
STRONG CLUMPING OF SUPER-BROWNIAN MOTION

IN A STABLE CATALYTIC MEDIUM

By Donald A. Dawsony, Klaus Fleischmannz and Peter M�ortersx

Carleton University, Weierstrass Institute, and Universit�at Kaiserslautern.

A typical feature of the long time behaviour of continuous super-Brownian motion in a stable

catalytic medium is the development of large mass clumps or clusters at spatially rare sites.

We describe this phenomenon by means of a functional limit law under renormalisation. The

limiting process is a Poisson point �eld of mass clumps with no spatial motion component

and with in�nite variance. The mass of each cluster evolves independently according to a

continuous process trapped at mass zero, which we describe explicitly by means of a Brownian

snake construction in a random medium. We also determine the survival probability and

asymptotic size of the clumps.
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1. Introduction

1.1. Motivation. Models of particle movement and branching in random media have been

widely studied in the last twenty years. A class which received particular interest are models

of measure-valued processes where, heuristically speaking, the individual branching rates of the

moving particles depend on the amount of contact between the particle, called the reactant, and

a singular random medium, called the catalyst. In dimension one even very thin catalysts, for

example point catalysts, can be considered. A particularly natural choice of a catalytic medium

are stable random measures � on R of index 0 < 
 < 1, which are the prototypes of a singular

catalyst with in�nite asymptotic density, see formula (3) below, and [6, Subsections 1.3{1.4]

for further motivation for this choice of catalytic medium. A rather general one-dimensional

model combining super-stable motions of the reactant particles with possibly moving random

catalysts, covering the case of the stable medium � was developed in [6, 7]. For an up-to-date

introduction to catalytic super-Brownian motion, we refer to [9].

Recent research on super-Brownian motion with a stable catalytic medium lead to several in-

teresting results; we restrict our attention to the case of a Brownian moving reactant, which

branches with �nite variance in the presence of a non-moving stable catalyst in R: In this case,

starting from a �nite initial mass, the compact support property was shown in [11], and �nite

time extinction in [10], see [16] for a quick route. Already in [6], in the case of an in�nite initial

measure, the long-term clumping behaviour of the reactant was exposed in a mass-time-space

rescaling limit theorem. It states that at a �xed macroscopic time t the suitably mass-space-

rescaled clumps form a random measure with independent increments, see [6, Theorem 1.9.4].

But it could not be settled, see [6, p.251], whether or not the clumps are macroscopically spa-

tially isolated, that is whether the limiting measure is carried by a Poisson point �eld on R as

known in the constant medium case [5].

The main motivation for the present paper was to attack this problem. We show that in fact

the clumps are isolated, that is, the limiting measure is a homogeneous Poisson point �eld of

mass clumps, Theorem 1 (ii) below. This is achieved by a re�nement of a method of good and

bad historical reactant paths, which was developed in [10] and goes back to [12, 15, 22].

Beyond this problem, we describe the mass of the rescaled clumps as a process in macroscopic

time. For this purpose we provide a functional limit approach, Theorem 1 (i) below, which shows

convergence of the rescaled processes on a path space of continuous measure-valued processes.

The time evolution of these masses is described in terms of exit measures of a Brownian snake in

a random medium with a motion process featuring the inverse of the collision local times of the

reactant paths with the medium, see Theorem 5 (ii) below. Whereas the clumps of the original

process have �nite variance given the medium, this property is lost in the limit, a remarkable

property conjectured in [6, p.253]. In fact, the clump sizes of the limit have probability tails of

index 1 + 
 < 2, see Theorem 10 (iii) below. This is in contrast to the constant medium case

studied in [5] and due to the fact that the stable catalyst does not have locally �nite expectations,

so that the atomic catalyst sizes are highly 
uctuating. We also determine the (macroscopic)

survival probability of clumps, see Theorem 10 (ii).

A main tool for the functional limit theorem is the representation of both the catalytic super-

Brownian motion and the limit process in terms of exit measures of a Brownian snake in the

stable medium �: The use of exit measures and subordination for the historical particles to

describe general branching mechanisms goes back to [1], though the present paper seems to be

the �rst instance where this approach is used to deal with the case of catalytic, space-dependent,

branching.
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Revealing the even macroscopically isolated nature of the clumps embeds the present investiga-

tion in the realm of the concept of intermittency. Roughly speaking, intermittency means in our

context that in the long time the catalytic superprocess exhibits a spatially extremely irregular

structure consisting of islands of high mass peaks, which are located at great distance from each

other. See for instance [17, 18] or [21] for other work in this direction.

1.2. Statement of the main results.

1.2.1. Super-Brownian motion in a stable catalytic medium: preliminaries. Let M(R) denote

the space of all locally �nite measures on R, equipped with the vague topology generated by

the mappings ' 7! h�; 'i, for all ' : R ! [0;1) continuous with compact support. Here and

throughout the paper we use both notations h�; 'i and R
R
'd� to denote integrals. There is a

sequence f'n : n 2 Ng of such functions such that

d(�; �) :=

1X
n=1

2�n
���h�; 'ni � h�; 'ni�� ^ 1

�
; for �; � 2M(R);(1)

de�nes a metric, which makes M(R) Polish.

De�ne � to be the set of all continuous functions ' : R ! [0;1) such that there are constants

a; b > 0 with '(x) � a exp(�bx2) for all x 2 R. For all measure-valued processes in this paper

we choose the state space to be the space of tempered measures

Mtem :=Mtem(R) :=
n
� 2M(R) : h�; 'i <1 for all ' 2 �

o
:(2)

Note that in particular the Lebesgue measure ` belongs toMtem . We letMtem �M(R) inherit

the vague topology of M(R):

Suppose that � is a stable random measure on R of index 0 < 
 < 1, i.e. for every measurable

' : R ! [0;1) we have

E
�
exph�;�'i	 = exp

�
�
Z
R

'(x)
 dx
�
:(3)

Almost surely, � belongs toMtem : This follows from the fact that the integral on the right hand

side of (3) is always �nite for ' 2 �. Moreover, � is almost surely a purely atomic measure with

atoms densely located in R.

The measure-valued processes under consideration may be considered as random variables with

values in the space C((0;1);Mtem) of continuous functions � : (0;1) ! Mtem ; where for

topological reasons it is sometimes convenient to exclude the time t = 0. We endow this space

with the topology of uniform convergence on compact intervals, which is induced by the metric

d(�; �) :=

1X
n=1

2�n sup
1=n� t�n

d
�
�(t); �(t)

�
; for �; � 2 C

�
(0;1);Mtem

�
;(4)

and is easily seen to be Polish.

Let X := X[�] := fXt : t � 0g denote the continuous super-Brownian motion in R in the cat-

alytic random medium �. Throughout the paper we refer to probabilities and expectations with

respect to the random medium � with letters P and E and to the probabilities and expectations

of the process with given medium � by P� and E� , sometimes with a subscript indicating the

starting measure. With this convention, for given �, the process X = X[�] is the continuous,

time-homogeneous Markov process with Laplace transition functionals

E
�
�
exphXt ;�'i

��Xs = �
	
= exph�;�V �

t�s'i; for t > s � 0;(5)
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where � 2 Mtem ; ' 2 �; and V �' =
�
V �
t ' (x) : t � 0; x 2 R

	
is the unique nonnegative

solution of the equation

V
�
t ' (y) = St' (y)� 2

Z
t

0

ds

Z
R

ps(x� y)
�
V
�
t�s' (x)

�2
�(dx); for t � 0; y 2 R:(6)

Here p denotes the standard heat kernel in R; and S = fSt : t � 0g the heat 
ow semigroup

de�ned by St' (y) =
R
R
pt(x� y)'(x) dx. The nonlinear semigroup V � = fV �

t : t � 0g operates
in �. The interpretation of the process X as a process whose reactant particles branch at site

x 2 R with rate 2 �(dx) corresponds to the fact that, loosely speaking, given �, the function

v = V �' solves the symbolic partial di�erential equation

@

@t
v =

1

2

@2

@x2
v � 2�v2; with initial condition v

��
t=0

= ':(7)

Existence and uniqueness of nonnegative solutions V � of (6) were established in [7], X was

constructed as a Markov process in [6, Section 2], and its continuity follows from [8, Corollary 2

(p.257), Proposition 12 (p.230), and Theorem 1(b) (p.235)], even in a stronger topology. Note

also that in the case of a �nite starting measure the total mass process kXk := �kXtk : t � 0
	

is a continuous martingale [8, Proposition 3, p.236].

We stress the fact that we always use a quenched approach in dealing with the model X = X[�]

in the random medium �: First the catalyst � is sampled, and then the reactant process X[�]

is run, given the catalyst �. In particular, the law P
� of the reactant is random, and the

randomness is inherited from the law P of �.

1.2.2. Strong clumping of catalytic super-Brownian motion. De�ne the scaling index

� := (
 + 1)=(2
)(8)

and observe that this number is larger than 1. For every k > 0 we introduce the renormalised

measure-valued process Xk = Xk[�] = fXk
t : t � 0g by

X
k

t (B) := k
��
Xkt(k

�
B); for B � R Borel; t � 0:(9)

The next theorem summarises the main results obtained before the present paper.

Theorem 0 (Results of [6, Theorem 1.9.4]).

(i) Convergence. Starting X = X[�] in the Lebesgue measure X0 = `, for every �xed t there is

a random variable X1
t de�ned on some probability space (
;A; P̀ ), which is independent

of the medium �, such that, in P{probability, the following weak convergence of probability

measures on Mtem holds:

lim
k"1

P
�
` fXk

t 2 � g = P̀ fX1
t 2 � g:(10)

(ii) Characterization of the limit. For every bounded, measurable function ' : R ! [0;1) let

U
�
' =

�
U
�
r ' (x) : r � 0; x 2 R

	
(11)

be the nonnegative solution of the equation

U
�
r ' (y) = Sr' (y)� 2

Z
r

0

ds

Z
R

ps(x� y)
�
U
�
r�s' (x)

�2
�(dx); for r � 0; y 2 R;(12)

which is constructed in [7, Theorem 2.14]. Then the Laplace functional of X1
t satis�es

E`

�
exp

�� �X
1
t (A)

�	
= exp

�� `(A)EU�
t � (0)

�
; for A � R Borel, � � 0:(13)
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(iii) Properties of the limit. P̀ {almost surely, X1
t is non-degenerate and has independent,

stationary increments. The scaling procedure is persistent in the sense that E`X
1
t = `.

The important feature of this result is that the non-degenerate limit is obtained by a di�erent,

stronger scaling as in the classical case of a constant medium [5], hence the qualitative nature

of the clumping behaviour is di�erent.

Crucial questions about the spatial structure of the limit measures X1
t were left open in [6]. A

question of particular interest in this realm was posed in [6, p.251]: the problem is whether or

not the X1
t are compound Poisson point �elds on R, i.e. whether on the macroscopic level the

clumps are spatially separated. Our �rst main result answers this question in the aÆrmative.

Our second aim in this paper is to give a full description of the spatial and temporal evolution

of the �eld of clumps at a macroscopic level. This requires, as a �rst step, a functional limit

theorem. This question was not investigated in [6] and is particularly interesting, as the limit

process turns out to be non-Markovian and continuous. Here is the precise statement:

Theorem 1 (Main result). Let X be the continuous super-Brownian motion in the stable ran-

dom medium � started with X0 = `; and Xk = Xk[�] = fXk
t : t > 0g, for k > 0, the

renormalised processes de�ned in (9).

(i) Functional limit theorem. In P{probability, the random laws of the renormalised processes

Xk[�] converge weakly on the function space C((0;1);Mtem) as k " 1 to the law of a

limit process X1 = fX1
t : t > 0g de�ned on some probability space (
;A; P̀ ); which is

independent of the sampled medium �, and is started in X1
0 = `:

(ii) Compound Poisson structure. Let X1 be the limit process of part (i). Then, for each time

t > 0, the state X1
t of the limit process is a compound Poisson point �eld, i.e. a random

discrete measure on R with atoms located in the points of a Poisson point �eld and with

independent identically distributed atomic weights. The temporal development of X1 is

as follows: Almost surely, the atoms do not move in space, no new atoms are born, but

each atom dies in �nite time.

Remark 2 (The role of t = 0). If Z = fZt : t > 0g is a random variable in C
�
(0;1);Mtem

�
;

and Z0 a random variable inMtem ; we say that Z is started in Z0 , provided that Zt converges

to Z0 in law, as t # 0. In the functional limit theorem we get convergence of the processes Xk

started in Xk
0 = ` (to X1 started in X1

0 = `). This requirement can be relaxed slightly but not

completely omitted (see Remark 15 below). Nevertheless it is possible to construct the process

X1 canonically for any starting measure X1
0 = � 2Mtem ; see Theorem 5 or Corollary 9 below,

leaving open the question of sample path continuity of X1 at time t = 0. Moreover, part (ii) of

the theorem holds for the process X1 started in any measure X1
0 = � 2Mtem . 3

Remark 3 (Continuous limit process). Note that convergence in our functional limit theorem

holds in the strong sense of convergence of laws on the space C
�
(0;1);Mtem

�
of continuous

Mtem(R){valued paths. In particular, the limit process X1 is continuous on (0;1) as well. 3

1.2.3. The crossing property. An interesting path property of the unscaled process X, which

enters in the proof of the functional limit theorem and may be of independent interest, is the

following crossing property, which is reminiscent of the compact support property investigated

in [11]. For the precise formulation, denote by `(a;b) for a; b 2 R [ f�1;1g the restriction

of Lebesgue measure ` on R to the open interval (a; b). We show that for the catalytic super-

Brownian motion X started with `(0;1) the amount of total mass at a time which has travelled

across the origin to the nonpositive hal
ine is bounded in time.
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Theorem 4 (Crossing property). Suppose that fXt : t � 0g is the catalytic super-Brownian

motion in the stable medium � and X0 = `(0;1) . Then, for P{almost every �,

sup
t�0

Xt

�
(�1; 0]

�
<1; P

�{almost surely.(14)

1.2.4. Snake representations of X and X1. As a further major tool in the proof of Theorem 1

we construct representations of both the original process X and the limiting process X1 in

terms of exit measures of a Brownian snake in the stable medium �. This makes the limit

process explicit and permits a comparison of the two processes X and X1. As this is also of

independent interest, we present the results here.

The idea of using the path-valued process or Brownian snake to represent classical super-

Brownian motion is due to Le Gall and has since been generalised to various other types of

superprocesses. Bertoin, Le Gall and Le Jan have extended this technique to represent super-

processes with more general, but not space-dependent, branching mechanisms. Roughly speak-

ing, they use individual time-changes for each particle, which allow to pass from one branching

mechanism to a di�erent one by subordination on the particle level. References are [19, 20] for

the �rst explicit snake construction and [1] for the extension.

In the present paper we extend this idea to our particular case of a space-dependent branching

mechanism | recall that in rough terms the branching rate at site x is given by 2�(dx): To

formulate the result we brie
y introduce the basic notation of the Brownian snake w = w[�] in

our random medium case, and its excursion measures N�x ; both in the quenched situation of a

�xed sample � of the random medium. More details can be found in Subsection 2.1 below.

To describe our approach, let us �rst look at a generic reactant particle, which moves along a

Brownian path W =
�
W (t) : t � 0

	
in R until its death. Of course, the motion process could

as well be described by the two-dimensional Markov process t 7! �
t;W (t)

�
with phase space

D := [0;1) � R: The branching of the reactant particle, however, is governed by its collision

local time L[�;W ] with the medium �; de�ned by

L[�;W ](r) =

Z
R

�(dy)Ly(r); for r � 0;(15)

where r 7! Ly(r) is the continuous local time of W at level y 2 R. L[�;W ] is an nondecreasing

continuous additive functional of Brownian motion W . As the positions of the atoms of � are

dense in R, it is easy to see that L[�;W ] is (strictly) increasing.

We use the continuous inverse function L
�1
[�;W ]

of L[�;W ] to introduce a new time scale for the

reactant particle on which its collision local time grows linearly. More precisely, instead of

t 7! �
t;W (t)

�
; we de�ne a time-homogeneous continuous Markov process � := f�r : r � 0g with

values in D = [0;1) � R by

�r :=
�
L
�1
[�;W ]

(r); W Æ L�1
[�;W ]

(r)
�
; for r � 0;(16)

where W is a Brownian motion started in x. The �rst component of this process can be

interpreted as the new individual clock of the Brownian reactant particle, travelling in the

medium �, and the second component as its position along the new time scale. For all t > 0,

de�ne the �rst exit time

�t := �t(�) := inf
�
r > 0 : �r 62 [0; t)� R

	
(17)
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of the path � from the domain Dt := [0; t)�R. At time �t the process � is in the state
�
t;W (t)

�
;

and the reactant particle has accumulated the collision local time

L[�;W ](t) = �t(18)

and is placed in W (t). Less formally, a single generic reactant particle of Xt may be represented

by a path � stopped at the random time �t .

The Brownian snake can be interpreted as a natural parametrisation of the collection of all

reactant particles in the range of X, where each particle is represented by a stopped path. For

this purpose, de�ne the set of stopped paths by

P :=
n
f 2 C

�
[0;1);D

�
: there exists � � 0 with f(r) = f(�) for all r � �

o
:(19)

With every f 2 P we can associate the lifetime � = �(f), which is the minimal � � 0 such that

the path f is constant on [�;1). We equip P with the following metric: for f; f 0 2 P let �; � 0

the associated lifetimes and

d(f; f 0) :=
��f(0)� f

0(0)
��+ j� � �

0j+
Z

�^�0

0

�
sup

x2[0;u]

��f(x)� f
0(x)

�� ^ 1
�
du:(20)

The Brownian snake w with start in (0; x) 2 D and motion process � is a certain continuous

strong Markov process w : [0;1) ! P whose state space is the set of all stopped paths f 2 P
with f(0) = (0; x). Brownian snakes with general Markov processes as motion process were

constructed in [1].

With every P-valued Markov process we can associate the lifetime process � : [0;1) ! [0;1)

de�ned by �s := �(ws). For the Brownian snake w; the lifetime process � is by de�nition

a re
ected Brownian motion. Moreover, given �, two paths ws1 and ws2 , s1 < s2, agree

up to time m := min[s1;s2] �; and the two continuations fws1(m+ r) : 0 � r � �s1 �mg and

fws2(m+ r) : 0 � r � �s2 �mg with �xed starting point ws1(m) = ws2(m) are independent

(see also Figure 1 below). Heuristically, if m = 0 the particles represented by ws1 and ws2

belong to di�erent families, whereas if m > 0 and s 2 [s1; s2] satis�es �s = m, the path ws

represents the last common ancestor of ws1 and ws2 .

The constant path f 2 P given by f(r) = (0; x) for all r � 0 is a regular recurrent point for the

Markov process w. Indeed, this follows immediately from the fact that the lifetime process is

a re
ected Brownian motion. Hence we can de�ne N�x to be the suitably normalised excursion

measure of the Brownian snake w from the constant path f = (0; x); see e.g. [3] for the excursion

theory of Markov processes. Every sample of such an excursion from (0; x) is a continuous path-

valued function w : [0; �] ! P for some �nite � = �(w) > 0, the length of the excursion, such

that w0 = w� is the constant path remaining in (0; x), and ws is not constant for all s 2 (0; �).

Then N�x is a �-�nite measure on the set

W :=
n
w 2 C

�
[0; �];P

�
: for some � > 0

o
(21)

of path-valued functions. Although it is stretching the usual terminology a bit, we use the words

sample and process also in the case of the underlying non-probability measure N�
x .

With each excursion w : [0; �]! P we can again associate the lifetime process � : [0; �]! [0;1)

by letting �s := �(ws), which under N�
x is a Brownian excursion from 0. Heuristically, an

excursion w represents the whole family tree of an reactant particle, which at time 0 is located

at x.
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Following [1] or [14], we can de�ne, for every t > 0, the exit local time at level t of an excursion

w 2W as the process Lt[w] := Lt :=
�
Lt
s : s 2 [0; �]

	
such that

L
t

s := L
t

s[w] := lim
"#0

1

"

Z
s

0

1f�t(wu)<�u<�t(wu)+"g du;(22)

for every s, N�x {almost surely, where �t is de�ned as in (17). The total exit local time at level t > 0

of an excursion w is Lt
�[w] := Lt

�[w]
[w]. Note that the measure associated with the monotone

function s 7! Lt
s[w] is supported by those s where �t(ws) = �s and recall that exactly those

paths ws represent particles of Xt : The exit measure at level t > 0 is the measure Zt := Zt[w]

on @Dt := ftg � R de�ned by



Z
t[w]; '

�
:=

Z
�

0

'
�
ws(�s)

�
L
t

� (ds); for ' : @Dt ! [0;1) measurable,(23)

where the integral is a Stieltjes integral with respect to the nondecreasing function s 7! Lt
s[w].

Slightly abusing notation, for �xed t > 0; we can identify @Dt with R; that is, we can consider

Zt[w] and ' as a measure respectively function on R. Such identi�cations will often be used in the

following. The measure Zt[w] can be interpreted as the spatial distribution of the descendants

at time t of a reactant particle, which at time 0 is located as x. The quantity Lt
�[w] describes

the mass of the totally produced reactant progeny of this particle at time t.

We now have the means to describe both X and X1 in terms of the excursion measures N�
x .

In the case of a measure � 2 Mtem di�erent from Lebesgue measure, (27) below should be

understood as the natural de�nition of X1 with X1
0 = �.

Theorem 5 (Snake representations). Let � 2Mtem be an arbitrary starting measure.

(i) Representation of X: Given �, let � = �[�] be a Poisson point �eld on the space W � R

with intensity measure � = �[�] de�ned by

�(dw dx) :=

Z
R

N
�
y (dw) 
 Æy(dx)�(dy):(24)

Then, for P{almost all �, the superprocess X = X[�] with X0 = � can be represented as

hXt ; 'i =
Z
W�R



Z
t[w]; '

�
�(dw � R);(25)

for all t > 0 and ' : R ! [0;1) measurable.

(ii) Representation of X1: Let �1 be a Poisson point �eld on W� R with intensity measure

�
1(dw dx) :=

� Z
Mtem

N
�
0 (dw)P(d�)

�

 �(dx):(26)

Then the limit process X1 with X1
0 = � has the representation

hX1
t ; 'i =

Z
W�R

L
t

�[w]'(x)�
1(dw dx);(27)

for all t > 0 and ' : R ! [0;1) measurable.

Remark 6 (Only dependence on the marginal measure). Note that only the marginal mea-

sures �(dw � R) enter in the representation (25). We have included the space coordinate into

the de�nition of the Poisson point �eld � in order to simplify a comparison of the intensity

measures (24) and (26). 3
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Remark 7 (Continuous versions of Z[w] and L�[w]). As the process X has a continuous ver-

sion, there is a continuous version of the process Z[w] =
�
Zt[w] : t > 0

	
of exit measures as

well. We may henceforth assume that Z[w] under N�
x is this continuous version. Similarly, from

the continuity of the total mass process kXk in the case of a �nite starting measure, we can see

that also the process L�[w] =
�
Lt
�[w] : t > 0

	
has a continuous version, which we henceforth

use. 3

Remark 8 (A �niteness property). From the representation (27) it can be seen easily, that X1

has the compound Poisson structure stated in Theorem 1 (ii) if and only if the intensity measure

�1 in (26) satis�es Z
Mtem

N
�
0

�
w : Lt

�[w] > 0
	
P(d�) <1; for t > 0:(28)

This �niteness property of �1 implies that after an arbitrarily small, positive amount t of

macroscopic time, locally only �nitely many macroscopic clumps exist. Moreover, together with

the continuity of L�[w] this also implies the continuity of X1 in the representation (27). 3

The snake representations enable us to make a comparison of X and X1; and, moreover, draw a

revealing heuristic picture of the limit process X1. For both processes, mass is initially spread

on R according to �. In the case of the original process X, starting from each in�nitesimal small

mass point �(dx) a potential family of reactant particle is evolving, whereas in the case of the

limit process X1 at each in�nitesimal small mass point �(dx) a potential macroscopic clump

can be created. After an arbitrarily small, positive amount of time locally only �nitely many

families of X survive and, similarly, after an arbitrarily small, positive amount of macroscopic

time locally only �nitely macroscopic clumps survive in X1. The further development of the

total mass of the o�spring progeny of any reactant particle in X or of any macroscopic clump

in X1 is in both cases governed by the laws of t 7! Lt
�[w] under the excursion measure N�� in

the random medium �.

There are however a number of signi�cant di�erences:

� In X each particle family uses the excursion measures N�
x for the same sample � (though

around di�erent places x). The clumps of X1 however are based on the samples w of

the measure EN�
0 (dw) which is independent of the position x of the clump and of the

medium sample �: For each individual clump the sample w is in fact the result of a two

stage experiment: First � is sampled with the law P of the stable medium, and then w is

sampled according to the law N�
0 (dw):

� Whereas the reactant particle families of X have a spatial spread and their motion com-

ponent is visible, this is not the case with the clumps of X1. Macroscopic clumps are

mass points, which remain at their original spatial position, only their mass is variable.

Indeed, whereas the full measure Zt[w] enters into (25), only Lt
�[w] enters into formula

(27) and the spatial structure of Zt[w] is suppressed. This in particular leads to the loss of

the Markov property in the limit process X1. Heuristically speaking, the clumps have a

hidden micro-life, governing the branching behaviour, but invisible from the outside, since

the excursion measure N�
0 in the random medium � is used in the annealed sense EN�

0

only.

From the representation (27) of the limit process X1, we easily get the Laplace functionals of

its �nite dimensional marginals | note that the result is consistent with the representation of

the one-dimensional marginals mentioned already in (13).
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Corollary 9 (Finite dimensional distributions). The �nite dimensional marginals of the limit

process X1 with starting measure X1
0 = �, de�ned on a probability space (
;A;P�), are deter-

mined by

E�

n
exp

�
�

nX
i=1

hX1
ti
; 'ii

�o
= exp

�
�
Z
R

EU
�
t1;::: ;tn

�
'1(x); : : : ; 'n(x)

�
(0)�(dx)

�
;(29)

for 0 � t1 � : : : � tn and measurable '1; : : : ; 'n : R ! [0;1) for n � 1: Here U�
t1
[a1] :=

U�
t1
a1 is taken from (12) with constant function ' = a1 � 0; and U�

t1;::: ;tn
[a1; : : : ; an] is de�ned

inductively: for n � 2;

U
�
t1;::: ;tn

[a1; : : : ; an] = U
�
t1

h
a1 + U

�
t2�t1;::: ;tn�t1 [a2; : : : ; an]

i
;(30)

for all 0 � t1 � : : : � tn and a1; : : : ; an � 0.

1.2.5. Further properties of the limit process X1. To round out the picture of the limit model

we describe the major indices related to the survival probability and the tail behaviour of the

mass clumps on the macroscopic level. Recall the index 
 2 (0; 1) of our stable medium �, and

the scaling index � introduced in (8).

Theorem 10 (Properties of the limit process X1). Let X1 be the limit process started in `.

(i) Self-similarity. X1 satis�es, for every k > 0,

X
1
t (B) = k

��
X
1
kt (k

�
B) in distribution, for t � 0 and B � R Borel.

(ii) Survival probability. The ratio of the intensities �(t) and �(s) of the Poisson point �elds

carrying the clumps at various macroscopic times t > s > 0; respectively, satis�es

�(s)=�(t) =
�
t=s

��
:

Hence, denoting by js(t) the mass at the macroscopic time t of a clump at time s; the

survival probability of js(t) is given by

P̀
�
js(t) > 0

	
= (s=t)� ; for all t > s > 0:

Moreover, we have, for all t > s > 0,

jt(t) =
�
t

s

��
js(s) in distribution.

(iii) Clump size tails. The tail behaviour of the clump size jt(t) is governed by

P̀
�
jt(t) > a

	 � t
�(
+1)

a
�
�1 as a " 1:

Here � means that the ratio of the quantities involved is bounded away from zero and

in�nity as a " 1 by constants independent of t > 0.

Remark 11 (In�nite variance). It is quite remarkable, that the clump size is heavy-tailed, in

particular it has in�nite variance. The latter fact was conjectured in [6, Subsection 1.14]. 3

Remark 12 (Open problem). Note that the intensity �(t) of the carrying Poisson point �eld

at time t > 0 occurring in (ii) is positive, but it is open to determine its exact value. 3
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1.3. Outline of the paper. Here we indicate the further structure of the paper, give a guideline

to where various parts of the proofs can be found, and brie
y review the main methods of proof.

Section 2 is devoted to those aspects of the paper related to the Brownian snake construction

in a random medium. In Subsection 2.1 we establish the Brownian snake representation of

super-Brownian motion X in the catalytic medium � [Theorem 5 (i)]. Subsection 2.2 contains

the proofs of the Laplace functionals in Corollary 9 and the description of X1 in Theorem 1 (ii),

which both rely on the de�nition of X1 in terms of its snake representation [Theorem 5 (ii)].

Both snake representations are used in Subsection 2.3, together with Birkho�'s individual ergodic

theorem, to prove the functional limit theorem. The proof also relies on two further steps of

independent interest, whose proofs are deferred to Section 3: the �niteness property (28) of the

intensity measure �1, and the crossing property, Theorem 4.

Section 3 concerns the aspects of proof related to the method of good and bad paths. In

Subsections 3.1 and 3.2 we formulate a quantitative extension of this method. The key step is

to give an upper bound on the survival probability of the catalytic super-Brownian motion with

a �nite starting mass in terms of a quantitative characteristic of the random medium �. This is

then applied in Subsection 3.3 to prove the crossing property and in 3.4 to verify the �niteness

statement (28) and thus derive the compound Poisson structure of the limit process X1. We

also like to point out that our approach to the method of good and bad paths (other than the

approach of [10]) does not rely on the compact support property of catalytic super-Brownian

motion established in [11], and conversely seems to be a good starting point for an independent,

new probabilistic proof of the compact support property.

Section 4 deals with the more analytical proof techniques. We �rst investigate the time evolution

of the mass of the clumps in our limit model. The calculations of the Poisson intensities and

survival probabilities stated in Theorem 10 exploit the natural scaling invariance of the limit

process together with the Poisson carrier structure, see Subsection 4.1. The calculation of the

tail behaviour in Theorem 10 is based on a Feynman-Kac representation of the solutions of

the log-Laplace equation (6), provided in Subsection 4.2 and a simple version of the Tauberian

Theorem of Bingham and Doney [2, Theorem 8.16].

2. The Brownian snake approach in the case of a catalytic medium

In this section we prove the snake representations, Theorem 5, and the functional limit theorem,

Theorem 1 (i).

2.1. The Brownian snake representation of catalytic super-Brownian motion. We

now formalize the construction of the Brownian snake and verify the snake representation of X,

Theorem 5 (i).

As announced, we �rst take a �xed sample of the catalytic medium �. Recall that L�1
[�;W ]

denotes

the inverse function of the collision local time L[�;W ] of a Brownian path W with �; which was

introduced in (15).

The continuous time-homogeneous Markov process � = f�r : r � 0g on D = [0;1) � R with

start in (a; x) 2 D is de�ned by

�r =
�
a+ L

�1
[�;W ]

(r);W Æ L�1
[�;W ]

(r)
�
; for r � 0;(31)

where W is a Brownian motion started in x 2 R. Let P(a;x) denote the law of � started at time

t = 0 in (a; x) and, for b � 0, denote by P b

(a;x) the law of the related stopped paths f�r^b : r � 0g.

11



We now brie
y describe the de�nition of the Brownian snake with motion process �, following

the construction of the Brownian snake for an arbitrary continuous Markovian motion process

in [20]. Consider a stopped path f 2 P with lifetime �(f) > 0 and such that f(0) = (0; x) as

introduced around (19).

If 0 � a � �(f) and b � a we de�ne Qa;b(f; d ~f) to be the unique probability measure on P such

that

� Qa;b(f; d ~f){almost surely ~f(r) = f(r), for all r 2 [0; a],

� the law under Qa;b(f; d ~f) of f ~f(a+ r) : r � 0g is the law of f�r : r � 0g under P b�a
f(a)

.

This transition can be thought of as follows. From its endpoint �(f), the path f is erased

backwards in the original time until the absolute time a; and then renewed according to the

random motion process �; but stopped at the absolute time b: In particular, Q0;b(f; d ~f) =

P b

(0;x)(d
~f). By convention we also let Q0;b(x; d ~f) := P b

(0;x)(d
~f).

The parameters a; b entering into the transition laws Qa;b are used to control erasing and re-

newal of the paths. In snake constructions, these parameters are determined continuously by

a stochastic process, for the Brownian snake this role is played by a re
ected Brownian mo-

tion. To be more precise, for r; s � 0; denote by #rs(da db) the joint distribution of the pair�
min~s2[0;s] jB~sj; jBsj

�
, where B = fBt : t � 0g is a Brownian motion on R with B0 = r. Note

that #rs
�
(a; b) 2 [0; r]� R : a � b

	 � 1:

The Brownian snake with motion process � and start in (0; x) is de�ned to be the time-

homogeneous continuous strong Markov process w = fws : s � 0g whose transition kernels

are given by

Qs(f; d ~f) =

Z 1

0

Z 1

0

#
�(f)
s (da db)Qa;b(f; d ~f); for s � 0 and f 2 P with f(0) = (0; x);(32)

see [1, Proposition 5]. Recall that the lifetime process � = f�s : s � 0g is de�ned by �s = �(ws).

Under the law of w determined by the transition kernels Qs ; s � 0; the lifetime process � is a

re
ected Brownian motion, just by construction.

To interpret the dynamics of the snake w, observe that if s1 < s2 the path ws2 is obtained from

ws1 by erasing from its endpoint �s1 down to the absolute time m := min[s1;s2] � and adding an

independent tip of length �s2 �m at the end. Figure 1 tries to visualise this. The paths ws1

and ws2 , which are stopped versions of �, have to be chosen to be identical on the time interval

[0;m] (indicated by the thick lines), but to be independent of the intervals [m; �s1 ] and [m; �s2 ];

respectively, except the common starting point ws1(m) = ws2(m): In particular, if m = 0; a new

path is created, starting again in (0; x). In this case the paths do not have a common part, which

means that the reactant particles they represent do not have a common ancestor. This can also

interpreted in the sense that the excursions from (0; x) of the Markov process w correspond to

di�erent families of particles.

To be more precise, note that the constant path (0; x) is a regular recurrent point of the Markov

process w. Denote by N�
x the excursion measure N�

x of w from this path, which is a �-�nite

measure on the spaceW de�ned in (21). Again we can associate with every excursion w : [0; �]!
P a lifetime process �(w) := � := f�s : s 2 [0; �]g. Observe that under the measure N�

x the

process � is a Brownian excursion. Under N�
x ; every excursion w : [0; �] ! P has a �nite life

length �(w) = � > 0, and �s > 0 on (0; �). As usual, N�x is normalised such that

N
�
x

n
sup

s2[0;�]
�s > "

o
=

1

2"
:(33)
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Figure 1. Erasing the path ws1 to renew it to ws2

At this point it is worth looking back at the de�nition of the intensity measures � = �[�] and

�1 in (24) respectively (26) and noting that (33) implies that both are in fact �-�nite measures,

as needed for the de�nition of the Poisson point �elds.

Proof of Theorem 5 (i). Recall that a sample � is �xed. For each measure � 2Mtem we consider

a Poisson point �eld � with intensity measure � as in (24), de�ned on some probability space

(
;A;P��). We have to verify that the process X de�ned on this space by (25) is indeed a

catalytic super-Brownian motion in the medium �, started in �.

For ' 2 �; t > 0; and x 2 R; using � = Æx ; let

Ut' (x) := E
�
Æx

�
exphXt;�'i

	
:(34)

It suÆces to verify the following two points:

(a) U' :=
�
Ut' (x) : t > 0; x 2 R

	
de�nes a nonnegative solution of equation (6).

(b) For all 0 � h < t and ' 2 �,

E
�
�

n
exphXt ;�'i

���Xu ; u � h

o
= exphUt�h';�Xhi:

Fix ' 2 � and t > 0 for the remaining proof. In order to give the proof of (a) we need the

following facts concerning the exit measures Zt[w] of (23) under the excursion measures, see [1,
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Proposition 6]. For x 2 R and 0 � s < t, de�ne

ut(s; x) :=

Z
W

N
�
x (dw)

�
1� exp



Z
t�s[w];�'��;(35)

then ut satis�es the equation

ut(0; x) = E(0;x)

�
'(��t)1f�t<1g

	� 2E(0;x)

nZ �t

0

�
ut(�s)

�2
ds

o
; for x 2 R;(36)

with �t = �t(�) from (17), using ��t 2 @Dt = ftg � R and again the identi�cation of @Dt and

R. On the other hand, by the Laplace functional formula for Poisson point �elds, from (34) and

(25) we have

Ut' (x) =

Z
W

N
�
x (dw)

�
1� exp



Z
t[w];�'��:(37)

Consequently, ut(s; x) = Ut�s' (x): Then (35) and (36) show that

Ut' (x) = E(0;x)

�
'(��t)1f�t<1g

	� 2E(0;x)

nZ �t

0

�
ut(�s)

�2
ds

o
:(38)

Recalling that � with law P(0;x) can by de�nition be expressed by a Brownian motionW starting

at time 0 from x; whose law we denote by P0;x ; and that at time �t = L[�;W ](t) the process � is

in the state
�
t;W (t)

�
; which is identi�ed with W (t); formula line (38) can be rewritten as

Ut' (x) = E0;x
�
'
�
W (t)

�	� 2 E0;x
�Z

L[�;W ](t)

0

h
U
t�L�1

[�;W ]
(s)'

�
W Æ L�1

[�;W ]
(s)
�i2

ds

�
:

We now substitute s for L�1
[�;W ]

(s) in the second summand. Thus

Ut' (x) = E0;x
�
'
�
W (t)

�	� 2 E0;x
nZ t

0

�
Ut�s'

�
W (s)

��2
dL[�;W ](s)

o
:(39)

But this is a probabilistic representation of (6), that is, we have proved (a).

Now we give the proof of (b). Recall that t > 0 and ' 2 � are �xed. By the de�nition

(25) of X; it obeys the branching property, hence it clearly suÆces to consider �nite starting

measures �. The main ingredient is the special Markov property of the exit measures Zt[w] of

the Brownian snake w with respect to its recursion measures N�
x : Instead of giving the most

general statement of this property, we just quote the special case we need, which follows directly

from the formulation in [1, Proposition 7]. In our case, the special Markov property states that,

for all 0 < h < t and x 2 R;

N
�
x

n
exp

�� hZt
; 'i� ���Zu

; u � h

o

= exp

�
�
Z
R

Z
h(dz)

Z
W

N
�
z (dw)

�
1� exp



Z
t�h[w];�'��

�
:(40)

By (37) and (34), the right hand side of (40) equals exp


Zh;�U�

t�h'
�
; and we infer that with

respect to N�
x the conditional distribution of hZt; 'i given fZu : u � hg is equal to the dis-

tribution of hXt�h ; 'i for the starting measure Zh. Now hXt ; 'i can be written as the sum

of a Poissonian number of random variables hZt
i
; 'i, where Zi are independent with distribu-

tion
R
R
N�
x

�
Z[w] 2 �

�� Zh[w] 6= 0
	
�(dx). Hence, the conditional distribution of hXt ; 'i given

fXu ; u � hg is the sum of independent samples of hXt�h ; 'i with starting measures adding

up to Xh . Hence (b) follows from the branching property, and this �nishes the proof of Theo-

rem 5 (i).
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2.2. The Brownian snake representation of the limit process. We now assume that

an arbitrary starting measure � 2 Mtem is �xed and a Poisson point �eld �1 with intensity

measure �1 as in (26) is de�ned on a probability space (
;A;P�). Recall from (33) that �1

is �-�nite and hence the Poisson point �eld is well-de�ned. We de�ne the process X1 on this

space by (27). In this subsection we show, using results of Section 3 below, that this process

has the properties claimed in Theorem 1 (ii) and Corollary 9. The proof of the convergence

Xk ! X1 is deferred to Subsection 2.3 below, which then completes the proof of Theorem

5 (ii).

Proof of Corollary 9. Consider �; t1; : : : ; tn and '1; : : : ; 'n as in the corollary. By the de�nition

(27) of X1; recalling the formula for the Laplace functional of a Poisson point �eld,

E�

n
exp

�
�

nX
i=1

hX1
ti
; 'ii

�o
= E�

n
exp

�
�
Z
W�R

nX
i=1

L
ti
� [w]'i(x)�

1(dw dx)
�o

= exp

�Z
R

Z
Mtem

Z
W

�
exp

��
nX
i=1

L
ti
� [w]'i(x)

�� 1
�
N
�
0 (dw)P(d�)�(dx)

�
:(41)

The total mass process of fXt : t � 0g started in a �nite measure X0 = � has, as is easily seen

by induction using (5), the Laplace transform

E
�
n
exp

��
nX
i=1

cikXti
k�o = exp

�
�
Z
R

U
�
t1;::: ;tn

[c1; : : : ; cn] (z) �(dz)
�

(42)

with U�
t1;::: ;tn

[c1; : : : ; cn] from (30). On the other hand, by the snake representation (25) of X,

this Laplace transform can also be written as

E
�
n
exp

�
�

nX
i=1

cikXti
k
�o

= exp

�Z
R

Z
W

�
exp

��
nX
i=1

ciL
ti
� [w]

�� 1
�
N
�
x (dw) �(dx)

�
:(43)

Comparing (42) and (43) as well as taking expectations with respect to the medium �,

E

Z
R

Z
W

�
exp

��
nX
i=1

ciL
ti
� [w]

�� 1
�
N
�
x (dw) �(dx) = �

Z
R

EU
�
t1;::: ;tn

[c1; : : : ; cn] (z) �(dz):(44)

Specializing to � = Æ0 givesZ
Mtem

Z
W

�
exp

��
nX
i=1

ciL
ti
� [w]

�� 1
�
N
�
0 (dw)P(d�) = �EU�

t1;::: ;tn
[c1; : : : ; cn] (0):(45)

Plugging this into (41) yields the formula stated in Corollary 9.

Proof of Theorem 1 (ii) [subject to the proof of (28), which will be given in Section 3 below.]

We still allow an arbitrary starting measure �, cf. Remark 2. From the de�nition (27) of X1

in terms of the Poisson point �eld �1 it is clear that, for every t > 0, the measure X1
t is

supported by the points of a Poisson point �eld on R with intensity measure�Z
Mtem

N
�
0

�
w : Lt

�[w] > 0
	
P(d�)

�
�(dx):(46)

By the �niteness property (28) the factor in front of the measure � is �nite, say c > 0. Moreover,

the masses of the atoms at these locations are independent with common distribution

1

c

Z
Mtem

N
�
0

�
L
t

�[w] 2 �
	
P(d�):(47)
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This establishes the compound Poisson property.

Suppose that I � R is a bounded interval and t > 0. Again by (28), P�{almost surely, the point

�eld �1 restricted to the set
�
(w; x) 2W�I : Lt

�[w] > 0
	
is supported by �nitely many points

in W� I, say

(w1; x1); : : : ; (wn; xn); with x1 � : : : � xn :(48)

For every s � t, the measure X1
s is supported by the set

�
xi : 1 � i � n; Ls

�[wi] > 0
	
. Hence

atoms cannot move in space. To show that no new atoms can be born it would suÆce to show

that zero is an absorbing state for the process s 7! Ls
�[wi]. However, it is easier to argue via the

Laplace transform of Corollary 9. Indeed, for all s; t > 0,

P�
�
X
1
t (I) = 0

	
= lim

�"1
exp

���(I)EU�
t � (0)

�
= lim

�"1
exp

���(I)EU�
t [� + U

�
s �] (0)

�
(49)

= P�
�
X
1
t (I) = 0 and X

1
t+s(I) = 0

	
since 0 � U�

s � � � and by monotonicity. This shows that zero is an absorbing state for

t 7! X1
t (I) and hence also for t 7! Lt

�[w].

Finally, for the proof that macroscopic clumps have almost surely �nite lifetime, it suÆces to

show that, for every bounded interval I,

lim
t!1

P�
�
X
1
t (I) = 0

	
= lim

t!1
lim
�"1

exp
���(I)EU�

t � (0)
�
= 1 :(50)

This does not depend on the starting measure �, so that we can assume � = `. In this case the

result follows directly from the stronger statement P̀
�
js(t) > 0

	
= (s=t)�, which we prove in

Subsection 4.1 below.

2.3. The functional limit theorem. In this section we prove the weak convergence in

P{probability of the random distributions of Xk[�], as k " 1, which was claimed in Theo-

rem 1 (i). For this purpose we also rescale the catalytic medium, but with a di�erent spatial

scaling, namely

�k( � ) := k
1=(2
)�

� � =
p
k
�
for k > 0:(51)

But note that by self-similarity the rescaled stable medium �k has the same distribution as �.

Our strategy is to look at the distributions of the renormalised process Xk[�k] =
�
Xk
t [�

k] : t �
0
	
with changing medium �k (instead of �); and show, using the representation of Theorem 5 (i),

P{almost surely(!) the weak convergence of the random distributions of Xk[�k]. This clearly

implies weak convergence in P{probability of the random distributions of the rescaled processes

Xk[�] in the unscaled medium.

We start by looking at the case of the constant test function ' � 1. i.e. at the total mass process

t 7! kXk
t k; and start X with the restricted Lebesgue measure, Xk

0 = `(a;b) for a < b real. The

following proposition is the core of our proof of the functional limit theorem. We equip the

space C((0;1);R) with the Polish topology of uniform convergence on compact intervals, which

matches the earlier de�nition of the topology on C((0;1);Mtem).

Proposition 13 (Total mass process). Fix real numbers a < b:

(i) Convergence. P{almost surely, the random laws of the renormalised total mass processes

Xk[�k]


 =

�kXk
t [�

k]k : t > 0
	
with Xk

0 [�
k] = `(a;b) converge weakly on the path space

C
�
(0;1);R

�
as k " 1 to the law of a limit process fX1

t (a; b) : t > 0g.
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(ii) Identi�cation of the limit. Let �1
a;b

be a Poisson point �eld on W with intensity measure

�
1
a;b(dw) := (b� a)

Z
Mtem

N
�
0 (dw)P(d�):

Then the limit process satis�es

X
1
t (a; b) =

Z
W

L
t

�[w] �
1
a;b(dw); for t > 0;(52)

in particular, it is independent of the medium �.

Proof. Fix a < b. To begin with, we infer from (33) that �1
a;b

is �-�nite and hence the Poisson

point �eld �1
a;b

is well-de�ned. We can thus assume that the process X1(a; b) :=
�
X1
t (a; b) :

t > 0
	
is de�ned by (52), and our aim is to show that P{almost surely the processes



Xk[�k]




with Xk
0 [�

k] = `(a;b) converge in law on C
�
(0;1);R

�
to X1(a; b) as k " 1:

The �rst step is to derive a representation of


Xk[�k]



 as a k-independent functional of a

Poisson point �eld, with k-dependent intensity measure. To do this �x k > 0 and the medium

� throughout the �rst step. From the Brownian snake representation of Theorem 5 (i) we infer

that 

Xk

t [�
k]


 = k

��
Z
W

L
kt

� [w] �(dw); for t > 0;(53)

where � = �[�k] is a Poisson point �eld onW with intensity measure
R
k�b

k�a
N�k

x dx. As the total

exit local time Lkt[w] of a snake excursion w does not depend on the second component of the

motion process �, we can equivalently use the intensity measureZ
k�b

k�a

N
Tx�k

0 dx:(54)

We now show that

the distributions of
�
k
��
L
kt

� [w] : t > 0
	
under N

T x�k

0 and

of
�
L
t

�[w] : t > 0
	
under k

��
N
T
x=
p
k�

0 coincide.
(55)

Indeed, a Brownian scaling of time and space yields for the collision local times

L[�k; x+W ](kt) = k
�
L�

�; x=
p
k+W k

�(t); for t > 0;(56)

whereW k is de�ned byW k
t = (1=

p
k )Wtk ; for t � 0. We now de�ne a scalingW!W mapping

w to wk in such a way that

� the lifetime process �k of wk is given by r 7! �kr = k���k2�r ,
� the motion process of wk is �k given as

r 7! �
k

r =
�
L
�1�
�; x=

p
k+W k

�(r); W k Æ L�1�
�; x=

p
k+W k

�(r)�:(57)

Hence, if w has the distribution NT
x�k

0 , then wk has the distribution k��NT
x=
p
k�

0 . Note that

�(wk) = k�2��(w) is the length of the excursion wk. For the stopping times �t we obtain from

the formula lines (56), (57) and (18) the relation

�kt(wu) = k
�
�t
�
w
k

k�2�u

�
; for all u 2 �0; ��; t > 0; w 2W:(58)
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Looking at the total exit local times Lkt

�(w)
[w] and using (22) and (58) and substitutions v =

k�2�u and Æ = k��" gives, for all t > 0,

L
kt

�(w)[w] = lim
"#0

1

"

Z
�

0

1f�kt(wu)<�u<�kt(wu)+"g du

= lim
"#0

1

"

Z
�

0

1n
k��t(w

k

k�2�u
)<�u<k��t(w

k

k�2�u
)+"

o du

= k
2� lim

"#0
1

"

Z
k�2��

0

1f�t(wkv)<k���(k2�v)<�t(wkv)+k��"g dv

= k
� lim

Æ#0
1

Æ

Z
�(wk)

0

1f�t(wkv)<�k(v)<�t(wkv )+Æg dv = k
�
L
t

�(wk)[w
k]:(59)

Hence, (55) is proved, and from (53) and (55) we get the representation



Xk

t [�
k]


 =

Z
W

L
t

�[w] �
k

a;b(dw); for t > 0;(60)

where �k

a;b
= �k

a;b
[�] is a Poisson point �eld on W with intensity measure

�
k

a;b
= �

k

a;b
[�] := k

��
Z

k�b

k�a

N
T
x=
p
k �

0 dx = k
��
Z

k�b

k�a

N
T
x�

0 dx;(61)

with � := � � 1=2 > 0. This �nishes the �rst step in the proof.

Comparing (52) and (60) we note that


Xk[�k]



 and the right hand side in (52) are de�ned by

the same functional of a Poisson point �eld on W, of course with di�erent intensity measures.

To do the second step in the proof and show that P-almost surely the processes


Xk[�k]




converge in law on C

�
(0;1);R

�
to X1(a; b), one has to show, by de�nition of the topol-

ogy on C
�
(0;1);R

�
, that for every compact set I � (0;1), P{almost surely, the pro-

cesses
�kXk

t [�
k]k : t 2 I

	
converge in law on the space C(I;R) with the uniform topology to�

X1
t (a; b) : t 2 I

	
: Clearly, it suÆces to show this for compact sets of the form I = [1=n; n], so

�x an arbitrary positive integer n.

Abbreviate Cn := C([1=n; n];R) and, for w 2 W, let Ln[w] 2 Cn denote the function de�ned

by Ln[w](s) := Ls
�[w] for all s 2 [1=n; n]. By Birkho�'s Individual Ergodic Theorem applied

to the group of spatial shifts acting ergodically on the stable random measure � we obtain, for

each measurable F : Cn ! [0;1), P{almost surely,

lim
k"1

k
��
Z

k�b

k�a

Z
W

F
�
Ln[w]

�
N
Tx�
0 (dw) dx = (b� a)

Z
Mtem

P(d�)

Z
W

F
�
Ln[w]

�
N
�
0 (dw):(62)

De�ne random measures �k on Cn by

�k(B) := k
��
Z

k
�
b

k�a

Z
W

1Bnf0g
�
Ln[w]

�
N
T
x�

0 (dw) dx; for B � Cn Borel.(63)

De�ne, similarly, a measure � on Cn by

�(B) := (b� a)

Z
Mtem

P(d�)

Z
W

1Bnf0g
�
Ln[w]

�
N
�
0 (dw); for B � Cn Borel.(64)

Note that, by (28), �k and � are �nite measures since we did not allow them to have mass at

the zero function in Cn :
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As the space Cn is Polish, there is a countable family fFk : Cn ! [0;1) : k � 1g of continuous
and bounded functions, which are convergence determining for the weak convergence of �nite

measures on Cn . This fact together with (62) implies that P{almost surely the measures �k
converge weakly to the measure � on Cn :

Formula lines (60) and (61) together state that


Xk[�k]



 =
�kXk

t [�
k]k : t 2 [1=n; n]

	
is equal

in law to the sum of all functions in Cn in the support of a Poisson point �eld with intensity

measure �k . By the �niteness of � and elementary properties of Poisson point �elds we infer that

P{almost surely this sum converges in distribution to the sum of all functions in the support

of a Poisson point �eld in Cn with intensity measure �. In other words, P{almost surely, in

distribution on the space Cn with the topology of uniform convergence,

lim
k"1



Xk[�k]


 = lim

k"1

Z
W

Ln[w] �
k

a;b(dw) =

Z
W

Ln[w] �
1
a;b(dw):(65)

This �nishes the proof of the second step and thus proves the statements (i) and (ii) in the

proposition.

In order to be able to deal with the real-valued processes t 7! Xk
t (a; b); started in X0 = `, we use

the crossing property, Theorem 4 (which is proved in Section 3 below) to derive the following

corollary.

Corollary 14 (No mass transport on macroscopic scales). Let (a; b) be a bounded interval and

consider the rescaled processes fXk
t : t > 0g with Xk

0 = `(�1;a) or Xk
0 = `(b;1) . Then, in

P{probability, the processes
�
Xk
t (a; b) : t > 0

	
converge in distribution on C

�
(0;1);R

�
to the

zero function as k " 1.

Proof. By translation and (if needed) re
ection, we see that it is equivalent to show that, in

P{probability, the processes�
X

k

t (a� b; 0) : t > 0
	
; for X0 = `(0;1) ;(66)

converge in distribution on C
�
(0;1);R

�
to the zero function. Now observe that

sup
t�0

X
k

t (a� b; 0) = sup
t�0

k
��
Xkt

�
k
�(a� b); 0

� � k
�� sup

t�0
Xt(�1; 0] ��!

k"1
0;(67)

P�{almost surely, for P{almost all �; by Theorem 4. This �nishes the proof.

We now have the means to complete the proof of Theorem 1 subject to the proof of the crossing

property, Theorem 4, and the �nite mass property (28). We start the processes X in X0 = `

and show the convergence of the rescaled processes Xk to the process X1 de�ned by (27) with

starting mass X1
0 = `.

Let again a < b: Given �; by the branching property, fXk
t (a; b) : t � 0g is the sum

of independent processes started in Xk
0 = `(a;b) , `(b;1) and `(�1;a) . Combining the to-

tal mass convergence, Proposition 13 (i), and Corollary 14 we see that, in P{probability,

the processes
�
Xk
t (a; b) : t � 0

	
converge in distribution on C

�
(0;1);R

�
to the limit process�

X1
t (a; b) : t � 0

	
, which is described in Proposition 13 (ii) and coincides, of course, with the

limit process applied to the interval (a; b).

It remains to lift the result from the indicator functions 1(a;b) to any continuous function

' : R ! [0;1) with bounded support, say the support is contained in (a; b): Let Æ > 0. We
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choose step functions (i.e. linear combinations of indicator functions on bounded, open intervals)

g; h : (a; b)! [0;1) with h � ' � g and kg � hk1 < Æ. Then, for all positive integers n,

sup
1=n� t�n

hXk

t ; hi � sup
1=n� t�n

hXk

t ; 'i � sup
1=n� t�n

hXk

t ; gi:(68)

In P{probability, the left and right hand side as well as sup1=n� t�n hXk
t ; g � hi converge in

distribution as k " 1 to

sup
1=n� t�n

hX1
t ; hi � sup

1=n� t�n

hX1
t ; gi and sup

1=n� t�n

hX1
t ; g � hi; respectively.(69)

Moreover, the latter term is bounded by Æ sup1=n� t�nX
1
t (a; b): As, by Proposition 13 (i), the

process X1(a; b) has almost surely continuous paths, this can be made arbitrarily small by

choice of Æ. Recalling the de�nition of the metric from (1), we see that this implies convergence

of the processes Xk on C
�
(0;1);M(R)

�
. But the states of the limit process are again inMtem ;

because

E`hX1
t ; 'i = h`; 'i <1; for all ' 2 � and t > 0;(70)

recall Theorem 0 (iii), and path continuity. This �nishes the proof.

Remark 15 (Other starting measures). It is possible to start the process X with k{dependent

initial measures X0 = �(k) on R such that Xk
0 � �, where � is a suÆciently di�use measure in

Mtem . For example it is suÆcient to require that � has a continuous density g with the property

that, for some constants a; b � 0,

lim
x"1

Z 1

x

��g(y)� a
�� dy = lim

x#�1

Z
x

�1

��g(y) � b
�� dy = 0:(71)

To show this, observe that one can extend the convergence easily from the case Xk
0 = ` to

Xk
0 = `(a;b) . By uniform approximation from above and below one can then get convergence for

all starting measures satisfying (71). However, the functional limit law does not hold without any

condition for the scaled starting measure �. Starting, for example, with the counting measure

Xk
0 �

P
z2ZÆz does not lead to a limit process that is independent of �. 3

3. The method of good and bad paths

In Subsection 3.1 and 3.2 we formulate a quantitative approach to the method of good and

bad paths extending a recent result of [10]. The main result of this part, Theorem 19, enables

us to prove the crossing property of Theorem 4, in Subsection 3.3, and the compound Poisson

property of Theorem 1 (ii), in Subsection 3.4.

3.1. Regularity of the catalytic medium. In this subsection we introduce a characteristic

quantity N(�), which measures the regularity of the particular sample � of the catalyst. This

is used, in Subsection 3.2 below, to formulate an upper bound on the survival property of the

superprocess X = X[�] either at a �xed time or of an associated stopped measure at a Brownian

stopping time.

Recall from (3) the de�nition of the stable random measure � of index 0 < 
 < 1. For every

n � 1 we denote by �n = �n[�] � R the set of spatial positions of the atoms of � whose weights
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are in [2�n; 2�n+1). Then �n is the support of a homogeneous Poisson point �eld on R with

intensity

In := 2
nc
 ; where c
 :=
1� 2�





Z 1

0

1� e�r

r1+

dr

;(72)

see e.g. [7].

De�nition 16 (p{perfect � samples). Fix a value � 2 (0; 
 log 2) once and forever. Given a

positive integer m and a positive real k, we denote by A(m; k) the event that the maximal

connected component of [�k; k] n �m is shorter than �m := e��m. We call a � sample p{perfect

if it satis�es A(m; k) for all k and m � p. 3

The following lemma is adapted from results of [10].

Lemma 17 (Large gaps in �n(�)). Fix 0 < % < 
 log 2 � � and suppose that k(n) is an in-

creasing sequence of positive reals with log log k(n) = o(n) as n " 1. Then there are constants

c; d > 0 such that, for every N � 1,

P

n
there is an n � N such that A

�
n; k(n)

�
fails

o
� c exp

�� d e%N
�
:(73)

Consequently, neighbouring atoms of � in
��k(n); k(n)� of weight about 2�n are more than �n

away only with an exponentially small probability.

Proof. We write J(n) for the number of points in [�1=2; 1=2] \ �n, then J(n) has a Poisson

distribution with parameter a(n) := c
2

n. Denote x0 the largest point of �n left of [�1=2; 1=2],

moreover x1 � : : : � xJ(n) the points in [�1=2; 1=2] \ �n ; and �nally xJ(n)+1 the smallest point

to the right of the interval. De�ne the distances yk := xk+1 � xk for k = 0; : : : ; J(n). The yk
are independent exponentially distributed random variables with parameter a(n). Following the

arguments in [10, Subsection 5.2] we �nd that there are constants c1; c2; c3 > 0 such that

P

n
J(n) + 1 > 2 a(n)

o
� exp(�c12
n);(74)

and, writing � := 
 log 2� � > 0,

P

n
max

0� i� 2 a(n)
yi > e��n

o
� c2 e

n
 log 2 exp(�c3 e�n):(75)

From this we infer that, for some c4; c5 > 0,

P

n
A(n; 1=2) fails

o
� c4 exp(�c5 en�):(76)

This is invariant under shifts of the interval (�1=2; 1=2) and thus, by adding up the events, we

obtain for some c6 ; c7 > 0, and all n � 1,

P

n
A
�
n; k(n)

�
fails

o
� c4k(n) exp

�� c5 e
�n
� � c6 exp

�� c7 e
%n
�
:(77)

Finally, we can add up the events A
�
n; k(n)

�
over all n � N and �nd a suitable c and d := c7 ,

such that the statement (73) holds.

De�nition 18 (Characteristic N(�)). Fix k(n) := exp exp
p
n for n � 1 and de�ne the char-

acteristic N(�) of the sampled medium � by

N(�) := min
�
N � 1 : A

�
n; k(n)

�
holds for all n � N

	
:(78)

Using the Borel-Cantelli Lemma and Lemma 17, one can see that N(�) is a well-de�ned integer,

P{almost surely. 3
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3.2. An upper bound on the survival probability. In this subsection we determine an

upper bound on the survival probability of a super-Brownian motion in a �xed catalytic medium

sample � with characteristic N(�). The approach taken here is similar to the key technique of

[10], in particular we also work in a historical setting and use a decomposition into good and bad

reactant paths, but we have to make a more quantitative approach. Moreover, our argument

does not rely on the compact support property of X[�]. The most crucial point is that we work

out explicitly how the upper bound of the survival probability depends on N(�).

For the further development, we presuppose the reader is familiar with basic ideas and the

formalism of historical catalytic super-Brownian motion. Here we closely follow the presentation

of [10]. Denote by Y = fYt : t � 0g the historical super-Brownian motion in the catalytic

medium � with starting measure � 2 Mtem de�ned on a probability space (
;G;P��); if there
is no danger of confusion we omit � or � from the notation, that is, we write simply P and E .

At the same time we use, for any �nite Brownian stopping time T , Dynkin's stopped measure

YT and the pre-T �-�eld G(T ) for the historical superprocess as introduced in [14] and reviewed

in [10, Subsection 3.2]. We suppose that W = fWs : s � tg under the distribution Pt;x is a

Brownian path started at Wt = x.

The central result of this subsection is the following theorem. For its formulation we extend the

de�nition (15) of the collision local time L[W;�](s) for s � t to Brownian paths W distributed

according to Pt;x meaning the collision local time of W and � on the time interval [t; s]. We

introduce two formal hypotheses H1 and H2 on an increasing sequence Tn " T < 1 of Brow-

nian stopping times with T0 = 0. Suppose positive integers d and p, a sequence of positive

thresholds ln and small reals "1 ; "2 > 0 are given.

H1: The sequence of stopping times satis�es the hypothesis H1(d; "1) in x 2 R if

1X
n=0

2n+1P0;x

n
sup

Tn�s�Tn+1

jWsj > k(n+ d)
o
� "1 :(79)

H2: For every nonnegative integer n, de�ne the set B(n) of bad paths for the catalytic medium

� on the random time interval [Tn ; Tn+1] as the set of paths W satisfying

Z
Tn+1

Tn

L[W;�](ds) < ln :(80)

The sequence of stopping times satis�es the hypothesis H2(p; ln ; "2) in x 2 R if, in every

p{perfect medium �, we have for x0 = 0 and any xn in the range of W (Tn),

1X
n=0

PTn ;xn fW 2 B(n)g � "2 :(81)

Here is the announced result on the survival probability.

Theorem 19 (Upper bound on survival probability). Suppose T0 = 0 and Tn " T < 1 is a

sequence of Brownian stopping times, � a unit starting mass for Y; supported by a compact

interval I and " > 0 is �xed. Suppose further there are nonnegative integers m and d and a

sequence of thresholds ln > 0 such that

1X
n=0

2�m�n

ln
� "

3
;(82)
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and the hypotheses H1

�
d; ("=3)2m

�
and H2(m+ d; ln ; "=6) are satis�ed in any x 2 I. Then, for

P{almost every � with N(�) � m and for the stopped measure YT , we have

P
�
2�m�

fYT 6= 0g � ":(83)

The remainder of this subsection is devoted to the proof of this theorem. We work with a �xed

catalyst � with characteristic N = N(�) and use the notation from the theorem, additionally

abbreviating Mn := 2�m�n for the �xed m. We start with a simple lemma taken from [10,

Subsection 3.4].

Lemma 20 (Extinction by partitioning). De�ne events An :=
�kYTnk �Mn

	
and A :=

\1
n=1An . Then, for every � 2Mtem(R), we have P

�
� {almost surely on A that YT = 0.

Proof. By Markov's inequality, for each n � 1 and arbitrary � > 0,

P
�
�

��kYT k > �
	 \A� � �

�1
E
�
�

�
1AnkYT k

	
(84)

and, by the special Markov property,

E
�
�

�
1AnkYT k

	
= E

�
�

�
1AnE

�
YTn

fkYT kg
	
= E

�
�

�
1AnkYTnk

	 �Mn :(85)

As n was arbitrary, we infer that

P
�
�

��kYT k > �
	 \A� = 0;(86)

and as � can be made arbitrarily small, we get the statement.

The idea now is to divide the set of paths W alive at time Tn+1 in two classes: the good paths,

which have accumulated a large amount of collision local time in the time interval [Tn ; Tn+1],

and the bad paths, which have not. Formally, de�ne the set E(n) of good paths on the interval

[Tn ; Tn+1] with respect to the medium � as the set of paths W , which are not bad, i.e. where

inequality (80) fails. For the good paths we use the comparison with the survival probability in

Feller's branching di�usion from [10, Proposition 12].

Lemma 21 (Comparison with Feller's branching di�usion). For all n � 0, and every � in

Mtem(R), we have, for P{almost every �,

P
�
�

n
YTn+1

�
E(n)

�
> 0

��� G(Tn)
o
� kYTnk

ln
:(87)

The lemma above takes care of the good paths, and it remains to show, that there are not too

many bad paths. To show this we use H1 and H2 . There are two possible reasons, why a path

could be bad on [Tn ; Tn+1] for the medium �, namely the occurrence of one of the following two

disjoint events.

Event B1(n): the set of paths, that leave the interval
��k(d+n); k(d+n)� during [Tn ; Tn+1]

and thus enter an area where we have no control over the atoms,

Event B2(n): the set of paths, that stay inside the interval
� � k(d + n); k(d + n)

�
but for

which the collision local time accumulated during [Tn ; Tn+1] is below the threshold ln .

Note that in case of event B2(n), if n � N(�), the path stays in an area, where the medium

coincides with an (N + d){perfect medium. It is clear that we have the decompositions

suppYTn+1
� E(n) [B(n) and B(n) � B1(n) [B2(n):(88)

The following lemma provides estimates for the extinction probability of the bad paths.
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Lemma 22 (Mass of bad paths). Consider the historical superprocess Y with the starting mea-

sure � = 2�m�. Then, for P{almost every � with N(�) � m;

(i)

1X
n=0

P
�
�

n
YTn+1

�
B1(n)

� �Mn+1

o
� "

3
;

(ii)

1X
n=0

P
�
�

n
YTn+1

�
B2(n)

� �Mn+1

��� kYTnk �Mn

o
� "

3
:

Proof. The proof is based on the expectation formula for the historical mass on a set B of

stopped paths W : [0; Tn+1]! R. If B depends only on
�
W (s) : s � Tn

	
, we have

E
�
�

�
YTn+1

(B)
�� YTn	 =

Z
R

P
Tn ;

~W (Tn)
fW 2 BgYTn(d ~W );(89)

see e.g. [10, (37)]. From Markov's inequality, the expectation formula and (79), we infer,

1X
n=0

P
�
�

n
YTn+1

�
B1(n)

� �Mn+1

o
�

1X
n=0

M
�1
n+1 E

�
�

n
YTn+1

�
B1(n)

�o
(90)

=

1X
n=0

M
�1
n+12

�m P0;x

n
sup

Tn�s�Tn+1

jWsj > k(d+ n)
o
� "

3
;

which is (i). Note that every path W 62 B1(n) spends the time [Tn ; Tn+1] inside a compact

interval in which the medium � coincides with an (m + d){perfect medium ��. Hence we can

use the bound in (81) together with Markov's inequality, the special Markov property and the

expectation formula (89) to see that,

1X
n=0

P
�
�

n
YTn+1

�
B2(n)

� �Mn+1

��� kYTnk �Mn

o

�
1X
n=0

M
�1
n+1 E

��
�

n
E
��
n
YTn+1

�
B2(n)

� ��� YTn
o ��� kYTnk �Mn

o

�
1X
n=0

M
�1
n+1 E

��
�

nZ
P
Tn ;

~W (Tn)

�
W 2 B2(n)

	
dYTn(

~W )
��� kYTnk �Mn

o
� "

3
;

which is (ii). This ends the proof of the lemma.

Now recall Lemma 20 and in particular the de�nition of the sets An and A. Lemmas 21 and 22

provide the ingredients we need to bound P�� (A
c) by ", for the starting measure � = 2�m�. Note
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that the event A0 has probability one. Hence, for P{almost all � with N(�) � m,

P
�
� (A

c) =

1X
n=0

P
�
�

�
A0 \ � � � \An \Ac

n+1

�
(91a)

�
1X
n=0

P
�
�

n
YTn+1

�
B1(n)

� �Mn+1

o
(91b)

+

1X
n=0

P
�
�

n
YTn+1

�
B2(n)

� �Mn+1

��� kYTnk �Mn

o
(91c)

+

1X
n=0

P
�
�

n
YTn+1

�
E(n)

� �Mn+1

��� kYTnk �Mn

o
:(91d)

Now, by Lemma 22, the series in (91b) and (91c) are each bounded by "=3. By Lemma 21, we

obtain for (91d), using (82),

1X
n=0

P
�
�

n
YTn+1

�
E(n)

� �Mn+1

��� kYTnk �Mn

o
�

1X
n=0

Mn

ln
� "

3
:(92)

Hence P�� (A
c) � " and, by Lemma 20, this implies the statement of the theorem.

3.3. The crossing property. In this section we prove Theorem 4. The following lemma

constitutes the main step in the proof.

Lemma 23 (Decay of crossing probability). There is an integer m depending only on the char-

acteristic N(�) of the catalytic medium �, such that, for all suÆciently large x,

P
�
2�mÆx

nZ 1

0

Xt(�1; 0] dt > 0
o
� 1

x3=2
:(93)

The lemma is proved by choosing the right ingredients for the use of the survival probability

bound of Theorem 19. As a preparation for the proof, de�ne the Brownian stopping time T to

be the �rst hitting time of level 0, then the event we are interested in is the survival of YT . We

denote

d := d(x) :=
h
log

�
1 +

5

2
log x

�i2
:(94)

Observe that d(x) is growing slower than logarithmically as x " 1. We say that x is suÆciently

large if x � 1 and

d(x) � log x

4(log 2 + �)
:(95)

Fix x suÆciently large, let � = Æx and " = 1=x3=2. To de�ne the remaining quantities for

Theorem 19, we �rst leave the integer parameter m open and de�ne Tn and ln in terms of m.

Recall that � < � < 2� and de�ne

dn :=
e(���)n

1� e���
=

1

"(m)
exp

�
(�� �)(n+m)

�
; where "(m) :=

e(���)m

1� e���
:(96)

De�ne barriers

x0 = x and xn+1 = xn � xdn :(97)
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As
P1

n=1 dn = 1, we have xn # 0, and we can de�ne an increasing sequence of hitting times

Tn := inf
�
t > 0 : B(t) = xn

	
;(98)

so that T = limn"1 Tn . Finally de�ne

ln := x
3=2

mn
2 2�n�m:(99)

Lemma 23 follows from Theorem 19 if we verify (82) and the conditions H1

�
d; ("=3)2m

�
and

H2(m+d; ln ; "=6) in x for " = 1=x3=2 and a suitable m, which we choose at the end of the proof.

The next lemma prepares the veri�cation of hypothesis H1 .

Lemma 24 (Escape probability). For all integers n;m � 0, the events

D0 := D0(n) :=
n
W : sup

t2[Tn ;Tn+1]

jWtj > k(d+ n+m)
o

(100)

have probability

PTn ;xn
�
W 2 D0(n)

	 � 2

x3=2
exp(� exp

p
n+m ):(101)

Proof. To begin with, note that d is chosen in such a way that, for all n � 0,

x
5=2 � exp exp

p
d+ n

exp exp
p
n

=
k(d+ n)

k(n)
:(102)

A Brownian path starting in xn is in D0 if and only if it hits level k(d + n +m) before xn+1 .

The probability of this event is

PTn ;x
�
W 2 D0(n)

	 � xdn

k(d+ n+m)� xn+1
(103)

� 2x

k(d+ n+m)
� 2

x3=2k(n+m)
;

where we have used (102), dn � 1 and xn+1 � k(d+ n+m)=2.

We observe that hypothesis H1

�
d; ("=3)2m

�
is veri�ed in x if m is chosen such that

1X
n=0

2n+2 exp
�� exp

p
n+m

� � 2m

3
;(104)

however, there will be other constraints on m coming from hypothesis H2 and we turn to the

veri�cation of this hypothesis now. For this purpose, letm be arbitrary and �x an (m+d){perfect

medium �. Recall � < � < 2� and �x � < Æ < 2�. Let

an := x
7=4 eÆnm e�m:(105)

To estimate the probability from above that a path W is bad in [Tn ; Tn+1] it suÆces to consider

a special hitting strategy: As the medium is (m + d){perfect we can select, for every l � m,

atoms of mass in [2�l�d; 2�l�d+1) in such a way that all neighbouring atoms have distance

in [�l+d=2; 3�l+d=2], we call this set of atoms ~�l = ~�l(x). During [Tn ; Tn+1] we only count

collisions with the atoms ~�n+m . If a path is bad on [Tn ; Tn+1], i.e. if (80) holds, this must be

due to one of the following two events.

Event D1(n): the set of paths such that during the time interval [Tn ; Tn+1] the number of

collisions with the catalytic atoms of ~�n+m is too small, say less than an ,
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Event D2(n): the set of paths such that it takes more than an visits to the chosen atoms

before the collision local time exceeds the threshold ln .

Note that B(n) � D1(n) [ D2(n) and hence we have to check the probability that a single

Brownian path encounters one of these two events. Note, that the constants � > 0 and C0; : : : ; C3

in the following two lemmas only depend on our �xed choices �; �; Æ and nothing else.

Lemma 25 (Probability of Event D1(n)). We de�ne a sequence f�jg of Brownian stopping

times by �0 := Tn and, for j � 1,

�j := inf
n
t � �j�1 : Wt hits ~�n+m n fW�j�1

g
o

(106)

and denote

Kn := maxfj : �j � Tn+1g:(107)

There is a � > 0 and constants C0; C1 > 0 such that, for all integers n � 0, the events

D1 := D1(n) := fW : Kn � ang(108)

have probability

PTn ;xn
�
W 2 D1(n)

	 � C0 exp
�� C1a

�

n

�
:(109)

Proof. The indicated probability is bounded above by the probability that a simple random walk

Sn de�ned on a probability space (
;A; P ) needs less than an = x7=4m eÆn+�m steps to cross

the level

xdn

(1=2)�d+n+m

� 2x

"(m)
e�(n+m)

:(110)

By the re
ection principle,

P

n
max

1� k� an

Sk >
2x

"(m)
e�(n+m)

o
� 2P

n
San �

2x

"(m)
e�(n+m)

o
:(111)

We �x a 0 < �0 < 1=2 such that Æ(1 � �0) � � and (7=4)(1 � �0) � 1. By the re�nement of

Cram�er's Theorem given in [13, (3.7.1)] for �xed �0 < �1 < 1=2 and c = 2(1 � e���) there is a
constant C0 > 0 such that, for all integers k,

P

n
Sk � ck

1��0
o
� C0 exp

�
� k

1�2 �1(c2=2)
�
:(112)

Our choice of �0 and c is such that

2x

"(m)
e�(n+m) � ca

1��0
n :(113)

Hence we can use (112) and put � := 1� 2 �1 > 0 to get

P

n
San >

2x

"(m)
e�(n+m)

o
� C0 exp

�
� a

�

n(c
2
=2)

�
;(114)

which is the required estimate with C1 := 2(1� e���)2.

Lemma 26 (Probability of Event D2(n)). For a Brownian path W started in xn we denote by

fyi =W�i
: 1 � i � ang the sequence of atoms in ~�n+m hit by the path. De�ne

Li :=

Z
�i+1

�i

L
yi(ds):(115)
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There are constants C2 > 0 and C3 > 0 such that, for all integers n � 0, the events

D2(n) :=
n
W :

anX
i=1

2�(d+n+m)
Li < ln

o
(116)

have probability

PTn ;xn
�
W 2 D2(n)

	 � C2 exp
�� C3an

�
:(117)

Proof. By scaling, fLig is bounded below by a sequence f~Lig of independent, identically dis-

tributed positive random variables de�ned on a probability space (
;A; P ) such that the distri-

bution of ~Li=�n+m+d is independent of d; n and m. Hence,

PTn ;x
�
W 2 D2(n)

	 � P

n anX
j=1

2�n�m�d ~Lj < ln

o

� P

n 1

an

anX
j=1

~Lj

�n+m+d

<
2n+m+dln

an�n+m+d

o
:(118)

Note that, for all n;m 2 N and x > 0,

2n+m+dln

an�n+m+d
=

n22d e�d

e(Æ��)nx1=4
� n

2e(��Æ)n �! 0; as n " 1;(119)

using that 2de�d � x1=4 by (95). Hence, by Cram�er's Theorem, the right hand side in (118) is

bounded above by C2 exp(�C3an), for suitable constants C2; C3 > 0.

Completion of the proof of Lemma 23. It is now time to choose the value of m large enough

such that m � N(�) and the following set of conditions is satis�ed, for " = 1=x3=2:

(120a)

1X
n=0

2n+2 exp
�� exp

p
n+m

� � 2m

3
; (120b)

1X
n=0

C0 exp
��C1 a

�
n

� � "

12
;

(120c)

1X
n=0

C2 exp(�C3 an) � "

12
; (120d)

1X
n=1

1

mn2
� 1

3
:

Note that an is a multiple of x7=4 and hence m can be chosen independently of x. We have

already seen in (104) that (120a) impliesH1

�
d; ("=3)2m

�
. Moreover, (120b) and (120c) together

with Lemmas 25 and 26 imply condition H2(m + d; ln ; "=6) and, �nally (120d) is (82). Hence

Lemma 23 follows from Theorem 19.

Completion of the proof of the crossing property, Theorem 4. We use the branching property

and the result of Lemma 23 to see that, for suÆciently large integers x,

P
�
2�m`[x;x+1]

nZ 1

0

Xt(�1; 0] dt = 0
o
= exp

�Z
x+1

x

log P�2�mÆy

nZ 1

0

Xt(�1; 0] dt = 0
o
dy

�

� exp
� Z x+1

x

log
�
1� y

�3=2�
dy

�
� 1� 1

x3=2
:(121)

Hence P�
2�m`[x;x+1]

fR1
0

Xt(�1; 0] dt > 0g is summable over all positive integers x. Hence, by

the Borel-Cantelli Lemma, there exists some random integer K > 0 such that the process X
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started in 2�m`[K;1] has the property
R1
0

Xt(�1; 0] dt = 0. Repeating this argument 2m times

independently and taking the maximal value of K one can see that it remains to argue that

sup
t�0

Xt(�1; 0] <1; for X0 = `[0;K] :(122)

Because the process X with �nite starting measure with compact support has the �nite time

extinction property, by[10, Theorem 6], there is a random time T > 0 such Xt = 0 for all t � T .

By continuity of the process, �nally, Xt(�1; 0] is bounded on [0; T ] and we are done.

3.4. The compound Poisson property. In this section we prove Theorem 1 (ii). The follow-

ing lemma constitutes the main step in the proof.

Lemma 27 (Lower bound for extinction). For every time t > 0 there is a constant � = �(t) >

0, such that for P{almost all �,

P
�
`[0;1]

�
Xt = 0

	 � �
(2N(�))

:(123)

To prove Lemma 27 by application of Theorem 19 we proceed similarly as in [10]. We �x t, leave

the integer parameter m open for a while and de�ne deterministic times Tn and thresholds ln in

terms of m. We �rst let

"(m) :=
�2
t

1X
n=m

e(���)n
�1=3

:(124)

We then de�ne mn := [e�(n+m)="(m)] and sn := e��(n+m)="(m)2 (here [� ] denotes the integer
part). Put

T0 := 0 and Tn+1 := Tn + 2mnsn :(125)

Note that t � T := limn"1 Tn . Finally de�ne

�ln := mn

p
sn 2

�n
:(126)

We later de�ne ln to be a constant multiple of �ln . Lemma 27 follows from Theorem 19 if we

verify (82) and the hypotheses H1(d; ("=3)2
m) and H2(m+ d; ln ; "=6) in all x 2 [0; 1] for d = 0,

" = 1=2 and a suitable integer m, which we choose at the end of the proof. Indeed, de�ne

� := (1=2)(2
m) > 0. By the branching property and Theorem 19 we obtain, for M = m+N(�),

P
�
`[0;1]

�
Xt = 0

	 � �
P
�
`
[0;1]2�M

�
Yt = 0

	�(2M )

� (1=2)(2
M ) = �

(2N(�))
;(127)

which is the statement of Lemma 27.

To prepare the veri�cation of the hypotheses we formulate three lemmas. The constants

C0; : : : ; C3 in these lemmas depend only on the �xed values of � and �. The �rst lemma is

the main ingredient in the veri�cation of hypothesis H1 .

Lemma 28 (Escape probability). There is a constant C0 > 0 such that, for all starting points

x 2 [0; 1] and all integers n;m � 0, the events

D0 := D0(n) :=
n
W : sup

s2[Tn ;Tn+1]

jWsj > k(n+m)
o

(128)

have probability

P0;x

�
W 2 D0(n)

	 � C0 exp
�� exp

p
n+m

�
:(129)
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Proof. Recall that the random variable sup0�s�t jWsj has �nite �rst moment. Hence, using

Markov's inequality, there is a constant C0 > 0, depending only on t, such that

P0;x

n
sup

Tn�s�Tn+1

jWsj > k(n+m)
o
� P0;x

n
sup
0�s�t

jWsj > k(n+m)
o
� C0 exp(� exp

p
n+m )

for all x 2 [0; 1] and n;m � 0.

We conclude that H1

�
d; ("=3)2m

�
holds if m is chosen such that

1X
n=0

C0 2
n+1 exp

�� exp
p
n+m

� � 1

6
2m:(130)

Again further restrictions on m follow from the veri�cation of H2 . For this purpose let �

be an m{perfect medium and de�ne the set ��n+m consisting of the atoms of � with mass in

[2�n�m; 2�n�m+1). Note that the neighbouring pairs of atoms in ��n+m are no further than

�n+m apart. For our estimate we consider on the interval [Tn ; Tn+1] only the collisions with

the atoms of ��n+m . In fact, we can even restrict our view to a selection of collisions chosen

according to a special strategy of [10], which is based on our choice of the sequences sn > 0 of

small times and mn of positive integers. Heuristically, on the interval [Tn ; Tn+1] the strategy

suggests to wait until the Brownian particle hits the �rst atom of ��n+m , count the collision local

time with this particular atom for sn time units and then wait for the next collision with ��n+m .

This procedure is iterated until mn atoms are visited. A visualisation of this procedure can be

found in [16, Figure 5]. The path W is good on [Tn ; Tn+1] unless one of the following two events

has taken place.

Event D1(n): the set of paths for which in our strategy the waiting times between the

collisions with the catalytic atoms of ��n+m are too long, so that we have less than mn

visits during the time interval [Tn ; Tn+1],

Event D2(n): the set of paths for which the collision local time accumulated duringmn visits

of the path to the chosen atoms is below the threshold ln .

Lemma 29 (Probability of Event D1(n)). We de�ne a sequence f�ng of Brownian stopping

times by �0 := Tn and, for j � 1,

�j := ��j + sn ; where ��j := inf
�
s � �j�1 : Ws hits ��j+m

	
;(131)

and denote waiting times by Hm := ��m � �m�1. There is a constant C1 > 0 such that, for all

starting points x and integers n � 0, the events

D1(n) :=
n
W :

mnX
j=1

Hj � mnsn

o
(132)

have probability

PTn ;x
�
W 2 D1(n)

	 � C
�1
1 mn exp

�
� C1sn

�2
n+m

�
:(133)

Proof. This is estimate (93) in [10].

Lemma 30 (Probability of Event D2(n)). There are constants C2 > 0 and C3 > 0 with the

property that, for all starting points x and integers n � 0, the events

D2(n) :=
n
W :

Z
�mn

Tn

L[W;�](dr) < C2
�ln

o
(134)
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have probability

PTn ;x
�
W 2 D2(n)

	 � exp
�� 2C3mn

�
:(135)

Proof. This is estimate (99) in [10].

Completion of the proof of Lemma 27. It is now clear that with the threshold value ln = C2
�ln

we have the decomposition

B(n) � D1(n) [D2(n):(136)

Having provided the estimates for the probability of a path being bad, it is now time to make

precise the value of m. We choose m large enough such that the following set of conditions is

satis�ed
1X
n=0

C0 2
n+1 exp

�� exp
p
n+m

� � 1

6
2m;(137a)

1X
n=m

1

C1

e�n

"(m)
exp

�
� C1

e�n

"(m)2

�
� 1

12
;(137b)

1X
n=m

exp
�
� 2C3

e�n

"(m)

�
� 1

12
;(137c)

1

C2
2�m "(m)2 e(�=2��)m

1X
n=0

e(�=2��)n � 1

6
:(137d)

Note that it is possible to �nd such an m: For (137a) this is trivial, for (137c) this is due to

the fact that "(m) # 0 and for (137d) note that � > �=2. For (137b) it suÆces to check that,

for a; b � 1, the function x 7! (a=x) exp(�b=x2) is increasing on the interval (0; 1). Hence

hypothesis H1(0; 2
m=6) holds by (137a), see(130), and H2(m; ln ; 1=12) holds by (137b), (137c)

together with Lemmas 29 and 30. Finally, (137d) is (82). This �nishes the proof.

Completion of the proof of the compound Poisson property, Theorem 1 (ii). Fixing t > 0 and a

starting measure `(a;b), for (a; b) an interval of unit length, we have to show that the measure

�
1(dw dx) =

Z
b

a

Z
Mtem

N
�
0 (dw)
 Æy(dx)P(d�) dy(138)

is �nite on the set

S =
n
(w; x) 2W� (a; b) : Lt

�[w] > 0
o
:(139)

Then the snake representation Theorem 5 (ii) of the limit process describes a compound Poisson

point �eld on (a; b) with underlying Poisson intensity �(t) := �1(S). To prove �niteness of �(t)

we have to show that the following expression is �nite

�(t) = E

n
N
�
0

�
w : Lt

�[w] > 0
	o

= E

nZ 1

0

N
�
x

�
w : Lt

�[w] > 0
	
dx

o
;(140)

where we have used the fact that the distribution of Lt
�[w] under N

�
x is independent of x. To

interpret the integrand on the right hand side of (140) recall the snake representation in Theorem

5 (i). The process X started in X0 = `[0;1] has become extinct at time t if and only if a Poisson
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point �eld with intensity
R 1
0
N
�
x

�
w : Lt[w] > 0

	
dx has the value 0, the probability of this event

is

exp
�
�
Z 1

0

N
�
x fw : Lt

� > 0g dx
�
:(141)

This reduces our task to showing that

E

n
� log P�`[0;1]

�
Xt = 0

	o
<1:(142)

We now apply Fubini's Theorem to rewrite

E

n
� logP�`[0;1]

�
Xt = 0

	o
=

Z 1

0

P

n
� log P�`[0;1]

�
Xt = 0

	
> a

o
da(143)

=

Z 1

0

P

n
P
�
`[0;1]

�
Xt = 0

	
< e�a

o
da:

Hence our problem can be formulated asZ 1

0

P

n
P
�
`[0;1]

�
Xt = 0

	
< e�a

o
da <1:(144)

Here comes the key idea of our proof: With respect to the random medium � the eventn
P
�
`[0;1]

�
Xt = 0

	
< e�a

o
(145)

can only occur if � has unusually low density, or equivalently, if the points in the Poisson point

�elds �n introduced before (72) are unusually far apart. This can be expressed in terms of the

quantity N(�). In fact, by Lemma 27,

P
�
`[0;1]

�
Xt = 0

	 � exp
�
(log �)2N(�)

�
;(146)

and hence, the latter event implies

(log �)2N(�)
< �a () N(�) >

1

log 2
log

��a= log �� :(147)

We can now use the estimate (73) obtained in the large gaps lemma, Lemma 17, for the quantity

N(�), Z 1

0

P

n
P
�
`[0;1]

�
Xt = 0

	
< e�a

o
da(148)

�
Z 1

0

P

n
N(�) >

1

log 2
log

��a= log ��o da
� c

Z 1

0

exp

�
� d exp

h
(%= log 2) log

��a= log �� i
�
da

� c0 + c1

Z 1

0

exp
�� c2a

c3
�
da <1;

using suitable constants c0; c1; c2; c3 > 0. This proves (144), and Theorem 1 (ii) is established.

4. Properties of the macroscopic clumps

In this section we prove the various parts of Theorem 10. Part (i) and, perhaps surprisingly,

part (ii) can be obtained by soft arguments, whereas part (iii) requires a new approach based on

a Feynman-Kac formula for the solutions of (6).
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4.1. The extinction probability of the clumps. In this subsection we prove Theorem 10 (i)

and (ii). From the de�nition of the renormalised processes (9) we infer, for all k; l > 0 and t � 0,

X
kl

t (B) = k
��
l
��
X(kt)l

�
l
�(k�B)

�
; for B � R Borel.(149)

Chosing any continuity set B � R and letting l " 1 we obtain the self-similarity property

X
1
t (B) = k

��
X
1
kt (k

�
B) in distribution,(150)

�rst for all continuity sets B � R and then, by approximation, for all Borel sets B � R. This

proves Theorem 10 (i) and is also the key to part (ii). By the compound Poisson structure of

X1
t the Laplace functionals have the form

E`

n
exp

���X1
t (0; a)

�o
= exp

�
� �(t) a

�
1� �t(�)

��
;(151)

where �(t) is the intensity of the Poisson point �eld underlying the compound Poisson point

�eld and �t is the Laplace functional of the weights of an atom. Using (150) one obtains

exp
�
� �(t) a

�
1� �t(�)

��
= E`

n
exp

���X1
t (0; a)

�o
= E`

n
exp

���k��X1
kt (0; k

�
a)
�o

(152)

= exp
�
� �(kt)k�a

�
1� �kt(�k��)

��
:

We infer that �(t) = k��(kt) and �t(�) = �kt(�k��). The former expression gives us the

decay of the intensity �(t) = t���(1) of the Poisson point �eld, the latter yields the equality in

distribution of jt(t) and (t=s)�js(s). Using �(s)P̀
�
js(t) > 0

	
= �(t) for t > s, we infer that

the survival probabilities of the clumps satisfy

P̀
�
js(t) > 0

	
=
�
s

t

��
and P̀

�
X
1
t (0; a) > 0

	 � �(1) a

t�
; as a " 1;(153)

where the latter form is obtained by conditioning on the number of clumps in an interval.

4.2. The tail behaviour of the clump size. This subsection is devoted to the proof of

Theorem 10 (iii). We �rst note that it suÆces to give the proof for a �xed value of t, because

the particular dependence on t, which is claimed in Theorem 10 (iii), already follows from the

self-similarity of the process
�
jt(t) : t > 0

	
proved in Subsection 4.1.

We use the Feynman-Kac representation of the solutions U� := U�� of (12),

Ut� (y) = � � 2

Z
t

0

ds

Z
R

ps(x� y)
�
Ut�s� (x)

�2
�(dx);(154)

in order to obtain the tail asymptotics of the mass clumps. Recall that this equation can also

be written probabilistically as

Ut� (y) = � � 2 Ey
nZ t

0

�
Ut�s� (Ws)

�2
L[�;W ](ds)

o
;(155)

where Es;y is used to indicate expectation with respect to a Brownian motionW started at time s

in y, Ey := E0;y ; and L[�;W ] is the collision local time between � and W , as de�ned in (15).

Lemma 31 (Feynman-Kac-representation). For each �xed � the family U =
�
Ut� (y) : t �

0; y 2 R
	
is a solution of (154) if and only if it is a solution of

Ut� (y) = � Ey
n
exp

�
� 2

Z
t

0

Ut�s� (Ws)L[W;�](ds)
�o
; for t � 0; y 2 R:(156)
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Proof. Fix �: We �rst show that every solution of (156) solves (154). It suÆces to consider

� = 1, as the dependence on � is simple. Let U =
�
Ut(y) : t � 0; y 2 R

	
be a bounded solution

of equation (156), which is continuous in t. By the fundamental theorem of calculus,

exp
h
� 2

Z
t

0

Ut�r(Wr)L[W;�](dr)
i

(157)

= 1� 2

Z
t

0

Ut�s(Ws) exp
h
� 2

Z
t

s

Ut�r(Wr) dL[W;�](r)
i
L[W;�](ds):

Taking expectations,

Ut(y)� 1 = �2 Ey
nZ t

0

Ut�s(Ws) exp
h
� 2

Z
t

s

Ut�r(Wr) dL[W;�](r)
i
L[W;�](ds)

o
:(158)

The Markov property (and a glance at the de�nition of Stieltjes integrals) allows us to continue

this with

= �2 Ey
�Z

t

0

Ut�s(Ws) EWs

n
exp

�
� 2

Z
t�s

0

Ut�s�r(Wr) dL[W;�](r)
�o

L[W;�](ds)

�
(159)

= �2 Ey
nZ t

0

�
Ut�s(Ws)

	2
L[W;�](ds)

o
= �2

Z
R

�(dx)

Z
t

0

ps(y � x)
�
Ut�s(x)

�2
ds;

which is the formula we had to prove.

To show conversely that every solution Ut(y) of (154) solves (156), we start with the formula

2

Z
t

0

exp
�
� 2

Z
s

0

Ut�r(Wr)L[�;W ](dr)
�h
Ut�s(Ws)� 1

i
Ut�s(Ws)L[�;W ](ds)(160)

= �
Z

t

0

�
Ut�s(Ws)� 1

�
ds

�
exp

�
� 2

Z
s

0

Ut�r(Wr)L[�;W ](dr)
��

:

We take the expectation, use (155), apply the Markov property as before, and �nally use Fubini's

Theorem to see

Ey
n
2

Z
t

0

exp
�
� 2

Z
s

0

Ut�r(Wr)L[�;W ](dr)
� �

Ut�s(Ws)
�2

L[�;W ](ds)
o

� 2 Ey
nZ t

0

exp
�
� 2

Z
s

0

Ut�r(Wr)L[�;W ](dr)
�
Ut�s(Ws)L[�;W ](ds)

o

= �Ey
�Z

t

0

Es;Ws

n
� 2

Z
t

s

�
Ut�v(Wv)

�2
L[�;W ](dv)

o
ds

�
exp

�
� 2

Z
s

0

Ut�r(Wr)L[�;W ](dr)
���

= Ey
n
2

Z
t

0

Z
t

s

�
Ut�v(Wv)

�2
L[�;W ](dv)ds

�
exp

�
� 2

Z
s

0

Ut�r(Wr)L[�;W ](dr)
��o

= Ey
n
2

Z
t

0

Z
v

0

ds

�
exp

�
� 2

Z
s

0

Ut�r(Wr)L[�;W ](dr)
�� �

Ut�v(Wv)
�2
L[�;W ](dv)

o

= Ey
n
2

Z
t

0

h
exp

�
� 2

Z
v

0

Ut�r(Wr)L[�;W ](dr)
�
� 1

i �
Ut�v(Wv)

�2
L[�;W ](dv)

o
:
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From this and (155) we infer that

Ey
n
2

Z
t

0

exp
�
� 2

Z
s

0

Ut�v(Wv)L[�;W ](dv)
�
Ut�s(Ws)L[�;W ](ds)

o
(161)

= Ey
n
2

Z
t

0

�
Ut�r(Wr)

�2
L[�;W ](dr)

o
= 1� Ut(y):

By the fundamental theorem once more, expression (161) equals

1 + Ey
n
� exp

�
� 2

Z
t

0

Ut�r(Wr)L[�;W ](dr)
�o
;(162)

from which (156) follows.

We now aim for upper and lower bounds of EUt� (0), which give the tail asymptotic of the clump

sizes by means of a Tauberian theorem. From (12) one immediately sees that Ut� (y) � � and

hence EUt� (0) � �. Now plugging the estimate into (12) leads only to a trivial lower bound for

EUt� (y). A better lower bound is obtained by means of the Feynman-Kac representation.

Lemma 32 (Asymptotic behaviour of EUt�). For every t > 0 there are positive, �nite con-

stants C1 = C1(t) and C2 = C2(t), such that

� � C1(t) �

+1 � EUt� (0) � � � C2(t) �


+1
; for all � 2 (0; 1):(163)

Proof. We �x t > 0. Plugging Ut� (y) � � into the Feynman-Kac-representation (156) yields,

Ut� (y) � � Ey
n
exp

�� �L[W;�](t)
�o

for all y 2 R;(164)

Taking expectation with respect to the medium and using the Laplace functional formula (3)

for stable random measures gives

EUt� (0) � � E E0
n
exp

�
� 2 �L[W;�](t)

�o
= � E0 exp

�
� 2
�


Z
R

Lx(t)
 dx
�

� �

�
1� 2
�
 E0

Z
R

Lx(t)
 dx
�

= � � �
+12

Z
R

E0
�
Lx(t)


	
dx:

(165)

We now show that

C1(t) := 2

Z
R

E0
�
L
x(t)


	
dx = t


�




 + 1

2
(�+1)p
�

G

�



2

�
<1;(166)

where G denotes the Gamma function. Indeed, for x; y > 0 the density function of Lx(t) at y is

given by
p
2=�t exp

��(x+ y)2=2t
�
. HenceZ

R

E0
�
L
x(t)


	
dx =

r
8

�t

Z 1

0

y



Z 1

y

exp(�z2=2t) dz dy(167)

=

r
8

�t

Z 1

0

y
+1


 + 1
exp(�y2=2t) dy;

using integration by parts. One can get the result by substituting x = y2=2t and recalling the

de�nition of the Gamma function G.

To obtain the upper bound �x t > 0. We use (164) in (156) and obtain

Ut� (y) � � Ey
�
exp

�
� 2 �

Z
t

0

EWs

n
exp

�
� 2 �L[ ~W;�](t� s)

�o
L[W;�](ds)

��
:(168)
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Next we write � =
P1

j=1 ajÆxj and use Jensen's inequality,

EUt� (0) � � E E0
�
exp

�
� 2 �

Z
t

0

L[W;�](ds) EWs

�
exp

�� 2 �L[ ~W;�](t� s)
�	��

� � E E0
�
exp

�
� 2 �

1X
i=1

ai

Z
t

0

L
xi(ds) Exi

�
exp

�� 2 �

1X
j=1

ajL
xj (t� s)

�	��

� � E E0
�
exp

�
� 2 �

1X
i=1

ai

Z
t

0

L
xi(ds)

h
exp

�� 2 �

1X
j=1

aj ExifLxj (t� s)g�i�
�
:

(169)

Using monotonicity we can continue the estimate with

� E E0
�
exp

�
� 2 �

1X
i=1

ai

Z
t

0

L
xi(ds)

h
exp

�� 2 �

1X
j=1

aj ExifLxj (t� s)g�i�
�

� � E E0
�
exp

�
� 2 �

1X
i=1

ai L
xi(t)

h
exp

�� 2 �

1X
j=1

aj ExifLxj (t)g�i�
�

� � E E0
�
exp

�
� 2 �

X
jxij�1

ai L
xi(t)

h
exp

�� 2 �

1X
j=1

aj ExifLxj (t)g�i�
�
:

(170)

Now we split the sum in the innermost exponential into the sum over the atoms xj inside,

respectively outside, the unit ball. Recall that

Exi
�
L
xj (t)

	
= f(t; xi � xj) for f(t; x) :=

Z
t

0

1p
2�s

exp
�
� x2

2s

�
ds:(171)

For the atoms xj inside the unit ball we use the estimate

Exi
�
L
xj (t)

	 � c0 :=

r
2t

�
;(172)

which gives

� E E0
�
exp

�
� 2 �

X
jxij�1

ai L
xi(t)

h
exp

�� 2 �

1X
j=1

aj ExifLxj (t)g�i�
�

(173)

� � E E0
�
exp

�
� 2 �

X
jxij�1

ai L
xi(t)

h
exp

�
� 2 �c0

X
jxj j� 1

aj

�

exp
�
� 2 �

X
jxj j> 1

ajf
�
t; jxj j � 1

��i��
:

Now denote

L1 :=
X

jxj j� 1

aj and L2 :=
X

jxj j> 1

aj f(t; jxj j � 1) =

Z
R

~f d�;(174)

for ~f(x) = 1fjxj>1g f
�
t; jxj � 1

�
. Under P the random variables L1 and L2 are independent,

almost surely �nite, and stable of index 
. We infer that, for arbitrary �xed c > 0, the event

A :=
n

inf
jxj�1

L
x(t) � c

o
\
n
L2 �

1

�

o
\
n1
�
� L1 �

2

�

o
(175)
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has (annealed) probability

EP0(A) = E0
n

inf
jxj�1

Lx(t) � c

o
P

n
L2 �

1

�

o
P

n1
�
� L1 �

2

�

o

� E0
n

inf
jxj�1

Lx(t) � c

o�
1� c1�



��
c2�



� � c3�


 ;

(176)

for a suitable choice of the constants c1; c2; c3 > 0. On A we have

exp
�
� 2 �cL1 exp

�� 2 �c0L1

�
exp

�� 2 �L2

��

� exp
�
� 2 �e�2cL1 exp

�� 2 �c0L1

�� � exp
�
� 2e�2c e�4c0

�
< 1 :

(177)

We can thus continue the estimate (173) with

� E E0
�
exp

�
� 2 �

X
jxij�1

aiL
xi(t)

h
exp

�
� 2 �c0

X
jxj j� 1

aj

�
exp

�
� 2 �

X
jxj j> 1

ajf(t; jxj j � 1)
�i��

� � � � E E0
n
1A

�
1� exp

h
� 2 �cL1 exp

�� 2 �c0L1

�
exp

�� 2 �L2

�i�o
(178)

� � � � EP0(A)
�
1� exp

�� 2e�2c e�4c0
��

= � � C2�

+1

;

by (176) for a suitable choice of C2 = C2(t) > 0. This �nishes the proof.

The bounds for EUt� in Lemma 32 translate easily into bounds for the Laplace transform

�t(�) = E`

�
exp

��� jt(t)�	 ; for � � 0;(179)

of the mass of a clump alive at a macroscopic time t.

Lemma 33 (Asymptotic behaviour of �t). For all t > 0, as � # 0,

1� 1

�(t)
� +

C2(t)

�(t)
�

+1 � �t(�) = 1� 1

�(t)
� +

C1(t)

�(t)
�

+1

:(180)

Proof. Using the Laplace transform of a general compound Poisson point �eld,

EUt� (0) = � logE`

�� �X
1
t [0; 1]

	
= �(t)

�
1� �t(�)

�
;(181)

hence the statement follows by applying Lemma 32 and the scaling relation of �(t).

Finally, to get the tail behaviour we observe that Theorem 10 (iii) follows directly from the

previous lemma together with the following version of the Tauberian Theorem of Bingham and

Doney, see [2, Theorem 8.1.6] for the original statement. Here we can apply the relation �
occurring in Theorem 10 (iii) in a t{independent situation.

Lemma 34 (Tauberian Theorem). Suppose � is a nonnegative random variable de�ned on a

probability space (
;A; P ) with positive and �nite mean m and Laplace transform �. Then

�(�)� �
1�m�

� � �

+1

; as � # 0;(182)

implies

Pf� > xg � 1

x
+1
; as x " 1:(183)
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Proof. We denote F (x) := Pf� � xg and

h(x) :=
1

m

Z 1

x

�
1� F (y)

�
dy :(184)

Then, using integration by parts twice and then plugging in the assumption,Z 1

0

e��xh(x) dx =
1

�
� 1

�m

Z 1

0

e��x
�
1� F (x)

�
dx(185)

=
1

�
� 1

�m

1� �(�)

�
� �


�1
:

We now apply the Tauberian Theorem of de Haan and Stadtm�uller [2, Theorem 2.10.2] to inferZ
x

0

h(y) dy � x
1�


; as x " 1:(186)

Next we use the O-version of the Monotone Density Theorem [2, Proposition 2.10.3] twice to

conclude

�rst that h(x) � x
�
 and then 1� F (x) � 1

x
+1
; as x " 1;(187)

as claimed.
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