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1. PREFACE

This paper is devoted to some boundary value problems for systems of partial dif-
ferential equations. In particular we consider the Stoke’s system and the quasilinear
elliptic degenerated systems of the divergent type with bounded nonlinearities. It
was shown in [2] (see also [3] and [8]) that the question of regularity of weak so-
lutions for quasilinear elliptic and parabolic systems is closely attached with the
dispersion of the spectrum of the matrix, which defines the ellipticity (parabolicity)
of the system. The upper bound for this dispersion is determined by some coercieve
constants for elementary elliptic or parabolic operators. The explicit form of these
constants leads to some conditions, which is easy to check in order to obtain the
regularity of weak solutions. This approach can be applied for example to such
important systems like Stoke’s system. We divide the whole material in three para-
graphs.

The first one is devoted to some constants concerning the operators A and £8, — A,
where € is an arbitrary positive constant. :

Let B be a unit ball in R™(m > 2) with the centrum at the origin and let
a=2-m—2y (0 <y <1). If u(z) is equal zero on B then the inequality

m+1

[ 1D*uP|z|*de < [1+ 222 4 0(y)] J18uPlef*dort
B .

m

+C(J |D*ul|e|*dz) =55 ([ | Dul?dz) =
B B

takes place. Here |D*u|* and |Du|?® are correspondendly the sum of all squared
derivatives of u of the second and the first order.

This estimate could be obtained with the help of the E. Stein [4] result con-
cerning the boundness of the singular integral operators in the weighted spaces
Lzo(R™)(Ja| < m). But this method doesn’t give the explicit constant before the
right-hand side integral containing Au. The nonstationary case is also considered
in this paragraph. Let @ = (0,T) x B,u = 0 for t = 0 and ¢ is a cut—off function.
Then the inequality

m m—2
2,12 < [ ] < 2|, |x t
B/|D ul?’|z|*(dzdt < ) 1+ o—— +0(%) B/|6u Aul?|z] (dzdit +

c {( / | D?uf2|z|*¢ dedt) =i | / (1Duf? + [uf?)dedt] =55 + / (|Duf? + |u|2)dmdt}
B B B

holds for m > 3 and the constant C doesn’t depend on ¢ > 0.
In paragraph 2 we consider the Stoke’s system both for stationary and nonstation-
ary cases. Consider for example here only the stationary system

Au+ Vp = f,

divu=0



in a bounded domain  C R™ with a smooth boundary and with » = 0 on 99.
Let zo be an arbitrary point of Q, with dist (zo, Q) > Ry = const and R < Rp,.

Then the estimates for the weak solution u,p

—92)2 :
olle-zods < 1+ 2L sot)] [ ipplocapraesc [ i
Br(zo) Br(zo) Br(zo)
and

/’ |D?ul|z — 2o|*(dw < {1 + [1 + M]m}z [1 tmo2y 0(7)} X

m—1 m+1
Br(zo) |
/ |[fPle = z0|*(dz + C (/ |D?ul*|z — wolafdm)ﬁﬁ(/ !Du|2dm);%+
Bp(wxo) ‘ Q 0

+ [ (1Duf + [ + |pl?) dz}

take place and C doesn’t depend on zo. The results of this paragraph were obtained
in cooperation with A. Wagner (Cologne).
The third paragraph contains some results about the elliptic system

Z D;a(z;u, Du) — ao(z; u, Du) = 0.
i=1

Under natural analytic conditions about coefficients a;(z,p) we assume that the
eigenvalues A; of the symmetric matrix

A={a“"} (5,7 =0,...,m)

Op;

satisfy the following inequalities

A <)< _A
1+ p|® 14 p|°

with A, A = const. > 0 and 0 <s<l1.

It is proved for example, that if the inequality

(L+2Bi+m-2m=-1)] 1
(1+22) L+ (m-2)(m-1)]-14

holds then the "small” weak solution of the system satisfies the Hélder condition
in Q.



2.. SOME COERCIEVE INEQUALITIES WITH EXPLICIT CONSTANTS

Consider in R™ (m > 2) a ball Bg(z,) with the center zo and radius K. The ball
By(0) we shall denote by B. In this ball an equation

A = f(z) (2.1)
with a boundary condition |
ulop =0 : (2.2)

1s given.

Suppose that f € Lyq(B), where L, is the space of squared integrable functions
with a weight |z|*. During all this paper we assume that & = 2—m—2y (0 < y < 1)
and |z| is the distance from the origin. The norm in L o(B) as usually is determined

by 1
. (5/ |u]2|:n|°‘d:n) 2 .
Denote
| Dul? = iuf and {Dzulz = in: ud, (2.3)
i=1 ik=1

where u; are the derivatives with respect to ;.

By Wz(fo}(B) we shall denote the Soboleff’s space Wz(z)(B); the second derivatives
of the elements of this space are squared summable with the weight |z|*. For the
norm in this space could be taken for example the expression

Q {Dzulz |z|*dz + / ]u|2da:) 5 .

One of he aim of this paragraph is to prove for the solution of the problem
(2.1),(2:2) the inequality

/|D2u’2r°‘dm < C’i/[ﬂzr“dw, (r=l=l) N
B B

where C, has an explicit form. For o = m — 2+ 27 such an inequality was proved
by the author in [1].
‘At first we shall prove some lemmas.

Lemma 2.1. Ifu € Wz(,zOZ(B), then the inequalities
lu(0)]* < 7 f |Dul? r*dz + Co(n) / lul?da (2.4)
B B
and
> Jus(0)]? < 7 / D[ r2dz + Co(n) / lul?dz (2.5)
=1 B ‘ . B

hold.



Here 1 1s as usual an arbitrary positive constant and
| Co(n) = 2m|S|~Cr/2r+tly~dn=3y (2.6)

where |S| is the surface of the unit sphere in R™ and ) is the smallest absolute
value of the eigenvalues for operator A in B with the condition (2.2).

Proof. Evidently

u(0) = u(z) — gudg

Square both sides of this equality and 1ntegra.te over the ball Bs(0) = Bjs with
6 < 1. We get

2

[u(0)? IS| ——dg dz +2/u2da:.
B

The first term on the right hand side we can write in the equivalent form and get
2

au ozim- _atm-—1
2 g 2 dg

u(0)? 15| m-16m™ < 2 / d.S'/

8Bj 0

r™tdr + 2/ [u|? dz.
B .
Applying the Hélder inequality to the inner integral, we come to the estimate

[u(0) |§]m™ < ; / dS//]Vu|2 ™1 dgrm 1+2"dr+2/|u] dz.

8B; 0

Putting § instead of the upper bound of the inner integral we get the following
M2y

[u(0)[[S|m ™6™ < WBJ

|Vaul? retm=ldr 4 2/ [ul? dz.
B
Dividing by ™ and taking into account that m(m + 2y)™! < 1, we come to the
inequality
O < 2 [ 1vufrode + 22 [
u < — u|" r*dz .
714 “ o

Using the notation (2.6) we come to the inequalities (2.4) and (2.5). O

Corollary 2.1. Let A be the smallest absolute value of the ezgenva,lues for the op-
erator A with condition (2.2). Then the inequalities

()2 < 7 / | Dul*r*dz + °(” / |Auf?dz (2.7)
and
ilui(o)iz <7 B/ |D2u|2f°‘d:c + OLA@ B/ |Au[*da. (2.8)

take place if u satisfies (2.2).



Proof. In fact the both second terms on the right hand side of (2.4) and (2 5) can
be easily estimated by the integral of [Au/?.
Using the condition (2.2) and integrating by parts we’ll have

2 —_ 2 % 2 %
B/ |Du? do = B/ uAude ,S ( Z fu d:::) (B/ A dm)
Zlu|2 dz < %B/lAulz dz

and from the previous inequality we have

12 1 2
< —
/|Du} dz < )‘/|Au| dz
B . B

Then

and so the corollary is proved. [J

Lemma 2.2. Foru € WZ,(Q(B), satisfying (2.2), the equality

/uikuikr“dm = / |Aul® rodz + a/[ui(z) —4;(0)] x
B B

B

X [urk cos(zi, ) — wik cos(zg, 7)] r* Tdz — (m — 1) / |u,|2 dS’ (2.9)
8B .
holds.

Proof. Integrating twice by parts we’ll have

/uikuikdw = / [ui — ui(0)], [ui — u:(0)], dz =
—/lAU| d:r:-l—/{ u,(O i cos(r, T ) — [u; — u;(0)] urk cos(r, z;)} dS.

Therefore
/ {[oss — wi(0)] wik cos(r, @) — [ — us(0)] ik cos(r, ) } dS =

oB

= [ ([t - o), (2.10)

With the same kind of calculations (see for example [2] p. 142 etc.) we come to the
identity
/u,-ku,-kr“dw = ‘/‘IAU,|2 |z|* dz +
B B

—{-a/ [u; — u;(0)] uger® ! cos(z;, r)dz — a/ [us - u;(0)] uikr™ " cos(zx, 7)dz +
B B

+ / {los — ws(0)] wix cos(, ) = s — ws(0)] Au cos(ay, )} dS.



After applying (2.10) we come to

/uikuikr“dw = / |Au)? redz + a/ [ui — ui(0)] [urk cos(m,-;r)—
B B :

B
—u;k, cos(zg, )] r* Tz + / [u,-ku,»k - (Au)z} dz
B

Under condition (2.2) we have from (2.10) that
/ (}Dzur - |Au|2> do=—(m 1) [ ful*da
B B

and we come to (2.9). O
Consider a function

v(z) = u(z) — u(0) — u,(O).’n,,
which evidently satisfies the conditions -

v(0)=v;(0) =0 and v = u.
Take a complete orthonormal set of spherical functions
{Y;y(0)}(5=0,1,2,...;1=1,...,k;,0 € 5)

and consider the expansion |

+oo kj

E Z”ﬂ("’)y.l(g

7=01=0

Lemma 2.3. For anyu € Wézg(B), satisfying (2.2), the identity

(2.11)

(2.12)

/‘Dzuf‘zr“dm =/|Au|2r°‘dm —(m—-1) / lur 2 S — -‘;‘-f Vo[? dS +

/|vr| 45— 2 Y (5 +m— 22 (1>+a2/[ ~nfy[ +

J,l>0 J I>09

+Ha+m=3)j(j +m—2) vl r?] potm=3 g,

(2.13)

takes place (by j,! > 0 we understand the summation in the same limits as in

(2.12)).
Proof. We can write the identity (2.9) in the form

/IDzu‘z;,-“dm = / |Au|2 r*dz — (m — 1) / uEdS +
8B

B B

+a/v,Av'r°‘"1d:c — a/v,'v,-,r"‘_,ldz. ,
B B

6



Using (2.11) we can integrate by parts in the last term on the right hand side

DN |

/vivi,r"‘_ldm = /(|Vv|2> r*ldg =
B B i
= —-/d.S' [|Vv|2 atm= 2' —(a+m— 2)f|Vv[2 atm= 3drj, =

a+m 2 2 —9
== [ Vo’ dS — ———= [ |Vu re2dz,
23'1{3. 2 B/

1
/|Vv| potm=2g,
0

Mli—-‘
.-.tu\,

So

/ D[ rda = / |Auf?rdz — (m — 1) / lur[? dS + / v, Avr* Lz +
B B 8B -

B

+i‘5+—2m:—a/|vv|2 r“"zdm—g—/]VvlzdS. (2.14)
B 8B

Integrating by parts we get

/|Vv[2 r* iz = /v;vir“_zdw :'/ (vv;r“"z)_dm —
B

B B ,

—/vAvr"‘_zdz - )/vv, =3, dz = /vv,.dS /’UA’U’I"a_zd:E —(a—2) x

B B

1

x / ds f Vo et ™=y — / vurd 2ds —

8B 0 8B
- /ﬁAvr“"zdm + (o= 2)(a2+ m=4) /,['u|2r°‘_4d:1:.

0

Finally

/|Vv{2r°‘"2d:c‘ = / (vv, _2 ; 2[1)[2) dS — /vAvr“_zdm +
B B B

+ (a_z)(a2+m_4) /|v|2r°‘_4dm,




Substituting in (2.14) we come to

/‘Dzulzr“dm = / |Aul? r*dz — (m — 1) / |u|* dS —

B 8B

2 [|Vv| — (a+m —2)(vo, — = 2 |u!2)] 45+
a-1 _ a_(a_j___ﬁ—_z_)_ a-2
—|—aB/vrAv7‘ dr 5 B/'UA'UT‘ dz +
+a(a —2)(a + m4—— 2)(a+m —4) / v |*re=da. (2.15)

Let us transform the last three terms on the right hand side of (2.15) with the help
of the expansion (2.12).
Then

I = /v,Avr“ 1da: =

]
B 3o
j
0

_ at+m—2_1
TZ{ leﬂ

I
vl [ mlyl) e 3G +m — 2)11;-',1)]-,;7'“_3} r™ iy =

;’lv;lra m— 2-[—(0!—1)(’!) )2 atm— 3] dr—

1

v 'l’UJlT'ad)-m_‘tdr = / vde — Z { % (?’;‘,1)2 ,r,a+m——2 _

1
0 . B 0
1

—j(j +m —2)

(a+m 2)

,vj,zr"”""‘ dr —

1
J’ retm3dp — (5 +m — 2/1}
0

0
A~ "2 atm=3 7, _ = / m-a 2 o2 _
(e —1) Bf (!)? rotm=34y 2a£ (v!)* dS + / () r*~2dg

_ZJ(] +m — 2)/vgyzv;,zra+m_4dr = %/(v;) dS — 523(] +m—2) %
5 "

a—i—m 4
XV

MU+ G 4 m -2 /

,’_)2 r*2dz.
So

11:f vl Avr*dg = — /; P dS—-—Z_](] +m— 2l (1) +

B aB
a+m—4 1 m—«
+— 5 Z](] +m—2 /v;,r“‘*'m"sdr + 5 %
0
x / (v!)? r*2da. | (2.16)
J



Now

1.

I, = /vAvr“"zdm = Z/-vﬂ [’U;‘l,z +(m — l)r"lv;-,l—

B a0

1
—3(j+m— 2)7‘“211,-.1] retm=3gr = 3 [/ vt 3 de 4+ (m— 1) x
4 T
1

1
I —4 L 2 -5 ] -3 |1
X /vj,wj,,r”m dr—j(j+m—2) /vj’,r“+m dr:| = z [vj,,vj,lr”"‘ lo—
0

5l

]‘ 2 _atm-—4

1 , 1
- / (v;,z)z ret™3dr — (a4+m — 3)/v,—,zv§-,lr°‘+’"‘4dr + m2— vir |é_
0 0
ot 4 1
m —
—(m — 1)—2—/1)117'"‘“" Sdr — j(j + m —2) /'u ,lr“"'m_sdr} .

0 0

o
-l
~

~2
vAvr* g = l {vj,l(l)v;-'l(l) 2 5 vi(1)+

B 3,
+ [((Hm Ne=2) j(j+m—2)}><
EUN , A
X / 12-’17"”'"‘ Sdr — /(v;,l) rotm=3dp. (2.17)
0 0

Combining (2.15),(2.16) and (2.17) we get (2.13) O

Lemma 2.4. Ifv € WZ,(Q(B) satisfies (2.2) and vanishes with all first derivatives
at the center of B then the identity

/ |Av[*roda = (m — 1) /(v;)zdg =220+ m = Doy (Lusa(1) +

+(a—-2)2](]+m 2) ,1(1)‘*‘2/{

gl 0

+[(m—1)(1—a)+2j(j+m—2)]v Y1 +m—2)
x[j( +m—2)+ (2 - a)(a+m = 4)] o> 4} rotmldy (2.18)

takes place.



Proof. Using the expansion (2.12) we get

2
1
Vs

— 1) + 327 +m—2)*r* ;)

1
/[Av|2 "‘da:—Z{/[ ol
5l 0
Pt 4 9(m, — 1)/ vl r 2 e — 95(j +m — 2) x

1 1 '
. /v;,,lvj,lr.ﬁm—sd,ﬂ —9(m —1)j(j +m —2) / ooyt } =
0 0

r2+ 72 +m -2 x

=S { [ [faf +m

: "2
; a+m—2
X [u? [ ret™ e + 2(m —1) {____!"’2| retm=2 Ié - — X

2

1
2
1 1
0

2m—1)j(j+m—2)
| —

1
X / 'v;-,,‘z r°‘+'"‘3dr] - 2_7(] +m —2) [v;-,lvj,zr"‘+’"_3
0 ‘

‘ 1
xr*t™3dr — (a4 m — 3)/U;,1Uj,17'a+m—4d7' -
0

1
x [lvj.dz retmot |l (ot m— 4)/ [sal® 7ot 5 dr ]} :
0

Continuing this process we come to

[18vprede =3 {0/1[

B .71

2 9. -
=17 | 7 452G +m = 2) sl

rot™ e + (m — 1) rm=3dr —

G = (m—1)a+m—2) [|oj,[ r

ol

%(j +m — Do(Lvia(l) +2( +m—-2) [
3 +m =2) [ohur=m=idr — (m = 1)( +m — 2) oy () +
Hm = 1)(a+m =45 +m—2) [l r=m5dr }.

10

4})(

v |2 r®t™3dr + 2(a +m — 3) x



In the same way we get

1

/lAv]zrc‘dm = Xl:/[’v;"llz + (m —1)?

v 0

1
Vit

1
xr®t™1dr 4 (m — 1) |J‘1)' ~(m-1)(a+m- 2/
0

1
2
X1t 3dr = 2(j 4+ m — Dl (Losa(1) + 25 +m - 2) [ b},
,. J
2
X7t =3dr + 2(a +m — 3)j(j +m —2)] ——lvjz’ll patm—4 lcl) —
a+m-—4 e o '
L__—)—/ [0 |2 e ] = (m = 1)5(5 +m = 2) ou(1)]° +
: 1
+(m—1)(a+m—4)j(j +m— 2)/ v |* ™S dy.
0

After simple calculations we come to (2.18). O

Lemma 2.5. For any u € Wz(?(B) satisfying (2.2) the inequality

f|D2u|2radm < (14 Mm2) / |Aul? r¥dz — (m — 1) / up|? dS +

B B 8B
24 29)(m—1)+mM2 ™
plmo2t 7)(m J+m = O IS+ (m+ 14 22) M7 +
m—2+2
+ P (n = 1) [u(0) 18],
where
- m=2+29 {14972 +2-(1-9)|m}
! (m+1+7)%(1~7)?
holds.

11

2 . . »
v 772 4 52+ m = 2)? ol

r*] x

(2.19)

(2.20)



Proof. From (2.18) we have

> [l

])l Q

+[(m—1)(1—a)+2i( +m - 2)]1 o TG+ m - 2)x

X[FTG+m=2)+(2—-a)a+m—4)] I’Uj,llz r_4}r°‘+m_1dr =

= [180Preds — (m —1) [ o} dS +2 3 (5 +m — 2)wlu(Lsa(1) -
Jieer

8B al

—(a—2) Y4 +m — 2ui,(1).

il

According to [2] (p. 51 and p. 54) for a =2 —m — 29(0 < v < 1) we have

aZ/[(m——l tﬂi +(a+m—23)j(j +m— 2)| J,’ _]ra+m—3dr§

<M22/{| |+ = 1)1 - @) + 25 +m—2) ] o[ 2 +

i +m =2 +m =2+ (2 - &) (a+m—4) [zl r ™

The fact that in this case v and Vv can differ from zero on 8B plays no role.
Then from (2.13) and (2.18) we have

D% — |Auf*) rodz < ~(m—1) [ fu*dS + o [ ol dS —
/(l ’U.| U )r T m al/;u 2a-£.’v

B
‘ ——g/ |Vu|2dS'-{—M72 [!IAvlz r"‘da:—(m—l)/|v£|2d5+
8B 8B

+23 507 +m = 20}, (Lvsu(1) — (@ = 2) Y5 +m — 2w, (1)] —

*—EJ(J +m —2) vu(1)]*.

al

Since u vanishes on 0B and, according to (2.11), v is a linear function on 6B we
have that vj; = 0 on 9B for j > 1. Therefore

ZIJ(J +m = 2)v},(Lvj(1)| = (m — 1) Zvu(l Jra(1)] <
ky 3 ky : L | L
< (IZ Iv{,z(l)lz) (Z lvyi(1) ) -1)< Cf lvilzds) (a |U|2d5) (m —1).

12



So

= 2)vja(L)vja(1)

g(m_l)(a Iv:|2d5)5(6 |v|2d5)5. (2.21)
B B

In the same way we come to the inequality

>3 +m =)oV < (m-1) [ plds. (2.22)
; |

7l
With the help of (2.21) and (2.22) we get
2, 2 o 2 2 2 o 2
Bf'D ul r%dz < (1+M_,)/|Av| 7 dm—(m—l)/ |l | dS——z-aé |Vv|°dS +

1

/|v|d.5'+(m—1M2 /]v'| dS+2(a ik dS) x

X (a [v|2d.5’). —(a—2)/|p|2dS] ;g(m—i)/st. (2.23)

Let us estimate now the right-hand side of (2.23). Evidently from (2.11) we have

2/ [vl[? = |Vo[?) dS = —/ {[u _ (Zu,(O)z,) } _é [ui_ui(O)}z}dsz

T2 / ['“" — 2u, ZU» ) cos(r, ;) + (Zu,(()) cos(r, m,))z _

1=1

- Zuf +2 Zu,-u,-(O) -y uf(O)} dS

=1 =1 =1

Taking in account that on B  |Vu|® = u? and u; = u, cos(r, z;) , after cancelling
some terms we come to the equality

2./ fonl’ —|Vo]*) 2/{Zu2(0 cos rm,)—1]+

+2 Z u(0)uk(0) cos(r, z;) cos(r, zx) } dS.
i<k

After easy calculations we have
o
5/ (Wil = Vol )dS = Zu,(O)|SI e
8B

Applying the inequality
2ab < a® 4 b?

13



to the middle term in quadratic brackets on the right-hand side of (2.23) and taking
into account that @ — 3 = —(m + 1 + 2v), we’ll have

/lDzu‘r“dm <1+ Mf)/ |Aufrodz — (m — 1)/ i | dS +
B

(m—2+2y)(m —
+
2m

a(ﬁzll—)a é lo[?dS.

1SS u20)1S] + (m + 1+ 29) (m—l M2/1v| ds —

i=|

Since

/ o4 =w3(0)15] + 3 u2(0)|S|m-?

1=|

we come to (2.19). I:l
Lemma 2.6. Ifu € Wg(?(B) satisfies (2.2), then for dny n > 0 the inequality

~2+2 -1 M?
/|D2u[2r°‘dm{1——n|5| l(m +7)(:n” J+mM,

B
2m+1+2y)M2 +m —2+ 2y
" (1—=7)? m =1y <
—-2+4+2 -1 M?
g(1+M3)/|Au|2radm+co(n)|5|{(m t2n(m 1) + My
B m

X f VulPdz + (m —1) [(m+1+2y)M2 + (m -2 + 27)/2] /|u|2dw} +
B i

B
1+ 2y)M? —242v)/2
H(m—1) [|S|(er +27) 1’_+7(m T 1} f W' [2dS  (2.25)
takes place. Here a = 2 —m — 2y (0 < v < 1),Co(7) and M2 are determined by

(2.6) and (2.20). The value [SI (the area of the unit sphere in R"‘) is determined
by the formula

1S = 20 3T (5).

Proof. From the identity
w =l + [ (u), dp
1 .

follows the inequality

. 2
/u?r“d:z: < 2/ (i =1 )? r*da + 2/(/ uipdp) r*dz. (2.26)
J ] J

1
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Evidently

[ il rde = 2(11_7)34 (w05,

B

Since u satisfies the condition (2.2) we have

Z/(u, v1 )rda = (11_7)84 (') dS

=1 B

From the inequality of Hardy follows

- 2
u,dp | r%dz < ——— / ug |2 ret2dz,
/ [Jow) e 2]

So, taking in account that r < 1 we come to the inequality

3 / ( 1/ u,,,dp) r*dg < / D] 7

=1 B

Applying (2.26) and (2.27) we get

1
/IDu|2r°‘dm < / ! [P dS +
B ' 1_733 (1

2 )2/ID2u|2r dz
B

(2.27)

(2.2»8)

Now combining (2.4), (2.5), (2.19) and (2.28) we come to the inequality (2.25). O

Corollary 2.2. We can also apply the inequalities (2.4) and (2.5). Then we come

to the relation

m
B

2(m +1+2y)M2 +m — 2+ 2v .
* (1—9)? ( 1)”S

— 24+ 2y)(m — 1) + mM?
/]D2u|2r°‘dm{l——n|5|[(m F2)m 1)t mM,

<(1 +M3)f|Au|2radm + 21
B

m

+- \

(m-|—1+2'y)M2+(m 2-}—2’}')/2
L—7y

Hom 1) 151

15

(m —1) [(m + 14 27)M2 + (m — 2+ 29)/2 } / |A@|2dm -

Co(n)IS| {(m— 24 2)(m — 1) + mM2

—1]/]u|d.5' (2.29)

D N



Corollary 2.3. Taking in account that r < 1, we can write

f|Au|2dm §/|Au|2r°‘daz
B B

and from (2.29) then follows

/|D2UI2r“da:{1 8] [(m—2+27)(:_ 1)+ mM2
(m~1) } <

2m+1+27)M2+m—2+ 2y
(1—7)?
— 92479 -1 M?
§(1+M$+C°(Z)|SI{(m +29)(m—-1)+m 1y

+(m— 1) [(m +1 +29)M2 + (m — 2+ 2v)/2 })

m

/ |Au|?*r*dz +
J ;

A

(m+1+427)M? + (m —2+27)/2
1—x

+(m —1) [|S[ n— 1} / lul|2dS. (2.30)

It is easy to see, that if

(m=2+2y)(m—-1)+mM2 2(m+1+27)M}+m—2+2y
1-nS] - + T (m—1)
is nonnegative, then the expression .
14 2y) M2 —24+27)/2
|Sl(m+ +27)M7 + (m —2+2y)/ o1 (2.31)

1 -«

is nonpositive. O

After rescaling in = we come to the following

Theorem 2.1. Letu € WZ(Q(BR) satisfies the condition (2.2). Let also the inequal-
ity - o

(m—2+2y)(m—1) +mM3+

E = 1-19|S]| —

2(m + 1+ 2y)M? —24+2
(m (71)_77;:’“ 2 m—1)| >0 (2.32)

16 -




holds. Then the following estimates
1 | » v
/ | D?u|?r*dz < z {(1 + M2) / |Aul*r*dz + Co(n)| S| x
Br Br ;

—242 -1 M?
(m + ’Y)(m )+m “YRa—Z/|VUII2dm+

Bp

X
m

+ (m—1) [(m+1+29)M2 + (m — 2+ 29)/2] B> / |u|2d:v} } , (2:33)

1
[ it < L {u 202 [ e 4 SIS e,
Bgr ‘ Bp

m

—-2+2 -1 M?
LSRG ELLN

(m—1) ((m+1+2y)M2 + (m — 2 +27)/2)

/ |Au]2dm} (2.34)
Br

A
and
| — 2+ 29)(m —1) + mM?
J1D?uprede < %{1 + M2+ CO(;’NS' [(m toym ) by
Br m
m—1)((m+1+29)M?+(m -2+ 2v)/2
Br

take place.

Let us remiﬁd, thata =2—-m—2v (0 <y < 1), M, and Co(n) are correspondingly
defined by (2.20) and (2.6), X is least absolute value of the eigenvalues for the
operator A in B with condition (2.2) and

S| = 27™/*T Y (m/2)

15 the area of the unit sphere in R™.
Consider now the cylinder Qr = (0,T) x Br(Q: = Q) with boundary conditions

“wloy, = Uls=o = 0 ‘ (2.36)

for a function u(¢,z) given in Q. Denote 8 = —a.
- For m > 2 the inequality

m

: ﬁ/]aﬁ-—Aulzrﬁdmdt | (2.37)
] :

m

/ |Au|?rPdzdt <
Q

17



was proven in [3] (¢ is an arbitrary nonnegative value).

Lemma 2.7. Let m = 2 and therefore § = 2 (0 < v < 1). Suppose that u satisfies

(2.36) and u € L, {(0,T); WA(B)} . Then the e inequality

B 2-p
T

-8 (1-%)yp

/lAu|2rﬂdmdt < [l + 5 } /Iau — Au rPdzdt  (2.38)
Q

holds, where € is an arbitrary nonnegative constant.
Proof. Denote »
el — Au = f, (2.39)

multiply this equality by Awu-7r? and integrate by parts on the left-hand side. Then
according to lemma 2 in our paper ([3], (2.38)) we get

%/ |Vul*rPdz |1 +5/Au u:dmdt+/|Au12rﬁda:dt = /f(Au—l—ﬂqu_l)rﬁdmdt..
B Q B Q

After using for u(z,t) the expansion, analogous to (2.12), according to the same
lemma in [3] ((2.39)), we come to the inequality

» /-|Au|2 rPdzdt + :3(2 Z//lu, |2rP- ldrdt <
Q
2 5 T 1 : '
< | f(Au+ Bulr ) Pdzdt + Zsz lug i |2rP~3dr. (2.40)
/ /]

8,k

Now we have to estimate the right-hand side term of (2.40). Like in [3] we multiply
(2.39) by u,,r?%(s > 1). Integratmg by parts we come to the inequality ([3], (3.30)
etc.) ‘

T 1 ‘ T 1
[(1 - = ,3 + 52— 1] // g g |*rP3drdt < l//f,,ku,,krﬁ_ldrdﬂ.
00 00

It is clear that
T

//I%Hz A=3drdt < mz [( ,3+s ]f/llu,,klzrﬁ‘3drdt.

s>1 s>1

So, we have

s>1

T 1
/ / Fontiopr®ldrdt| .
0 0

T 1 1
52//|u,,k|2rﬁ"3drdt < —
00 (1- g)ﬁ

After applying the Hélder’s inequality we get

18



» . 2, 8- 3d dt < 2.8
5[ [t i s
With the help of (2.40) we come to the 1nequahty

/ |Auftrfdgdt + B2=F) P rP1drdt <
s,k g
2,8 -1\ B
< Q)Zﬁ/m dmdt+/f Au+ Bulr™) rédad. (2.41)
Applying the well known inequalities we get
/ f Au-i—ﬁu’ =) rPdadt < / FAurPdzdt|+ng / ! 2 P82t - / \f2rP dadt.
Q Q 477 Q

According to the expansion (2.12)
, ‘ T

1
/|u,’_|2rﬁ'2dmdt = Z/ " rP-1drdt
i Q .!,k 0 O
and we can write
!r NP dzdt < /fAurﬂda:dt +

1

+16) /

Jkoo

Bty 4 L / |f[2r8 dudt.
47
Q
So, from (2.41) we come to

/ |Aufrfdzdt + PE—P) +

fnﬁZ//

Sko

1
/| ! PP ldrdt <
J 4

O\H

/ FAurfdzdt

"1

s,k

-1 B [ir2n8 2-8 2.8
drdt + 4n/|f| rPdeds + o %)ZﬁQ/m rB dods.

Takmg n = 22 and applying the inequality

/ fAurPdzdt

< %‘/ |fI*rfdzdt + -;—/'IAuPrﬂdmdt;
Q ' Q

we get (2.38). O

Denote

1—-2 2 o9
A2 = { e PP Tmn> ) (2.42)
m+ta ) .

19



Theorem 2.2. Suppose u € L, {(0 T); (2)(33)} and satisfies the boundary con-
ditions (2.36). Then the followmg estimates :

f | D?u|?r*¢dzdt < {A m(1+M2) /Iau—Au|2 r*(dxdt + Co(n)|S| X
Qr Qr

—-2+42 -1 M?
x [(m + 7)(m )+m b Ra— /|Vu|2dmdt+

m

Qr
+(m = Dl(m + 1+ 29)M7 + (m — 2 + 27)/2]R** x ,
/ lu|*dzdt] } + CR™ / lew — Auftdzdt, (2.43)

Qr

/ [D*ulr(dadt < E{A2 A1+ M2) f e — Aul*ro¢dadt + C—O(%Ra

@r Qr

(m=2+42y)(m=1)+mM2  (m—1)((m—1+27)M? + (m ~2 +27)/2)
X - + = X
X / |Au|2da:dt} +CR® / et — Auffdzdt (2.44)

and

/ | D?uf?r ¢ dudt < % {Ai,m(l + M?) + @(’z\ﬂlx

m A

y [(m——2+2'y)(m—l)+mM$ N (m—1) ((m+1+2v)M$+(m-2+27)/2)]}

/ let — Aul?r*(dzdt + CR / et — Auf*dad (2.45)
: Qr '

hold where € and T are arbitrary positive values, and all other constants are defined
at the end of the formulation of theorem (2.1) and by (2.42).(C doesn’t depend on
€ and R).

The function ( is a smooth monotone cut—off function, defined by the relation

r i _
r < 2R (2.46)
T .

1 0
((r) ={ smooth iR
o g

INIAIA

Proof. We can assume at first that u is as smooth as we wish. Let w(t,z) be a
solution in @ of the follwing boundary value problem

e+ Aw = —Aur®(, - (2.47)

20



wlt:T - wlaBn = 0.

Multiply the equation (2.47) by Au( and integrate once by parts with respect to ¢
and twice with respect to . Then we shall get

/ (e — Au)Aw(dedt = / | Aultro¢2dedt + .. .
Q Q

where the nonwritten terms contain the derivatives of ¢ under the sign of ‘the
integrals. Applying the Holder inequality, we get

2 % %
( / |Au|2r°‘C2da:dt) < ( f |aﬁ—Au|2r°‘C2dmdt) ( / 1Aw12r‘°‘dwdt) +
Q Q Q ‘

+ [ |ei— Aufdad (2.48)
Q

Tt is trivial that w also satisfies the inequalities (2.37) and (2.38) (you should only
change t for T' — t). Therefore

[Aw|?r-odzdt < AL, [lew + Aw|*r~*dzdt =
Q Q

= A%, [|Aufre(*dzdt.
Q

Now from (2.48) after rescaling we get the results of the theorem, if we take into
account that

f |Aul*rodedt > / | Aul?ro(?dedt — C / et — Auf*dedt.
Q Q Q

d

Let us return now to the inequalities (2.4) and (2.5) of lemma(2.1). Since the
power of integrals on the right hand side of these inequalities is equal to one they
belong to the so called class of the linear inequalities. But in some problems there
is important to have the so called multiplicative inequalities. We shall obtain them
now.

Lemma 2.8. Ifu € WZ(Q(BR) and (2.2) takes place, then the inequalities

o) < C(E/ |Du12r°'dw) o (B/ 1u|2dm) o

R .
' _m__ 27
i wi(0)? < C (!ngulz r“da;) +1 QIDulzda:) ' (2.49)

=0

hold.
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Proof. EV1dent1y it’s enough to prove only the first of the 1nequal1t1es (2. 49) Sub-
stitute in (2.4) the expression (2.6). We get

|u(0)/? <7]/|Du|2r°‘dm+0n”%/|u|2dw.
B B

Take now
n= (/ |Du|2radm)—27/(m+27)(/ |U|2dw)27/("‘+27)

and we come to (2.49) (if |Du| = 0 then u = 0 and (2.49) is trivial.) O

Remark. Under assumption of the lemma the inequality

()2 < COf / | D2u|?r®dz) = ( / | Dul?d)7r (2.50)

holds.
In fact

/|Du|2r“dz < (/ |Du — Dulof?r °‘d:z:)+2/ | Dulo|2r*dz

B Br

< C f |Du — Dulor*~2dz + | Dulo|?].

From the very‘well known Hardy’s inequality and from (2.5) follows
/|Dulzr°‘dm < C(/ | D?uf*r*dz + / | Dul?dz).
R BR BR

Then from (2.2), » < 1 and a < 0 we get

/ |DufPredz < O / |D?ulPrede + / | D?ul?dz)
B . B B
< C’/ | D?u|*r*dz.
Br

Applying (2.49) and (2.50) to (2.19) we come to
Theorem 2.3. Letu € W( )(BR) and satisfy (2.2). Then the inequality
/|D2u[2r“dm < (1+M2) / |Au|2r°‘dm+(](/ |D2u!2r“dm)ﬁzv X
‘ Bp Bgr Bg .
(/ | Dul?dz )= (2.51)
takes place.
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The proof follows immediately after applying the estimates (2.49) and (2.50) . We

get .
ey
(B/ ]D2u|2r°‘dm) +
R

[ 10*upredn < (14 M2) [ |Auprade + O
Bp Br

+ (B/ |Du|2r°‘dm) (B/ [Du|2d:z:) ,
R R

From (2.51) and

/|u]2dm < /IDu[zda:
Bg Br

we come to the result. O

Suppose now that the condition (2.2) is not satisfied. How will change in this case
the estimate (2.51).

Theorem 2.4. Letu € W2(2(BR). Then the inequality

/ |D2utretdz < (1+ M2 +7) / |Aul*roCd + (2.52)
Bgr " Bp
_m_ 27
m+2y m+2y
+ C{ (B/ ]Dzulzr"‘(da:) /(|Du|2 + [ul?)dz +
R Br

+ / (|Du]2 +‘|u|2) dm}
Br

takes place, where { is defined by (2.46) and 7 is an arbitrary small positive number.
a

The result follows immediately if you substitute in (2.51) instead of u the function

Theorem 2.5. Let u € L2{(0,T) Wz(E(BR)} and satisfies only the second of the
‘condition (2.36) u =0 when t = 0. Then the estimate

/ D2 ro(dadt < (1+ M2 40) A2, / et — Auf? r*¢dzdt +

Qr , Qr
/ 7"-—-!-@5'7 mil’*r
+ C{( / [Dzu}zragdmdt) / (1Duf® + [uf?) dzdtl +
Qr ' Qr
+ / (|Du|2 + |u|2) da:dt} | (2-53)
Qr

holds, where C' doesn’t depend on €.
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Proof. Take a function w, which satisfies the equation (2.47) with the same condi-
tions and multiply both sides of the differential equation by Au-({. After integration
over Br we come to

/ (et + Aw)Au(dedt = — / | Auf*r*¢dadt.
Qr Qr

After integrating on the left-hand side two times by z, we get

/ leAv(u + AwAu¢]dzdt = / |AulPr?dadt —
Qr Qr
—% / VoV( - udedt — ¢ / WA Cudzds.
Qr Qr

Integrating on the left—hand side once by ¢ and on the right-hand side in the second
integral once by z, we get

/ (et — Auw)AwCdedt = / | AulPro¢?dedt +
Qr Qr

te / - Aldzdt — ¢ f V(¢ Vudadt.
Qr Qr

So

/ |AulPro(?dodt = / (4 — Au)Aw(dzdt —

Qr Qr
- / (ew — Aw)uA(dedt + / (ew — Aw)V(Vudedt —
Qr Qr
o / wAwA(dzdt + / AwVu - V(dodt.
Qr Qr

Let us now estimate the integrals on the right-hand side. After applying an ele-
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mentary inequality we come to the following relations

1) L/ (ev — Au)Aw(dzdt

< 1 /leu — Aul*r*(?dazdt +
4n
Qr

+7 / |Aw|*r~*dzdt;
Qr '

2) L/ (sw — Aw)uA(dzdt

R

<7 / lew — Aw|*r~*dzdt +
Qr k
] ‘ .
—|—Z— / |ul?| AL Predzdt < m / |Aul?r*(2dzdt +
‘ nQn Qr

+C / |u|*dzdt(n: > 0 — arbitrary);
Qr

3) Lf (ew — Aw)V(Vudzdt

<7 / |Aul*r*(3dzdt +
Qr :

C / |Vu|?dzdt(ny > 0 — arbitrary).
Qr

Then after (2.37) we get

f|Au|2r°‘C2dmdt < nAi’m/ |Au|?*r*(dzdt +

Qr @Qr
1
+—f|51},—Au|2r"‘Czdmdt + m / |Au|?*r*(2dzdt
4n
Qr : @r
+ C / (IDuf? + [ul?) dedt.
Qr

Taking n = A2 ,./(2m) we receive the inequality

/‘Au|2'r°‘§2dmdt < (Az,m—l—n) / lew — Aul*r*(*dzdt
Qr Qr

+ C [ (IDuf + |ul?) dadt.
Qr

After using Theorem 2.4. the proof of the theorem is concluded. [J

3. COERCIEVE ESTIMATES FOR THE STOKE’S SYSTEM IN WEIGHTED SPACES

Consider now at first the stationary Stoke’s system
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Au+Vp = f
divu = 0 } (3.1)
with normed p and boundary condition
u!an = 0. : (32)

Using the inequalities (2.52) and (2.53) we shall derive some estimates with explicit

constants for the solution of the problem (3.1), (3.2). The Stoke’s system was very
intensively discussed in many books and papers. We refer here only to the papers -
of V. Solonnikov [5]. From the results of these papers in particular follows that if

fe Wq(k)(Q)(q > 1) then the second derivatives of u and the first derivatives of p

also belong to this space. The analogous result for the nonstationary system is also

included there.

Suppose that @ C R™ is a bounded domain and 9 is sufficiently smooth.

Theorem 3.1. If f € Ly o(Q) with a =2—m —2v(0 < v < 1) then the weak solu-
tion of the system (3.1) with the boundary condition (3.2) satisfies the inequalities

_ a—:‘_;lz) + } {1 - %} _254 |fI*r*(de +

/ \Vplro¢ds < [1
BR ' .
+C [ lpPds, (3.3)

Br

e

x(1+ M?) / f2ro¢de + C
Br

(/ |D2u|2r“Cdz)ﬁﬂ(/ |Dui2dm)%+
Bgp

Bgr
+ / |p**dz + /(lDul2 - Iutz)dw} , ’ (3.4)
Br Bgr :

where zo is an arbitrary point inside @, R < dist (z,09),7 = const > 0 is
arbitrary and M, is defined by (2.20). ‘

The proof of this theorem is analogous to the proof, which was given in [2] for
the solution of Poisson equation. Let us sketch this proof. According to the above
mentioned result of V. Solonnikov we can assume at first that both f and the
solution u,p are as smooth as we wish. Take a point o € Q and consider a ball
Br(zo) with R < dist (zo,00). After rescaling we can consider only the ball
Let Y, x(©)(© € S) be a complete orthonormal set of spherical functions and let

+qoo ks

p(z) = 32 > pek(r)Yei(O). | (3.5)

8=0 k=1
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Construct the function

+oo ks

'v(m szsk | (36)
§=0 k=1
where
w(r) = —}'pé(e)e"dg,’

Vok(r) = por(r)re (s> 1),
Take the function
w(z) = v(z)((r), (3.7)

where the cut-off function ((r) is determined by (2.46).
Multiplying the Stoke’s system (3.1) with Vw and taking in account that

/ AuVwds = — / A(divu)wdzs = 0,
b 0

we come to the equality

‘[Vprda: :'h/ fVwdz.

Integrating by parts and substituting the expansions (3.5), (3.6) for p and w we’ll
have

JVpVwdz = f poretme tdr + 2 {lpaklz
+[s(s—|—m—2) ﬂm] |poil?r™ } atm=1tdn .

where the unwritten terms contain only integrals without singularity.
From this immediately follows

1 1
[ VpVudz > [ [ph2rtmdr + 5 [ [lp][2+
0 0 21k0 -

(s +m — 2) mip ERlAlEtm B, 202 Jpatm i

Finally

m

/Vprdm > [l — ofo + nz_l 2)/2} j |Vp|*r*(de — cv/ lp|*dz.
Q , Q Q

From the other side

prdem = /fvwdm < (/ |f]2raCda;)l/2(/ |V11{I|2r_“C'1dm)1/2.
1] Q ) Q Q ‘ ‘
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Comparing the last two relations we come to the inequality

1 KA D [iupftencis < (f Frogaa) [ 19ultro e+
, a 0 a

—FC/M%&
‘ 1]
In our book ([2], p. 120 see also [8]) by the same method was shown that
/ IVwltro¢-lde < [1 - M] / Vp|?r¢da +
Bt m—1 aQ
Cflp}zdm;
Y]

So one of the statements of the theorem is proved.

Take now in Stoke’s system (3.1) Vp to the right hand side and apply the inequality
(2.52). After small calculations you come to the inequality (3.4). O
Consider now the nonstationary .Stoke’s system

uw—vAu+Vp=f (v= const. >0) (3.8)
divu=0 ‘ '
with boundary conditions
ulag = Ult=0 = 0 ‘ (3.9)

At first we'll also consider the inner estimates. : ‘
Suppose f € L2{(0,T); L2,o(2)} and Qr = (0,T') X Bg, where R < dist (o, 89).
It 1s trivial to see that the estimate (3.3) holds if we change Bg for Q. '
Then dividing the first equation of (3.8) by v and applying (2.53) we come to

Theorem 3.2. The solution of the problem (3.8),(3.9) satisfies the inequalities

Q{ |Vp|*ro¢dzdt < [1 _ _qﬁ;nfg:T?) +77] [1 B a(—;(:—;—r—f-;)ﬁ] Ly )

x ] |fPPre¢dudt + C / Ip|2dzdt, (3.10)
Qr , Qr

/ | D2uf?r*(dzdt < %{1 + [1 - O‘(mm—_—f)r [1 —9‘%?—5—21} N +n}2 x
Qr ,

x(1+ M2)AZ_, / \f PPro¢dadt + C
‘ Qr

/ Ip|2dzdt+ (3.11)
Qr
+( [ 1D*ulr¢dodt) 5 ( [ |DuPdadt) ™ + [ (1Duf? + |u|2>dwdt} -

Qr Qr Qr
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Here C doesn’t depend on v, M, and A, are correspondingly defined by (2.20)
and (2.42).

For small v > 0 we have

Theorem 3.3. Let the conditions of the th 3.1. be satisfied and v > 0 is small.
Then the following estimates for the solutions of the system (3.1)

[1vetregas < [1+ C= o) [ isrecas o [ e
Br , Br Br

m—1

(m

/ |D?ul?rlde < {1 + [1 + 2)* + 0(7)] 1/2}2 (1 + :Z—_—i) / |fI2re¢de +
Br Br

m—1 +

+C

([ 1D*upr=¢da) =5 ( [ |Dul*de) =5 +
Br - Br

+ [(Dul +uf)dz + [ lpPde (3.12)

are true.

Theorem 3.4. Let the conditions of th 3.2 be satisfied and v > 0 1s small. Then
the following estimates for the solutions of the system (2.8)

m — 2)

m—1

/ |Vp]2r°‘fda;dt < ll + ( + 0(7)] / |f[Pr*¢dadt +
Bpg Qr

i, / Ip|?dz, (3.13)
Qr

v 1
/ | D?u|*r*(dzdt < —[2 4 0(7)] / |f12r*(dzdt +
vy
Qr ' Qr ,
+0] / Ip[2dedt + ( / | D2uf?r*¢dzdt) 7 x (3.14)
) Qr Qr

x(/ | Duf*dzdt) T + /(|Du|2 + [u[?)dzdt], (m = 2)

QR Qr k
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/IDz |2 “(dmdt<-ﬁ 14 1+£m'_—:.?)_2_|_0( )1/2 X
ur - 2u? m — U :

1
Qr

(1+ ———) / |fIPr*¢dedt +

. Iy
+C / Ip|?dzdt + (/|D2u|2r°‘§'dwdt) X
Qr

Qr

2y
m+2y
X (/ [Du|2da:dt) + / (IDu|2+ |u|2) dzdt| (m>3) (3.15)
Qr Qr

take place, where C doesn’t depend on v.

It is necessary now for the problem (3.1) (3.2), to get the estimates in the neighbour-
hood of the boundary 0. For this purpose suppose that a piece of the boundary
is flat and has the equation z,, = 0. So, in the neighbourhood the domain Q lies
in the half space z,, < 0. Take a point Mo(a;g ), ,z{) in Q and consider the ball
Br,(M,) such that

Ry > |29, (3.16)
Consider also a parallelelepiped II_
:vsco)— R< z < msco)—i—R (k=1,..-.,m—1) (3.17)
g®— R< z,< 0, (R>Rp) '

which contains Bg,(Mo). Suppose for a moment that :1;( ) =0 (k=1,...,

m — 1) and R = 7. The principal part of the estimates doesn’t depend on these
assumptions. Without loss of generality we can assume also that f = 0 for z,, = 0.
Expand f,u and p in II_ in the following Fourier series

@)=Y B (z,)e™=) (k=1,...,m), (3.18)
p(m) — Epn’(w ) i('n,',:cl)’
o 3.19
uB)(z) = Zu(,)(:c el =) (k=1,...,m) (3.19)
where n/ = (n, cevyNm_1), all integers n; (3 = 1,. — 1) run from —oo to +oco

and ¢’ = (ml, ooy Tme1)- Substltutlng (3.18) and (3 19) in (3 1) and (3.2), we get.

— |n'|Pu (k )+'mkp = (k) (k =1,. ~-1)
( !nllz (m) + P = fn, , ‘ (3.20)
otk )—{—1, 2 nku( ) _ 0,

w#(0) = 0. o (3.21)



Here
m—1
=3
s=1
and the point over ugf) denotes the derivative with respect to z,,. Multiply the first

- m — 1 equations of (3.20) correspondingly by 4n;. After summation and using the
last equation (3.20) we shall have

m-—1
WG — |02l + [0 Ppw = — Y (i) £, (3.22)
k=1

If we differentiate now the second equation of (3.20) with respact to z,, and subtract
from the result the relation (3.22) we shall have

m—1 ’
B — [0 Ppmr = 5 + 30 (i) £ = Fo(@m). (3.23)
’ k=1

The bounded solution of this equation for z,, < 0 is the following one

1 °F
— - _ - In'|(ém—zm)
Pn 2 (:I}m) 2lnll R Fn (Em)e dfm +
- / Fo(bp)emem=tm)de 4 O_gln'lom (3.24)
2|n’| ) o

Here F;(z.m) is a function, which coincides with Fn/(z,,) on z, > —7 and is
expanded on z,, < —7 continuously for k = 1,...,m. We suppose also that the
functions will be absolutely summable on (—o0, 0].

Let us also consider the equation (3.23) in z,, > 0 with such suitable right-hand
side F};(z) that pn(zm) is continuous and absolutely summable on the whole strip
—00 < Ty < +00. The solution for z,, > 0 will be the following

1 7 N —a
Pn = p:(mm) = — p / F:I'(gm)elﬂ [(€m m)dfm +
. 2|n’| g
1 F ot , |
o] / Fj(bm)e™n=tm)de, 4 CpemIlom, (3.25)
+o0 '

Take zp, = 0 in (3.24) and (3.25) c_ = c; and

0 +o0 )
[ Filem)enden = [ Ff(m)e ™ emdt,

We see that F; should be expanded on z,, > 0 symmetrically. From the right-hand
side of (3.24) it is easy to see that the function f")(z,,) should be expanded in
antisymmetric way and f,(;c) (zm)(k =1,...,m—1) symmetrically. Integrating once
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| by part we come to

1 F im e —a
Pnt = pﬂ'($"*) = 5 ,/ f7(1’ )(£M)e| (G m)dfm +

l m-—1 . Tm o
2|nl* Z(an) I:/ fr(;lf)(fm)el I Em)dfm_
k=1 0

1 i m urs
43 [ Fr gmeien
0

Tm

- f 7B (¢ e lien=em)de, | + cemllenl (2, < 0). (3.26)
The analogons formula, following from (3.25) will take place for ZTm > 0.

Denote by f fLk) (/\) the Fourier transform of the functions f, (:z:m) (k‘ =1,...,m)
on —o0 < &, < +oo (the functions are correspondingly expanded in syrnmetnc
and antisymmetric ways).

We have
+o00

(k)(az )-— ! /f(f)()\)e“‘”"‘dk
m ﬁ-— n . .

Substituting in (3.26), changing the order of integration and taking a suitable C
we getb

1

Pulen) = [ [ RO e i

m-—1 t%°

FE () giram ) 3.97

Consider now the symmetric. with respect to II_ parallelepiped II,

(0) —R < =z <:z: +R(k—-1 m —1)
—m(°)+R > gz, > 0.

The parallelepiped II_ U H+ gives a parallelepiped II in which the function pn/(z.,)
is expanded on z,, > 0 in a symmetrlc continuous way. In thls parallelepiped for
Tm < 0

"'(m) ‘(k) IATm i(n',z’
p(z) = /7 Z_/ [f )‘2 1 ;|2+Zf (A) Xt :|2] d)\e( )

and the analogons formula for z,, > 0. The function p(z) as we have seen is
continuous for all ¢ € II. Then there exist the first derivatives for p in the Soboleff’s
sense and, for example

2
7 790 nEA } Aom 7y i(n'a")
+ —_— dle )
Z/ { /\z-l-[ r|2 Z )\2+| /|z (3.28)
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Take in account that each term on the right-hand side of (3.28) represents the
second derivative of a solution of the Poisson equation

AZ=f® (k=1,...,m)

in IT with boundary conditions of the first or the second boundary value problems.
Then according to (2.52) theorem (2.4)

I

a 2 m+2-1 m.+2'1 |

p o 2 2

iy, (B/ ‘_&nm r Cd:c) (E 17l dm) + / ip*dz | .
Ro Bry

Differentiating p(z) with respect to zx(k =1,...,m—1) we get the same estimates.
Then

2
r*({dz < (1+ M2 +n)m / |fI?re¢de +

/ VplPre¢ds <m*(1 + M2 +n) / |fr¢da +
+C (B/ IVPIZT“Cdm> (E || dm) + / lp|?dz| . (3.29)
Ro- By

B, = Br,N(2zm > 0), Bj, = Br,N(zm <0). (3.30)

Denote

Suppose that ((r), defined by (2.46), is monotone. As far as zo € Bp, then for
z € B,

!f - mOI < |iI) - 1170(,
where Z is symmetric to z with respect to z,, = 0. For o = 2—m — 2y < 0 we have
|i‘ - :I)o]a 2 ]:1: — :Eola
and from the monotonicity of { (2.46) follows
¢(12 — zol) > {(lz — zo)-
Since f and p are expanded on Bp, in symmetric and antisymmetric ways we have
[ 1fPrtde = [ IfProcdo + [ 1fProcdo <2 [ |fPr¢da.
Bry B} By, Bj
Taking in account that
[ \VpPracdz > [ (Vpfrcds
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we come with the help of (3.29) to

[ 1Vplretds < om®(1+ M2 +n) [ |7Procdn +
Bro Bro

_m_ 27

m42y ‘ m+2y .
+C /|vp|2r‘*cdm /|P|2dm + / lp|*dz|. (3.31)

B, o Bz,

Theorem 3.5. If f € Ly o(Q) witha =2 —m —2v (0 <5 < 1) then the solution
of the boundary value problem (3.1), (3.2) satisfies the inequalities

[ 1Vplrtde < 2m2(1 + M2 + 1) / |fPre¢da +
Qr ‘

m+2'1 m?l-h -
+C (ﬂ/ IVp|2r°‘Cd:L') (n/ de) + / plPdz|  (3.32)
. R Qg
and
/ |D*uPr¢de <2 (1+ M2 +n) (14+V2m 1+ 322)° / fPrecdz +
19353 . Qn

2

+C (7f ID2u|2raCdm) o (/ !Dzulzdm) - -+ /(lDul2 + |U|2)d$—{—
R Q Og
+ (/ IV:DIZT“de) 7 (/ lplzdm) ~ + f Ip|*dz| (3.33)
ar e

where Qr = QN Bg(zo), R sufficiently small, r = |z — o], 20 € Q, C doesn’t depend
on xo and n is an arbitrary small positive number.

Proof. The inequality (3.33) follows after comparing the estimates (3.3) and (3.32).

In fact it is enough to compare the coefficients before [ |f|?r*(dz. Since

a(m — 2)
m—1

1-— < 2m*(1+ M3)

for m > 2 we come to (3.33). Of course the technique of the apriori estimates of
J. Shauder should be applied (see for example [6]). To get (3.34) the system (3.1)
should be written in the form

Au=f-Vp
and the boundary conditions (3.2) used.
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In the interior domain the inequality follows from the estimate (2.52). In the bound-
ary strip the solution should be continued in an antisymmetric way. The proof of
the theorem is then completed after very simple calculations. [

Consider now the nonstationary system (3.8) with the condition (3.9).

Theorem 3.6. If f € L{(0,T); L2,o(Q)} with o = 2—m—2v(0 < v < 1), then the
solution of the system (3.8) with the boundary condition (3.9) satisfies the estimates

/ |Vp|2ro¢dadt < 2m?(1+ M2 + 1) / | fPro¢ dadt +
Qr Qr

ATy o
+‘C' (/ |Vp|2r°‘Cda:dt) (/ [p]zda:dt) 4 / lp|*dzdt| (3.34)
Qr Qr

@R

and

242
/|D2u|2r°‘Cda:dt§ V‘;*’"(1+M$+n)(1+\/§m,/1+M3)2/|f12r°‘cda,-dt+
Qr Qr
—m__ 27 —_m__
m42y m+2y m+2y
+C ( / lDzulzr"‘Cdmdt) ( / [Dulzdmdt) + ( / |Vp|2r°‘Cdmdt) x
Qr Qr Qr
m;-!l-z-y
X (/ ]plzr"‘(dmdt) + / |p|*dzdt| . - (3.35)
Qr Qr

Here r = |z — zo| and Qr = (0,T) X Br(zo) N Q with sufficiently small R. The

constant C' doesn’t depend on zq and v.

The proof is absoloutely analogous to the proof of the previous theorem. The only
difference is that the references should be made to the estimate (2.53). a

For small v > 0 the last two theorems can be formulated in a more explicit way.

Theorem 3.7. If the conditions of theorem 3.5 are satisfied then for the solution

35



of the problem (3.1),(3.2) the following estimates

/ |Vp[2r°‘(d:c < 2m? [1 + Z—;f + 0(7)] / |f|2r";Cdm +

Qg
m+2'y m?+2'y ‘
+C (n/ IVplzr“de) (nf |p|2dm) +/lp|2d$ ,
R r
/|D2u|2r“(dm <2 [1 + ’—”—_—2-+o(7)] 1+fm(1+ —— )1’2] /lflzr"‘cdsc +
A m+1 in
m+2'1 ;%'3';-1.
+c ;Dzulzrafdw) ( wPdz|  + [(IDuf? + [ul?)do+
/ / /
+ (/ Iplzr“de) (/ lplzdw) +/lpl2dw
Qn Qr Qg
hold.

Theorem 3.8. If the conditions of theorem 3.6 are satisfied then the solution of
the problem (3. 8) (3.9) satisfies the follow'mg inequalities

/ Vp|2r¢dadt < 2m? 1+ﬁi—i+0(7)] / \fPre¢dedt +
L m
Qr

Qr
\ m+2—1 m?}-Z'v
+C ( / |Vp|2r*¢ dzdt ( / |p|2dm) + / Ip|?dedt]
QR QH‘
/ |\ DuPr¢dadt < 2 [1 + I +o(7)] [1 +Vom(1+ )1/2] / \FIProcdadt +

W‘M -"_‘_'f'%; ) m+21
+C (/ |D2u|2r°‘dedt) (/ [Dulzdmdt) + (/ |Vp|2r°‘Cdmdt) X
Qr , QR QR ‘
| e
X (/ lplzdwdt) + / lp|*dzdt|, (m > 3),
@r - Qr
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/ | D?uf?r*(¢ dadt <

-211—;%‘@—2 (L +0()] [ 1fPro¢dudt +

Qr Qr
[ o =
C (/ |D2u|2r°‘Cd$dt) (f |D2u|2dmdt) + /(IDZuI2 + |u|?)dzdt+
| @r ‘ @r @r
/ o 5
+ / |Vp|2r°‘Cdazdt) ( / |p|2da:dt) + / lpl2dzdt| (m = 2).
@r Qr Qr

4. REGULARITY OF SOLUTIONS FOR DEGENERATED ELLIPTIC SYSTEMS

In a bounded domain @ C R™ (m > 2) consider a system

L(u) = 3 Diay(z, Du) = 0, (4.1)
1=0
where u and a;(z,p)(i = 0,1,...,m) are N-dimensional vector functions with com-

ponents u*)(z), a,gk)(m,p)(k =1,...,N),

0
_am,-

Du = (Dyu, Dy, ..., Dypu)D; (i=1,...,m)and Do = —1I,

(now, different from §, we include u in Du). About the functions a;(z, p) we assume,
that they satisfy some of the following conditions:

(1) All ai(z,p) satisfy the Caratheodory conditions and are differentiable with
respect to variables p;

(2) The (m + 1)N x (m + 1)N matrix

0
A= {Z—;W} (4.2)
J

is s’ymmetric and the eigenvalues of this matrix satisfy the inequalities
. A

7 < Aj(z,p) <

1+ p| 1+ |p*

(4.3)

where A, A = const. >0and 0 <s < 1;

(3) For arbitrary u € Wq(l)(ﬂ)(q > 1) the result of the substitution a;(z, Du(z))(s
0,...,m) will belong to Lg/i1-4)(2);
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(4) The inequality

Oa; .
5| SCU+) (G=1,...,m) (4.4)
Tk -

holds;

(5) For Vu € W*(Q) the result of substitution in L(u) belongs to L, ().

Consider the solution of (4.1) with the boundary condition
| ulan = 0. : (4.5)
In [2] (ch 1, § 4) was proved that the universal iterational process
AtUniy — Uny1 = Aty — up — A7 L{u,,), unloa =0(n =0,1,...,) (4.6)

converges in Wz(i),(ﬂ) to the weak solution u of (4.1), (4.5) if u € Wz(l)(Q).
Consider also ,the process (4.6) with a penalty

Atnyy — Unyy = Aty — up — A7 A, + L(u,)] (6 >0) (4.7)

with the same condition (4.5).
In [2] was also shown that a subsequence of the iterations of the process (4.7)
converges weekly to the solution. So, if we want to show that the solution has the
Holder continuous first derivatives it is enough to show that the iterations of(4.6)
or (4.7) satisfy the inequality

/ |D?u,|Prde < C, (4.8)
Or ‘
where Qr = Br(zo) N, z0€Q, a=2-m—-2y0<y<1), 7=|z—x
and C doesn’t depend on z¢ and n. It is also assumed that R is sufficiently small

and fixed.

Lemma 4.1. If the conditions 1) - 8) are satisfied and uo(z) € Wi(Q) then

1/2 AL e
D n 2d < _
(r[l Un1] m) = (1 1+ [ma.X{SI‘l]p IDunls‘L{l)PlDunH}]’) *

1/2
X (/ |Dun|2da:) + A7, (4.9)

0

holds, where

i|a,~(m,0)!2dm.w (4.10)

1=0

af? = [
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Proof. Multiply both sides of the system (4.6) by un,1 and integrate once by part.
Then

/Dun+1Dun+1d:z: = /[Diun — A ay(z, Du,)|Diupyqdz,

Q !
where summation as always runs over repeated indices.
Adding and subtracting a;(z,0) under the square brackets on the right hand side
we get

/Dun.,_lDu,H_ldm = /[D,-un — A Y(ai(z, Duy) — ay(z, O))]D,-un+1,d:1: -
e} 0 ‘

)

— / ai(z,0)D;up 1 dz.
h)

Applying the mean value theorem we come to

/ | Dupy1 Dup iy |Vda; = /(I — A™'4A)Duy, - Dupprdz —
Q - Q

—‘/ag(:z:,O)D,'uan:n,
!

where A denotes the matrix A with inte.r'media,te values of variables.
The-Hoélder inequality gives

v 1/2 ' ) 1/2
( / lDun+1|2dw) < sup (I — A~ ( / wumdm) +lal,
9} Q )

It can be easily proved (see for example [3] p. 58, (2.29)), that

sup ||[I — ATPA|)? < sup |1 — A7IN% (4.11)
0 iQ
Using the right side of the inequalities (4.3) we get
_ A1
IT—A-E| < 1- A : (4.12)
1 + |max{sup |Dun|sup |Duns1}| .
Q Q
0
Suppose that the cut-off function ((r)(2.46) satisfies in addition the inequality

¢l < ¢ (4.13)

Assume now that the boundary of Q belongs to C(®) (& > 0). If the condition
4) and 5) are satisfied and wo (the initial iteration of (4.6) or (4.7) belongs to
WA(Q) N W(Q)(g > 1) then all the iterations belong to the same space. The
iterations can be expanded outside the domain  in a sufficiently narrow strip
preserving the class. This can be made with the help of the well known procedure,
we have used in the previous paragraph. First you consider a plane peace of the

boundary and expand all of the u, in an antisymmetric way. This gives you the
same class of W2)(QU Qg) for balls Br(zo) which don’t lie completely in . As we
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have shown in [2] (ch. 4, § 3) all the conditions 1) - 5) don’t change and the values,
s, A and A will be the same. This gives also us the possibility to consider only the
case when (g = QN Bgr(z0) = Br(zo) and this gives the fixed small R,.

Lemma 4.2. If the conditions 1)-5) are satisfied and uo € WI(Q2)N Wq(l)(Q)(q >
2) then the iterations (4.6) or (4.7) satisfy the inequality .

AA-1
D*upy|*(dzdt < |1
/l Un+1|*(dzdt < I+ [max{sup | D], 5up [ Dumpa 1 7|
Qg f 2
x [ D*uCdudt + ClaP, | (14

where C doesn’t depend on zq € Q,n and in the case of (4.7) on 8.

Proof.
According to our previous cons1derat1on we can suppose that Qg = Bgr(zo).
Multiply (4.6) (or 4.7) by Aun1( and integrate by parts as we have done it in

lemma 1.2 or lemma 1.5 for & = 0. In [3] (theorem 1) it is shown that if ¢ satisfies
(4.13) then ~

/]Dun+1| (dz < Z/ (I-A" 1A)Dun;C Dupyyx(dz

- +0lal( [ |Duna¢dz) 2 (4.15)

Br
From this immediately follows (4.14). 0O
Let wi(z) satisfy the equation
Awg = Atpyy -7%¢ (4.16)
and the boundary condition
wlopy =0k =1,2,..., M),

where M is a positive integer and ay is monotone and satisfy the following relations

o = —-m/2+n7,

0 < 01— 20 <m,

ar & [2-m,3-m],apy_1>2-m (4.17)
oy = a=2-m-2y(0<y<1).

According to the results of E.M. Stein [4] and V.A. Kondratjev [7] the inequality-

/ (ID*w]? + | Dw|? + [w[?)rPdz < C / |Aw[*rPds (4.18)

holds, if —m < 8 < m and w = 0 on dBx.
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Multiply (4.6) or (4.7) by Awi( and integrate twice by parts. It is obv1ous that (2
also satisfies (2.46) and (4.13). Then we get

| / | Aty = / {uns = A~ a(@, Dun) Y5 do +

+f ym A 'a(z, Duy)|wg:;(¢?) de — /[um— \ (4.19)

Br
~—A‘ ai(z, Dun)|wiij((*idz + - =L+ I, + +15

(the nonwritten terms contains only the weaker ones). Let us estimate at first the
integral I;. It is easy to see that

I = /{umJ a,(m Du,,));}wi ;¢ dz < sup 1T — AT A4)| x
y (E/ wzunﬁﬁkg?dm) (B/ |D2wkl2r-akg2dz) . (4.20)

f|D2'wk|2 ~k(ldr = 2 /w aﬁCde:

[N
N

Further

1,J= 1BR
- i /[(w’“o"; - (wk,jfi +weils) — welislPrda <
1,]=1BR

< [ 1D (eOPr=ds - (149)+C [(1Dunl + i)~ D¢ da
Br Br : '

According to the inequality of S. Chelkak ([8], p. 28, Lemma 1.2), we have

4ak(m

B{ |D?(wil)*r**de < [1 - m

} / A(wil) [P dz
Then, from (4.16) and the fact that D¢ = 0 for r < R/2 follow that

4 -
/|D2wk,|27'_°"'C2dm < [1— —aﬁ(ﬂ—i)} /IAwklzr_“"Czda:-i-
Br

s (e +m)?

+C [(IDwrf? + funf?)r==+ | D( s <
B

4oy (m — / 2
< _—— 7 TCrled
< [1 (o + ) } | Aty |*r~*¢3dz +

+C [(IDuwnl? + o 22w t2s2 .
B .
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As far as o satisfy (4.17) we can apply (4.18) and we come to the inequality

4 -1 '
/ | D?wy|?r~* (2dz < [1 - (C;LT-:m)z—)} / |Atppq|Pr®*(2dz +
Br : k Bp

+C (B/ | Aty |Pro =1 ¢2dz + / [Dun|2dm) .
Br

R

After the same considerations for I, and I (4.12), (4.19) and (4.20) gives us the
relation

dog(m—1) ]
A n 2 [+ 37 2d < 1_ ____L__—_ X
] famtene et
AT )
x{1— D%y, |?ro*(?de +
( I+ fmax{sup | D], sup | Dumsa [} )B/ 1D ualr2¢
Q 0 R

+0 | |af? + / | Aty |Pr®=1¢2dz + / lDun|2da:) .
BR BR
The inequality (2.52) (th. 2.4) giveé fork=M

N da(m — 1)
’B/‘ |D2Un+1|2r Czda: < (1 +M72) [1 — m +‘I7] X
R

AA-?
x|[1— / D?un [*r*dz +
( 1+ [maX{SléP | Dun], sup | Dutn l}]’) Br Tl

. +C

]a|2+/|Dunlzdw+f|Aun+1]2r°‘M—1C2dm+ (4.21)
Bg Br

2y .

ﬁ’m?ﬁ_ m+2y
+ (B/ [Dzun+1|2r°‘fzdm) . (E/ IDun|2dm)
R R 1

For k < M according to [2] (p. 51, lemma 2.2)(see also [8])

4ak(m - 1)

2 2_ap 2 < _
/|D Untr | 7™ (%dz < [1 (an 7 )

+ n} X
BR'

AN :
x|1-— szun Zpon(2dy +
( T+ [max{sup | Dur], sup lDun+1l}]’) 1D ualr¢
") 0 Br

i, (E/ | Dun|2dz + |af* + / [Aunﬂﬁrak—l&dm). (4.22)
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Theorem 4.1. Suppose the condition 1) - 5) are satisfied and the inequalities

| [ [Duoldz < nd,

[|Duwoltrordz < mi(k=1,...,M—1), (4.23)
TP+ Tii? < et

take place (e,a,mr = const. > 0 are suficiently small numbers).
If the relation

A (L) 1 - etmm]
A (1+Mz)[1__(_1)]

(atm)?

<1 (4.24)

holds, then the solution of the problem (4.1),(4.5) belongs to C(Q) with v =
—(a+m —2)/2. The process (4.6),(4.7) converge to solution in W(l)

Proof. Consider at first the case m > 4. As we have mentioned before it is sufficient
to prove the inequality (4.8). Suppose that u € W(z)(ﬂ) with ¢ > m(m + a)™*.

“Then Yu, € Wq(z)(Q). From this follows that Vu,, € W(z)(Q).
If we write (2.49) for the functions u,( , we get

M-1 \ mi5y 3y
izl < € (Jaf + 3 72 (E/ |D2uo|2r“c2dm) +
k=1
R

M-1 \ mysy '
+<|a12+ Zni) ] (s=0,1;3=1,...,m—1). (4.25)
k=1 ’

In fact from (2.49) and u = u,{ we have after some calculations

2

‘ m+2vy
|u,,,'(a:0)|k2 <C (/ ]Du,[zdm) X
0

‘"T?ﬁ mr2'7
(E/ |D2u,|2r“C2dm) + (/ |Du,]2da:) (s =0,1).
R Q

~ Now (4.25) follows from (4.23) for s = 0. Applying (4.9) we have

/|Du1|2dm <2 (/ | Duo|?dz + m?) < 2n? + |af?A2).

Q Q

After using (4.21) and (4.22) the inequalitiy [a,b| < na® + 471p71b? the estimates
give the relation

/ |D2u1|2r°‘(2dm <C

Br(zo)

2 a2 21‘41
[ 1Dl rda +lal + 3 ng

Br(zo) k=1
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Therefore
—_—m__
m+2y

r(zo)

|D2u |2 o d 5 M-1 ) m+2y
o|"r%(dz +{lel®+ > ni
k=1

From (4.25) follows, that for s = 0,1

et \ 5
sup | Dus? < C (|a12+ & nz) <
9] k:l
iy M-1 ety
< |(sup J lDzuolzr“de) +(|a12+ > nz) .
» zo €N Br(zo) k=1
) 21

Take |a|? + Y3l 02 so small that C(Ja|? + S M7 92)=#5 < 1. Then (4.21) gives

4a(m — 1)

D%y |Pro¢de < (1 + M2 |1 - 2222~/

:(}IE%B/| U1|T€m_( i 7)|: (a‘+m)2 +77]><
R

AN ~
xX<1— — ‘ _ %
L+[(sup [ |DPuolre(da)Tim + C(laf? + w5 )i s
zo €0 Br(zo)
M-1
<aup [ 1DuefreCa +.0 (Jat+ 3 ) (.26
moGﬁBH k=1 .
Denote

X; = sup [ |D%u*r*(dz,(:=0,1)
o €N By ’

Q = (eimfi-tmn (a21)

(atm)?

H = CO(la]’ + = nd).
The inequality (4.26) turns now to

AL
Xl S Q 1-—- —_ms ma Xo + H
’ 1+X02(m+21) + Him+9)
It can be written in the form \
AT H
X1 S X0+(Q_1){|:1_ Q s s XO-I__”'I}
. (Q _ 1)(1 + X;(m'{zw) + H=mtz) Q -

After elementary consideration it can be proved that for sufficiently small H and

QMM (Q@-1>1 (4.28)
both X, and X, satisfy the estimate ,
’ 2!m+2ty

X<[@QANQ-1) - HTwm 1] . (4.29)
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’ . M-1 2y
Let us return now to (4.22). From (4.25) and C([a|* + ¥ nZ)=7 < 1 we get
k=1 .

/lDzulzrakCde < |1-— %_m__l) ] x

+
(o +mp
AN :
X{1l— = = | %
L+ {(sup [ |DMol're(?da) T + C(Jaf? + TAL! ) Xm0

o €N B

X / | D2ug|?ro*(?dz + C
Bp

/ |Du,|?dz + |a|? +/|Aun+1|2r°"'—1(2dw} .
Br

With the help of (4.27) and (4.29) we have for k < M

| dor(m—1) M] [1 4a(m — 1)]“1 y

/ | D2uy Pre(da < " - GarT

Bpg(zo)

k-1
XL+ M2 [ |DPuglroscds +C(laf+ Y. 7).
Br(zo) s=1

All o are negative and decreasing. Then from the last inequality we have
k-1
|D?uqr**{dz < (1 + M2)7'ni + Clal* + > nl).
BR(EO) | g=1
From (4.23) follows that
/ | D?uy |Prox(dz <
Br(zo)

and therefore for u; all conditions of the theorem are satisfied . So the inequality
(4.8) and the theorem are proved for m < 4.
For m = 2 and m = 3 let us remark, that if we take oy = —2 47 then the condition

—§—+n<2—m—2’yv

can be satisfied at least for small v and all consideration are simplified. [ |
Remark. If v > 0 is small then the condition (4.24) gives

A (1+ 221+ (m —2)(m —1)]

m+1

<1

For m = 2 this inequality doesn’t restrict the dispersion of the spectrum for the
matrix of ellipticity. ‘
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