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Abstract

The paper is devoted to the study of the so-called compactly epi-Lipschitzian

sets. These sets are needed for many aspects of generalized di�erentiation,

particulary for necessary optimality conditions, stability of mathematical pro-

gramming problems and calculus rules for subdi�erentials and normal cones.

We present general conditions under which sets de�ned by general constraints

are compactly epi-Lipschitzian. This allows us to show how the compact epi-

Lipschitzness properties behave under set intersections.

1 Introduction.

In 1978, Rockafellar introduced the concept of epi-Lipschitzian sets in order to get a

property of interior tangent vectors in �nite dimension. He showed that the bound-

ary of the set must be Lipschitzian around any boundary point where the Clarke's

tangent cone to the set at this point has an interior. This result has been extended

to the in�nite dimensional situation by Borwein and Strojwas [2] by introducing the

class of compactly epi-Lipschitzian (CEL) sets. A subset C in some Banach space

X is said [2] to be compactly epi-Lipschitzian at �x 2 C if there exist 
 > 0, a

neighbourhood V of �x and a compact set H � X such that

C \ V + t
BX � C � tH; for all t 2]0; 
[:

This class includes all �nite dimensional and all epi-Lipschitzian sets. It is worth to

note that in in�nite dimension, there is no relationship between compact sets and

CEL sets (because these later are never compact in in�nite dimensional spaces).

This also implies that the CEL sets are useful only in in�nite dimensional spaces.

Borwein and Strojwas [2-4] and Borwein [1] obtained strong results related to these

sets. They investigate the relationship between the Clarke's tangent cone and the

limit inferior of contingent cones at a neighbouring point, which allows them to

generalize the results by Penot [20], Cornet [5] and Treiman [24]. In their paper,

Borwein and Strojwas [3] showed that a Banach space is re�exive i� for every closed

set in this space the Clarke's tangent cone is contained in the limit inferior of the

convex hull of the weak-contingent cones. In [10], the author proved that in Asplund

spaces and for CEL sets the previous inclusion holds as equality. In joint papers with

Thibault [14-15], the author gave necessary conditions for CEL sets and used these

sets to obtain new necessary optimality conditions to vector optimization problems

and new chain rules for the Io�e's approximate subdi�erential. Other applications to

the marginal function and the intersection formulae are given in the paper [11]. In [9],
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Io�e established complete characterization of CEL sets in terms of his approximate

subdi�erential.

In [21], Rockafellar gave a su�cient condition for a set to be epi-Lipschitzian. He

proved that if in a Banach space X, a set C has an inequality representation, that

is,

C = fx 2 X : f(x) � 0g
and if 0 =2 @cf(�x), for �x 2 f�1(0), then C is epi-Lipschitzian at �x. Here @c de-

notes the Clarke's subdi�erential. In [6], Cornet and Czarnecki showed that in �nite

dimension, any epi-Lipschitzian set C at some point �x can be represented as a non-

degenerate inequality at this point, i.e., there exists a locally Lipschitzian function

f at �x and a neigbourhood U of �x such that

f(�x) = 0; 0 =2 @cf(�x); U \ C = fx 2 X : f(x) � 0g:
The function that they used is the following :

f(x) = dist(C; x)� dist(Cc; x):

Natural questions are obvious:

Can we get the same result using the approximate subdi�erential?

Can we get a nondegenerate inequality representation of CEL sets?

What about the intersection of CEL sets?

It is well-known that for any locally Lipschitzian function f around �x we have

@cf(�x) = co@Af(�x)

where @A denotes the Io�e's approximate subdi�erential. Paradoxically, if f is

only lower semicontinuous the approximate subdi�erential may contain (strictly)

the Clarke's subdi�erential. Thus, can we expect the set

C = fx 2 X : f(x) � 0g
to be epi-Lipschitzian under the weaker condition 0 =2 @Af(�x)? As it is shown in the

following example, the answer is negative. Let f : R
2 7! R be a function de�ned by

f(x; y) = jxj � jyj: One can check that 0 =2 @Af(0) while the set C = f(x; y) : jxj �
jyjg fails to be epi-Lipschitzian at 0.

In this paper we will show that the weaker condition 0 =2 @Af(�x), for a lower semi-

contonuous function f near �x 2 f�1(0), with CEL epigraph, implies that the set

C is CEL at �x. In fact we will establish a more general result on sets de�ned by

generalized inequalities, i.e., sets of the form

C = fx 2 X : g(x) 2 A; x 2 Bg
where g is a mapping between two given Banach spaces and A and B are closed sets

in these spaces. We will give su�cient conditions under which C is CEL.

Another question that we land here is about the intersection of CEL sets. As it will

be stated later a simple example shows that the intersection of CEL sets fails to be

CEL. We will give veri�able conditions under which this intersection remains CEL.
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2 Approximate subdi�erentials and preliminaries

Throughout we shall assume that X and Y are Banach spaces, X� and Y � are their

topological duals and h�; �i is the pairing between the spaces. We denote by BX ;

BX�; � � � the closed unit balls of X; X�; � � � : By d(�; S) we denote the usual distance
function to the set S

d(x; S) = inf
u2S

kx� uk:

We write x�!f x0 and x!S x0 to express x! x0 with f(x) ! f(x0) and x ! x0
with x 2 S, respectively.

If f is an extended-real-valued function on X; we write for any subset S of X

fS(x) =

�
f(x) if x 2 S;

+1 othewise:

The function

d� f(x; h) = lim inf
u!h

t#0

t�1(f(x+ tu)� f(x))

is the lower Dini directional derivative of f at x and the Dini "-subdi�erential of f

at x is the set

@�" f(x) = fx� 2 X�

: hx�; hi � d�f(x; h) + "khk; 8h 2 Xg

for x 2 Domf and @�" f(x) = ; if x =2 Domf; where Domf denotes the e�ective

domain of f: For " = 0 we write @� f(x):

By F(X) we denote the collection of �nite dimensional subspaces of X: The approx-

imate subdi�erentials of f at x0 2 Domf is de�ned by the following expressions (see

Io�e [7-8])

@Af(x0) =
\

L2F(X)

lim sup
x�!f x0

@�fx+L(x) =
\

L2F(X)

lim sup
x�!f x0

"#0

@�" fx+L(x)

where lim sup

x
f

!xo

@�fx+L(x) = fx� 2 X� : x� = w� � lim x�i ; x
�

i 2 @�fxi+L(xi); xi
f!x0g;

that is, the set of w�-limits of all such nets.

It is easily seen that the multivalued function

x! @Af(x)

is upper semicontinuous in the following sense

@Af(x0) = lim sup

x
f

!x0

@Af(x)
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and in [8] Io�e has shown that when S is a closed subset of X and x0 2 S

@Ad(x0; S) =
\

L2F(X)

lim sup
x�!S x0

"#0

@�" dx+L(x; S):

The following sum rule has been established by Io�e in [8] for a more general situa-

tion. For the purpose of our discusion, a semi-Lipschitz case su�ces.

Theorem 2.1 [8]. Let f : X ! R be a function which is lower semicontinuous
near x0 and g : X ! R be a function which is Lipschitz around x0: Then

@A(f + g)(x0) � @Af(x0) + @Ag(x0):

In the sequel we shall need the following class of mappings between Banach spaces.

De�nition 2.1 [23] [15]. A mapping g : X 7! Y is said to be strongly compactly
Lipschitzian (s.c.L.) at a point x0 if there exist a multivalued function R : X 7!
2Comp(Y ); where Comp(Y ) denotes the set of all norm compact subsets of Y , and a
function r : X �X ! R+ satisfying

(i) lim
x!x0
h!0

r(x; h) = 0;

(ii) there exists � > 0 such that

t�1[g(x+ th)� g(x)] 2 R(h) + khkr(x; th)BY

for all x 2 x0 + �BX ; h 2 �BX and t 2]0; �[;
(iii) R(0) = f0g and R is upper semicontinuous.

It can be shown [23] that every s.c.L. mapping is locally Lipschitzian. In �nite

dimensions the concepts coincide.

Recently we have developped in [13] a chain rule for this class of mappings. Let

us note that this chain rule has been obtained before by Io�e in [8] for maps with

compact prederivatives.

Theorem 2.2 [13]. Let g : X ! Y be s.c.L. at x0 and let f : Y ! R be locally
Lipschitz at g(x0): Then f Æ g is locally Lipschitz at x0 and

@A(f Æ g)(x0) �
[

y�2@Af(g(x0))

@A(y
� Æ g)(x0):

To complete this section we note the following property of s.c.L. mappings which is

a direct consequence of Proposition 2.3 in [13].
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Proposition 2.1 Let g : X ! Y be s.c.L. at x0 and let (y�i ) any bounded net of Y �

which w��converges to zero in Y � and let (xi) be a net norm-converging to x0 in X:

If x�i 2 @A(y
�

i Æ g)(xi); then (x�i ) w
�-converges to zero in X�.

Before stating the following theorem which will be one of the main tool of section 5

let us recall the following notion by Borwein and Strojwas [2]. A set S � X is said

to be compactly epi-Lipschitzian (CEL for short) at x0 2 S if there exist 
 > 0 and

a norm compact set H � X such that

S \ (x0 + 
BX) + t
BX � S � tH; for all t 2]0; 
[:

We close this section by recalling the following results from [15].

Theorem 2.3 Let A � Y and B � X be two closed subsets and g : X ! Y be s.c.L.
at �x 2 B \ g�1(A): Suppose that D is compactly epi-Lipschitz at g(x0): Suppose also
that the following regularity condition holds at �x

[y� 2 @Ad(g(�x); A) and 0 2 @A(y
� Æ g + d(�; B))(�x)] =) y� = 0:

Then for some real numbers a � 0 and r > 0

d(x;B \ g�1(A� y)) � ad(g(x) + y; A)

for all x 2 B \ (�x+ rBX) and y 2 rBY :

3 Characterization of CEL sets.

We begin this section by recalling that a set K� � X� is (weak-star) locally compact

if every point of K� lies in a weak-star neighbourhood V � such that cl�(V �)\K� is

weak-star compact. The �rst important property of these cones has been established

by Loewen in [16] in a re�exive Banach space (but the proof works in any Banach

space). He showed that if (x�i ) is a net in a locally compact cone K� then

(x�i ) weak-star converges to 0 i� it converges in norm to 0:

In the same paper, Loewen showed that if H is a norm-compact subset of X, the

following set is locally compact

c(H) = fx� 2 X� : kx�k � max
h2H

jhx�; hijig:

In [10], the author showed that a weak-star closed cone K� is locally compact i�

there exist h1; � � � ; hn 2 X such that K� � c(fh1; � � � ; hng).
The following result is not new. It is a consequence of the results by the author in

[10], by the author in a joint work with Thibault [15] and by Io�e [9].
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Theorem 3.1 Let C be a closed set in X containing �x. Then the following asser-
tions are equivalent :

i) C is CEL at �x.

ii) There exist a weak-star closed locally compact cone K�

1 and "1 > 0 such that

@Ad(C; x) � K�

1 ; 8x 2 C \ (�x+ "1BX):

iii) There exist a weak-star closed locally compact cone K�

2 and "2 > 0 such that

@�" �(C; x) � K�

2 + "BX�; 8x 2 C \ (�x + "2BX) and " 2]0; "2[:

If in addition X is Asplund then the above assertions are equivalent to the following
ones:

iv) There exist a weak-star closed locally compact cone K�

3 and "3 > 0 such that

@Fd(C; x) � K�

3 ; 8x 2 C \ (�x + "3BX):

v) There exist a weak-star closed locally compact cone K�

4 and "4 > 0 such that

@��(C; x) � K�

4 ; 8x 2 C \ (�x+ "4BX):

Moreover assertions ii) � v) hold with the same locally compact cone which can be
taken equal to c(fh1; � � � ; hng), for some h1; � � � ; hn in X.

Here @F denotes the limiting Fréchet subdi�erential (see [17]) and �(C; �) denotes
the indicator function of C.

Proof. i) =) ii): See Jourani and Thibault [15].

ii) =) i): See Io�e [9].

See for the other equivalences the paper by Jourani [10].}

4 Main results.

As we said in the introduction the approximate subdi�erential of lower semicontinu-

ous functions may be bigger than the Clarke's one (@c) and is always contained in it

for any locally Lipschitzian function. In [10], the author showed that for a function

f whose epigraph is CEL at (�x; f(�x)) one has

@Af(�x) � @cf(�x)

and for any CEL set S at �x

NA(S; �x) = R+@Ad(S; �x) (1)
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We shall consider sets de�ned by generalized inequalities. Let g : X 7! Y be a

mapping and let A and B be closed sets of X and Y respectively. We set

C = fx 2 X : g(x) 2 A; x 2 Bg:

Our �rst result gives su�cient conditions for C to be CEL.

Theorem 4.1 Suppose that

i) g is strongly compactly Lipschitzian at �x.

ii) A and B are CEL at g(�x) and �x respectively.

Then we have either

a) There exists y� 2 @Ad(A; g(�x)), with y� 6= 0, such that

0 2 @A(y
� Æ g)(�x) + @Ad(B; �x):

or

b) For all y� 2 @Ad(A; g(�x)), with y� 6= 0, we have

0 =2 @A(y
� Æ g)(�x) + @Ad(B; �x):

In the later case C is CEL at �x with

NA(C; �x) �
[

y�2NA(A;g(�x))

@A(y
� Æ g)(�x) +NA(B; �x):

Remark 1. In fact we may prove (in case b)) that, under the assumptions of the

theorem, the multivalued function F : Y 7! X de�ned by

F (y) = fx 2 X : g(x) + y 2 A; x 2 Bg

is uniformly compactly Lipschitzian in the sense of Jourani and Thibault [14] (which

implies that the set C is CEL at �x). By Theorem 4.7 in [14] and Theorem 2.3, we

obtain that the graph GrF of F is CEL at (0; �x).

Remark 2. We may consider, instead of C, any multivalued mapping. But as our

objective here is to study only CEL sets, we will consider the general situation in

another paper.

In connection with the work by Cornet and Czarnecki [6], the following question

arises:

Can we characterize CEL sets in terms of their associate distance?

7



We mean that if a set C is CEL at �x, does 0 =2 @A�C(�x)? Where �C(x) =

d(C; x) � d(Cc; x): Unfortunately the answer is negative. Take for example, in in-

�nite dimensional space, a CEL set C at �x with empty interior. Then we have

�C(x) = d(C; x) and 0 2 @A�C(�x). Note that CEL sets with empty interior already

exist. Take X = l1(IN), f(x) = lim inf jxnj and C = fx 2 X : f(x) � 0g. Then C

is CEL at 0 and has no interior. Moreover both @Af(0) and @A�C(0) contain 0.

In [19], Mordukhovich and Wang established results on the intersection of the so-

called sequentially normally compact sets in Asplund spaces by using the limiting

Fréchet subdi�érential. Note that every CEL set is sequentially normally compact.

The proof proposed in [19] is based on an extremal principle. Here we use the

approximate subdi�erential which is more suitable to CEL sets and works in any

Banach space. The proof proposed here is di�erent from that in [19].

It is easy to show that the union and the product of CEL sets are CEL. But, what

about the intersection of CEL sets? The answer is unfortunately negative. To

see this take, in in�nite dimensional spaces, a closed convex pointed cone K with

interior. Set A = K and B = �K. It is clear that A and B are CEL at 0, but the

intersection A \ B = f0g fails to be CEL. So we need other assumptions to ensure

the above property. The following result is a direct application of our Theorem 4.1.

Theorem 4.2 Let A � X and B � X be nonempty closed CEL sets at �x. Then we
have either

i) @Ad(A; �x) \ (�@Ad(B; �x))) 6= f0g
or

ii) @Ad(A; �x) \ (�@Ad(B; �x))) = f0g. In this case A \ B is CEL at �x with

NA(A \B; �x) � NA(A; �x) +NA(B; �x):

Remark 3. Note that the inclusions in Theorems 4.1 and 4.2 hold with only

A CEL (and not both A and B) and with NG instead of NA, where NG(D; �x) =

R+@Ad(D; �x).

Next let us present an important corollary of Theorem 4.2 that establishes the

CEL property for constraint sets de�ned by inequalities with lower semicontinuous

functions.

Corollary 4.1 Let f : X 7! R[ f+1g be a lower semicontinuous function around
�x such that

i) f(�x) = 0; and 0 =2 @Af(�x);

ii) The epigraph of f is CEL at (�x; 0).
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Then the set C = fx 2 X : f(x) � 0g is CEL at �x with

NA(C; �x) � R+(@Af(�x) [ @1A f(�x)):

Where @1A f(�x) denotes the singular approximate subdi�erential of f at �x (see [7]).

Proof. Introduce the sets A = epi f , the epigraph of f , and B = X � R
�
: Then

A and B are CEL at (�x; 0) and since 0 =2 @Af(�x) we get

@Ad(A; (�x; 0)) \ (�@Ad(B; (�x; 0))) = f0g:
So, by Theorem 4.2, A \ B is CEL at (�x; 0) and hence C is also CEL at �x. The

inclusion follows from a simple computation.}

Remark 4. Taking into account Remark 1, the quali�cation condition i) ensures

that

epif is CEL at (�x; 0) i� C is CEL at �x:

Because of the Remark 3, the inclusion in the corollary holds for any lower semicon-

tinuous function f (whose epigraph is not necessarily CEL) satisfying

f(�x) = 0; and 0 =2 @Af(�x):

Similar inclusion was obtained by Mordukhovich and Wang [18] for the limiting

Fréchet subdi�erential. We recall that the limiting Fréchet subdi�erential of f at �x,

with f(�x) < +1, is given by

@Ff(�x) = w� � seq � lim sup
x!�x

f(x)!f(�x)

"!0+

@"f(x)

where

@"f(x) = fx� 2 X� : lim inf
h!0

f(x+ h)� f(x)� hx�; hi
k h k � �"g

is the "�Fréchet subdi�erential of f at x. The limiting Fréchet normal cone NF (C; �x)

to a closed set C � X at a point �x 2 C is de�ned by

NF (C; �x) = @F �(C; �x):

This subdi�erential has chain rules in Asplund Banach spaces, i. e., Banach spaces

on which every continuous convex function is Fréchet di�erentiable at a dense set of

points. It is shown in [10, Therem 4.1] that if X is a weakly compactly generated

(WCG) Asplund space (say a re�exive Banach space) and f : X 7! R [ f+1g is a
lower semicontinuous function with CEL epigraph at (�x; f(�x)) then

@Af(�x) = @Ff(�x):

So we can give the following result.

Theorem 4.3 Suppose that X and Y are WCG Asplund spaces. Then Theorems
4.1 and 4.2 and Corollary 4.1 remain valid if we replace there @A and NA by @F and
NF .
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5 Proof of the main results.

We prove only Theorem 4.1. First we establish the following technical lemma.

Lemma 5.1 Let t; " 2]0; 1[ and let Q be a compact subset of X containing 0, C a
closed set in X, with c1; �x 2 C and b 2 "BX such that

kc1 � �xk � " and (c1 + t(b +Q)) \ C = ; (2)

Then there exist �q 2 Q and �c 2 C such that

k�c� �xk � r(t; "); k�qk < 1

and
	(�q; �c) � 	(q; c) +

p
"tk(�q; �c)� (q; c)k; 8(q; c) 2 Q� C

where 	(q; c) = kc1+t(b+q)�ck+
p
"tkqk and r(t; ") = p

"t+"t2+"+2t("+diamQ):

Proof. We follow the proof in [9]. Consider the real number 
 =
p
"t and the

function � de�ned by

�(q) = d(c1 + t(b + q); C) + 
kqk:

We have by (2) and the compactness property of Q that there exists q1 2 Q such

that

0 < �(q1) = min
q2Q

�(q) � �(0) � t" (3)

Set � = d(c1 + t(b + q1); C) and choose 0 < � < min(
; 1 � p
") and c2 2 C such

that

kc1 + t(b + q1)� c2k � � + �2 (4)

Consider the function 	 de�ned by

	(q; c) = kc1 + t(b + q)� ck+ 
kqk:

Then

	(q1; c2) � d(c1 + t(b + q1); C) + 
kq1k+ �2 � inf
(q;c)2Q�C

	(q; c) + �2:

(This later is due to relation (3)). By Ekeland variational principle, there exists

(�q; �c) 2 Q� C such that

kq1 � �qk � �; kc2 � �ck � � (5)

	(�q; �c) � 	(q; c) + �k(�q; �c)� (q; c)k; 8(q; c) 2 Q� C:
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By relations (2)-(5), we get

k�c� �xk � r(t; ") and k�qk < 1: }

Proof of Theorem 4.1. Consider the collection of all pairs � = (L; "), with L

being a �nite dimensional space of X and " 2]0; 1[ and endow this collection with

the order �0 = (L0; "0) � (L; ") = � i� L0 � L and " � "0. Set

Q� = L� \ BX

where L� and "� are the component of the pair �.

Suppose that a) of the theorem does not hold. We will prove that C is CEL at �x.

So suppose the contrary. Then for any � there are c1� 2 C, with kc1� � �xk � "�,

b� 2 "�B and t� 2]0; "�[ such that

(c1� + t�(b� +Q�)) \ C = ;:

By Lemma 5.1 there are �q� 2 Q� and �c� 2 C such that

k�c� � �xk � r(t�; "�); k�q�k < 1

and

	(�q�; �c�) � 	(q; c) +
p
"�t�k(�q�; �c�)� (q; c)k; 8(q; c) 2 Q� � C:

From Theorem 2.3, there exists a constant a > 0 (not depending on � for �0 � �)

such that (�q�; �c�) is a local solution of the function

	(q; c)+
p
"�t�k(�q�; �c�)�(q; c)k+(1+t�+

p
"�t�)(a(d(A; g(x))+d(B; x))+d(Q�; q)):

By Theorem 2.2 there exist y�� 2 a(1 + t� +
p
"�t�)@Ad(A; g(�c�)) and x�� 2 @A(y

�

� Æ
g)(�c�) + a(1 + t� +

p
"�t�)@Ad(B; �c�) such that

(0;�x��) 2 @A	(�q�; �c�) +
p
"�t�(BX� � BX�) + (1 + t� +

p
"�t�)@Ad(Q�; �q�)� f0g:

Since k�q�k < 1 and c1� + t�(b� + �q�)� �c� 6= 0 we get

@Ad(Q�; �q�) = L?� \ BX� and @A	(�q�; �c�) � f(t�q��;�q��) : kq��k = 1g:

Thus there exists q�� 2 L?� +
p
"�BX� , with kq��k = 1, such that

kx�� + q��k �
p
"�t� (6)

Now by the de�nition of x�� there exist u�� 2 @A(y
�

� Æ g)(�c�) and v�� 2 a(1 + t� +p
"�t�)@Ad(B; �c�) such that

x�� = u�� + v��:

Note that by (6) we have

1�p"�t� � ku��k+kv��k; kv��k � a(1+t�+
p
"�t�); ku��k � (1+t�+

p
"�t�)(1+a):

11



Extracting subnets if necessary we may assume that (u��) and (v��) weak-star con-

verge respectively to u� and v�, with v� 2 a@Ad(B; �x), and (ku��k) and (kv��k) con-
verge to u and v with u+ v � 1. We have :

Case 1: u 6= 0. Now since u�� 2 @A(y
�

� Æ g)(�c�) and

ku��k � Kgky��k � Kga(1 + t� +
p
"�t�)

where Kg is a Lipschitz constant of g at �x, then extracting subnet we may assume

that (y��) weak-star converges to y
� 2 a@Ad(A; g(�x)) such that (Proposition 2.1)

u� 2 @A(y
� Æ g)(�x)

and since A is CEL at g(�x), we get y� 6= 0. On the other hand, as the sets L?� +p
"�BX� form a basis for the weak-star topology in X�, it follows from (6) that both

(x��) and (q��) weak-star converge to 0. So that

0 6= y� 2 a@Ad(A; g(�x)) and 0 2 @A(y
� Æ g)(�x) + a@Ad(B; �x)

and this contradicts our assumption `a) does not hold`.

Case 2: u = 0. In this case v 6= 0 and then v� 6= 0 because C is CEL at �x and as

above we get y� 2 a@Ad(A; g(�x)) such that

�v� 2 @A(y
� Æ g)(�x)

and this contradicts again our assumption `a) does not hold`.

The proof of the inclusion follows by a simple computation. }
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