lower bound of derivatives of the Green function

for � in ��1
`;x0

(
0) with the homogeneous Dirichlet boundary condition. Such a

family is essential in completing the proof of Theorem 2.1 in Section 7 where we

estimate the solutions u1 and u2 and establish estimation of the distance between

the two curves y = fj(x), j = 1; 2.

We set

F0 =
n
f 2 C3+�(R); kfkC3+� [0;2�] �M0; f is (2�)-periodic,

djf

dxj
(0) =

djf

dxj
(2�); j = 0; 1; 2; 3;

� a � f(x) � �M; 0 � x � 2�
o

(6.1)

We note that F = F0 \ ff ; f(0) = f(2�) = �a0g.

We call K � R
2 a �nite cone with vertex (0; 0) if K = B1 \ f(�x; �y) 2 R

2 ;� >

0; (x; y) 2 B2g where B1; B2 � R
2 are open balls, (0; 0) 62 B2 and B1 is centred

at (0; 0). We set K(x0; y0) = K + (x0; y0) = f(x + x0; y + y0); (x; y) 2 Kg. Then

K(x0; y0) is a �nite cone with vertex (x0; y0). Noting that f 2 F0 satis�es the

uniform cone condition, we can take �0 2 (0; �
4
] such that for every f 2 F0 and for

every x 2 [0; 2�], a �nite cone K(x; f(x)) whose angle is 2�0 and whose centre line

is parallel to the y-axis, is contained in f(x; y); y > f(x)g. Therefore

(6.2) �a+ x cot �0 > f(x) for 0 < x < a tan �0

if f 2 F0 and f(0) = �a.

Here we recall (4.5), that is, 0 < M1 <
M2

a
. Set

(6.3) ef0(x) = min

�
�a+ x cot �0;

M2 �M1a

3�a
x�M

�
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for 0 � x � 3�aM
M2�M1a

. Then

ef0(x) � f(x) for 0 � x � 3�aM

M2 �M1a

if f 2 F0 and f(0) = �a.

Let

(6.4) 
0 =

(
(x; y); 0 < x <

3�aM

M2 �M1a
; ef0(x) < y < 0

)
:

Moreover we set

(6.5) `
0 = f(`x; `y); (x; y) 2 
0g for
M

a
� ` � 1.

Then we can prove

(6.6) `
0 � f(x; y); y > f(x)g; if f 2 F0 and f(0) = �`a.

In fact,

`
0 \ f(x; y); y � �Mg � f(x; y); y > f(x)g

by f 2 F0. Let (x; y) 2 `
0 \ f(x; y); y < �Mg. Then

`
0 \ f(x; y); y < �Mg � K(0;�`a)

by (6.3). Therefore, by the choice of �0, it follows that y > f(x). Thus (6.6) is

seen.

We de�ne a transform � = �`;x0 : (x; y) �! (�1; �2) by8>><>>:
�1 =

1

`
(x� x0)

�2 =
1

`
y

for M
a
� ` � 1. Then

��1
`;x0

(�1; �2) = (`�1 + x0; `�2):
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It follows from (6.6) that

(6.7) ��1
`;x0

(
0) � f(x; y); f(x) < y < 0g; if f 2 F0 and f(x0) = �`a.

In fact, let f 2 F0 and f(x0) = �`a. we set ef(�1) = f(�1 + x0). Then ef 2 F0 and

ef(0) = �`a. Hence by (6.6), we obtain `
0 � f(�1; �2); �2 > ef(�1)g, that is,
��1
`;x0

(
0) = `
0 + (x0; 0) � f(�1 + x0; �2); �2 > ef(�1)g
=f(�1; �2); �2 > ef(�1 � x0) = f(�1)g;

which is (6.7).

Moreover we will take a subdomain 
00 such that

(6.8) 
00 � 
0; kukL2(
00) � c0m

if u satis�es

(6.9) kukC2([0;2�]�[�M1;0]) �M2;

(6.10) kukC([0;2�]�[�M1;0]) � m > 0

and

(6.11) u(x+ 2�; y) = exp(2�ik sin �)u(x; y); 0 � x � 2�; �M � y � 0:

Here we recall (4.5). Here c0 > 0 is a constant which depends only onM0,M1, M2,

m, F .

We take suÆciently small d > 0 so that

(6.12)

8>><>>:
d <

2M1a

M
; d <

m

4M2

; d <
�a

3M
;

d <
M1a

M
�M1;

3�a

M
� d <

3�aM

M2 �M1a
:
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We set

(6.13) 
00 =

�
�a

M
� 3d;

3�a

M
� d

�
�
�
�M1a

M
;�d

2

�
:

By (4.5), (6.3), (6.4) and (6.12), we can directly verify that 
00 � 
0.

Let u satisfy (6.9) - (6.11). First let

ku(�; h)kC[0;2�] � m > 0

for �d
2
� h � 0. Then we set

B(ex; h; d) = f(x; y); jx� exj2 + (y � h)2 < d2g:

Then we see that

(6.14) 
00 �
[�

B(ex; h; d) \ fy < h� d

2
g; �a
M

� 2d < ex < 3�a

M
� 2d

�
:

In fact, the set at the right hand side is included in
�
�a
M
� 3d; 3�a

M
� d
���h� d; h� d

2

�
.

Moreover by d < 2M1a
M

in (6.12) and �d
2
� h � 0, we have �M1a

M
< h�d < h� d

2
<

�d
2
, and (6.14) is seen.

Since ������aM � 2d;
3�a

M
� 2d

����� = 2�a

M
� 2�;

there exists

(6.15) x�u 2
�
�a

M
� 2d;

3�a

M
� 2d

�
such that ju(x�u; h)j � m > 0;

in view of (6.11). Then by (6.9) and d < m
4M2

in (6.12), we apply the mean value

theorem to have

ju(x; y)j � m

2
; (x; y) 2 B(x�u; h; d) \

�
y < h� d

2

�
;
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that is,

kukL2(
00) �
 Z

B(x�
u
;h;d)\fy<h�d

2
g

ju(x; y)j2dxdy
! 1

2

�m
2

����B(x�u; h; d) \�y < h� d

2

����� 12 =
dm

2

 
�

3
�
p
3

4

! 1
2

:(6.16)

Next we assume

ku(�; h)kC[0;2�] � m > 0

for �M1 � h � �d
2
. Then, since �M1

M
a � �M1, we have (x; h) 2 
00 for

�a
M
� 3d �

x � 3�a
M

� d. Therefore, if x�u satis�es (6.15), then by d < M1a
M

�M1 in (6.12), we

have B(x�u; h; d) \ fy < hg � 
00, so that

(6.17) jB(x�u; h; d) \ 
00j �
1

2
jB(x�u; h; d)j:

Moreover by (6.9) and d < m
4M2

in (6.12), we see that

(6.18) ju(x; y)j � m

2
> 0; (x; y) 2 B(x�u; h; d) \ 
00:

Therefore, by (6.17) and (6.18), we have

kukL2(
00) �
 Z

B(x�
u
;h;d)\
00

ju(x; y)j2dxdy
! 1

2

�m
2
jB(x�u; h; d) \ 
00j

1
2 � m

2

��
2

� 1
2

d:(6.19)

Therefore taking

c0 = min

8<:d2
 
�

3
�
p
3

4

! 1
2

;
d

2

��
2

� 1
2

9=; ;

we see from (6.16) and (6.19) that (6.8) holds true.
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By M
a
� ` � 1, we have

��1
`;x0

(
00) = f(`�1 + x0; `�2); (�1; �2) 2 
00g

=

�
(`�1 + x0; `�2);

�a

M
� 3d < �1 <

3a�

M
� d; �M1

M
a < �2 < �d

2

�
=

�
(�1; �2);x0 +

�a`

M
� 3`d < �1 < x0 +

3�a`

M
� `d; �M1a`

M
< �2 < �`d

2

�

�
�
(�1; �2);x0 +

�a`

M
� 3`d < �1 < x0 +

3�a`

M
� `d; �M1 < �2 < �`d

2

�
:

(6.20)

Consequently by (4.5) we obtain

(6.21) ��1
`;x0

(
00) � f(x; y); y > �Mg:

Moreover

Z
��1
`;x0

(
00)

ju(x; y)j2dxdy = `2
Z

00

ju(`�1 + x0; `�2)j2d�1d�2:

Therefore if we further choose small d > 0, then, noting that the length of ��1
`;x0

(
00)

in the x-direction is not shorter than 2� and taking (6.11) into consideration, sim-

ilarly to (6.8), we see that

(6.21) kukL2(��1
`;x0

(
00))
� c0`m � c0M

a
m;

if u satis�es (6.9) - (6.11).

On the other hand, since 
00 � 
0 and �
�1
`;x0

is an isomorphism, we see that

(6.22) ��1
`;x0

(
00) � ��1
`;x0

(
00) � ��1
`;x0

(
0):

Since @
0 is approximated by C3-curves in the interior of 
0, we see that there

exists the Green function with the same property as in the case of C3-domains (e.g.

Section 16 of Chapter 3 in Itô [15]). Let G0(x; y; �1; �2) and G`;x0(x; y; �1; �2) be
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the Green functions for � in 
0 and ��1
`;x0

(
0) respectively with the homogeneous

Dirichlet boundary condition. Then we directly see that

G`;x0(x; y; �1; �2) = `2G0(�`;x0(x; y); �`;x0(�1; �2));

(x; y); (�1; �2) 2 ��1
`;x0

(
0):(6.23)

We consider a Dirichlet problem in ��1
`;x0

(
0):

(6.24)

8><>:
�	 = 0 in ��1

`;x0
(
0);

	
j@(��1

`;x0
(
0))

=  :

Then, since the domain ��1
`;x0

(
0) is parametrized by means of a linear function in

` 2 �M
a
; 1
�
and x0, we see that there exists a constant C = C(m;M0;M1;M; k; �; a) >

0, independent of ` 2 �M
a
; 1
�
and x0 such that

(6.25) k@�	kL2(@(��1
`;x0

(
0)))
� Ck kH1(@(�

�1

`;x0
(
0)))

:

Here @� denotes the normal derivative on @(�
�1
`;x0

(
0)).

Moreover, in view of (6.22), (6.23) and the positivity of �@G`;x0

@�
(e.g. Theorem

18.2 in Chapter 4 in Itô [15]), since 
00 � 
0 and
M
a
� ` � 1, we see

min

�
�@G`;x0

@x
(x0; y; �1; �2); �`a � y � �M; (�1; �2) 2 ��1

`;x0
(
00)

�
�`min

�
�@G0

@x
(0; y; �1; �2); �a � y � �M

`
; (�1; �2) 2 
00

�
�M
a
min

�
�@G0

@x
(0; y; �1; �2); �a � y � �M; (�1; �2) 2 
00

�

=�0 > 0:

(6.26)

Here �0 > 0 depends only on a, M0, M1, M and m, �, k, and independent of

` 2 �M
a
; 1
�
and x0.
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x7. Third part of the proof; estimation of distance between two curves.

Let j(f1 � f2)(x)j take the maximum at a point x0 2 [0; 2�]. Without loss of

generality, we may assume that f2(x0) > f1(x0) and therefore

kf1 � f2kC[0;2�] = f2(x0)� f1(x0):

We recall that the curve  is de�ned by (5.1).

In this section, we will prove

Lemma 7.1. There exists a constant C > 0 such that

jf1(x0)� f2(x0)j � C

log 1
Æ

if ku1 � u2kC() � Æ.

Once Lemma 7.1 is proved, we can directly complete the proof of Theorem 2.1

by Lemma 5.1.

Henceforth we de�ne the distance between a point (p; q) and the curve y = f(x)

by

(7.1) dist ((p; q); f) = inf
t2R

(jt� pj2 + jf(t)� qj2) 12 :

Then we prove

Lemma 7.2. There exists a constant m0 = m0(M;a) > 0 such that

dist ((p; q); f) � m0jf(p)� qj

for all f 2 F and (p; q) 2 [0; 2�]� [�a; 0].

Proof of Lemma 7.2. We set f 0(t) = df
dt
(t). We note that for a parameter s, the

point (t + sf 0(t); f(t)� s) is on the line normal to the curve y = f(x) at (t; f(t))
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and that if for (p; q) 2 [0; 2�]� [�a; 0], in (7.1), the minimum is attained at t0 2 R,

then (p� t0; q � f(t0)) is orthogonal to the tangential vector (1; f
0(t0)). Therefore

dist ((p; q); f) = inffjsj(jf 0(t)j2 + 1)
1
2 ; p = t+ sf 0(t); q = f(t)� s; t; s 2 Rg:

We choose � > 0 such that

� = maxfM0 + a+ 2�; 2� + (a+M0)M0g:

Then for any (p; q) 2 [0; 2�]� [�a; 0], if jtj > �, then

(7.2) dist ((p; q); f) < ((t� p)2 + (f(t)� q)2)
1
2 :

In fact,

dist ((p; q); f) = inf
t2R

((t� p)2 + (f(t)� q)2)
1
2 � jf(p)� qj �M0 + a

by f 2 F . On the other hand, jtj > � yields that jt� pj � �� 2� for 0 � p � 2�.

By the de�nition of �, we have

M0 + a < �� 2� � jt� pj � ((t� p)2 + (f(t)� q)2)
1
2 :

Therefore (7.2) is seen.

Hence we obtain

dist ((p; q); f) = minfjsj(jf 0(t)j2 + 1)
1
2 ; p = t+ sf 0(t); q = f(t)� s;

jtj � �; s 2 Rg:
(7.3)

Moreover we note that

f(t; s) 2 [��;�]� R; p = t+ sf 0(t); q = f(t)� sg

is not empty for (p; q) 2 [0; 2�]� [�a; 0]:(7.4)
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In fact, we de�ne a mapping Gf : (t; s) �! (x; y) by8<:
x = t+ sf 0(t);

y = f(t)� s:

Then we have to prove

Gf ((��;�)� (�a;�M + a)) � [0; 2�]� [�a; 0]

for f 2 F .

Let (p; q) 2 [0; 2�]� [�a; 0] be arbitrary. Then we have to prove the existence of

(t; s) 2 [��;�]� [�a;�M + a] such that p = t+ sf 0(t) and q = f(t)� s. For the

proof of (7.4), it is suÆcient to verify the existence of a root t of

t = p+ (q � f(t))f 0(t) � H(t):

By the de�nition of �, for �xed f 2 F and (p; q) 2 [0; 2�]� [�a; 0], we can prove

that H maps [��;�] into [��;�]. In fact,

jH(t)j � jpj+ jq � f(t)jjf 0(t)j � 2� + (a+M0)M0 � �:

Therefore the Brouwer �xed point theorem yields the existence of a �xed point

t = H(t) (e.g. Theorem 10.1 in Gilbarg and Trudinger [13]). On the other hand,

since s = f(t)� y, �a � f(t) � �M and 0 � �y � a, we have �a � s � �M + a.

Hence (7.4) follows.

Note that if p = t+ sf 0(t) and q = f(t)� s for some t; s 2 R, then jf(p)� qj =

jf(t+sf 0(t))�(f(t)�s)j. In view of (7.3), for the proof of the lemma, it is suÆcient

to verify

sup

� jf(t+ sf 0(t))� (f(t)� s)j
jsj(jf 0(t)j2 + 1)

1
2

;

0 � p � 2�; �a � q � 0; p = t+ sf 0(t); q = f(t)� s;

� � � t � �; �a � s � �M + a; f 2 F
�
<1:
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By the mean value theorem, we can choose � 2 (0; 1) to obtain

jf(t+ sf 0(t))� (f(t)� s)j = jf(t) + f 0(t+ �sf 0(t))sf 0(t)� f(t) + sj

�jsj(1 + jf 0(t+ �sf 0(t))jjf 0(t)j) � jsj(1 +M2
0 )

for f 2 F . Hence

sup

� jf(t+ sf 0(t))� (f(t)� s)j
jsj(jf 0(t)j2 + 1)

1
2

;

0 � p � 2�; �a � q � 0; p = t+ sf 0(t); q = f(t)� s;

� � � t � �; �a � s � �M + a; f 2 F
�

� 1 +M2
0

(jf 0(t)j2 + 1)
1
2

� 1 +M2
0 :

Thus the proof of Lemma 7.2 is complete.

We set


(f) = f(x; y); 0 < x < 2�; f(x) < y < 0g:

Let D be the connected component of 
(f1) n 
(f2) which includes the segment

x = x0. By f1; f2 2 F , the graphs of f1 and f2 intersect and so D is bounded by

the graphs of y = f1(x) and y = f2(x), 0 � x � 2�. We set

(7.5) Dh = f(x; y); dist ((x; y); @D) � hg

for h > 0.

If

(7.6) j(f1 � f2)(x0)j � 1

log 1
Æ

;

then we have already proved Lemma 7.1 with C = 1. Therefore we assume that

(7.7) j(f1 � f2)(x0)j � 1

log 1
Æ

:
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We set

(7.8) A = (x0; f2(x0)); B = (x0; f1(x0)):

We recall that we are assuming that f2(x0) > f1(x0), without loss of generality.

We further set

(7.9) h =
1

4

1

log 1
Æ

and

(7.10)

8>><>>:
P =

�
x0; f2(x0)� f2(x0)� f1(x0)

4

�
;

Q =

�
x0; f1(x0) +

f2(x0)� f1(x0)

4

�
:

We note that P;Q 2 D. Furthermore by Lemma 7.2, we see that

(7.11) PQ � Dm0h:

(Here and henceforth, PQ denotes the segment connecting P and Q which includes

P and Q.) In fact, let (p; q) 2 PQ. Then, by (7.7), we see that jf1(p) � qj,

jf2(p)� qj � h, so that Lemma 7.2 implies

dist ((p; q); f1); dist ((p; q); f2) � m0h;

that is, (p; q) 2 Dm0h.

By �a � f1(x0) � �M , we can take ` 2 �M
a
; 1
�
such that f1(x0) = �`a. Noting

that f1 2 F , we apply (6.7) to obtain

(7.12) ��1
`;x0

(
0) � f(x; y); y > f1(x)g:

For simplicity, we set

(7.13) E = ��1
`;x0

(
0)
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and

(7.14) E0 = ��1
`;x0

(
00):

Then by (6.4) and (6.21), we have

(7.15) f(x0; y); f1(x0) < y < 0g � @E; PQ � @E

and

(7.16) ku1kL2(E0) � c1m:

Moreover by (6.26), we obtain

(7.17) �@GE
@x

(x0; y; �1; �2) � �0 > 0 if (x0; y) 2 PQ and (�1; �2) 2 E0,

where GE is the Green function of � with the homogeneous Dirichlet boundary

condition in E.

We will consider a function u1 in the domain D. We have

(7.18) �u1 + k2u1 = 0 in D:

Setting j = @D \ @
fj , j = 1; 2, we see from the remark before (7.5) that @D =

1 [ 2. On 2, the condition (2.4) yields u2 = 0. Consequently

(7.19) ju1j = ju2 + u1 � u2j = ju1 � u2j � Æ on 2:

Therefore, since u1 = 0 on 1, we obtain ju1j � Æ on @D. By Lemma 3.1,

(7.20) ju1j � (1� 4�2k2)�1=2Æ in D:

Hence, by (7.20) and the Schauder interior estimate (e.g. Theorem 6.2 in Gilbarg

and Trudinger [13]), we have����@2u1@x2

���� ; ���� @2u1@x@y

���� ; ����@2u1@y2

���� � CÆ

m2
0h

2
;

jru1j � CÆ

m0h
in Dm0h;(7.21)
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where C > 0 depends only on k.

We choose

(7.22) � 2
�
1

2
;
2

3

�

such that

(7.23)
1

2

1

log 1
Æ

;

�
1

log 1
Æ

�2

� Æ�;

because Æ > 0 can be assumed to be suÆciently small. Then, by (7.7) and (7.21),

we obtain

(7.24) jPQj = f2(x0)� f1(x0)

2
� Æ�

and ����@2u1@x2

����2 ; ���� @2u1@x@y

����2 ; ����@2u1@y2

����2 ;
ju1j2; jru1j2 � CÆ2(1��) in Dm0h:(7.25)

Furthermore let us take a sub-segment in PQ with the starting point P 0 and the

end point Q0 such that

(7.26) jPP 0j = jQQ0j = 1

4
jPQj:

In E, we will use the following Carleman estimate with non-homogeneous bound-

ary value (Lemma 2.4 in Bukhgeim [8]):

Z
E

�
� ju1j2 + (� � 1)jru1j2

�
e dxdy

�
Z
E

j�u1j2e dxdy +
Z
@E

�
@� (ju1j2 + jru1j2) + 8j@�?ru1jjru1j

�
e d�

(7.27)

for real-valued  2 C2(E). Here and henceforth @�? and @� denote the tangential

derivative and the normal derivative respectively.
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Let us choose the weight function  in the form:

(7.28)  =  1 + s	:

Here s � 0 is a parameter,

(7.29)

8<:
� 1 = jkj4 + 1 in E;

 1j@E = 0;

(7.30)

8<:
�	 = 0 in E;

	j@E =  0;

where

(7.31)

8<:
 0 2 C1(@E); 0 �  0 � 1;

 0(�1; �2) = 0; (�1; �2) 62 PQ;  0(�1; �2) = 1; (�1; �2) 2 P 0Q0:

Here we note that the segment P 0Q0 is strictly included in PQ, and we can take

such  0. By (7.9), (7.10) and (7.23), we have

(7.32) jr 0j � CÆ�� on @E

as well as (7.31). Therefore (6.25) yields

(7.33) k@�	kL2(@E) � CÆ��

in view of (7.32), where the constant C > 0 is independent of Æ.

Let

(7.34) 	(�1; �2) = min
(x;y)2E0

	(x; y):

Then, by (7.31), (7.17), (7.10) and (7.26), we obtain

	(�1; �2) =

Z
@E

�@GE
@�

(x; y; �1; �2) 0(x; y)d�

=

Z
PQ

�@GE
@�

(x0; y; �1; �2) 0(x; y)d� �
Z
P 0Q0

�@GE
@�

(x0; y; �1; �2)d�

� min
(x0;y)2P 0Q0

�
�@GE

@�
(x0; y; �1; �2)

�
jP 0Q0j

��0jP 0Q0j = 1

4
�0(f2(x0)� f1(x0)):

(7.35)
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Now we return to (7.27). Since �u1 = �k2u1 in E, from (7.27), we obtain

minfjkj4; 1g
Z
E

(ju1j2 + jru1j2)e dxdy

�
Z
@E

f(@� 1 + s@�	)(ju1j2 + jru1j2) + 8j@�?ru1jjru1jges 0d�:
(7.36)

By (7.35) and (7.16), the left-hand side of (7.36) can estimated from below as

follows:

minfjkj4; 1g
Z
E

(ju1j2 + jru1j2)e dxdy

�minfjkj4; 1g
Z
E0
(ju1j2 + jru1j2)e dxdy

�c21m2minfjkj4; 1g exp(�k 1kL1(E0)) exp(s	(�1; �2))

�C2 exp

�
1

4
�0s(f2(x0)� f1(x0))

�
(7.37)

with some C2 > 0 independent of Æ.

Next we will estimate the right-hand side of the inequality (7.36) from above.

Let us decompose @E = PQ [ (@E n PQ). On PQ, we have that, according to

(7.11), (7.25) and (7.33),

Z
PQ

f(@� 1 + s@�	)(ju1j2 + jru1j2) + 8j@�?ru1jjru1j)es 0d�

�CesfÆ2(1��)(1 + s)Æ�� + Æ2(1��)g

�CesfÆ2�3�(1 + s) + Æ2�2�g � Ce2sÆ2�3�:

(7.38)

Here we have used 1 + s � es for s > 0.

By the maximum principle, we have 0 < 	 < 1 in E. Hence, by 	@EnPQ = 0,

the strong maximum principle yields @�	 � 0 on @E n PQ. Therefore, by (7.25),
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we �nd that

Z
@EnPQ

f(@� 1 + s@�	)(ju1j2 + jru1j2) + 8j@�?ru1jjru1j)es 0d�

�
Z
@EnPQ

f@� 1(ju1j2 + jru1j2) + 8j@�?ru1jjru1jgd� � C(M0):

(7.39)

Here we also used (4.5). Applying the estimates (7.37) - (7.39) into the inequality

(7.36), we obtain

(7.40) exp

�
1

4
�0s(f2(x0)� f1(x0))

�
� C(1 + e2sÆ2�3�):

Now we can choose s > 0 such that

e2sÆ2�3� = 1;

that is,

(7.41) s =
2� 3�

2
log

1

Æ
:

Since we can assume 0 < Æ < 1 and 1
2
< � < 2

3
, we have that log 1

Æ
> 0 and s > 0.

Now taking the logarithm of the both sides of (7.40) with s given by (7.41), we

obtain

f2(x0)� f1(x0) � C

log 1
Æ

:

Thus the proof of Lemma 7.1 is complete.
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