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A sample-paths approach to noise-induced synchronization:

Stochastic resonance in a double-well potential

Nils Berglund and Barbara Gentz

Abstract

Additive white noise may signi�cantly increase the response of bistable systems to a

periodic driving signal. We consider two classes of double-well potentials, symmetric

and asymmetric, modulated periodically in time with period 1=", where " is a moder-

ately (not exponentially) small parameter. We show that the response of the system

changes drastically when the noise intensity � crosses a threshold value. Below the

threshold, paths are concentrated near one potential well, and have an exponentially

small probability to jump to the other well. Above the threshold, transitions between

the wells occur with probability exponentially close to 1=2 in the symmetric case, and

exponentially close to 1 in the asymmetric case. The transition zones are localised in

time near the points of minimal barrier height. We give a mathematically rigorous

description of the behaviour of individual paths, which allows us, in particular, to

determine the power-law dependence of the critical noise intensity on " and on the

minimal barrier height, as well as the asymptotics of the transition and non-transition

probabilities.
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1 Introduction

Since its introduction as a model for the periodic appearance of the ice ages [BPSV],

stochastic resonance has been observed in a large number of physical and biological sys-

tems, including lasers, electronic circuits and the sensory system of cray�sh (for reviews of

applications, see for instance [MW]).

The mechanism of stochastic resonance can be illustrated in a simple model. Consider

the overdamped motion of a particle in a double-well potential. The two potential wells

describe two macroscopically di�erent states of the unperturbed system, for instance cold

and warm climate. The particle is subject to two di�erent kinds of perturbation: a deter-

ministic periodic driving force (such as the periodic variation of insulation caused by the

changing eccentricity of the earth's orbit), and an additive noise (modeling the random

in�uence of the weather). Each of these two perturbations, taken by itself, does not pro-

duce any interesting dynamics (from the point of view of resonance). Indeed, the periodic

driving is assumed to have too small an amplitude to allow for any transitions between the

potential wells in the absence of noise. On the other hand, without periodic forcing, addi-

tive noise will cause the particle to jump from one potential well to the other at random
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times. The expected time between transitions is given asymptotically, in the small noise

limit, by Kramers' time, which is proportional to the exponential of the barrier height H

over the noise intensity squared, namely e
H=�2 . When both perturbations are combined,

however, and their amplitudes suitably tuned, the particle will �ip back and forth between

the wells in a close to periodic way. Thus the internal noise can signi�cantly enhance the

weak external periodic forcing, by producing large amplitude oscillations of the system,

hence the name of resonance.

The choice of the term �resonance� has been questioned, as �it would be more appropri-

ate to refer to noise-induced signal-to-noise ratio enhancement� [Fox]. In the regime of a

periodic driving whose amplitude is not a small parameter, one also speaks of noise-induced

synchronization [SNAS]. Appreciable, though still sub-threshold amplitudes of the peri-

odic driving have the advantage to enable transitions for small noise intensities, without

requiring astronomically long driving periods.

While the heuristic mechanism of stochastic resonance is rather well understood, a

complete mathematical description is still lacking, though important progress has been

made in several limiting cases. Depending on the regime one is interested in, several

approaches have been used to describe the phenomenon quantitatively. The simplest ones

use a discretization of either time or space. When the potential is considered as piecewise

constant in time, the generator of the autonomous case can be used to give a complete

solution [BPSV], showing that resonance occurs when driving period and Kramers' time

are equal. Alternatively, space can be discretized in order to obtain a two-state model,

which is described by a Markovian jump process [ET]. The two-state model has also been

realised experimentally by an electronic circuit, called the Schmitt trigger [FH, McNW].

In physical experiments, one has often access to indirect characteristics of the dynamics,

such as the power spectrum, which displays a peak at the driving frequency. The strength

of the resonance is quanti�ed through the signal-to-noise ratio (SNR), which is proportional

to the area under the peak (this de�nition obviously leaves some liberty of choice). The

SNR has been estimated, in the limit of small driving amplitude, by using spectral theory

of the Fokker�Planck equation [Fox, JH], or a �rate� equation for the probability density

[McNW]. The signal-to-noise ratio is found to behave like e
�H=�2 =�4, which reaches a

maximum for �2 = H=2.

The probability density of the process, however, only gives part of the picture, and

a more detailed understanding of the behaviour of individual paths is desirable. Some

interesting progress in this direction is found in [Fr]. The approach applies to a very general

class of dynamical systems, in the limit of vanishing noise intensity. When the period of

the forcing scales like Kramers' time, solutions of the stochastic di�erential equation are

shown to converge to periodic functions in the following sense: The Lp-distance between

the paths and the periodic limiting function converges to zero in probability as the noise

intensity goes to zero. Due to its generality, however, this approach does not give any

information on the rate of convergence of typical paths to the periodic function, nor does

it estimate the probability of atypical paths. Also, since the period of the forcing must scale

like Kramers' time, the assumed small noise intensity goes hand in hand with exponentially

long waiting times between interwell transitions.

In the present work, we provide a more detailed description of the individual paths'

behaviour, for small but �nite noise intensities and driving frequencies. We consider two

classes of one-dimensional double-well potentials, symmetric and asymmetric ones. The

height of the potential barrier is assumed to become small periodically, which allows us to
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Figure 1. A typical solution of the SDE (1.1) in the case of the symmetric potential (1.2).

Heavy curves indicate the position of the potential wells, which approach each other at

integer times. The straight line is the location of the saddle. Parameter values " = 0:01,

� = 0:08 and a0 = 0:02 belong to the regime where the transition probability between

wells is close to 1=2. We show that transitions are concentrated in regions of order
p
�

around the instants of minimal barrier height.

consider situations where the period need not be exponentially large in 1=�2 for transitions
between the wells to be likely.

In the case of an asymmetric potential, we are interested, in particular, in determining

the optimal noise intensity as a function of the driving frequency and the minimal barrier

height, guaranteeing a close-to-periodic oscillation between both wells. We will estimate

both the deviation (in space and time) of typical paths from the limiting periodic function,

and the asymptotics of the probability of exceptional paths. The case of a symmetric

potential shows an additional feature. For the right choice of the noise intensity, transitions

become likely once per period, at which time the �new� well is chosen at random. We will

again estimate the deviation from a suitable reference process and the asymptotics of the

probability of exceptional paths.

The systems are described by stochastic di�erential equations (SDEs) of the form

dxs = �
@

@x
V (xs; s) ds+ � dWs; (1.1)

where Ws is a Brownian motion. The potential V (x; s) is 1="-periodic in s, and admits

two minima for every value of s. The frequency ", the minimal barrier height between

the wells and the noise intensity � are considered as (moderately) small parameters, the

relation between which will determine the transition probability.

The �rst class of potentials we consider is symmetric in x. A typical representative of

this class is the potential

V (x; s) = �
1

2
a("s)x2 +

1

4
x4; with a("s) = a0 + 1� cos(2�"s). (1.2)

Here a0 > 0 is a parameter controlling the minimal barrier height. We introduce the slow

time t = "s for convenience. The potential has two wells, located at �

p
a(t), separated by

a barrier of height
1

4
a(t)2. The distance between the wells and the barrier height become

small simultaneously, at integer values of t.

3



Our results for symmetric potentials can be summarized as follows:

� In the deterministic case � = 0, we describe the dependence of solutions on t, a0 and

" (Theorem 2.1). Solutions starting at x > 0 are attracted by the potential well atp
a(t), which they track with a small lag. If a0 > "

2=3, this lag is at most of the order

"=a0; if a0 6 "
2=3, it is at most of the order "

1=3, but solutions never approach the

saddle closer than a distance of order "1=3 (even if a0 = 0).

� When noise is present, but � is small compared to the maximum of a0 and "
2=3, the

paths are likely to track the solution of the corresponding deterministic di�erential

equation at a distance of order �=maxfjtj;pa0; "
1=3g (Theorem 2.2). The probability

to reach the saddle during one time period is exponentially small in �2
=(maxfa0; "2=3g)2.

� If � is larger than both a0 and "
2=3, transitions between potential wells become likely,

but are concentrated on the time interval [�
p
�;
p
� ] (repeated periodically). During

this time interval, the paths may jump back and forth frequently between both potential

wells, and they have a typical spreading of the order �=maxfpa0; "
1=3g. After timep

�, the paths are likely to choose one of the wells and stay there till the next period

(Theorem 2.4). The probability to choose either potential well is exponentially close

to 1=2, with an exponent of order �3=2
=", which is independent of a0 (Theorem 2.3).

� This picture remains true when � is larger than both
p
a0 and "

1=3, but note that the

spreading of paths during the transition may become very large. Thus increasing noise

levels will gradually blur the periodic signal.

These results show a rather sharp transition to take place at � = maxfa0; "2=3g, from a

regime where the paths are unlikely to switch from one potential well to the other one, to

a regime where they do switch with a probability exponentially close to 1=2 (Fig. 1).

The second class of potentials we consider is asymmetric, a typical representative being

V (x; s) = �1

2
x
2
+

1

4
x
4 � �("s)x: (1.3)

This is a double-well potential if and only if j�j < �c = 2=(3
p
3). We thus choose �("s) =

�(t) of the form

�(t) = �(�c � a0) cos(2�t): (1.4)

Near t = 0, the right-hand potential well approaches the saddle at a distance of order
p
a0,

and the barrier height is of order a
3=2
0

. A similar encounter between the left-hand potential

well and the saddle occurs at t = 1=2.

Our results for asymmetric potentials can be summarized as follows:

� In the deterministic case, solutions track the potential wells at a distance at most of

order minf"=a0;
p
"g. If a0 6 ", they never approach the saddle closer than a distance

of order
p
" (Theorem 2.5).

� When � is small compared to the maximum of a
3=4
0

and "
3=4, paths are likely to track the

deterministic solutions at a distance of order �=maxf
p
jtj; a1=4

0
; "

1=4g (Theorem 2.6).

The probability to overcome the barrier is exponentially small in �
2
=(maxfa3=4

0
; "

3=4g)2.
� For larger �, transitions become probable during the time interval [��2=3

; �
2=3

]. Due

to the asymmetry, the probability to jump from the less deep potential well to the

deeper one is exponentially close to one, with an exponent of order �4=3
=", while paths

are unlikely to come back (Theorem 2.7).

� This picture remains true when � is larger than both a
1=4
0

and "
1=4, but the spreading

of paths during the transition may become very large.
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Figure 2. A typical solution of the SDE (1.1) in the case of the asymmetric potential (1.3).

The upper and lower heavy curves indicate the position of the potential wells, while the

middle curve is the location of the saddle. Parameter values " = 0:005, � = 0:08 and

a0 = 0:005 belong to the regime where the transition probability between wells is close to

1. We show that transitions are concentrated in regions of order �
2=3 around the instants

of minimal barrier height.

Again, we �nd a rather sharp transition to take place, this time at � = max fa
3=4
0

; "
3=4g. In

contrast to the symmetric case, for large � the paths are likely to jump from one potential

well to the other at every half-period (Fig. 2).

In both the symmetric and the asymmetric case, we thus obtain a high switching

probability between the potential wells even for small noise intensities, provided minimal

barrier height and driving frequency are su�ciently small. They only need, however, to be

smaller than a power of �: a0 � � and " � �
3=2 in the symmetric case, and a0 � �

4=3,

" � �
4=3 in the asymmetric case are su�cient conditions for switching dynamics.

Our results require a precise understanding of dynamical e�ects, and the subtle in-

terplay between the probability to reach the potential barrier, the time needed for such

excursions, and the total number of excursions with a chance of success. In this respect,

they provide a substantial progress compared to the �quasistatic� approach, which con-

siders potentials that are piecewise constant in time. Note that some of our results may

come as a surprise. In particular, neither the width (in time) of the transition zone nor

the asymptotics of the transition probability depend on the minimal barrier height a0. In

fact, the picture is independent of a0 as soon as a0 is smaller than "
2=3 (in the symmetric

case) or " (in the asymmetric case), even for a0 = 0. This is due to the fact that when

a0 is small, the time during which the potential barrier is low is too short to contribute

signi�cantly to the transition probability.

The remainder of this paper is organized as follows. The results are formulated in detail

in Section 2, Subsection 2.2 being devoted to symmetric potentials, and Subsection 2.3 to

asymmetric potentials. Section 3 contains the proofs for the symmetric case, while Section 4

contains the proofs for the asymmetric case.
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2 Results

2.1 Preliminaries

We consider non-autonomous SDEs of the form (1.1). Introducing the slow time t = "s

allows to study the system on a time interval of order one. When substituting t for "s,

Brownian motion is rescaled and we obtain an SDE

dxt =
1

"
f(xt; t) dt+

�p
"
dWt; xt0 = x0; (2.1)

where f is the force, derived from the potential V , and fWtgt>t0 is a standard Wiener

process on some probability space (
;F ;P). Initial conditions x0 are always assumed to

be square-integrable with respect to P and independent of fWtgt>t0 . Without further

mentioning we always assume that f satis�es the usual (local) Lipschitz and bounded-

growth conditions which guarantee existence and pathwise uniqueness of a strong solution

fxtgt of (2.1). Under these conditions, there exists a continuous version of fxtgt. Therefore
we may assume that the paths ! 7! xt(!) are continuous for P-almost all ! 2 
.

We introduce the notation P
t0;x0 for the law of the process fxtgt>t0 , starting in x0

at time t0, and use E
t0 ;x0 to denote expectations with respect to P

t0;x0 . Note that the

stochastic process fxtgt>t0 is an inhomogeneous Markov process. We are interested in �rst

exit times of xt from space�time sets. Let A � R � [t0; t1] be Borel-measurable. Assuming

that A contains (x0; t0), we de�ne the �rst exit time of (xt; t) from A by

�A = inf
�
t 2 [t0; t1] : (xt; t) 62 A

	
; (2.2)

and agree to set �A(!) =1 for those ! 2 
 which satisfy (xt(!); t) 2 A for all t 2 [t0; t1].

For convenience, we shall call �A the �rst exit time of xt from A. Typically, we will consider
sets of the form A = f(x; t) 2 R � [t0; t1] : g1(t) < x < g2(t)g with continuous functions

g1 < g2. Note that in this case, �A is a stopping time1 with respect to the canonical

�ltration of (
;F ;P) generated by fxtgt>t0 .
Before turning to the precise statements of our results, let us introduce some notations.

We shall use

� dye for y > 0 to denote the smallest integer which is greater than or equal to y, and

� y_ z and y^ z to denote the maximum or minimum, respectively, of two real numbers

y and z.

� If '(t; ") and  (t; ") are de�ned for small " and for t in a given interval I, we write

 (t; ") � '(t; ") if there exist strictly positive constants c� such that c�'(t; ") 6
 (t; ") 6 c+'(t; ") for all t 2 I and all su�ciently small ". The constants c� are

understood to be independent of t and " (and hence also independent of quantities like

� and a0 which we consider as functions of ").

� By g(u) = O(u) we indicate that there exist Æ > 0 and K > 0 such that g(u) 6 Ku

for all u 2 [0; Æ], where Æ and K of course do not depend on " or on the other small

parameters a0 and �. Similarly, g(u) = O(1) is to be understood as limu!0 g(u) = 0.

Finally, let us point out that most estimates hold for small enough " only, and often only

for P-almost all ! 2 
. We will stress these facts only where confusion might arise.

1For a general Borel-measurable set A, the �rst exit time �A is still a stopping time with respect to the

canonical �ltration, completed by the null sets.
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2.2 Symmetric case

We consider in this subsection the SDE (2.1) in the case of f being periodic in t, odd in

x, and admitting two stable equilibrium branches, with a �barrier� between the branches

becoming small once during every time period. A typical example of such a function is

f(x; t) = a(t)x� x3 with a(t) = a0 + 1� cos 2�t: (2.3)

We will consider a more general class of functions f : R 2 ! R , which we assume to satisfy

the following hypotheses:

� Smoothness: f 2 C4(M;R ), where M = [�d; d ]� R and d > 0 is a constant;

� Periodicity: f(x; t+ 1) = f(x; t) for all (x; t) 2M;

� Symmetry: f(x; t) = �f(�x; t) for all (x; t) 2M;

� Equilibrium branches: There exists a continuous function x? : R ! (0; d ] with the

property that f(x; t) = 0 in M if and only if x = 0 or x = �x?(t);
� Stability: The origin is unstable and the equilibrium branches �x? are stable, that is,

for all t 2 R ,

a(t) := @xf(0; t) > 0

a?(t) := @xf(x
?(t); t) < 0:

(2.4)

� Behaviour near t = 0: We want the three equilibrium branches to come close at integer

times. Given the symmetry of f , the natural assumption is that we have an �avoided

pitchfork bifurcation�, that is,

@xxxf(0; 0) < 0

a(t) = a0 + a1t
2 +O(t3);

(2.5)

where a1 > 0 and @xxxf(0; 0) are �xed (of order one), while a0 = a0(") = O"(1) is a
positive small parameter. Is is easy to show that x?(t) behaves like

p
a(t) for small t,

and admits a quadratic minimum at a time t? = O(a0). Moreover, a?(t) � �a(t) near
t = 0.

We can choose a constant T 2 (0; 1=2) such that the derivatives of a(t) and x?(t)

vanish only once in the interval [�T; T ]. We �nally require that x?(t), a(t) and a?(t)

are bounded away from zero outside this interval. We can summarize these properties

as

x?(t) �

8><>:
p
a0 for jtj 6 pa0

jtj for
p
a0 6 jtj 6 T

1 for T 6 t 6 1� T ,

(2.6)

a(t) �

8><>:
a0 for jtj 6 pa0
t2 for

p
a0 6 jtj 6 T

1 for T 6 t 6 1� T ,

(2.7)

a?(t) � �a(t) for all t. (2.8)

We start by considering the deterministic equation

"
dxdett

dt
= f(xdett ; t): (2.9)
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Without loss of generality, we may assume that xdett starts at time �1+T in some xdet�1+T >

0. Tihonov's theorem [Gr, Ti], applied on the interval [�1 + T;�T ], implies that xdett

converges exponentially fast to a neighbourhood of order " of x?(t). We may thus assume

that xdet�T = x?(�T )+O("). In fact, since x? is decreasing at time �T , we may even assume

that xdet�T � x?(�T ) � ".

The motion of xdett in the interval [�T; T ] is described in the following theorem.

Theorem 2.1 (Deterministic case). The solution xdett and the curve x?(t) cross once

and only once during the time interval [�T; T ]. This crossing occurs at a time ~t satisfying
~t� t? � ("=a0) ^ "1=3. There exists a constant c0 > 0 such that

xdett � x?(t) �

8>><>>:
"

t2
for �T 6 t 6 �c0(

p
a0 _ "1=3)

� "

t2
for c0(

p
a0 _ "1=3) 6 t 6 T ,

(2.10)

and thus xdett � jtj in these time intervals. For jtj 6 c0(
p
a0 _ "1=3),

xdett �
(p

a0 if a0 > "2=3

"1=3 if a0 6 "2=3.
(2.11)

Finally, the linearization of f at xdett satis�es

�a(t) := @xf(x
det
t ; t) � �(t2 _ a0 _ "2=3): (2.12)

We give the proof in Subsection 3.1. The relation (2.11) may be surprising, since it

means that no matter how small we make a0, x
det
t never approaches the saddle at x = 0

closer than a distance of order "1=3. This fact can be intuitively understood as follows.

Even if a0 = 0 and near t = 0, we have

"
dxdet

dt
> �const (xdet)3 ) xdett > const

xdett0q
1 + (xdett0

)2(t� t0)="
: (2.13)

Since xdett0
� "1=3 for t0 � �"1=3, xt cannot approach the origin signi�cantly during any

time interval of order "1=3. After such a time, however, the repulsion of the saddle will

make itself felt again, preventing the solution from further approaching the origin. In other

words, the time interval during which a(t) is smaller than "2=3 is too short to allow the

deterministic solution to come close to the saddle.

We return now to the SDE (2.1) with � > 0. Assume that we start at some deterministic

x�1+T > 0. Theorem 2.3 in [BG] shows that the paths are likely to track the deterministic

solution xdett with the same initial condition at a distance of order �1�Æ for any Æ > 0 (with

probability > 1 � (1="2) expf�const=�2Æg), as long as the equilibrium branches are well

separated, that is, at least for �1 + T 6 t 6 �T . A transition between the potential wells

is thus unlikely if � = O(jlog "j�1=2Æ), and interesting phenomena can only be expected

between the times �T and T . Upon completion of one time period, i. e., at time T , the

Markov property allows to repeat the above argument. Hence there is no limitation in

considering the SDE (2.1) on the time interval [�T; T ], with a �xed initial condition x�T
satisfying x�T � x?(�T ) � ". We will denote by xdett and xt, respectively, the solutions of

(2.9) and (2.1) with the same initial condition x�T .

8



Figure 1. Solutions of the SDE (2.1) with symmetric drift term (2.3), shown for two

di�erent noise intensities, but for the same realization of Brownian motion. Heavy curves

represent the equilibrium branches �x?(t), and the straight line represents the saddle.

Smooth light curves are solutions of the deterministic equation (2.9) tracking the potential

wells with a small lag, while rugged curves are paths of the SDE. Parameter values are

" = 0:01, a0 = 0:02, � = 0:02 (left) and � = 0:08 (right).

Let us start by describing the dynamics in a neighbourhood of xdett . The main idea is

that for � su�ciently small, the typical spreading of paths around xdett should be related

to the variance v(t) of the solution of (2.1), linearized around xdett . This variance is given

by

v(t) =
�2

"

Z t

�T
e2�(t;s)=" ds; where �(t; s) =

Z t

s

�a(u) du. (2.14)

The variance is equal to zero at time �T , but behaves asymptotically like �2=j2�a(t)j. In

fact, if we de�ne the function

�(t) :=
1

2j�a(�T )j e
2�(t;�T )="+

1

"

Z t

�T
e2�(t;s)=" ds; (2.15)

then v(t) di�ers from �2�(t) by a term that becomes negligible as soon as j�(t;�T )j is
larger than a constant times "jlog "j. �(t) has the advantage to be bounded away from zero

for all t, which avoids certain technical problems in the proofs. We shall show that

�(t) � 1

t2 _ a0 _ "2=3
for jtj 6 T . (2.16)

We introduce the set

B(h) =
�
(x; t) : jtj 6 T; jx� xdett j < h

p
�(t)

	
; (2.17)

and denote by �B(h) the �rst exit time of xt from B(h).

Theorem 2.2 (Motion near the stable equilibrium branches). There exists a con-

stant h0, depending only on f , such that

� if �T 6 t 6 �(pa0 _ "1=3) and h < h0t
2, then

P
�T;x�T ��B(h) < t

	
6 C(t; ") exp

�
�1

2

h2

�2

�
1�O(")�O

�
h

t2

���
; (2.18)
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� if �(pa0 _ "1=3) 6 t 6 T and h < h0(a0 _ "2=3), then

P
�T;x�T ��B(h) < t

	
6 C(t; ") exp

�
�1

2

h2

�2

�
1�O(")�O

�
h

a0 _ "2=3

���
: (2.19)

In both cases,

C(t; ") =
1

"2
j�(t;�T )j+ 2: (2.20)

We give the proof in Subsection 3.2. This result has several consequences. Observe �rst

that the exponential factors in (2.18) and (2.19) are very small as soon as h is signi�cantly

larger than �. The prefactor C(t; ") (which, unlike the exponent, we do not believe to

be optimal) leads to subexponential corrections, which are negligible as soon as h=� >

O(jlog "j). It mainly accounts for the fact that the probability for a path to leave B(h)
increases slowly with time. The theorem shows that the typical spreading of paths around

xdett is of order

�
p
�(t) � �

jtj _ pa0 _ "1=3
: (2.21)

If � � a0 _ "2=3, we may choose h� � for all times, and thus the probability of leaving a

neighbourhood of xdett , let alone approach the other stable branch, is exponentially small

(in �2=(a0 _ "2=3)2). On the other hand, if � is not so small, (2.18) can still be applied to

show that a transition is unlikely to occur before a time of order �
p
�. Figure 3 illustrates

this phenomenon by showing typical paths for two di�erent noise intensities.

Let us now assume that � is su�ciently large to allow for a transition, and examine

the transition regime in more detail. We will proceed in two steps. First we will estimate

the probability of not reaching the saddle at x = 0 during a time interval [t0; t1]. The

symmetry of f implies that for any t > t1 and x0 > 0,

P
t0;x0

�
xt < 0

	
=

1

2
P
t0;x0

�
9s 2 (t0; t) : xs = 0

	
=

1

2
� 1

2
P
t0;x0

�
xs > 0 8s 2 [t0; t]

	
>

1

2
� 1

2
P
t0;x0

�
xs > 0 8s 2 [t0; t1]

	
: (2.22)

In the second step, we will show, independently, that paths are likely to leave a neigh-

bourhood of x = 0 after time
p
�. Thus if the probability of not reaching x = 0 is small,

the probability of making a transition from the positive well to the negative one will be

close to 1=2 (it can never exceed 1=2 because of the symmetry). This does not exclude, of

course, that paths frequently switch back and forth between the two potential wells during

the time interval [�
p
�;
p
� ]. But it shows that (2.22) can indeed be interpreted as a lower

bound on the transition probability.

Let Æ > 0 be a constant such that

x@xxf(x; t) 6 0 for jxj 6 Æ and jtj 6 T . (2.23)

Our hypotheses on f imply that such a Æ of order one always exists. In some special cases,

for instance if f(x; t) = a(t)x� x3, Æ may be chosen arbitrarily large.
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Theorem 2.3 (Transition regime). Let c1 > 0 be a constant and assume c21� > a0_"2=3.
Choose times �T 6 t0 6 t1 6 T with t1 2 [�c1

p
�; c1

p
� ], and let h > 2� be such

that xdets + h
p
�(s) < Æ for all s 2 [t0; t1]. Then, if c1 is su�ciently small and x0 2

(0; xdett0
+ 1

2
h
p
�(t0)],

P
t0;x0

�
xs > 0 8s 2 [t0; t1]

	
6

5

2

� j�(t1; t0)j
"

+ 1
�
e���h2=�2 +2 exp

n
���

1

log(h=�)

�(t1;�c1
p
�)

"

o
; (2.24)

where �� is a positive constant, and �(t; s) =
R t
s
a(u) du.

The proof is given in Subsection 3.3. The �rst term in (2.24) is an upper bound on

the probability that xt escapes �upward�. Indeed, our hypotheses on f do not exclude that

other stable equilibria exist for su�ciently large x, which might trap escaping trajectories.

The second term bounds the probability of xs remaining between 0 and xdets + h
p
�(s) for

�c1
p
� 6 s 6 t1. This estimate lies at the core of our argument, and can be understood

as follows. Assume xs starts near xdets . It will perform a certain number of excursions

to attempt reaching the saddle at x = 0. Each excursion requires a typical time of order

�s, such that �(s +�s; s) � " (that is, a(s)�s � "), in the sense that the probability of

reaching 0 before time s+�s is small. After an unsuccessful excursion, xs may exceed xdets ,

but will return typically after another time of order �s. Thus the total number of trials

during the time interval [�c1
p
�; t1] is of order �(t1;�c1

p
�)=". Under the hypotheses of

the theorem, the probability of not reaching the saddle during one excursion is of order

one, and thus the total number of trials determines the exponent in (2.24).

Before discussing the choice of the parameters giving an optimal bound in Theorem 2.3,

let us �rst state the announced second step, namely the claim that the paths are likely to

escape from the saddle after t = c1
p
�. For � 2 (0; 1), let us introduce the set

D(�) =
n
(x; t) 2 [�Æ; Æ] � [c1

p
�; T ] :

f(x; t)

x
> �a(t)

o
: (2.25)

The upper boundary of D(�) is a function ~x(t) =
p
1� � (1�O(t))x?(t). Let �D(�) denote

the �rst exit time of xt from D(�).

Theorem 2.4 (Escape from the saddle). Let 0 < � < 1 and assume c21� > a0 _ "2=3.
Then there exist constants c2 > c1 and C0 > 0 such that

P
t2;x2

�
�D(�) > t

	
6 C0

� tp
�

�2 e���(t;t2)=2"p
1� e���(t;t2)="

; (2.26)

for all (x2; t2) 2 D(�) with t2 > c2
p
�.

The proof is adapted from the proof of the similar Theorem 2.9 in [BG]. Compared to

that result, we have sacri�ced a factor 2 in the exponent, in order to get a weaker condition

on �. We discuss the changes in the proof in Subsection 3.4.

For the moment, let us consider t2 = c2
p
�. We want to choose a t such that �(t; t2) >

"jlog �j. Since �(t; t2) is larger than a constant times t22(t� t2), it su�ces to choose a t of

order
p
�(1 + "jlog �j=�3=2) for (2.26) to become small. Hence, after waiting for a time of

that order, we �nd

P
t2;x2

�
�D(�) > t

	
6 const jlog �j��=2; (2.27)

which shows that most trajectories will have left D(�) by time t, see Fig. 4.
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B(h)

�
p
h

D
x?(t)

�x?(t)

x xdet
t

�xdet
t

~x(t)xt

�xt

xdet
t

+ h
p

�(t)

Figure 2. A typical path xt of the SDE (2.1) in the symmetric case, shown in a neigh-

bourhood of the origin, where the potential barrier reaches its minimal height. We show

here a situation where the noise intensity is large enough to allow a transition. The po-

tential wells at �x?(t) behave like �(pa0 _ jtj). The deterministic solution x
det
t starting

near the right-hand potential well tracks x?(t) at a distance at most of order ("=a0)_ "
1=3,

and never approaches the saddle at x = 0 closer than
p
a0 _ "

1=3. The path xt is likely

to stay in the set B(h) up to time �
p
h when h � �. Between times �p� and

p
�, the

path is likely to reach the origin. It may continue to jump back and forth between the

potential wells up to time
p
�, but is likely to leave a neighbourhood D of the saddle for

times slightly larger than
p
�. For each realization ! such that xt(!) reaches the saddle

at a time � , there is a realization !
0 such that xt(!

0) = �xt(!) is the mirror image of xt
for t > � , which explains why the probability to choose one well or the other after the

transition region is close to 1=2.

It remains to show that the paths are likely to approach either x?(t) or �x?(t) af-

ter leaving D(�). Let us �rst consider the solution bxdet
t of the deterministic di�erential

equation (2.9) with initial time t2 > c2
p
� and initial condition jx2 � x?(t)j 6 ct2 for

some small constant c > 0. Here we need to choose c small in order to arrange forba(t) = @xf(bxdet
t ; t) � �t2 which allows us to proceed as in our investigation of the mo-

tion for t 6 �(
p
a0 _ "1=3), cf. Subsections 3.1 and 3.2. Under these assumptions, bxdet

t

approaches a neighbourhood of �x?(t) exponentially fast and then tracks the equilibrium

branch at distance "=t2. As before, one can show that the path xt of the solution of the

SDE (2.1) with the same initial condition is likely to remain in a strip around bxdet
t of

width scaling with �=
pba(t) � �=t. So if a path xt leaves D(�) at time �D(�), then this

path is likely to approach x?(t), if x�D(�)
is positive, and �x?(t), otherwise. Note that

jx?(�D(�))�x�D(�)
j has to be smaller than c�D(�), which restricts the possible values for �.

Therefore, we choose � small enough to guarantee that x?(t)� ~x(t) 6 ct for all t > c1
p
�.

Finally note that paths which are not in D(�) at time c2
p
� but are not further away from

�x? than ct at some time t will also approach the corresponding equilibrium branch.
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Let us now discuss the choice of the parameters in (2.24) giving an optimal bound.

For � > (a0 _ "2=3)=c21, Theorem 2.2 shows that up to time t slightly less than �
p
�, the

paths are concentrated around xdett . Therefore, here we should choose an initial time t0
slightly before �

p
�. In order for the second term in (2.24) to be small, we want to choose

t1 � (�c1
p
�) as large as possible. Note, however, that h

p
�(s) has to be smaller than

Æ � xdets for all s. Since the order of �(s) is increasing for s 6 �(
p
a0 _ "1=3), it turns out

to be more advantageous to choose t1 negative and of order �
p
�, say t1 = �1

2
c1
p
�. In

this case, j�(t1;�c1
p
�)j is larger than a constant times �3=2 (independently of a0), and

this does not improve signi�cantly for larger admissible t1. At the same time, this choice

allows us to take h � Æ
p
�. We �nd

P
t0;x0

n
xs > 0 8s 2 [t0; c1

p
� ]
o
6 P

t0 ;x0
n
xs > 0 8s 2 [t0;�1

2
c1
p
� ]
o

(2.28)

6

�
jt0jp
�

�3
�3=2

"
e�O(Æ2=�) +exp

�
� const

log(Æ2=�)

�3=2

"

�
:

Consider �rst the generic case Æ � 1. The second term in (2.28) becomes small as soon as

�=(jlog �j)2=3 � "2=3 holds in addition to the general condition c21� > a0 _ "2=3. The �rst

term is small as long as � = O(1= log(�="2=3)). We thus obtain the following regimes:

� for � 6 a0 _ "2=3, the transition probability is exponentially small in �2=(a0 _ "2=3)2;
� for � > a0=c

2
1 with ("jlog "j)2=3 � � � 1=jlog "j, the probability of a transition be-

tween the wells is exponentially close to 1=2, with an exponent given essentially (up to

logarithmic corrections) by

�3=2

"
^ 1

�
; (2.29)

� for � > 1=jlog "j, the paths become so poorly localized that it is no longer meaningful

to speak of a transition probability.

(2.29) shows that the transition probability becomes optimal for � � "2=5. For larger

values of the noise intensity, the possibility of paths escaping �upward� becomes su�ciently

important to decrease the transition probability. However, if the function f is such that Æ

can be chosen arbitrarily large, the second term in (2.29) can be removed without changing

the �rst one (up to logarithmic corrections) by taking Æ2 = �=", for instance. In that case,

transitions between the wells become the more likely the larger the ratio �="2=3 is.

One should note that a typical path will reach maximal values of the order �
p
�(0) �

�=(
p
a0 _ "1=3). Thus, due to the �atness of the potential near t = 0, if � is larger

than
p
a0 _ "1=3, the spreading of the paths during the transition interval is larger than

the maximal distance between the wells away from the transition. In general we cannot

exclude that paths escape to other attractors, if the potential has more than two wells.

It may be surprising that the order of the transition probability is independent of a0
as soon as � > a0. Intuitively, one would rather expect this probability to depend on

the ratio a20=�
2, because of Kramers' law. The fact that this is not the case illustrates

the necessity of a good understanding of dynamical e�ects (as opposed to a quasistatic

picture). Although the potential barrier is smallest between the times �pa0 and
p
a0,

the paths have more opportunities to reach the saddle during larger time intervals. The

optimal time interval turns out to have a length of the order
p
�, which corresponds to the

regime where di�usive behaviour prevails over the in�uence of the drift.
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2.3 Asymmetric case

We consider in this subsection the SDE (2.1) in the case of f being periodic in t and ad-

mitting two stable equilibrium branches, but without the symmetry assumption. Instead,

we want each of the potential wells to approach the saddle once in every time period, but

at di�erent times for the left-hand and the right-hand potential well. A typical example

of such a function is

f(x; t) = x� x3 + �(t) with �(t) = �(�c � a0) cos 2�t: (2.30)

Here �c = 2=(3
p
3) is de�ned by the fact that f has two stable equilibria if and only if

j�j < �c. Observe that @xf vanishes at x = �xc = �1=
p
3, and

f(xc + y; t) = �c � (�c � a0) cos 2�t�
p
3y2 � y3

= a0 + 2�2(�c � a0)t
2 +O(t4)�

p
3y2 � y3:

(2.31)

Here the function f(xc; t) plays the role that a(t) played in the symmetric case, and near

t = 0 the right-hand potential well and the saddle behave like xc � 3�1=4
p
f(xc; t), while

the left-hand potential well is isolated. Near t = 1=2, a similar close encounter takes place

between the saddle and the left-hand potential well.

We will consider a more general class of functions f : R 2 ! R , which we assume to

satisfy the following hypotheses:

� Smoothness: f 2 C3(M;R ), where M = [�d; d ]� R and d > 0 is a constant;

� Periodicity: f(x; t+ 1) = f(x; t) for all (x; t) 2M;

� Equilibrium branches: There exist continuous functions x?� < x?0 < x?+ from R to

[�d; d ] with the property that f(x; t) = 0 in M if and only if x = x?�(t) or x = x?0(t);

the zeroes of f should be isolated in the following sense: for every Æ > 0, there should

exist a constant � > 0 such that, if jx�x?�(t)j > Æ and jx�x?0(t)j > Æ, then jf(x; t)j > �.2

� Stability: The equilibrium branches x?� are stable and the equilibrium branch x?0 is

unstable, that is, for all t 2 R ,

a?�(t) := @xf(x
?
�(t); t) < 0

a?0(t) := @xf(x
?
0(t); t) > 0:

(2.32)

� Behaviour near t = 0: We want x?+ and x?0 to come close at integer times. Here the

natural assumption is that we have an �avoided saddle�node bifurcation�, that is, there

exists an xc 2 (�Æ; Æ) such that

@xxf(xc; 0) < 0

@xf(xc; t) = O(t2)

f(xc; t) = a0 + a1t
2 +O(t3);

(2.33)

where a1 > 0 and @xxf(xc; 0) are �xed (of order one), while a0 = a0(") = O"(1)
is a positive small parameter. These assumptions imply that x?+(t) reaches a local

minimum at a time t?+ = O(a0), and x?0(t) reaches a local maximum at a possibly

2Since f depends on a small parameter a0, we want to avoid that f(x; t) approaches zero elsewhere but

near the three equilibrium branches, even when a0 becomes small.
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di�erent time t?0 = O(a0). We can assume that for a su�ciently small constant T > 0,

the three equilibrium branches and the linearization of f around them satisfy

x?+(t)� xc �
( p

a0 for jtj 6 pa0
jtj for

p
a0 6 jtj 6 T

a?+(t) �
(
�pa0 for jtj 6 pa0
�jtj for

p
a0 6 jtj 6 T

x?0(t)� xc �
(
�pa0 for jtj 6 pa0
�jtj for

p
a0 6 jtj 6 T

a?0(t) �
( p

a0 for jtj 6 pa0
jtj for

p
a0 6 jtj 6 T

x?�(t)� xc � �1 for jtj 6 T a?�(t) � �1 for jtj 6 T . (2.34)

� Behaviour near t = tc: We want x?� and x?0 to come close at some time tc 2 (T; 1�T ).
This is achieved by assuming that similar relations as (2.33), but with opposite signs,

hold at a point (x0c; tc).
� Behaviour between the close encounters: To exclude the possibility of other almost-

bifurcations, we require that x?+(t)�x?0(t) and x?0(t)�x?�(t), as well as the derivatives
(2.32), are bounded away from zero for T < t < tc � T and tc + T < t < 1� T .

Note that a su�cient assumption for the requirements on the behaviour near (x0c; tc) to

hold is that f(x; t+ 1
2
) = �f(�x; t) for all (x; t).

We start by considering the deterministic equation

"
dxdett

dt
= f(xdett ; t): (2.35)

As in the symmetric case, it is su�cient to consider the dynamics in the time interval

[�T; T ], with an initial condition satisfying xdet�T � x?+(�T ) � ". The situation in the time

interval [tc � T; tc + T ] can be described in exactly the same way.

Theorem 2.5 (Deterministic case). The solution xdett and the curve x?+(t) cross once

and only once during the time interval [�T; T ]. This crossing occurs at a time ~t satisfying
~t� t?+ � ("=

p
a0 ) ^

p
". There exists a constant c0 > 0 such that

xdett � x?+(t) �

8>><>>:
"

jtj for �T 6 t 6 �c0(
p
a0 _

p
")

� "

jtj for c0(
p
a0 _

p
") 6 t 6 T ,

(2.36)

and thus xdett � xc � jtj in these time intervals. For jtj 6 c0(
p
a0 _

p
"),

xdett � xc �
(p

a0 if a0 > "
p
" if a0 6 ".

(2.37)

The linearization of f at xdett satis�es

�a(t) := @xf(x
det
t ; t) � �(jtj _ pa0 _

p
"): (2.38)

Moreover, (2.35) admits a particular solution bxdet
t tracking the unstable equilibrium branch

x?0(t). It satis�es analogous relations, namely, bxdet
t and x?0(t) cross once at a time t̂ satis-

fying t̂ � t?0 � �(~t � t?+), and (2.36), (2.37) and (2.38) hold for bxdet and x?0(t), but with

opposite signs.
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The proof is similar to the proof of Theorem 2.1, and we comment on a few minor

di�erences in Subsection 4.1. Note that (2.37) implies that xdett never approaches the

saddle at x?0(t) closer than a distance of order
p
".

We return now to the SDE (2.1) with � > 0. We will denote by xdett and xt, respectively,

the solutions of (2.35) and (2.1) with the same initial condition x�T satisfying x�T �
x?+(�T ) � ". We introduce again the function

�(t) :=
1

2j�a(�T )j e
2�(t;�T )=" +

1

"

Z t

�T
e2�(t;s)=" ds; where �(t; s) =

Z t

s

�a(u) du, (2.39)

which behaves, in this case, like

�(t) � 1

jtj _ pa0 _
p
"

for jtj 6 T . (2.40)

We de�ne once more the set

B(h) =
�
(x; t) : jtj 6 T; jx� xdett j < h

p
�(t)

	
; (2.41)

and denote by �B(h) the �rst exit time of xt from B(h).

Theorem 2.6 (Motion near the stable equilibrium branches). There exists a con-

stant h0, depending only on f , such that

� if �T 6 t 6 �(pa0 _
p
") and h < h0jtj3=2, then

P
�T;x�T ��B(h) < t

	
6 C(t; ") exp

�
�1

2

h2

�2

�
1�O(")�O

�
h

t3=2

���
; (2.42)

� if �(pa0 _
p
") 6 t 6 T and h < h0(a

3=4
0 _ "3=4), then

P
�T;x�T ��B(h) < t

	
6 C(t; ") exp

�
�1

2

h2

�2

�
1�O(") �O

�
h

a
3=4
0 _ "3=4

���
: (2.43)

In both cases,

C(t; ") =
1

"2
j�(t;�T )j+ 2: (2.44)

This result is proved in exactly the same way as Theorem 2.2. It has similar conse-

quences, only with di�erent values of the exponents. The typical spreading of paths around

xdett is of order

�
p
�(t) � �p

jtj _ a1=40 _ "1=4
: (2.45)

If � � a
3=4
0 _"3=4, the probability of leaving a neighbourhood of xdett , or making a transition

to the other stable equilibrium branch, is exponentially small (in �2=(a
3=2
0 _ "3=2)). On the

other hand, if � is not so small, (2.42) can still be applied to show that a transition is

unlikely to occur before a time of order ��2=3.
Let us now assume that � is su�ciently large for a transition to take place, i.e. that

� > a
3=4
0 _ "3=4. We want to give an upper bound on the probability not to make a

transition. Let us introduce levels Æ0 < Æ1 < xc < Æ2 such that

f(x; t) � �1 for Æ0 6 x 6 Æ1 and jtj 6 T

@xxf(x; t) 6 0 for Æ1 6 x 6 Æ2 and jtj 6 T .
(2.46)
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�
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Figure 3. A typical path xt of the SDE (2.1) in the asymmetric case, shown near t = 0,
where the right-hand well at x?+ approaches the saddle at x?0. We show again a situation

where the noise intensity is large enough to allow a transition. The deterministic solution

x
det
t starting near the right-hand potential well tracks x?+(t) at a distance at most of order

("=
p
a0) ^

p
", and never approaches the saddle at x?0 closer than

p
a0 _

p
". The path xt

is likely to stay in the set B(h) up to time �h2=3 when h� �. Between times �h2=3 and

h
2=3, the path is likely to reach the saddle. Although it may fall back into the right-hand

potential well, it is likely to �nally overcome the potential barrier and reach a level Æ1 of

order 1 below the saddle, after which it quickly reaches a lower level Æ0. The distance

between Æ1 and Æ0 can be much larger than in this picture. Finally, the path will track the

deterministic solution starting in x = Æ0, which approaches a neighbourhood of order " of

the left-hand potential well at x?
�
.

Here Æ0 and Æ1 are always of order 1 (in fact, we must have Æ0 > x?�(t) for all t 2
[�T; T ]), and we think of Æ0 as being in the basin of attraction of x?�. Our hypotheses

imply that a Æ2 of order one satisfying (2.46) always exists, but Æ2 may be chosen arbitrarily

large in particular cases such as f(x; t) = x� x3 + �(t).

The non-transition probability can be estimated by distinguishing three cases:

� Either xt, starting in x0 > xc at some t0 < 0, never reaches Æ1. The probability of this

event can be shown to be small in a similar way as in Theorem 2.3, the main di�erence

being that due to the asymmetry, we can do better than estimating the probability

not to reach the saddle.

� If xt reaches Æ1, one can estimate in a very simple way the probability not to reach Æ0
as well, using the fact that the drift term is bounded away from zero.

� If xt reaches Æ0, Theorem 2.3 in [BG] shows that xt is likely to reach a small neigh-

bourhood of x?� as well.
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Theorem 2.7 (Transition regime). Let c1 and c2 be positive constants and assume that

c
3=2
1 � > a

3=4
0 _ "3=4. Choose times �T 6 t0 6 t1 6 t 6 T with t1 2 [�c1�2=3; c1�2=3] and

t > t1 + c2". Let h > 2� be such that xdets + h
p
�(s) < Æ2 for all s 2 [t0; t1]. Then, for

su�ciently small c1, su�ciently large c2 and all x0 2 (Æ1; x
det
t0

+ 1
2
h
p
�(t0)],

P
t0;x0

�
xs > Æ0 8s 2 [t0; t]

	
6

5

2

� j�(t1; t0)j
"

+ 1
�
e��h

2=�2

+
3

2
exp
n
�� 1

log(h=�) _ jlog �j
b�(t1;�c1�2=3)

"

o
+ e��=�

2

; (2.47)

where � is a positive constant, and b�(t; s) = R t
s
@xf(bxdet

u ; u) du.

The proof is given in Subsection 4.2. The three terms on the right-hand side of (2.47)

bound, respectively, the probability that xt escapes through the upper boundary xdets +

h
p
�(s), the probability that xt reaches neither the upper boundary nor Æ1, and the proba-

bility that xt does not reach Æ0 when starting on Æ1 (Fig. 5). The crucial term is the second

one.

Let us now discuss the optimal choice of parameters. If we choose t1 = �1
2
c1�

2=3, we

can take h � ~Æ2�
1=3, where ~Æ2 = Æ2 � xc, and we get the estimate

P
t0;x0

n
xs > Æ0 8s 2 [t0; t]

o
6
t20
"
e�O(~Æ22=�

4=3) +exp

�
� const

log(~Æ22=�
4=3) _ jlog �j

�4=3

"

�
+ e��=�

2

: (2.48)

As in the symmetric case, when Æ2 � 1, we obtain the following regimes:

� for � 6 a
3=4
0 _"3=4, the transition probability is exponentially small in �2=(a

3=4
0 _"3=4)2;

� for a
3=4
0 _ "3=4 � � � (1=jlog "j)3=4, the transition probability is exponentially close to

1, with an exponent given essentially (up to logarithmic corrections) by

�4=3

"
^ 1

�4=3
; (2.49)

� for � > 1=jlog "j, the paths become so poorly localized that it is no longer meaningful

to speak of a transition probability.

The transition probability becomes optimal for � � "3=8. Note, once again, that the

exponent is independent of a0.

If the function f is such that Æ2 can be chosen arbitrarily large, the second term in

(2.49) can be removed without changing the �rst one (up to logarithmic corrections) by

taking ~Æ22 = �8=3=" for instance. If � > a
1=4
0 _ "1=4, the paths may become extremely

delocalised in the transition zone, and could escape to other attractors.
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3 Symmetric case

We consider in this section the nonlinear SDE

dxt =
1

"
f(xt; t) dt+

�p
"
dWt; (3.1)

where f satis�es the hypotheses given at the beginning of Subsection 2.2. By rescaling x,

we can arrange for @xxxf(0; 0) = �6, so that Taylor's formula allows us to write

f(x; t) = x
�
a(t) + g0(x; t)

�
@xf(x; t) = a(t) + g1(x; t);

(3.2)

where g0; g1 2 C3 satisfy

g0(x; t) =
�
�1 + r0(x; t)

�
x2

g1(x; t) =
�
�3 + r1(x; t)

�
x2;

(3.3)

with continuously di�erentiable functions r0; r1 satisfying r0(0; 0) = r1(0; 0) = 0.

The implicit function theorem shows the existence, for small t, of an equilibrium curve

x?(t) =
�
1 +O

�p
a(t)

��p
a(t): (3.4)

For small t, the curve x?(t) behaves like
p
a0
�
1+O((t=

p
a0)

2) +O(
p
a0)
�
, and it admits a

quadratic minimum at some time t? = O(a0). Thus we can choose a constant T 2 (0; 1=2)

such that

x?(t) �

8><>:
p
a0 for jtj 6 pa0

jtj for
p
a0 6 jtj 6 T

1 for T 6 t 6 1� T .

(3.5)

3.1 Deterministic case

In this subsection we consider the deterministic equation

"
dxt

dt
= f(xt; t): (3.6)

As already mentioned, Tihonov's theorem allows us to restrict the analysis to the time

interval [�T; T ], and to assume that x�T � x?(�T ) � ".

Remark 3.1. During the time interval [�T; T ], the process xt crosses the equilibrium

branch x?(t) once and only once, the time ~t of the crossing satisfying ~t > t?. This fact

is due to the property that xt is strictly decreasing when lying above x?(t), and strictly

increasing when lying below. Let ~t1 < ~t2 < : : : be the times of the successive crossings of xt
and x?(t) in [�T; T ]. Then xt is decreasing between �T and ~t1 (since x�T �x?(�T ) > 0),

increasing for ~t1 < t < ~t2, and so on. Thus x?(t) must be increasing for t slightly larger than
~t1, and decreasing for t slightly larger than ~t2. Since, by assumption, x?(t) is decreasing on

[�T; t?) and increasing on (t?; T ], this implies that ~t1 > t? and ~t2 > T . Therefore, there is

at most one crossing. We shall see below that xt and x
?(t) actually cross and we will also

determine the order of that time ~t.
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We consider now the di�erence yt = xt � x?(t). It satis�es the equation

"
dy

dt
= a?(t)y + b?(y; t)� "

dx?

dt
; (3.7)

where Taylor's formula, (3.2) and (3.3) yield the relations

a?(t) = �2a(t)
�
1 +O

�p
a(t)

��
�
(
�a0 for jtj 6 pa0
�t2 for

p
a0 6 jtj 6 T

(3.8)

b?(y; t) = �
�
3x?(t) + y

�
y2
�
1 +O(x?(t) + y)

�
(3.9)

dx?

dt
(t) �

8>>><>>>:
�1 for �T 6 t 6 �pa0
(t� t?)
p
a0

for jtj 6 pa0

1 for
p
a0 6 t 6 T ,

(3.10)

with t? = t?(a0) = O(a0).

We start by giving a technical result that we will need several times.

Lemma 3.2. Let ~a(t) be a continuous function satisfying ~a(t) � �(� _ t2) for jtj 6 T ,

where � = �(") > 0. Let �0 � 1, and de�ne ~�(t; s) =
R t
s
~a(u) du. Then

�0 e
~�(t;�T )="+

1

"

Z t

�T
e~�(t;s)=" ds �

8>>><>>>:
1

� _ "2=3
for jtj 6

p
� _ "1=3

1

t2
for

p
� _ "1=3 6 jtj 6 T .

(3.11)

Proof: To prove the lemma, we take advantage of the fact that the expression on the left-

hand side of (3.11) is the solution of an ordinary di�erential equation. By the semi-group

property, we may consider separately the following regimes: For � > "2=3, we distinguish

the cases t 2 [�T;�T=2], [�T=2;�
p
� ], [�

p
�;�"=a0], [�"=a0; "=a0], ["=a0;

p
� ], [

p
�; T ]

and for � < "2=3, we deal separately with t 2 [�T;�T=2], [�T=2;�"1=3], [�"1=3;�
p
� ],

[�
p
�;
p
� ], [

p
�; "1=3], ["1=3; T ]. On each of these time intervals the claimed behaviour

follows easily by elementary calculus, see also the similar result [BG, Lemma 4.2].

Proposition 3.3. There exists a constant c0 > 0 such that the solution of (3.7) with initial

condition y�T � " satis�es

yt �
"

t2
for �T 6 t 6 �c0(

p
a0 _ "1=3). (3.12)

Proof: Let c0 > 1 and c1 > T 2y�T =" be constants to be chosen later, and denote by �

the �rst exit time of yt from the strip 0 < yt < c1"=t
2. Set t0 = �c0(

p
a0 _ "1=3). Then,

for �T 6 t 6 � ^ t0, we get from (3.9) and (3.5) that

jb?(y; t)j
yt2

6M
3x?(t) + y

jtj
y

jtj 6M 0
�
1 + c1

"

jtj3

�
c1

"

jtj3 6M 0
�
1 +

c1

c30

�
c1

c30
; (3.13)
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for some constants M;M 0 > 0. The relations (3.8) and (3.10) yield the existence of

constants c� > 0 such that a?(t) 6 �c�t2 and � d
dt
x?(t) 6 c+ for t 2 [�T; t0]. From (3.7)

and (3.13) we obtain

"
dy

dt
6 �c�t2y

�
1� M 0

c�

�
1 +

c1

c30

�
c1

c30

�
+ "c+: (3.14)

For any given c1, we can choose c0 large enough for the term in brackets to be larger than

1=2. Then, by Lemma 3.2, there exists a constant c2 = c2(c+; c�) > 0 such that

yt 6 y�T e�c�(t
3+T 3)=6"+c+

Z t

�T
e�c�(t

3�s3)=6" ds 6 c2
"

t2
(3.15)

for all t 2 [�T; � ^ t0]. Therefore, if c1 > c2, then � > t0 follows.

The lower bound can be obtained in exactly the same way.

For the remainder of this subsection, let t0 = �c0(
p
a0_ "1=3) with c0 chosen according

to the preceding proposition. Note that this proposition implies that xt � x?(t) � jtj for
�T 6 t 6 t0 and, in particular, that yt0 � ("=a0) ^ "1=3.

We now consider the dynamics for jtj 6 jt0j, starting with the case of a0 not too small,

i. e., the case of yt0 � "=a0.

Proposition 3.4. There exists a constant 0 > 0, depending only on f and yt0, such that,

when a0 > 0"
2=3, then

yt = C1(t)(t
? � t) + C2(t) with C1(t) �

"

a
3=2
0

; C2(t) �
"2

a
5=2
0

(3.16)

for all jtj 6 jt0j.

Proof: Again, we will only show how to obtain an upper bound, since the corresponding

lower bound can be established in exactly the same way.

First we �x a constant c1 > a0yt0=" + 2(t? � t0)=
p
a0 + 4"=(c�a

3=2
0 ). We denote by �

the �rst exit time of yt from the strip jytj < c1"=a0. For t0 6 t 6 � ^ jt0j, we have

jb?(y; t)j
jyj 6M

�
3x?(t) + jyj

�
jyj 6M 0a0

�
1 + c1

"

a
3=2
0

�
c1

"

a
3=2
0

(3.17)

with constants M;M 0 > 0. Choosing 0 large enough, we get

"
dy

dt
6 �c�

2
a0y � c�

"
p
a0

(t� t?); (3.18)

which implies

yt 6 yt0 e
�c�a0(t�t0)=2"� c�p

a0

Z t

t0

e�c�a0(t�s)=2"(s� t?) ds

=
2"

a
3=2
0

(t? � t) + �(") e�c�a0(t�t0)=2"+
4"2

c�a
5=2
0

(3.19)
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by partial integration. Here

�(") = yt0 � 2
"

a0

�
t? � t0p

a0
+

2"

c�a
3=2
0

�
(3.20)

satis�es �(") = O("=a0).

We want to estimate the contribution of the middle term on the right-hand side

of (3.19). Assume �rst that �(") > 0 and consider t 6 t?. By convexity,

e�c�a0(t�t0)=2" 6
t? � t

t? � t0
+ e�c�a0(t

?�t0)=2" : (3.21)

Now,
2"

a
3=2
0

+ �(")
1

t? � t0
� "

a
3=2
0

: (3.22)

Since X e�X ! 0 as X !1, we also have

�(") e�c�a0(t
?�t0)=2"+

4"2

c�a
5=2
0

� "2

a
5=2
0

; (3.23)

provided 0 is large enough. This shows the existence of constants C1 > 2 and C2 > 0

such that

yt 6 C1
"

a
3=2
0

(t? � t) + C2
"2

a
5=2
0

for t 6 t? ^ � . (3.24)

For t > t?,

e�c�a0(t�t0)=2" 6 e�c�a0(t
?�t0)=2" (3.25)

is immediate, and (3.23) shows that (3.24) also holds for t? 6 t 6 � . Note that in the

case �(") 6 0, (3.24) holds trivially. Since yt < c1"=a0 is a direct consequence of (3.19)

and our choice of c1, � > jt0j follows, and, therefore, the upper bound (3.24) holds for all

jtj 6 jt0j.

Note that the result (3.16) implies that yt changes sign at a time t? +O("=a0), which

shows that xt actually crosses x?(t) at a time ~t satisfying ~t� t? � "=a0. For large enough

0, the proposition also shows that xt �
p
a0 for jtj 6 jt0j and that yjt0j � �"=a0.

We consider now the case a0 < 0"
2=3 with 0 from Proposition 3.4. Without loss of

generality, we may assume that 0 > 1.

Proposition 3.5. Assume that a0 < 0"
2=3. Then, for any �xed t1 � "1=3,

xt � "1=3 for t0 6 t 6 t1, (3.26)

and xt crosses x
?(t) at a time ~t satisfying ~t � "1=3.

Proof: In order to show (3.26), we rescale space and time in the following way:

x = "1=3a
1=6
1 z; t = "1=3a

�1=3
1 s: (3.27)

Let s0 = "�1=3a
1=3
1 t0. Then zs0 � 1, and z satis�es the di�erential equation

dz

ds
= ~a(s; ")z +

�
�1 + r0("

1=3a
1=6
1 z; "1=3a

�1=3
1 s)

�
z3; (3.28)
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where

~a(s; ") =
a("1=3a

�1=3
1 s)

"2=3a
1=3
1

= ~a0 + s2 +O("1=3s3); ~a0 =
a0

"2=3a
1=3
1

6
0

a
1=3
1

: (3.29)

(3.28) is a perturbation of order "1=3 of the Bernoulli equation

dz

ds
= ~a(s)z � z3; ~a(s) = ~a0 + s2: (3.30)

Using Gronwall's inequality, one easily shows that on an s-time scale of order 1, the solution

of (3.28) di�ers by O("1=3) from the solution of (3.30), which is

zs =
zs0 e

~�(s;s0)�
1 + 2z2s0

Z s

s0

e2~�(u;s0) du

�1=2
; where ~�(s; s0) =

Z s

s0

~a(u) du. (3.31)

This function is bounded away from zero, and remains of order one for s of order one,

which shows that xt � "1=3 on [t0; t1].

Since xt � "1=3 and x?(t) � p
a0 _ jtj, xt and x?(t) necessarily cross at some time

~t � "1=3.

Note that the above proposition also implies bounds on yt, namely, yt = O("1=3) for

t0 6 t 6 t1, and there exist constants ~c+ > ~c� > 0 such that

yt �

8><>:
"1=3 for t0 6 t 6 ~c�"1=3,
0 for t = ~t,

�"1=3 for ~c+"
1=3 6 t 6 t1.

(3.32)

Gathering the results for a0 > 0"
2=3 and a0 < 0"

2=3, we see that there exists a time

t1 � (
p
a0 _ "1=3) such that yt1 � �"=t21. By enlarging c0 if necessary, we may assume that

t1 = c0(
p
a0 _ "1=3).

Proposition 3.6. On the interval [t1; T ],

yt � � "

t2
: (3.33)

Proof: The proof is similar to the one of Proposition 3.3.

Note that the previous result implies xt � x?(t) � t, provided c0 is large enough.

So far, we have proved that for t 2 [�T; T ], xt tracks x?(t) at a distance of order

"

t2
^ "

a0
^ "1=3; (3.34)

and that the two curves cross at a time ~t satisfying ~t � t? � ("=a0) ^ "1=3. Let us now

examine the behaviour of the linearization

�a(t) = @xf(xt; t); (3.35)

which will determine the behaviour of orbits starting close to the particular solution xt.
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Proposition 3.7. For all t 2 [�T; T ] and all a0 = O"(1),

�a(t) � �(t2 _ a0 _ "2=3): (3.36)

Proof: By Taylor's formula we get

�a(t) = @xf(x
?(t) + yt; t)

= a?(t)�
h
6 +O

�
x?(t) + yt

�i�
x?(t) +

1

2
yt

�
yt: (3.37)

Consider �rst the case a0 > 0"
2=3 for 0 large enough. Equation (3.8) implies that

a?(t) 6 �c�(a0 _ t2) for a constant c� > 0. On the other hand, (3.34) shows that the

second term on the right-hand side of (3.37) is bounded in absolute value by c+"=a0 for a

constant c+ > 0. Thus if 0 > (c+=c�)2=3 we obtain that �a(t) � a?(t) � �(a0 _ t2).
We consider next the case a0 < 0"

2=3. For jtj > c0"
1=3, the above argument can

be repeated. The non-trivial case occurs for jtj < c0"
1=3. By rescaling variables as in

Proposition 3.5, we obtain that

�a(t) = "2=3a
1=3
1

�
~a(s; ")� 3z2s +O("1=3)

�
: (3.38)

We have to show that �a(t) � �"2=3 which is equivalent to ~a(s; ")� 3z2s � �1 for s of order

one. The lower bound is trivial as ~a(s; ") > 0 and zs � 1. In order to show the upper

bound, �rst note that for t 6 0, we have xt > x?(t) which implies �a(t) < a?(t). Therefore,

it is su�cient to consider s > 0. Taking into account the expression (3.31), we �nd that

showing the upper bound amounts to showing that�
const+

~a(s)

z2s0

�
e�2~�(s;s0)+2~a(s)

Z s

s0

e�2~�(s;u) du < 3: (3.39)

Since js0j is proportional to c0, choosing a priori a large enough c0 also makes js0j large.
Thus it is in fact su�cient to verify that

2~a(s)

Z s

�1
e�2~�(s;u) du < 3 (3.40)

for all s > 0. Optimizing the left-hand side with respect to ~a0 > 0 and s shows that we

may assume ~a0 = 0 and that (3.40) holds.

3.2 The random motion near the stable equilibrium branches

We now consider the SDE

dxt =
1

"
f(xt; t) dt+

�p
"
dWt; x�T = x0; (3.41)

on the time interval [�T; T ], where we assume x0 � x?(�T ) � ". In order to compare the

solution xt with the solution xdett of the corresponding deterministic equation (3.6), we

introduce the di�erence yt = xt � xdett , which satis�es the SDE

dyt =
1

"

�
�a(t)yt +�b(yt; t)

�
dt+

�p
"
dWt; y�T = 0; (3.42)

24



where �a(t) is the linearization (3.35) of f along xdett , and Taylor's formula yields the

relations

�b(y; t) = �
�
1 +O(xdett + jyj) +O(t)

�
(3xdett + y)y2;

j�b(y; t)j 6M(xdett + jyj)y2
(3.43)

whenever jtj 6 T and xdett + jyj 6 d, where M is a positive constant. Let us �rst consider

the linearization of (3.42), namely

dy0t =
1

"
�a(t)y0t dt+

�p
"
dWt; y0�T = 0: (3.44)

The random variable y0t is Gaussian with expectation zero and variance

v(t) =
�2

"

Z t

�T
e2�(t;s)=" ds; where �(t; s) =

Z t

s

�a(u) du: (3.45)

Lemma 3.2 and Proposition 3.7 imply that

�(t) :=
1

2j�a(�T )j e
2�(t;�T )=" +

1

"

Z t

�T
e2�(t;s)=" ds � 1

t2 _ a0 _ "2=3
: (3.46)

Thus v(t) is of order �2=(t2 _ a0 _ "2=3), except for t very close to �T . We now show that

y0t is likely to remain in a strip of width proportional to
p
�(t).

Proposition 3.8. For �T 6 t 6 T ,

P
�T;0

n
sup

�T6s6t

jy0s jp
�(s)

> h

o
6 C(t; ") exp

n
�1

2

h2

�2

�
1�O(")

�o
; (3.47)

where

C(t; ") =
j�(t;�T )j

"2
+ 2: (3.48)

Proof: Let �T = u0 < u1 < � � � < uK = t, with some K > 0, be a partition of [�T; t].
In [BG, Lemma 3.2], we show that the probability (3.47) is bounded above by

2

KX
k=1

Pk; where Pk = exp
n
�1

2

h2

�2
inf

uk�16s6uk

�(s)

�(uk)
e2�(uk;s)="

o
: (3.49)

Now we choose the partition by requiring that

�(uk; uk�1) = �2"2 for 1 6 k < K =

�
j�(t;�T )j

2"2

�
: (3.50)

Since �a(s) < 0, we have � 0(s) = [2�a(s)�(s) + 1]=" 6 1=", and thus

inf
uk�16s6uk

�(s)

�(uk)
>

1

�(uk)
inf

uk�16s6uk

h
�(uk)�

uk � s

"

i
= 1� uk � uk�1

"�(uk)
: (3.51)

If k is such that jukj >
p
a0 _ "1=3, then by (3.50) and (3.36), there is a constant c� such

that

2"2 > c�
Z uk

uk�1

s2 ds >
c�
6
u2k(uk � uk�1); (3.52)
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and hence by (3.46) (choosing the same c� for brevity of notation)

uk � uk�1

�(uk)
6

12"2

c�u2k

u2k
c�

= O("2): (3.53)

For all other k, we have

2"2 > c�(a0 _ "2=3)(uk � uk�1) ) uk � uk�1

�(uk)
6

2"2

c2�
: (3.54)

In both cases, we �nd

Pk 6 exp
n
�1

2

h2

�2

�
1�O(")

�o
; (3.55)

which leads to the result, using the de�nition of K.

Let us now compare solutions of the linear equation (3.44) and the nonlinear equation

(3.42). We introduce the events


t(h) =
�
! : jysj 6 h

p
�(s) 8s 2 [�T; t]

	
(3.56)


0
t (h) =

�
! : jy0s j 6 h

p
�(s) 8s 2 [�T; t]

	
: (3.57)

Notation 3.9. For two events 
1 and 
2, we write 
1

a:s:
� 
2 if P-almost all ! 2 
1

belong to 
2.

Proposition 3.10. There exists a constant %, depending only on f , such that

� if �T 6 t 6 �(pa0 _ "1=3) and h < t2=%, then


0
t (h)

a:s:
� 
t

�h
1 + %

h

t2

i
h

�
; (3.58)

� if �(pa0 _ "1=3) 6 t 6 T and h < (a0 _ "2=3)=%, then


0
t (h)

a:s:
� 
t

�h
1 + %

h

a0 _ "2=3
i
h

�
: (3.59)

Proof: The proof is based on the fact that the variable zs = ys� y0s satis�es the relation

zs =
1

"

Z s

�T
e�(s;u)=" �b(yu; u) du: (3.60)

Consider �rst the case �T 6 t 6 �(pa0 _ "1=3). Let % > 0 be a constant to be chosen

later, and set Æ = %h=t2 < 1. We de�ne the �rst exit time

� = inf
�
s 2 [�T; t] : jzsj > Æh

p
�(s)

	
2 [�T; t] [ f1g: (3.61)

Pick any ! 2 A :=
0
t (h) \ f! : �(!) <1g and s 2 [�T; �(!)]. Then we have

jy0u(!)j 6 h
p
�(u); jyu(!)j 6 (1 + Æ)h

p
�(u) < 2h

p
�(u) (3.62)

for all u 2 [�T; s]. From (3.5) and (3.46), we obtain the existence of a constant c+ > 0

such that

xdetu 6 c+juj; jyu(!)j < 2h

p
c+

juj (3.63)
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for these u. Hence, by (3.43) we get the estimate

j�b(yu; u)j < M

�
c+juj+ 2h

p
c+

juj

�
4h2

c+

u2
6 4M

h2c2+

jsj

�
1 +

2h
p
c+s2

�
(3.64)

and thus, by (3.60) and Lemma 3.2,

jzsj < 4M
h2c2+

jsj

�
1 +

2h
p
c+s2

�1
"

Z s

�T
e�(s;u)=" du 6 4M

h2c3+

jsj3
�
1 +

2h
p
c+s2

�
; (3.65)

where we use again the same c+ for brevity of notation. Using (3.46) once again, we arrive

at the bound
jzsj

h
p
�(s)

< 4M
c3+p
c�

h

s2

�
1 +

2
p
c+

h

s2

�
: (3.66)

Now we choose

% =
2

p
c+

_ 8M
c3+p
c�
; (3.67)

which implies
jzsj

h
p
�(s)

<
%

2

h

s2

�
1 + %

h

s2

�
6
Æ

2
(1 + Æ) < Æ (3.68)

for all s 2 [�T; �(!)], by the de�nition of Æ. Hence jz�(!)j < Æh
p
�(�(!)) for almost all ! 2

A. Since we have jz�(!)j = Æh
p
�(�(!)) whenever �(!) <1, we conclude that P(A) = 0,

and thus �(!) =1 for almost all ! 2 
0
t (h), which implies that jys(!)j 6 (1 + Æ)h

p
�(s)

for �T 6 s 6 t and these !. This completes the proof of (3.58).

The proof of (3.59) is almost the same. In the case �(pa0 _ "1=3) 6 t 6 T , we take

Æ = %h=(a0 _ "2=3). The estimate (3.63) has to be replaced by

xdetu 6 c+(juj _
p
a0 _ "1=3); jyu(!)j 6 2h

p
c+

juj _ pa0 _ "1=3
; (3.69)

and thus we get, instead of (3.65), the bound

jzsj 6 4M
h2c3+

(
p
a0 _ "1=3)(s2 _ a0 _ "2=3)

�
1 +

2h
p
c+(a0 _ "2=3)

�
: (3.70)

The remainder of the proof is similar.

Now, the preceding two propositions immediately imply Theorem 2.2, as Proposi-

tion 3.8 shows the desired behaviour for the approximation by a Gaussian process and

Proposition 3.10 allows to extend this result to the original process.

3.3 The transition regime

We consider now the regime of � su�ciently large to allow for transitions from one stable

equilibrium branch to the other. Here xdett is the solution of the deterministic equation

(3.6) with the same initial condition xdet�T as in the previous sections, which tracks x?(t)

at distance at most O("1=3). xt denotes a general solution of the SDE (3.1). Our aim is

to establish an upper bound for the probability of not reaching the axis x = 0, which,
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by using symmetry, will allow us to estimate the transition probability. Let Æ > 0 be the

constant de�ned in (2.23), i.e. by

x@xxf(x; t) 6 0 for jxj 6 Æ and jtj 6 T . (3.71)

The basic ingredient of our estimate is the following comparison lemma which allows

us to linearize the stochastic di�erential equations under consideration and, therefore, to

investigate Gaussian approximations to our processes. The lemma gives conditions under

which relations between initial conditions carry over to the sample paths.

Lemma 3.11. Fix some initial time t0 2 [�T; T ]. We consider the following processes on

[t0; T ]:

� the solution xdett of the deterministic di�erential equation (3.6) with initial condition

xdett0
2 [0; Æ];

� the solution xt of the SDE (3.41) with initial condition xt0 2 [xdett0
; Æ];

� the di�erence yt = xt � xdett , which satis�es yt0 = xt0 � xdett0
> 0;

� the solution y0t of the linear SDE

dy0t =
1

"
~a(t)y0t dt+

�p
"
dWt; where ~a(t) = @xf(x

det
t ; t) (3.72)

with initial condition y0t0 2 [yt0 ; Æ � xdett0
].

If 0 6 y0s 6 Æ�xdets for all s 2 [t0; t], then ys 6 y0s for those s. Similarly, if 0 6 ys 6 Æ�xdets

for all s 2 [t0; t], then y
0
s > ys for those s. The result remains true when t is replaced by a

stopping time.

Proof: The hypothesis (3.71) implies that for all y 2 [0; Æ � xdets ],

f(xdets + y; s) 6 f(xdets ; s) + ~a(s)y: (3.73)

Let � = inffs 2 [t0; t] : ys 62 [0; Æ � xdets ]g 2 [t0; t] [ f1g. For t0 6 s 6 � , the variable

zs = ys � y0s satis�es

zs = zt0 +
1

"

Z s

t0

�
f(xdetu + yu; u)� f(xdetu ; u)� ~a(u)y0u

�
du

6 zt0 +
1

"

Z s

t0

~a(u)zu du; zt0 6 0: (3.74)

Applying Gronwall's inequality, we obtain

zs 6 zt0 e
~�(s;t0)=" 6 0 8s 2 [t0; � ^ t]; (3.75)

where ~�(s; t0) =
R s
t0
~a(u) du. This proves the result for t0 6 s 6 � ^t. Now if ys is negative,

the result is trivially satis�ed, and if ys becomes positive again, the above argument can

be repeated. Note that y� 6 Æ�xdet� is immediate. This proves the �rst assertion, and the

second assertion can be proved directly, without use of � .

We will now proceed as follows. Let �(t) be the function de�ned in (3.46), and let h

be such that xdets + h
p
�(s) < Æ for all s 2 [t0; t]. Given x0 2 (0; Æ), we can write

P
t0;x0

�
xs > 0 8s 2 [t0; t]

	
6 P

t0;x0
n

sup
t06s6t

xs � xdetsp
�(s)

> h

o
+ P

t0;x0
�
0 < xs 6 xdets + h

p
�(s) 8s 2 [t0; t]

	
: (3.76)
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We will estimate these two terms separately. The �rst event is similar to the event we have

examined in the previous subsection, but we need here an estimate valid for all times, even

when � is not very small, whereas the previous result is only useful for � 6 t2 _ a0 _ "2=3.
We will show the following.

Proposition 3.12. Assume 0 6 x0 6 xdett0
+ 1

2
h
p
�(t0). Then

P
t0;x0

n
sup

t06s6t

xs � xdetsp
�(s)

> h

o
6

5

2

� j�(t; t0)j
"

+ 1
�
e���h2=�2 ; (3.77)

where �� is a positive constant and �(t; t0) =
R t
t0
�a(s) ds.

Proof:

1. We de�ne a partition t0 = u0 < u1 < � � � < uK = t of the interval [t0; t] by requiring

j�(uk; uk�1)j = " for 1 6 k < K =

�
j�(t; t0)j

"

�
: (3.78)

Note that similar arguments as in the proof of Proposition 3.8 yield

uk+1 � uk

�(uk)
= O(") for all k. (3.79)

Now let �k = 1
2
h
p
�(uk) and ys = xs � xdets as usual. De�ne

Qk = sup
yk6�k

�
P
uk;yk

n
sup

uk6s6uk+1

ysp
�(s)

> h

o
+ P

uk;yk

n
sup

uk6s6uk+1

ysp
�(s)

6 h; yuk+1
> �k+1

o�
; (3.80)

for 0 6 k < K � 1, and

QK�1 = sup
yK�16�K�1

P
uK�1;yK�1

n
sup

uK�16s6uK

ysp
�(s)

> h

o
: (3.81)

Then

P
t0;x0

n
sup

t06s6t

xs � xdetsp
�(s)

> h

o

6 P
t0;yt0

n
sup

t06s6u1

ysp
�(s)

> h

o
+ P

t0;yt0

n
sup

t06s6u1

ysp
�(s)

6 h; yu1 > �1

o

+ E
t0 ;yt0

n
1fyu16�1gP

u1;yu1

n
sup

u16s6t

ysp
�(s)

> h

oo

6 � � � 6
K�1X
k=0

Qk: (3.82)
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2. In order to estimate Qk, we introduce the stochastic process (y
(k)
s )s2[uk;uk+1]

de�ned

by

y(k)s = �k e
�(s;uk)="+

�p
"

Z s

uk

e�(s;u)=" dW (k)
u ; (3.83)

where (W
(k)
u )u2[uk;uk+1] is the Brownian motion W

(k)
u = Wu �Wuk . Note that y(k) is

the solution of the SDE (3.72) with initial condition y
(k)
uk = �k at time uk. We de�ne

the stopping times

�0 = inf
�
s 2 [uk; uk+1] : y

(k)
s = 0

	
�+ = inf

�
s 2 [uk; uk+1] : y

(k)
s = h

p
�(s)

	 (3.84)

describing the time when y
(k)
s either reaches the t-axis or the upper boundary h

p
�(s).

Now, Lemma 3.11 implies that if yuk 6 �k, then ys 6 y
(k)
s for uk 6 s 6 �0 ^ �+. This

shows that

Qk 6 P
uk;�k

�
�0 < uk+1

	
+ P

uk;�k
�
�+ < uk+1

	
+ P

uk;�k
�
y(k)uk+1

> �k+1

	
(3.85)

for 0 6 k < K � 1, and

QK�1 6 P
uK�1;�K�1

�
�0 < uK

	
+ P

uK�1;�K�1
�
�+ < uK

	
: (3.86)

Each of these terms depends only on y(k), and can be easily estimated. Let

v(k)uk+1
=
�2

"

Z uk+1

uk

e2�(uk+1;u)=" du (3.87)

denote the variance of y
(k)
uk+1

. Then by symmetry (as in (2.22)), we have

P
uk;�k

�
�0 < uk+1

	
= 2Puk ;�k

�
y(k)uk+1

< 0
	

=
2p
2�

Z ��k e�(uk+1;uk)="
�
v
(k)
uk+1

��1=2
�1

e�z
2=2 dz

6 exp

�
�1

2

�2k e
2�(uk+1;uk)="

v
(k)
uk+1

�
6 exp

�
�1

8
e�2 h

2

�2
�(uk)

v
(k)
uk+1

=�2

�
: (3.88)

The second term on the right-hand side of (3.85) or (3.86), respectively, can be esti-

mated using the symmetry (in distribution) of (3.83) under the map � 7! ��:

P
uk;�k

�
�+ < uk+1

	
= P

uk;�k
�
9s 2 [uk; uk+1] : y

(k)
s > h

p
�(s)

	
6 P

uk;�k
�
9s 2 [uk; uk+1] : y

(k)
s 6 h

p
�(uk) e

�(s;uk)="�h
p
�(s)

	
6 P

uk;�k
�
�0 < uk+1

	
: (3.89)

In order to estimate the third term on the right-hand side of (3.85), we will use the

fact that for k < K � 1

�(uk+1) = �(uk) e
2�(uk+1;uk)="+

1

"

Z uk+1

uk

e2�(uk+1;s)=" ds

> �(uk) e
�2 +

1� e�2

2
inf

uk6s6uk+1

1

j�a(s)j : (3.90)
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Proposition 3.7 and (3.46) thus yield the existence of a constant c� > 0 such that

�(uk+1)

�(uk)
> e�2 +

1� e�2

2c2�
: (3.91)

This allows us to estimate (for k < K � 1)

P
uk;�k

�
y(k)uk+1

> �k+1

	
6

1

2
exp

�
�1

2

(�k+1 � �k e
�(uk+1;uk)=")2

v
(k)
uk+1

�

=
1

2
exp

(
�h

2

8

�(uk)

v
(k)
uk+1

 s
�(uk+1)

�(uk)
� e�1

!2)
: (3.92)

3. The estimates (3.88), (3.89) and (3.92), inserted in (3.85) and (3.86), imply that

Qk 6
5

2
exp
n
��k

h2

�2

o
; (3.93)

with

�k =
1

8

�(uk)

v
(k)
uk+1

=�2
e�2

"
1 ^

 s
1 +

e2�1
2c2�

� 1

!2 #
: (3.94)

By (3.87), for each k, there exists a �k 2 [e�2; 1] such that

v
(k)
uk+1

�2
=

(uk+1 � uk)

"
�k: (3.95)

Together with (3.79), this implies that �k � 1 for all k, and thus the result follows

from (3.82) with �� = infk �k.

We now give an estimate of the second term in (3.76). The Markov property implies

that we will obtain an upper bound by starting at time �c1
p
�.

Proposition 3.13. There exist constants c1 > 0 and �� > 0 such that, if c21� > a0 _ "2=3
and h > 2�, then

P
�c1

p
�;x0
�
0 < xs 6 xdets + h

p
�(s) 8s 2 [�c1

p
�; t1]

	
6 2 exp

�
���

1

log(h=�)

�(t1;�c1
p
�)

"

�
(3.96)

holds with �(t1;�c1
p
�) =

R t
�c1

p
�
a(s) ds, for �c1

p
� 6 t1 6 c1

p
� and all initial condi-

tions x0 satisfying 0 6 x0 6 xdet�c1
p
�
+ h
p
�(�c1

p
�).

Proof:

1. Let % = %(h=�) > 1 and de�ne a partition �c1
p
� = u0 < � � � < uK = t1 of [�c1

p
�; t1]

by

�(uk; uk�1) = %" for 1 6 k < K =

�
�(t1;�c1

p
�)

%"

�
: (3.97)

We would like to control the probability of not reaching the t-axis during the time

interval [uk; uk+1]. Let

Qk = sup
0<xk6x

det
uk

+h
p
�(uk)

P
uk;xk

�
0 < xs 6 xdets + h

p
�(s) 8s 2 [uk; uk+1]

	
: (3.98)
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Then the probability on the left-hand side of (3.96) is

P
�c1

p
�;x0
�
0 < xs 6 xdets + h

p
�(s) 8s 2 [�c1

p
�; t1]

	
= E

�c1
p
�;x0
n
1f0<xs6xdets +h

p
�(s) 8s2[�c1

p
�;uK�1]g

P
uK�1;xuK�1

�
0 < xs 6 xdets + h

p
�(s) 8s 2 [uK�1; uK ]

	o
6 QK�1 P

�c1
p
�;x0
�
0 < xs 6 xdets + h

p
�(s) 8s 2 [�c1

p
�; uK�1]

	
6 � � � 6

K�1Y
k=0

Qk: (3.99)

If we manage to estimate each Qk by a constant less than 1 (say, 1=2), then the

probability will be exponentially small in K. In the sequel, we shall estimate Qk

uniformly in k = 0; : : : K � 2, and bound QK�1 by 1, since the last interval of the

partition may be too small to get a good bound. So let k < K � 1 from now on.

2. We consider �rst the case 0 < xk 6 xdetuk
. We de�ne the process (x

(k)
s )uk6s6uk+1

as the

solution of the linearized SDE

dx(k)s = a(s)x(k)s ds+
�p
"
dW (k)

s ; x(k)uk
= xk; (3.100)

where (W
(k)
s )s2[uk;uk+1] is the Brownian motion W

(k)
s = Ws �Wuk . Let v

(k)
uk+1

denote

the variance of x
(k)
uk+1

. Then

e�2�(uk+1;uk)=" v(k)uk+1
=
�2

"

Z uk+1

uk

e�2�(u;uk)=" du

>
�2

2
inf

uk6u6uk+1

1

a(u)

�
1� e�2�(uk+1;uk)="

�
>

1� e�2%

2

�2

a(uk) _ a(uk+1)
: (3.101)

We can now apply Lemma 3.11 in the particular case xdets � 0 to show that if 0 < xs 6 Æ

for s 2 [uk; uk+1], then x
(k)
s > xs in the same interval. We thus obtain

P
uk;xk

�
0 < xs 6 xdets + h

p
�(s) 8s 2 [uk; uk+1]

	
6 P

uk;xk
�
x(k)s > 0 8s 2 [uk; uk+1]

	
:

(3.102)

The probability on the right-hand side satis�es

P
uk;xk

�
x(k)s > 0 8s 2 [uk; uk+1]

	
= 1� 2Puk;xk

�
x(k)uk+1

< 0
	

= 2Puk;xk
�
x(k)uk+1

> 0
	
� 1; (3.103)
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yielding

P
uk;xk

�
0 < xs 6 xdets + h

p
�(s) 8s 2 [uk; uk+1]

	
6

2p
2�

Z xk e
�(uk+1;uk)="

�
v
(k)
uk+1

��1=2
0

e�z
2=2 dz

6
2p
2�

xkq
e�2�(uk+1;uk)=" v

(k)
uk+1

6
2p
�

r
1

1� e�2%

p
a(uk) _ a(uk+1)

�
xdetuk

: (3.104)

By making c1 small enough, we can guarantee that this bound is smaller than some

imposed constant of order 1, say 1=2. This shows that the length of [uk; uk+1] has

been chosen large enough that the probability of reaching the t-axis during this time

interval is appreciable.

3. We examine now the case xdetuk
< xk < xdetuk

+ h
p
�(s). We introduce a time ~uk 2

(uk; uk+1), de�ned by

�(~uk; uk) =
1

2
%": (3.105)

Our strategy will be to show that xt is likely to cross xdett before time ~uk, which will

allow us to use the previous result. Proposition 3.7 implies the existence of a constant

L > 0 such that

1

2
%" =

Z ~uk

uk

a(u) du 6 L

Z ~uk

uk

(��a(u)) du = Lj�(~uk; uk)j: (3.106)

Let (y
(k)
s )uk6s6uk+1

be the solution of the linear SDE

dy(k)s = �a(s)y(k)s ds+
�p
"
dW (k)

s ; y(k)uk
= yk = xk � xdetuk

; (3.107)

where (W
(k)
s )s2[uk;uk+1]

is again the Brownian motion W
(k)
s =Ws�Wuk . The variance

of y
(k)
~uk

is

~v
(k)
~uk

=
�2

"

Z ~uk

uk

e2�(~uk ;s)=" ds >
1� e�%=L

2

�2

j�a(uk)j _ j�a(~uk)j
: (3.108)

Lemma 3.11 shows that if xdets 6 xs 6 Æ on the interval [uk; ~uk], then xs � xdets 6 y
(k)
s

on that interval. If we introduce the stopping time

�k = inf
�
s 2 [uk; ~uk] : xs = xdets

	
2 [uk; uk+1] [ f1g; (3.109)

then we have

P
uk;xk

�
0 < xs 6 xdets + h

p
�(s) 8s 2 [uk; uk+1]

	
6 P

uk;xk
�
xdets < xs 6 xdets + h

p
�(s) 8s 2 [uk; ~uk]

	
+ E

uk ;xk

n
1f�k<~ukgP

�k;x
det
�k

�
0 < xs 6 xdets + h

p
�(s) 8s 2 [�k; uk+1]

	o
: (3.110)
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The second term on the right-hand side can be bounded, as in (3.104), by

2p
�

r
1

1� e�%

p
a(uk) _ a(uk+1)

�
sup

uk6s6~uk

xdets : (3.111)

Using (3.108), the �rst term on the right-hand side of (3.110) can be estimated in the

following way:

P
uk;xk

�
xdets < xs 6 xdets + h

p
�(s) 8s 2 [uk; ~uk]

	
6 P

uk;yk
�
y(k)s > 0 8s 2 [uk; ~uk]

	
6

2p
2�

yk e
�(~uk;uk)="�
~v
(k)
~uk

�1=2
6

2p
�

r
1

1� e�%=L
p
j�a(uk)j _ j�a(~uk)j

h

�

p
�(uk) e

�%=2L : (3.112)

Using Proposition 3.7 and (3.46), it is easy to show that the expression (j�a(uk)j _
j�a(~uk)j)�(uk) is uniformly bounded by a constant independent of k and ". The sum of

(3.111) and of the last term in (3.112) provides an upper bound for Qk.

4. Using the fact that for juj 6 c1
p
� and c21� > a0 _ "2=3, one has a(u) = O(c21�) and

xdetu = O(c1
p
�), we arrive at the bound

Qk 6 C

�
c21 +

h

�
e�%=2L

�
; (3.113)

where the constant C can be chosen independent of % because % > 1 by assumption.

Thus if we choose c21 6 1=4C and % = 2L log(4Ch=�)_ 1, we obtain that Qk 6 1=2 for

k = 0; : : : ;K � 2. This yields

K�1Y
k=0

Qk 6 2
1

2K
6 2 exp

n
�(log 2) �(t1;�c1

p
�)

%"

o
; (3.114)

and the result follows from our choice of %.

Now the proof of Theorem 2.3 follows from (3.76) and the two preceding propositions,

where we use the Markov property to �restart� at time �c1
p
� before applying Proposi-

tion 3.13.

3.4 Escape from the saddle

In this subsection, we investigate the behaviour of the random motion xt given by the

SDE (3.1) for t > t2 > c1
p
�, i. e., after the transition regime. We want to show that xt is

likely to leave a suitably de�ned neighbourhood of the saddle within time O("jlog �j=t22).
The proof of Theorem 2.4 is very similar to the proof of [BG, Theorem 2.9], and for the

sake of brevity, we will refrain from giving all the details. Instead, we will discuss how to

proceed and then focus on those parts which need to be modi�ed.

From now on, we will assume that t > t2 > c1
p
� and that � is large enough in order

to allow for transitions, i. e., � > a0 _ "2=3. We want to estimate the �rst exit time �D(�)

of xt from the set

D(�) =

�
(x; t) 2 [�Æ; Æ] � [c1

p
�; T ] :

f(x; t)

x
> �a(t)

�
; (3.115)
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where � 2 (0; 1) is a constant. Note that the upper boundary ~x(t) of D(�) satis�es

~x(t) =
p
1� �(1 � O(t))x?(t). Our �rst step towards estimating �D(�) is to estimate the

�rst exit time �S from a smaller strip S, de�ned by

S =

�
(x; t) 2 [�Æ; Æ] � [c1

p
�; T ] : jxj < hp

a(s)

�
; (3.116)

where we will choose h later. Note that h < const � for some (small) constant would assure

S � D(�). We will not impose such a restrictive condition on h but replace S by S \D(�)

in case S is not a subset of D(�). The following proposition gives our estimate on the �rst

exit time from S.

Proposition 3.14. Let t2 > c1
p
� and (x2; t2) 2 S. Then there exists a constant L > 0

such that for any � > 0, we have

P
t2;x2

�
�S > t

	
6

�h
�

��
exp

�
� �

1 + �

�(t; t2)

"

h
1�O

� 1

� log(h=�)

�i�
(3.117)

under the condition �h
�

�3+��
1 + (1 + �)

"

t32
log

h

�

�
6 L

t42

�2
: (3.118)

Proof: The proof follows along the lines of the one of [BG, Proposition 4.7], the main

di�erence being the quadratic behaviour a�t2 6 a(t) 6 a+t
2 of a in our case as opposed

to the linear one in [BG].

We start by de�ning a partition t2 = u0 < � � � < uK = t of [t2; t], given by

�(uk; uk�1) = (1 + �)
"

2
log

h2

�2
; for 1 6 k < K =

�
2�(t; t2)

(1 + �)" log(h2=�2)

�
: (3.119)

On each interval [uk; uk+1], we consider a Gaussian approximation (x
(k)
t )t2[uk;uk+1]

of xt,

de�ned by

dx
(k)
t =

1

"
a(t)x

(k)
t dt+

�p
"
dW

(k)
t x(k)uk

= xuk ; (3.120)

where W
(k)
t = Wt �Wuk . If jxsj

p
a(s) 6 h for all s 2 [uk; uk+1], then by (3.2) and (3.3),

there is a constant M > 0 such that

jxs � x(k)s j 6 1

"

Z s

uk

jg0(xu; u)xuj e�(s;u)=" du

6M
h3

a(uk)3=2
1

a(uk)
e�(uk+1;uk)=" 6

hp
a(s)

(3.121)

for all s 2 [uk; uk+1], provided the condition

h2 6
a2�
M

s
a(uk)

a(uk+1)
e��(uk+1;uk)=" t42 (3.122)

holds for all k. Now,

a(uk+1)

a(uk)
6 1 +

ca+

a3�

�(uk+1; uk)

t32

�
1 +

a+

a2�

�(uk+1; uk)

t32

�
; (3.123)
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where c is a constant satisfying 0 6 a0(t) 6 ct for all t 2 [0; T ]. This shows that there

exists a constant L > 0 such that the condition (3.122) is satis�ed whenever�
h

�

�3+��
1 +

�(uk+1; uk)

t32

�
6 L

t42
�2
: (3.124)

This condition is equivalent to (3.118).

Assume jxuk j
p
a(uk) 6 h for the moment. Then,

P
uk;xuk

n
sup

uk6s6uk+1

jxsj
p
a(s) 6 h

o
6 P

uk;xuk

n
jx(k)uk+1

j
p
a(uk+1) 6 2h

o
6

4hq
2�v

(k)
uk+1

a(uk+1)

; (3.125)

where v
(k)
uk+1

denotes the variance of x
(k)
uk+1

. By partial integration, we �nd

v(k)uk+1
=
�2

"

Z uk+1

uk

e2�(uk+1;s)=" ds >
�2

a(uk+1)

h
e2�(uk+1;uk)="�1

i
: (3.126)

Now, the Markov property yields

P
t2;x2

�
�S > t

	
= P

t2;x2
n

sup
t26s6t

jxsj
p
a(s) 6 h

o
6

K�1Y
k=0

�
4p
2�

hq
v
(k)
uk+1

a(uk+1)

^ 1

�
;

(3.127)

and the bound (3.117) follows by a straightforward calculation.

The preceding proposition shows that a path starting in S is likely to leave S after a

short time. We want to show that such a path (or any path starting inD(�)nS) is also likely
to leave D(�). For this purpose, we will again compare xt to a Gaussian approximation,

given by

dx0t =
1

"
a0(t)x

0
t dt+

�p
"
dWt; (3.128)

where a0(t) = �a(t), so that f(x; t)=x > a0(t) in D(�). Assume that xt2 > 0. Then

xs > x0s holds as long as xs neither leaves D(�) nor crosses the t-axis, cf. [BG, Lemma 4.8].

Therefore we can proceed as follows. Once a path is in D(�)nS, there are two possibilities.

Either, x0s does not return to zero, or it does. If x0t does not return to zero, then it is

likely to leave D(�) via the upper boundary and so is xt. So we are left with the case of

x0t returning to zero. This event has a small but not negligible probability. Note that if x0t
returns to zero, then xt is still non-negative. If xt has nevertheless left D(�), we are done.

If not, xt is either in S or in D(�) n S. Since we may assume that, after a short time, xt is

in D(�) n S again, we can repeat the above argument.

Making the above-said precise, we obtain an integral equation for an upper bound on

the probability that xu does not leave D(�) up to time t, which will be solved by iterations.

We will cite the integral equation from [BG], as the general arguments leading to it do not

require adaptation. Let us �rst introduce the necessary notations. We choose h = K� for

some (possibly large) constant K > 0. For � 2 (0; 1), we choose � > 0 in such a way that

1

2

�

1 + �

h
1�O

� 1

� logK

�i
6 � 6

�

1 + �

h
1�O

� 1

� logK

�i
(3.129)
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for all large enough K. Note that choosing � too close to 1 requires large � and is thus

not desirable. Since we want to apply Proposition 3.14 on the �rst exit time from S with

t2 > c2
p
� for a suitably chosen c2, Condition (3.118) must be satis�ed. Therefore, we

choose c2 = c2(K) large enough for

K3+�
�
1 +

1 + �

c32
logK

�
6 Lc42 (3.130)

to hold. Now, set

g(t; s) =
e���(t;s)="p

1� e�2��(t;s)="
; (3.131)

and

C = max
n ~x(t)

p
�a(t)p
��

; 1
o

and c =
p
��

�h
�

�1+�
e��h

2=�2 : (3.132)

For t2 6 s 6 t 6 T , let Q
(0)
t (s) � 1, and de�ne Q

(n)
t (s) for n > 1 by

Q
(n)
t (s) = Cg(t; s) + c e���(t;s)="+c

Z t

s

Q
(n�1)
t (u)

a(u)

"
e���(u;s)="

�
1 + g(u; s)

�
du: (3.133)

Then, [BG, (4.95) and (4.107)] show that for any n and s > t2 > c2
p
�,

sup
x : (x;s)2S

P
s;x
�
�D(�) > t

	
6 2
�h
�

��
e���(t;s)="+�

�h
�

�� Z t

s

Q
(n)
t (u)

a(u)

"
e���(u;s)=" du

(3.134)

and

sup
x : (x;s)2D(�)nS

P
s;x
�
�D(�) > t

	
6 Q

(n)
t (s): (3.135)

Next we estimate Q
(n)
t by showing that

Q
(n)
t (s) 6 Cg(t; s) + an e

���(t;s)=2"+bn 8n (3.136)

holds with a1 = c, b1 = 3c=� in the case n = 1, and with

an = c

�
1 +

4C

�

� n�2X
j=0

�6c
�

�j
+ c

�6c
�

�n�1

6

�
1 +

4C

�

� c

1� 6c=�
6 2c

�
1 +

4C

�

�
(3.137)

bn =

�
3c

�

�n

(3.138)

for n > 1, provided 6c=� 6 1=2. Note that the latter imposes a condition on K = h=�.

To obtain the bound (3.136), we proceed as in [BG], the only di�erence lying in the term

an e
���(t;s)=2", where we sacri�ce a factor of 2 in the exponent in order to gain a smaller

coe�cient an. Our choice of an yields a less restrictive condition on h=�, namely we only

need
12
p
�p
�

�h
�

�1+�
e��h

2=�2
6 1; (3.139)

which is satis�ed whenever K = h=� is large enough.

Now, (3.137) and (3.138) imply that for K and c2(K) large enough,

sup
x : (x;t2)2D(�)

P
t2;x
�
�D(�) > t

	
6 C0

� tp
�

�2 e���(t;t2)=2"p
1� e���(t;t2)="

for all t > t2 > c2
p
�

(3.140)

with some constant C0. This completes our outline of the proof of Theorem 2.4.
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4 Asymmetric case

We consider in this section the nonlinear SDE

dxt =
1

"
f(xt; t) dt+

�p
"
dWt; (4.1)

where f satis�es the hypotheses given at the beginning of Subsection 2.3. By rescaling x,

we can arrange for @xxf(xc; 0) = �2, so that Taylor's formula allows us to write

@xf(xc + ~x; t) = @xf(xc; t) + ~x
�
�2 + r1(~x; t)

�
(4.2)

where r1 2 C1 and r1(0; 0) = 0. Since @xf(xc; t) = O(t2) by assumption, @xf(x; t) vanishes

on a curve �x(t) = xc +O(t2). We further obtain that

f(�x(t) + z; t) = f(�x(t); t) + z2
�
�1 + r0(z; t)

�
f(�x(t); t) = f(xc; t) +O(t4) = a0 + a1t

2 +O(t3);
(4.3)

where r0 2 C1 and r0(0; 0) = 0. Thus f(x; t) vanishes on two curves x?+(t) and x
?
0(t), which

behave near t = 0 like xc �
p
a0 + a1t2[1 + O(

p
a0 + a1t2 )], as indicated in (2.34). The

behaviour of the linearization follows from (4.2).

4.1 Deterministic case

The proof of Theorem 2.5 follows closely the proof of Theorem 2.1, with some minor

di�erences we comment on here. The dynamics of yt = xt � x?+(t) is still governed by an

equation of the form

"
dy

dt
= a?+(t)y + b?+(y; t)� "

dx?+

dt
; (4.4)

but now Taylor's formula yields the relations

a?+(t) � �(pa0 _ jtj) (4.5)

b?+(y; t) = �y2
�
1 +O(

p
a0) +O(t) +O(y)

�
; (4.6)

while relation (3.10) holds for the derivative of x?+, with t? replaced by t?+. Lemma 3.2

becomes

Lemma 4.1. Let ~a(t) be a continuous function satisfying ~a(t) � �(� _ jtj) for jtj 6 T ,

where � = �(") > 0. Let �0 � 1, and de�ne ~�(t; s) =
R t
s
~a(u) du. Then

�0 e
~�(t;�T )="+

1

"

Z t

�T
e~�(t;s)=" ds �

8>>><>>>:
1

� _
p
"

for jtj 6 � _
p
"

1

jtj for � _
p
" 6 jtj 6 T .

(4.7)

Proposition 3.3 carries over with some obvious adjustments, and shows the existence

of a constant c0 such that

yt �
"

jtj for �T 6 t 6 t0 = �c0(
p
a0 _

p
"). (4.8)
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In particular, yt0 � ("=
p
a0 ) ^

p
". An adaptation of Proposition 3.4 yields the existence

of a constant 0 > 0 such that, for a0 > 0",

yt = C1(t)(t
?
+ � t) + C2(t) with C1(t) �

"

a0
; C2(t) �

"2

a
3=2
0

(4.9)

for all jtj 6 jt0j. This shows in particular that yt vanishes at a time ~t satisfying ~t� t?+ �
"=
p
a0. Proposition 3.5 is replaced by

Proposition 4.2. Assume that a0 < 0". Then, for any �xed t1 �
p
",

xt � xc �
p
" for t0 6 t 6 t1, (4.10)

and xt crosses x
?
+(t) at a time ~t satisfying ~t �

p
".

Proof: Let ~xt = xt � xc. We �rst observe that by Taylor's formula,

f(xc + ~x; t) = f(xc; t) + ~x@xf(xc; t) + ~x2
�
�1 +O(~x) +O(t)

�
: (4.11)

This shows that

"
d~x

dt
= a0 + a1t

2 � ~x2 +O(t3) +O(t2~x) +O(t~x2) +O(~x3): (4.12)

Thus, with the rescaling

~x = a
1=4
1

p
" z; t = a

�1=4
1

p
" s; (4.13)

we obtain that zt obeys a perturbation of order
p
" of the Riccati equation

dz

ds
= ~a0 + s2 � z2; with ~a0 =

1
p
a1

a0

"
<

0p
a1

. (4.14)

One easily shows that the solution satis�es zs � 1 for s of order 1, and this property

carries over to the perturbed equation with the help of Gronwall's inequality. Finally, since

~xt �
p
" and x?+(t)� xc �

p
a0 _ jtj, these curves necessarily cross at a time ~t �

p
".

The assertion on the existence of a particular solution bxdet tracking the unstable equi-

librium branch x?0(t) follows from the observation that zs = x�s satis�es the equation

"
dzs

ds
= �f(zs;�s): (4.15)

This system admits z?0(s) = x?0(�s) as a stable equilibrium branch. Thus the same ar-

guments as above can be used to show the existence of a solution zs tracking z
?
0(s), with

similar properties. Proposition 3.7 admits the following counterpart:

Proposition 4.3. For all t 2 [�T; T ] and all a0 = O"(1),

�a(t) :=@xf(x
det
t ; t) � �(jtj _ pa0 _

p
") (4.16)ba(t) :=@xf(bxdet

t ; t) � jtj _ pa0 _
p
": (4.17)
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Proof: The proof is a direct consequence of (4.2) and the properties of xdett , and thus

much simpler than the proof of Proposition 3.7.

Finally, with Lemma 4.1, we immediately obtain

�(t) :=
1

2j�a(�T )j e
2�(t;�T )=" +

1

"

Z t

�T
e2�(t;s)=" ds � 1

jtj _ pa0 _
p
"
: (4.18)

4.2 The transition regime

We consider now the regime of � su�ciently large to allow for transitions from the potential

well at x?+ to the potential well at x?�, by passing over the saddle at x?0. Here x
det
t and bxdet

t

denote solutions of the deterministic equation

"
dx

dt
= f(x; t) (4.19)

tracking, respectively, the stable equilibrium branch x?+(t) and the unstable equilibrium

branch x?0(t), while xt denotes a general solution of the SDE (4.1). Our aim is to establish

an upper bound for the probability not to reach a level Æ0 between x
?
0(t) and x

?�(t), situated
at a distance of order 1 from both equilibria. [BG, Theorem 2.3] shows that if xt reaches

Æ0, and Æ0 is close enough to x?�(t) (but it may still be at a distance of order 1), then it is

likely to reach a neighbourhood of x?�(t) as well.
Let Æ0 < Æ1 < xc < Æ2 be the constants satisfying (2.46), that is,

f(x; t) � �1 for Æ0 6 x 6 Æ1 and jtj 6 T

@xxf(x; t) 6 0 for Æ1 6 x 6 Æ2 and jtj 6 T .
(4.20)

The basic ingredient of our estimate is the following analogue of Lemma 3.11:

Lemma 4.4. Fix some initial time t0 2 [�T; T ]. We consider the following processes on

[t0; T ]:

� the solution xdett of the deterministic di�erential equation (4.19) with an initial condi-

tion xdett0
2 [Æ1; Æ2], such that xdett > Æ1 for all t 2 [t0; T ];

� the solution xt of the SDE (4.1) with an initial condition xt0 2 [xdett0
; Æ2];

� the di�erence yt = xt � xdett , which satis�es yt0 = xt0 � xdett0
> 0;

� the solution y0t of the linear SDE

dy0t =
1

"
~a(t)y0t dt+

�p
"
dWt; where ~a(t) = @xf(x

det
t ; t) (4.21)

with initial condition y0t0 2 [yt0 ; Æ2 � xdett0
].

If Æ1 6 y0s+x
det
s 6 Æ2 for all s 2 [t0; t], then ys 6 y0s for those s. Similarly, if Æ1 6 xs 6 Æ2

for all s 2 [t0; t], then y
0
s > ys for those s. The result remains true when t is replaced by a

stopping time.

We will proceed as follows. Let �(t) be the function de�ned in (4.18), and let h be such

that xdets + h
p
�(s) < Æ2 for all s 2 [t0; t]. Given x0 2 (Æ1; Æ2) and times t0 < t1 < t in

[�T; T ], we consider the solution xt of the SDE (4.1) with initial condition xt0 = x0. We

introduce the stopping time

� = inf
�
s 2 [t0; t1] : xs 6 Æ1

	
2 [t0; t1] [ f1g: (4.22)
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We can thus write

P
t0;x0

�
xs > Æ0 8s 2 [t0; t]

	
6 P

t0;x0
�
xs > Æ1 8s 2 [t0; t1]

	
+ E

t0 ;x0
n
1f�6t1gP

�;Æ1
�
xs > Æ0 8s 2 [�; t]

	o
: (4.23)

The �rst term can be further estimated by

P
t0 ;x0

�
xs > Æ1 8s 2 [t0; t1]

	
6 P

t0;x0
n

sup
t06s6t1

xs � xdetsp
�(s)

> h

o
+ P

t0;x0
�
Æ1 < xs 6 xdets + h

p
�(s) 8s 2 [t0; t1]

	
: (4.24)

The two summands in (4.24) can be estimated in a similar way as in the symmetric case.

The �rst one is dealt with in the following result.

Proposition 4.5. Assume Æ1 6 x0 6 xdett0
+ 1

2
h
p
�(t0). Then

P
t0;x0

n
sup

t06s6t1

xs � xdetsp
�(s)

> h

o
6

5

2

� j�(t1; t0)j
"

+ 1
�
e��h

2=�2 ; (4.25)

where � is a positive constant and �(t1; t0) =
R t1
t0

�a(s) ds.

The proof is almost the same as the proof of Proposition 3.12. Instead of (3.84), we may

de�ne �0 and �+ as the �rst times when y
(k)
s either reaches Æ1�xdets or the upper boundary

h
p
�(s). Then Lemma 4.4 implies ys 6 y

(k)
s for s 2 [uk; uk+1 ^ �0 ^ �+]. However, when

estimating the probability that �0 < uk+1 as in (3.88), it is su�cient to use the fact that

�0 is larger than the �rst time y
(k)
s reaches 0. Finally, (3.91) still holds with the present

de�nitions of � and �a, because of (4.18) and Proposition 4.3.

Let us now examine the second term in (4.24).

Proposition 4.6. There exist constants c1 > 0 and �� > 0 such that, if c
3=2
1 � > a

3=4
0 _ "3=4

and h > 2�, then

P
�c1�2=3;x0�Æ1 < xs 6 xdets + h

p
�(s) 8s 2 [�c1�2=3; t1]

	
6

3

2
exp

�
���

1

log(h=�) _ jlog �j
b�(t1;�c1�2=3)

"

�
(4.26)

holds with b�(t; s) =
R t
s
ba(u) du, for �c1�2=3 6 t1 6 c1�

2=3 and all initial conditions x0

satisfying Æ1 6 x0 6 xdet�c1�2=3 + h
p
�(�c1�2=3).

Proof:

1. Let bxdet
t be the deterministic solution tracking the saddle at x?0(t) and set xt = bxdet

t +zt.

Then

dzt =
1

"

�ba(t)zt +bb(zt; t)� dt+ �p
"
dWt; (4.27)

where (4.17), (4.18) and (4.20) imply

ba(t) � jtj _ pa0 _
p
" � 1

�(t)
(4.28)
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and bb(z; t) 6 0 for bxdet
t + z 2 [Æ1; Æ2]. (4.29)

Let % = %(h=�) > 1 and de�ne a partition �c1�2=3 = u0 < � � � < uK = t1 of [�c1�2=3; t]
by

b�(uk; uk�1) = %" for 1 6 k < K =

� b�(t1;�c1�2=3)
%"

�
: (4.30)

Let

Qk = sup
Æ1<bxdet

uk
+zk6x

det
uk

+h
p
�(uk)

P
uk;zk

�
Æ1 < bxdet

s + zs 6 xdets + h
p
�(s) 8s 2 [uk; uk+1]

	
:

(4.31)

Then we have, as in (3.99),

P
�c1�2=3;x0�Æ1 < xs 6 xdets + h

p
�(s) 8s 2 [�c1�2=3; t1]

	
6

K�1Y
k=0

Qk: (4.32)

The result will thus be proved if we manage to choose % in such a way that Qk is

bounded away from 1 for k = 0; : : : ;K � 2.

2. We will estimate the Qk in a similar way as in Proposition 3.13, but we shall distinguish

three cases instead of two. These cases correspond to xs reaching the levels xdets , bxdet
s

and Æ1. We introduce a subdivision uk < ~uk;1 < ~uk;2 < uk+1 de�ned by

b�(~uk;1; uk) = 1

3
%"; b�(~uk;2; uk) = 2

3
%"; (4.33)

and stopping times

�k;1 = inf
�
s 2 [uk; ~uk;1] : zs 6 xdets � bxdet

s

	
�k;2 = inf

�
s 2 [uk; ~uk;2] : zs 6 0

	
:

(4.34)

Then we can write, similarly as in (3.110),

P
uk;zk

�
Æ1 < bxdet

s + zs 6 xdets + h
p
�(s) 8s 2 [uk; uk+1]

	
(4.35)

6 P
uk;zk

�
xdets < bxdet

s + zs 6 xdets + h
p
�(s) 8s 2 [uk; ~uk;1]

	
+ E

uk ;zk

n
1f�k;1<~uk;1gP

�k;1;z�k;1
�
Æ1 < bxdet

s + zs 6 xdets + h
p
�(s) 8s 2 [�k;1; uk+1]

	o
The �rst term can be bounded by comparing with the solution of the SDE (4.1) lin-

earized around xdett , with the help of Lemma 4.4. As in (3.112), we obtain the upper

bound
2p
�

r
1

1� e�2%=3L
sup

uk6u6~uk;1

p
j�a(u)j�(uk)

h

�
e�%=3L; (4.36)

where L > 0 is a constant such that ba(u) 6 Lj�a(u)j for all u. Now if �k;1 < ~uk;1, we

also have

P
�k;1;z�k;1

�
Æ1 < bxdet

s + zs 6 xdets + h
p
�(s) 8s 2 [�k;1; uk+1]

	
6 P

�k;1;z�k;1
�
0 < zs 6 xdets � bxdet

s + h
p
�(s) 8s 2 [�k;1; ~uk;2]

	
(4.37)

+ E
�k;1 ;z�k;1

n
1f�k;2<~uk;2g

P
�k;2;z�k;2

�
Æ1 < bxdet

s + zs 6 xdets + h
p
�(s) 8s 2 [�k;2; uk+1]

	o
:
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Comparing with the solution of the SDE (4.1) linearized around bxdet
t , the �rst term

can be bounded, as in (3.104), by

2p
�

r
1

1� e�2%=3
sup

uk6u6~uk;2

pba(u)
�

sup
uk6u6~uk;2

(xdetu � bxdet
u ): (4.38)

This estimate shows that a path starting on xdet at time �k;1 has an appreciable prob-

ability to reach the saddle before time ~uk;2. Note, however, that we cannot obtain

directly a similar estimate for the probability to reach Æ1 as well, which is why we

restart the process in bxdet.

3. In order to estimate the second summand in (4.37), let z
(k)
s be the process starting in

0 at time �k;2 which satis�es the linear equation

dz(k)s =
1

"
ba(s)z(k)s ds+

�p
"
dW (k)

s ; (4.39)

with W
(k)
s =Ws �W�k;2 . The variance v

(k)
uk+1

of z
(k)
uk+1

satis�es, as in (3.101),

e�2b�(uk+1;�k;2)=" v(k)uk+1
>

1� e�2%=3

2
inf

uk6u6uk+1

�2ba(u) : (4.40)

Thus we obtain, using Lemma 4.4,

P
�k;2;z�k;2

�
Æ1 < bxdet

s + zs 6 xdets + h
p
�(s) 8s 2 [�k;2; uk+1]

	
6 P

�k;2;0
�
z(k)uk+1

> �(bxdet
uk+1

� Æ1)
	

=
1p
2�

Z 1

�(bxdet
uk+1

�Æ1)(v(k)uk+1
)�1=2

e�z
2=2 dz

6
1

2
+

1p
�

r
1

1� e�2%=3
sup

uk6u6uk+1

pba(u)
�

(bxdet
uk+1

� Æ1) e
�%=3 : (4.41)

Here the introduction of the stopping time �k;2 turns out to play a crucial role. The

above probability is indeed close to 1=2 when % is larger than a constant times jlog �j,
which shows that once a path has reached the saddle, it also has about �fty percent

chance to reach the level Æ1 in a time of order "jlog �j=ba(u).
4. From (4.36), (4.38) and (4.41) and the fact that % > 1, we obtain the existence of a

constant C > 0 such that

Qk 6
1

2
+
C

�
sup

uk6u6uk+1

pba(u)hp�(uk) h e�%=3L (4.42)

+ sup
uk6u6uk+1

(xdetu � bxdet
u ) + (bxdet

uk+1
� Æ1) e

�%=3
i
:

Since juj 6 c1�
2=3, the properties of xdet, bxdet, � and ba imply the existence of another

constant C1 such that

Qk 6
1

2
+C1

hh
�
e�%=3L+c

3=2
1 +

p
c1

e�%=3

�2=3

i
: (4.43)
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Now choosing c
3=2
1 = 1=(18C1) and % = 3L log(18C1h=�) _ 3 log(18C1

p
c1=�

2=3) _ 1,

we get Qk 6 2=3 for k = 0; : : : ;K � 2 and thus

K�1Y
k=0

Qk 6
3

2

1

(3=2)K
6

3

2
exp
n
�
�
log

3

2

� b�(t1;�c1�2=3)
%"

o
; (4.44)

and the result follows from our choice of %.

It remains to estimate the second term in (4.23), describing the probability not to reach

Æ0 when starting in Æ1. This is done by using the fact that, by assumption, the drift term

is bounded away from zero on the interval [Æ0; Æ1]. We will need to assume that it can be

bounded away from zero on a slightly larger interval, which is possible by continuity of f .

Proposition 4.7. Let 0 < � 6 Æ1 � Æ0 be a constant such that f(x; t) 6 �f0 < 0 for

Æ0 6 x 6 Æ1 + � and jtj 6 T . Then

P
t0;Æ1

�
xs > Æ0 8s 2 [t0; t0 + c"]

	
6 e�~�=�2 (4.45)

holds for all t0 2 [�T; T � c"], where ~� = f0�
2=4(Æ1 � Æ0) and c = 2(Æ1 � Æ0)=f0.

Proof: Let x0t be de�ned by

x0t = Æ1 �
f0

"
(t� t0) +

�p
"
Wt�t0 ; t > t0: (4.46)

By Gronwall's inequality, it is easy to see, as in Lemma 4.4, that if Æ0 6 x0t 6 Æ1 + � for

all t 2 [t0; t0 + c"], then xt 6 x0t for those t. We thus have

P
t0 ;Æ1

�
xs > Æ0 8s 2 [t0; t0 + c"]

	
6 P

t0;Æ1
n

sup
t06s6t0+c"

x0s +
f0

"
(s� t0) > Æ1 + �

o
+ P

t0;Æ1

n
Æ0 < x0s < Æ1 + �� f0

"
(s� t0) 8s 2 [t0; t0 + c"]

o
: (4.47)

Note, however, that for s = t0 + c",

Æ1 + �� f0

"
(s� t0) = Æ1 + �� 2(Æ1 � Æ0) 6 Æ0; (4.48)

so that the second term in (4.47) is equal to zero. The �rst term equals

P
0;0
n

sup
06s6c"

�p
"
Ws > �

o
6 exp

n
� �2

2c�2

o
(4.49)

by Doob's submartingale inequality.
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