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Abstract

In this paper we describe recent developments in the application of mathematical

and computational techniques to the problem of designing binary gratings on top

of a multilayer stack in such a way that the propagating modes have a speci�ed in-

tensity or phase pattern for a chosen range of wavelengths or incidence angles. This

optimal design problem is solved by a minimization algorithm based on gradient

descent, the exact calculation of gradients of certain functionals with respect to the

parameters of the grating pro�le and the thickness of the layers. For the computa-

tion of di�raction e�ciencies and of the gradients we use a reliable �nite element

method which originates from variational formulations of the di�raction problems.

We provide several numerical examples including polarisation gratings and beam

splitters to demonstrate the e�ciency of the algorithm.

1 Introduction

The practical application of di�ractive optics technology has driven the need for mathe-

matical models and numerical codes both to provide rigorous solutions of the full electro-

magnetic vector-�eld equations for complicated grating structures, thus predicting per-

formance given the structure, and to carry out optimal design of new structures.

Periodic gratings can be modeled as quasi�periodic transmission problems for the

Helmholtz equation in the whole plane. Special di�culties are associated with the nu-

merical solution of these problems due to the highly oscillatory nature of waves and inter-

faces. For the evaluation of rigorous solutions for a given structure, the direct di�raction

problem, various methods have been proposed. Among the most well known are modal

expansion, di�erential and integral methods (cf. the classical monograph [1] and recent

extensions and improvements in e.g. [2�7]). These methods turned out to be e�cient for

solving the direct di�raction problem for certain classes of grating structures, but it is dif-

�cult to �nd any rigorous treatment of convergence in the literature. Such a convergence

analysis can be found in the case of smooth interfaces between di�erent materials for in-

tegral equation methods and the analytical continuation method introduced in [8]. In the

case of binary structures, whose surface pro�le is given by a piecewise constant function,

the mathematical complexities are ampli�ed by singularities of the solutions. Recently,

a new variational approach was proposed (see [9�10] and the references therein), which

appears to be well adapted for the analytical and numerical treatment of very general

di�raction structures as well as complex materials and allows straightforward extensions

to di�raction problems for conical mounting and crossed gratings ([11�12]). In particular,

this approach is the basis for the convergence analysis of �nite element solution methods,

introduced in [13�16].

But it is more important that the variational approach leads to e�ective formulae for

the gradient of cost functionals arising in optimal design problems as shown in [17], [15],

such that gradient based minimization methods can be used to �nd gratings with speci�ed

optical functions. There have been a number of papers from the engineering community

that are concerned with the optimization of periodic gratings. In some of these papers

(e.g. [18�19]) descent methods are considered using approximations of the gradient by

simple di�erence quotients, which, however, are very expensive for a large number of

parameters.
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In the present paper we apply somemathematical results from [15] to the model problem

of designing binary gratings on top of a multilayer stack in such a way that the propagating

modes have a speci�ed intensity or phase pattern for a chosen range of wavelengths or

incidence angles. First we present the variational formulations of the di�raction problems

for TE and TM polarization and give a summary of some existence and uniqueness results.

In section 3 we consider a typical optimal design problem, formulate the cost functional

and write down the formulae for the gradients with respect to the parameters of the grating

pro�le and the thicknesses of the layers. Then the optimal design problem can be solved

by minimization algorithms based on gradient descent. For the computation of di�raction

e�ciencies and of the gradients we use a reliable numerical method which originates from

the variational formulations. This method, which combines a generalized �nite element

method in the grating structure with Fourier expansions in the multilayer system, is

discussed in section 4. Finally we provide some numerical examples to demonstrate the

convergence properties of this method for evaluating di�raction e�ciencies and gradients.

2 Variational formulation of the direct scattering prob-

lem

Consider a binary grating of period d, with height H and transition points tj at the top

of a stack of layers of thickness hj. The materials are nonmagnetic with the permeability

�0 and have the dielectric constants �. The coordinate system is chosen such that the

di�raction problem is invariant in the x3 direction and that the x1 axis is parallel to the

layers. Thus the problem is determined by the function �(x1; x2) which is d�periodic in x1.
We assume that the material above the grating pro�le � is homogeneous with � = �+ > 0.
Below � the material may be inhomogeneous and we assume that the function � = �� is

piecewise constant corresponding to the di�erent layers and constant for the substrate.

Further we suppose that the �� can be complex valued with Im �� � 0 and Re �� > 0 if

Im �� = 0.

Assume that an incoming plane wave with time dependence exp(�i!t) is normally

incident upon the grating from the top with the angle of incidence � 2 (��=2; �=2). In

either case of polarization, one of the �elds E or H remains parallel to the grooves and

is therefore determined by a single scalar quantity v = v(x1; x2) (equal to the transverse

component of E in the TE case and to the transverse component of H in the TM case).

The function v satis�es twodimensional Helmholtz equations

�v + !2�0� v = 0

in the regions with constant permittivity, together with the usual outgoing wave condition

at in�nity. At the material interfaces the solutions are subjected to well known transmis-

sion conditions. For TE polarisation the solution and its normal derivative @nv have to

cross the interface continuously, whereas in TM polarisation the product ��1@nv has to

be continuous.

The di�raction problems admit variational formulations in a bounded periodic cell. In

the following k = !(�0�)1=2 denotes the piecewise constant function taking the values k+

and of the function k� = !(�0��)1=2 (kg, k1, k2 and k3 in �gure 2.1), which is chosen such

that

Re k+ > 0 ; Re k� > 0 ; Im k� � 0 : (2.1)
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Figure 2.1: Problem geometry

Note that k = !�(�0�0)1=2, where �0 is the permittivity of the vacuum and � = (�=�0)1=2

denotes the optical index. The incoming wave has the form vi = exp(i�x1� i�x2), where
� = k+ sin �, � = k+ cos �. If we introduce two arti�cial boundaries �� = fx2 = b�g

lying above � and below the layer structure, respectively, denote by 
 the rectangle

(0; d)� (b�; b+) and de�ne the d-periodic function u = v exp(�i�x1), then the di�raction

problem for TE polarization is equivalent to the variational equation

BTE(u; ') :=

Z



r�u � r�'�

Z



k2 u �'+

Z
�+

(T+
� u) �'+

Z
��

(T�� u) �'

= �

Z
�+

2i� exp(�i�b+) �' ; 8' ; (2.2)

where r� = (@x1;�; @x2) := r+ i(�; 0). The functions T�� u are de�ned on �� as

(T�� u)(x1; b
�) := �

1X
n=�1

i��n û
�

n exp(inKx1) ; (2.3)

where K = 2�=d and û�n denote the Fourier coe�cients of u(x1; b�)

û�n =
1

d

dZ
0

u(x1; b
�) exp(�inKx1) dx1 :

The numbers ��n are de�ned as

��n = ��n (�) := ((k�)2 � �n)
1=2

; 0 � arg ��n < � ;
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where as usual �n = � + nK and k� = k�(x1; b�).

The variational equation (2.2) should be satis�ed for all test functions ' 2 H1
p (
), that

is the function space of all complex�valued functions ' which are d-periodic in x1 and

together with their �rst�order partial derivatives square integrable in 
. This variational
formulation is very useful, because the transmission and outgoing wave conditions are

enforced implicitly and it allows to seek the solution in the function space H1
p (
), which

is natural for second order partial di�erential equations on non-smooth domains. Here

one can apply well established methods for the analysis and numerical solution of the

di�raction problems.

Note that any solution of (2.2) satis�es on �� the boundary conditions

@nuj�+ + T+
� uj�+ = �2i� exp(�i�b+) ; @nuj�� + T�� uj�� = 0 : (2.4)

which implies the Fourier series expansion

u(x1; b
+) =

1X
n=�1

A+
n exp(i�

+
n b

+) exp(inKx1) + exp(�i�b+) ;

u(x1; b
�) =

1X
n=�1

A�n exp(�i�
�

n b
�) exp(inKx1) ;

(2.5)

Thus the operators T�� are the Dirichlet�to�Neumann mappings

@nu
�j�� = �T�� u

�j�� (2.6)

for functions of the form

u(x1; x2) =

1X
n=�1

A�n exp(�i�
�

n x2) exp(inKx1) jx2j � jb�j x2
>

<
b� :

Similarly the TM di�raction problem can be formulated as follows:

BTM(u; ') :=

Z



1

k2
r�u � r�'�

Z



u �'+

Z
�+

1

(k+)2
(T+

� u) �'+

Z
��

1

(k�)2
(T�� u) �'

= �

Z
�+

2i�

(k+)2
exp(�i�b+) �' ; 8' 2 H1

p (
) : (2.7)

Based on the variational formulation of the di�raction problems the following existence

and uniqueness results can be established ([15], [9]):

1� The TE and TM di�raction problems admit solutions u 2 H1
p (
) for all ! > 0 and

�. These solutions are unique for all but a sequence of countable frequencies !j,

!j !1.

2� For TE polarisation the solution u(x1; x2) = Ex3(x1; x2) exp(�i�x1) has square in-
tegrable second�order partial derivatives, u 2 H2

p (
).

3� In the TM case the solution u(x1; x2) = Hx3(x1; x2) exp(�i�x1) may have singu-

larities at the corner points (tj; 0) and (tj;H) of the grating. More precisely, near
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corner points there holds u = r�f + g, where r denotes the distance to the corner

point, the exponent 0 < � < 1 is determined by the optical index of the grating

material and f; g are some smoother functions. Hence the partial derivatives of u

are only of the form r��1f + g, i.e. the electric �eld components Ex1 and Ex2 are

strongly singular and the normal derivative of @nu on � does not satisfy the Meixner

condition @nu 2 L2(�), in general. This may lead to slow convergence of methods

based on truncated modal or Fourier series representations of the �eld components.

4� Introduce the set of exceptional values (Rayleigh frequencies)

R(�) = f(!; �) : 9n 2 Z such that (nK + !(��+)1=2 sin �)2 = !2���g :

If for (!0; �0) =2 R(�) one of the di�raction problems is uniquely solvable, then the

solution u depends analytically on ! and � in a neighbourhood of this point.

5� If one of the materials below � is absorbing then the TE problem has a unique

solution for all frequencies ! > 0.

6� If one of the layer materials is absorbing then the TM problem has a unique solution

for all frequencies ! > 0.

7� Let �(x) > 0 for x 2 
. Suppose that there exists � 2 IR such that

�
(x2 + � )

@�

@x2
; v
�
L2(
)

� 0 for all v � 0 :

Then the TE di�raction problem is uniquely solvable for ! > 0.
(This condition is always satis�ed if only two materials are present.)

Note that the variational formulation of the di�raction problems and the validity of

the corresponding mathematical results are not restricted to binary or other rectangular

grating pro�les. They remain valid for general piecewise constant functions k satisfying

condition (2.1), hence the presented approach is applicable to rather complex grating

structures. But here we focus on the case of binary pro�les, for which optimal design

problems will be considered.

De�ne the �nite sets of indices P� = fn 2 Z : ��n 2 IRg. Then the Rayleigh amplitudes

A+
n (n 2 P+) resp. A�n (n 2 P�), which are called the re�ection resp. transmission coe�-

cients, correspond to the propagating modes of u. Note that P� = ; if Imk�(x1; b�) 6= 0.
The re�ection and transmission coe�cients A+

n (n 2 P+) resp. A�n (n 2 P�), which
correspond to the propagating modes of u, are determined by the Fourier coe�cients of

u on the arti�cial boundaries ��

A+
0 = � exp(�2i�b+) + exp(�i�b+) û+0 ; A�n = exp(�i��n b

�) û�n ; n 2 P+nf0g ; n 2 P�

The re�ected and transmitted e�ciencies are de�ned by

eTE;�n = (��n =�)jA
�

n j
2 ; eTM;+

n = (�+n =�)jA
+
n j

2 ; eTM;�
n = (k+=k�)2(��n =�)jA

�

n j
2 :
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3 An optimal design problem

A typical minimization problem occurring in the optimal design of binary gratings on

some multilayer system is the following. Assume that the number of transition points and

of thin��lm layers is �xed and, for given numbers cTE;�r ; cTM;�
r 2 f�1; 0; 1g, de�ne the

functional

J(�) =
X
r2P+

�
cTE;+r eTE;+r + cTM;+

r eTM;+
r

�
+
X
r2P�

�
cTE;�r eTE;�r + cTM;�

r eTM;�
r

�
: (3.1)

Note that the e�ciencies e�r are functions of the grating pro�le � and the layer interfaces

�j. If we �x one transition point t0 at the origin the e�ciencies e�r are therefore functions

of t1; :::; tm�1;H; `1; :::`p (cf. �gure 1). Now the minimization problem reads as follows:

Find transition points t01; :::; t
0
m�1 and the height H0 of the binary grating pro�le �0 as

well as thicknesses of the layer structure such that

min
(t1;:::;tm�1;H;`1;:::`p)2K

J(�) = J(�0) ; (3.2)

where K is some compact set in the parameter space IRm+p re�ecting e.g. natural con-

straints on the design of the grating and the thin��lm layers. Note that the choice

c�r = �1 resp. c�r = 1 in (3.1) amounts to maximizing resp. minimizing the e�ciency of

the corresponding re�ected or transmitted propagating mode of order n.

Other minimization problems:

1� If one wants to obtain prescribed values for certain re�ection and transmission ef-

�ciencies, given by the index sets I+ � P+ and I� � P�, the following smooth

functional can be usefulX
r2I+

(jeTE;+r � cTE;+r j2 + jeTM;+
r � cTM;+

r j2)

+
X
r2I�

(jeTE;�r � cTE;�r j2 + jeTM;�
r � cTM;�

r j2)! min

2� The optimal design of a grating providing a given phase shift ' between the r-th

re�ected TE and TM mode can be performed using the functional

�eTE;+r � eTM;+
r + jATE;+

r � exp(i')ATM;+
r j2 ! min (3.3)

Obviously many other functionals are possible especially if a corresponding optimization

over a range of wavelengths or incidence angles is required.

To �nd local minima of these functionals, the method of gradient descent or other

gradient�type methods can be applied. Thus we must calculate the gradient of J(�), for
example, which can be easily expressed in terms of the partial derivatives DjA

�

r (�) (with
respect to the transition points t1; : : : ; tm � 1, the height H and the layer thicknesses,

given by the coordinates `j) of the re�ection and transmission coe�cients in both the TE

and TM case. Here we propose to use rigorous gradient formulae based on the solution of

the direct and its adjoint problem, instead of simple di�erence quotients which are very

expensive to compute for a large number of parameters.
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The gradient of J(�) is given by

DjJ(�)=
X
r2P+

2(�+r =�)
n
cTE;+r Re (ATE;+

r (�)DjA
TE;+
r (�))

+cTM;+
r Re (ATM;+

r (�)DjA
TM;+
r (�))

o
+
X
r2P�

2(��r =�)
n
cTE;�r Re (ATE;�

r (�)DjA
TE;�
r (�))

+(k+=k�)2cTM;�
r Re (ATM;�

r (�)DjA
TM;�
r (�))

o
:

(3.4)

Once one has derived explicit formulae for those partial derivatives, it is possible to

compute also the gradients for a much more general class of functionals involving the

Rayleigh coe�cients for a given range of incidence angles or wavelengths.

The formulae for all components of the gradient of A�r in the TE case take the form:

DjA
�

r (�) = (�1)j�1(k2g � (k+)2)

Z
�j

u �w
�
dx2 ; j = 1; :::;m� 1 ;

DmA
�

r (�) = (k2g � (k+)2)

Z
�m

u �w
�
dx1 ;

Dm+jA
�

r (�) = (k2j � k2j+1)

Z
�j

u �w
�
dx1 ; j = 1; :::; p ;

(3.5)

where u is the solution to the TE di�raction problem (2.2) and the functions w
�
solve

the adjoint TE problems

BTE(';w�) =
exp(�i��r b

�)

d

Z
��

' exp(�irKx1) dx1 ; 8' 2 H1
p (
) : (3.6)

Here �m is the union of all upper horizontal segments of �, whereas �j (j = 1; :::;m� 1)
denotes the vertical segment at the transition point tj.

In the TM case the gradient formulae involve the partial derivatives of the solution of

direct and adjoint problems at the interfaces. If the optical index of the grating material

is such that the solution u satis�es the Meixner condition then

DjA
�

r (�) = (�1)j�1(k2g � (k+)2)

Z
�j

gr(u) � gr(w
�
) dx2 ; j = 1; :::;m� 1 ;

DmA
�

r (�) = (k2g � (k+)2)

Z
�m

grH(u) � grH(w�) dx1 ;

Dm+jA
�

r (�) = (kj � k2j+1)

Z
�j

grj(u) � grj(w�) dx2 ; j = 1; :::; p ;

(3.7)

Here, u is the solution of the direct TM problem (2.7), the functions w
�
solve the

adjoint problem

BTM(';w
�
) =

exp(�i��r b
�)

d

Z
��

' exp(�irKx1) dx1 ; 8' 2 H1
p (
) ; (3.8)

7



and

gr(u) =
1

k+kg

�
kg

k+
@x1;�u

���+
�j

; @x2u
���+
�j

�
=

1

k+kg

�
k+

kg
@x1;�u

����
�j

; @x2u
����
�j

�
;

grH(u) =
1

k+kg

�
@x1;�u

���+
�m

;
kg

k+
@x2u

���+
�m

�
=

1

k+kg

�
@x1;�u

����
�m

;
k+

kg
@x2u

����
�m

�
;

grj(u) =
1

kjkj+1

�
@x1;�u

���+
�j

;
kj+1

kj
@x2u

���+
�j

�
=

1

kjkj+1

�
@x1;�u

����
�j

;
kj

kj+1
@x2u

����
�j

�
:

If the Meixner condition is not ful�lled then the gradient formula has to be modi�ed

by an additional term depending on �.

Concerning the solvability of the adjoint problems (3.6) and (3.8) the same existence

and uniqueness results as for the direct problems remain valid. In general the solutions

have no physical interpretation. It can be seen that the the solution of the adjoint TE

or TM problem solve the corresponding di�raction problem with the complex conjugate

wavenumbers k and a special radiation condition. For example, for w
�
this condition

takes the form

w
�
(x1; x2) =

1X
n=�1

A+
n exp(�i�

+
n x2) exp(inKx1) ; x2 � b+ ;

w
�
(x1; x2) =

1X
n=�1

A�n exp(i�
�

n x2) exp(inKx1) +
iC

4���r
exp(�i��r x2) exp(irKx1) ;

x2 � b�

(3.9)

with C = 1 for TE and C = (k+=k�)2 for TM.

Note that in order to compute all partial derivatives of functionals arising in the optimal

design of binary gratings it is su�cient to solve the direct TE and TM di�raction problem

and only one corresponding adjoint problem. We demonstrate this for the functional J(�)
de�ned in (3.1).

From formulae (3.4), (3.5) and (3.7) we obtain by linearity that the components of the

gradient of J(�) are equal to

DjJ(�) = (�1)j�1Re
n
(k2g � (k+)2)

�Z
�j

uTE wTE dx2 +

Z
�j

gr(uTM ) � gr(wTM ) dx2
�o

;

j = 1; : : : ;m� 1;

DmJ(�) = Re
n
(k2g � (k+)2)

� Z
�m

uTE wTE dx1 +

Z
�m

grH(u
TM) � grH(wTM) dx1

�o
;

Dm+jJ(�) = Re
n
(k2j � k2j+1)

�Z
�j

uTE wTE dx1 +

Z
�j

grj(u
TM) � grj(wTM) dx1

�o
;

j = 1; : : : ; p;

where uTE and uTM are the solutions of the direct TE and TM problems, respectively,
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and wTE, wTM solve the following adjoint problems

BTE(';w
TE) =

X
r2P+

cTE;+r ATE;+
r

2�+r exp(�i�+r b
+)

d �

Z
�+

' exp(�inKx1) dx1

+
X
r2P�

cTE;�r A
TE;�
r

2��r exp(i��r b
�)

d �

Z
��

' exp(�inKx1) dx1 ;
(3.10)

BTM(';wTM) =
X
r2P+

cTM;+
r A

TM;+
r

2�+r exp(�i�+r b
+)

d �

Z
�+

' exp(�inKx1) dx1

+
X
r2P�

cTM;�
r A

TM;�
r

2��r (k
+)2 exp(i��r b

�)

d � (k�)2

Z
��

' exp(�inKx1) dx1 ;

8' 2 H1
p (
) :

(3.11)

Here ATE;�
r and ATM;�

r denote the Rayleigh amplitudes of uTE and uTM, respectively.

Note that for simple di�erence approximations of the gradient the number of the direct

problems to be solved is at least equal to the number of optimization parameters, whereas

the computational costs for solving adjoint and direct problems are the same.

4 Implementation and numerical results

Having described the variational formulation and some basic mathematical properties

of the direct di�raction problems as well as the gradient formulae and the variational

equations of the adjoint problems, we now consider the numerical solution method of

these variational problems.

The proposed method combines a �nite element method (FEM) in the grating region,

where the solutions are not smooth, with Rayleigh series expansions of the solution within

the di�erent layers below the grating.

The FEM is a well�established numerical method for solving boundary value problems

for elliptic partial di�raction equations, which is based on the variational approach and

the approximation of multivariate functions by piecewise polynomials.

As discussed in Sections 2 and 3 the direct and adjoint problems (2.2), (2.7), (3.10),

and (3.11) has the form: �nd u 2 H1
p (
) satisfying the equations

a(u; ') = (f; ') ; 8' 2 H1
p (
) ; (4.1)

where a(u; ') is a continuous sesquilinear form (linear in u and antilinear in '), and (f; ')
stands for a linear and continuous functional on the function space H1

p (
).

In the FEM the domain 
 is partitioned into a sequence 
h of simple subdomains with

maximummesh size h and a familySh of �nite�dimensional subspaces ofH1
p (
) is de�ned,

usually a space of piecewise polynomials subordinate to the corresponding partition. The

�nite element approximations uh 2 Sh of the solution u of (4.1) are obtained from the

equations

a(uh; 'h) = (f; 'h) ; 8'h 2 Sh : (4.2)
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If one chooses a basis 'j; j = 1; : : : ; N in Sh, then (4.2) is equivalent to the system of

linear equations

NX
j=1

cj a('j; 'k) = (f; 'k) ; j = 1; : : : ; N ; (4.3)

for the unknown coe�cients of uh =
PN

j=1 cj'j.

It turns out that all problems under consideration lead to uniquely solvable linear

systems of the form (4.3) if h is su�ciently small and that the approximate solutions

converge to the corresponding exact solution in the norm of the function space H1
p (
).

But before using the FEM one can reduce the integration domain 
 by introducing a

new arti�cial boundary e�� = fx2 = eb�g into the �rst layer, `1 < eb� < 0 ( cf. �gure 2.1),

and new nonlocal boundary operators eT TE
� and eT TM

� which model the layer system belowe�� together with the radiation condition for x2 < b�.

Using the Rayleigh expansion in each of the layers, the transmission conditions at the

interfaces and the radiation condition one gets by using 2�2 transmission matrices explicit

formulae for the numbers 
n connecting the n-th Fourier coe�cient of a solution and its

normal derivative on e��
@nuje�� = �

X
n2Z

i
nûn exp(inKx1) ; (4.4)

where now

ûn =
1

d

2�Z
0

u(x1;eb�) exp(�inKx1) dx1 ;

The coe�cients 
n are di�erent for TE and TM polarization, but it can be easily seen that

they converge to �1n = (k21 � �2n)
1=2

, i.e. j
n � �1nj ! 0 as jnj ! 1. For evaluating these

scalars one can use a recursive algorithm which is numerically stable for any number

of layers and there is no limit in layer thickness. Matrix algorithms of this type are

widely used in other numerical methods for analyzing layered structures (see [7] and the

references therein).

Thus if we de�ne nonlocal boundary operators on e��
eT TE
� u = �

X
n2Z

i
TEn ûn exp(inKx1) ; eT TM
� u = �

X
n2Z

i
TMn ûn exp(inKx1) ;

the direct problems (2.2) and (2.7) are equivalent to the variational equations on the

smaller rectangle e
 = (0; d)� (eb�; b+)
eBTE(u; ') :=

Z
e


r�u � r�'�

Z
e


k2 u �' +

Z
�+

(T+
� u) �'+

Z
e��

(eT TE
� u) �'

= �

Z
�+

2i� exp(�i�b+) �' ; 8' 2 H1
p (e
) ; (4.5)

respectively

eBTM(u; ') :=

Z
e


1

k2
r�u � r�'�

Z
e


u �'+

Z
�+

1

(k+)2
(T+

� u) �'+

Z
e��

1

k21
(eT TM

� u) �'
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= �

Z
�+

2i�

(k+)2
exp(�i�b+) �' ; 8' 2 H1

p (e
) : (4.6)

The adjoint problems (3.6) and (3.8) are reduced analogously to variational formulations

on e
, but note that for w
�
the right�hand sides changes according to the layer structure.

Due to the simple geometry of binary gratings it is quite natural to choose as �nite

elements piecewise bilinear functions on a uniform rectangular partition of 
. The traces
of these functions on �� are piecewise linear functions with uniformly distributed break

points. Therefore the computation of the nonlocal terms in the sesquilinear formsZ
�+

(T+
� 'j) �'k dx1 (4.7)

can be performed very e�ciently with an accuracy comparable with the computer preci-

sion if the recurrence relations for the Fourier coe�cients of spline functions and conver-

gence acceleration methods are used. If the arti�cial �+ are divided into m subintervals

of equal length and the basis of hat functions is used, then (4.7) is a m � m circulant

matrix with the eigenvalues

�0 = �i d �

�p = �2i d
� sin(�p=m)

�

�4 1X
r=�1

�+rm+p

m(r + p=m)4
; p = 1; : : : ; n� 1 :

Thus one has only to expand �+rm+p=m =
p
(k+=m)2 � (�=m+ (r + p=m)K)2 with re-

spect to powers of jr+ p=mj and to use fast computation of the generalized Zeta function

�(x; s) =

1X
r=0

(r + x)�s :

Since the scalars 
n converge very fast to �1n, for the computation of the formsZ
e��

(eT TE
� 'j) �'k dx1 ;

Z
e��

(eT TM
� 'j) �'k dx1 ;

one has to compute only few of these coe�cients and to apply the summation method

mentioned before.

Thus the discretization error of the direct and adjoint problems is mainly determined

by the optimal approximation error of the solution with bilinear �nite elements. There

holds the following convergence results:

1� If the TE problem (2.2) has a unique solution, then for all su�ciently small h > 0
the FE discretization of (2.2) and (3.10) are uniquely solvable and the approximate

solutions converge to the corresponding exact solution in the norm of L2(
) with
the rate O(h2).

2� If the TM problem (2.7) has a unique solution, then for all su�ciently small h > 0
the FE discretization of (2.7) and (3.11) are uniquely solvable and the approximate

solutions converge to the corresponding exact solution with the rate O(h2�).

11



Together with error estimates in the norm of the function spaceH1
p (
) it is easy to derive

similar estimates for the approximation of the di�raction e�ciencies and the gradients of

the minimizing functionals.

Hence, in contrast to the optimal convergence rate in the TE case the approximate solu-

tions of the TM problems converge only with the smaller rate O(h2�), which is determined

by the optical index of the grating material. One way for improving the convergence rate

would be the use of special mesh re�nements near the corner points of �. However, this
seems to be not necessary after introducing a generalized FEM (GFEM), which already

for rather poor discretizations of the domain e
 provided excellent results compared with

the usual FEM for both TE and TM modes.

The motivation for generalizing the FEM is due to the well�know fact that the accuracy

of FEM for boundary value problems governed by the Helmholtz equation deteriorates

with increasing wave number and enlarging domains. Roughly speaking, the evaluation of

the sesquilinear form in the interior of e
 with the wave number k leads to an approximate

solution possessing a di�erent wave number kh. It turns out that this �phase lag� a�ects

the value of the constants in the error estimates for the FE solutions. Therefore it is

necessary to design a FEM with minimal phase lag by modifying the evaluation of the

sesquilinear form in the interior of e
. For the onedimensional case one can easily de�ne

such a method with vanishing phase lag, but in higher dimensions this is impossible. Here

we applied and extended the approach of [20] to design a so�called GFEM with minimal

pollution ensuring that the wave number of the approximate solution coincides almost

with the given k for piecewise uniform rectangular partitions of e
 (for details we refer to

[15]).

After having solved the linear system corresponding to the FE discretization of the

variational equations, the di�raction e�ciencies are determined from the Fourier coe�-

cients of the solution on �+ and e��. For the computation of the transmission e�ciencies

and the solutions on the layer interfaces, which appear in the gradient formulae we use a

stable recursive algorithms similar to that for evaluating the coe�cients 
n.

The method was used to evaluate the re�ection and transmission e�ciencies of binary

gratings on multilayer systems of di�erent geometries and materials and it turned out

to be robust and reliable in both the TE and TM case. Compared with the usual FEM

the obtained results were accurate already for rather poor discretizations. In �gure 2

we compare the numerical values of some re�ection and transmission e�ciencies versus

the square root n of total number of grid points computed with the usual FEM and the

GFEM on quadratic meshes for a simple binary grating with the optical index � = 2:5
situated on a layer with � = 3:5. In each case the GFEM results di�er already for n = 40
only by 2 % from the corresponding values for n = 200, whereas the FEM results converge

rather slowly to these values.

Furthermore, we compared the results of our method with those obtained with other

methods which are known to provide reliable results for binary gratings (e.g. integral

equation or modal methods). As an example we give in table 1 the zero order re�ection

e�ciencies of TM polarization for a simple binary grating calculated with di�erent meth-

ods. The grating consists of aluminium with the optical index � = 0:47 + 4:8i for the
given wavelength of 436 nm, the grating period d is equal to 1 �m, the �ll factor f = 0:5,
and the angle of incidence � = 0.

Table 1 compares the corresponding values of GFEM with an quadratic partitioning
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Figure 4.1: Comparison of some e�ciencies computed with FEM and GFEM for a simple

binary grating with � = 3:5 versus the square root n of total grid points.

of the rectangular domain with h1 = h2 = 10 nm for di�erent heights H of the binary

structure with the results of three other methods, taken from [21]. These methods are two

modal methods, AWG (analytic waveguide method) introduced in [3], [22] and RCWA

(rigorous coupled�wave analysis) going back to [2] and essentially improved in recent years

(cf. [6]). The third method called IESMP is based on the integral equation method as

described in [5] and [21]. Note that GFEM can handle with very general geometries of the

di�raction structures and with complex materials, where the implementation of e�ective

solvers for the other methods is very complicated. Moreover, a rigorous convergence

analysis for these methods is not known at present.

The GFEM for solving direct and adjoint problems was integrated into a computer

program for the study of optimal design problems for binary gratings. By using the

standard algorithm of gradient descent local minima of functionals are determined, which

characterize desired optical properties. These functionals involve the Rayleigh coe�cients

of the discrete models on a given partition of the domain 
 for a prescribed range of

incidence angles or wavelengths. Of course, the gradients are computed by discretized

versions of the formulae given in section 3. Corresponding to the gradients the thicknesses

of the layers and the shape of � are varied within a class of admissible parameters, which

are restricted by certain technological constraints.

Certainly better minimization algorithms exist, for example conjugate gradient methods

or methods based on higher order derivative information. The design and analysis of

di�erent minimization methods for coated binary gratings will be the topic of future

research.

In the following we provide some results of the optimization of a polarisation grating,

beam splitters and high re�ection mirrors.

The �rst example concerns the application of metallic subwavelength gratings for po-

larization devices. Figure 2 shows the results for the optimal design of such a zero order

grating that should maximize the re�ection of TE polarisation and the transmission of

TM polarisation over the range of wavelengths from 450 to 633 nm. The grating period

13



H=d AWG RCWA IESPM GFEM

0.1 0.0186 0.0173 0.0190 0.0190

0.2 0.8532 0.8539 0.8529 0.8533

0.3 0.0095 0.0096 0.0100 0.0098

0.4 0.8079 0.8080 0.8095 0.8095

0.5 0.0440 0.0445 0.0465 0.0452

0.6 0.7000 0.7000 0.7068 0.7027

0.7 0.1497 0.1496 0.1511 0.1506

0.8 0.6250 0.6234 0.6277 0.6257

0.9 0.2500 0.2503 0.2503 0.2504

1.0 0.4810 0.4808 0.4840 0.4816

Table 4.1: Comparision of zero order TM e�ciency computed with di�erent methods for

simple aluminium gratings for normal incidence. Grating parameters are � = 436 nm,

d = 1�m, � = 0:47 + 4:8i and f = 0:5.

is 200 nm, the width of the bar amounts to 60 nm and the height is 150 nm.
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Figure 4.2: Optimal design for a simple polarisation grating for the range of wavelengths

from 450 to 633 nm. Grating parameters are d = 200 nm, H = 150 nm and f = 0:3.

Next we provide the optimization results for some beam splitters. The illuminating

unpolarized wave with � = 0:633�m is normally incident from a dielectric medium with

refractive index � = 1:5315. Choosing the period d = 1:266�m three di�raction orders

propagate with angles 0 and �30o. The goal is in

a) to maximize the e�ciencies of the orders �1

b) to obtain maximal and equal e�ciencies of all three orders

by optimizing the height H and the �ll factor f of the grating with one groove per period.

The results are depicted in �gures x, y , the obtained values are

14



a) H = 0:734�m, f = 0:72, b) H = 0:43�m, f = 0:58.

� = 1:5315 � = 1:0

��HH �
�
�
�
�
��3

Q
Q
Q
Q
Q
QQs

- 2:3 %

43:5 %

43:3 %

Figure 4.3(a): Optimal design of a 1�to�2 beam splitter. Grating parameters are � =
0:633�m, d = 1:266�m, H = 0:734�m and f = 0:72.
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- 27:9 %
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Figure 4.3(b): Optimal design of a 1�to�3 beam splitter. Grating parameters are � =
0:633�m, d = 1:266�m, H = 0:43�m and f = 0:58.

For the same parameters as before we seek a one�to�four beam splitter with the di�rac-

tion angles �14:5o and �30o. Choosing the period d = 2:532�m 9 di�raction orders

propagate, the goal is to maximize the e�ciencies of the orders �1 and �2. To obtain

a satisfactory solution it is necessary to use two grooves per period. For the optimal

solution the height of these grooves is H = 1:747�m, the scaled transition points are

0:; 0:24; 0:38; 0:63. For the same parameters as before we optimized a one�to��ve beam

� = 1:5315 � = 1:0
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Figure 4.4: Optimal design of a 1�to�4 beam splitter. Grating parameters are � =
0:633�m, d = 2:532�m and H = 1:747�m. The distribution of the transition points is

0:; 0:24; 0:38; 0:63.

splitter with the di�raction angles 0o, �20:7o and �45o. The period of the grating is

d = 1:79�m, the height of the optimal grooves is H = 0:77�m, the scaled transition

points are 0; 0:12; 0:36; 0:76. The next problem concerns the design of a zero�order

copper grating (� = 12:7 + 51:1i) as circular polarizer for CO2 laser with � = 10; 6�m
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Figure 4.5: Optimal design of a 1�to�5 beam splitter. Grating parameters are � =
0:633�m, d = 1:79�m and H = 0:77�m. The distribution of the transition points is

0:; 0:12; 0:36; 0:76.

� TE TM phase

29.0 97.50 95.72 90.72

29.2 97.50 95.72 90.58

29.4 97.51 95.72 90.45

29.6 97.51 95.72 90.32

29.8 97.52 95.72 90.18

30.0 97.52 95.72 90.04

30.2 97.53 95.72 89.91

30.4 97.53 95.72 89.77

30.6 97.54 95.72 89.63

30.8 97.54 95.72 89.49

31.0 97.55 95.72 89.35

Table 4.2: Zero order e�ciencies and phase di�erence for circular polarizer. Grating

parameters are � = 10; 6�m, � = 12:7 + 51:1i, d = 3�m, H = 1:65�m and f= .24.

such that in the range of incident angles � 2 (29o; 31o) the e�ciencies of the re�ected

TE and TM polarized wave are maximal and the phase di�erence between them is close

to �=2. Here one has to minimize the functional (3.3) extended over the range of in-

cident angles, which possesses many local minima. One of the reasonable geometries is

d = 3:0�m, H = 1:65�m and f = :24. Table 2 contains the computed values. Finally

we consider a high re�ection grating on top of a quarter�wave system of 15 layers for

the wavelength � = 1:45�m. The even homogeneous�layer parameters are � = 1:45 and

hj = 248 nm with the odd homogeneous�layer parameters being � = 2:3 and hj = 157
nm. The substrate is quartz with � = 1:45. Without any grating structure the re�ection

e�ciency is almost 100 % (99,76 % in normal incidence). The problem is to �nd a grating

surface in an additional quartz layer on the top in order to maximize the TE re�ection

of order -1 in Littrow mounting for � = 20:4o. Correspondingly, the period of the grating

is d = 2:06�m. Optimal values were obtained for the thickness of the additional quartz

layer of 866 nm, the binary grating within this layer has the height H = 804 nm and the

�ll factor f = 0:56. In that case the e�ciency of order -1 amounts 99; 42%.
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5 Conclusion

In this paper we focused on optimal design problems for binary gratings, using exact

formulae for the gradients of the cost functionals and a fast and reliable method for the

numerical solution of direct and adjoint di�raction problems. The latter method is based

on a variational formulation and combines a �nite elementmethod in the grating structure

with Rayleigh series expansions in the layer system below the grating. This approach is

not restricted to binary pro�les, but allows the numerical treatment of rather general

di�raction structure, together with a rigorous convergence analysis.

We proposed a generalized �nite element method (GFEM) with minimal pollution,

which provides highly accurate numerical results in the computation of di�raction e�-

ciencies for both the TE and TM mode. In particular, for TM di�raction problems having

a mild singularity of the solution, the convergence performance of our method was com-

parable with that of the rigorous coupled�wave analysis of [6] and the integral equation

method of [5]. Moreover, accurate numerical results can be obtained even in the presence

of strong singularities of the solution. We expect that the approach can be also extended

to the more general case of conical di�raction and biperiodic gratings.

To solve optimal design problems for binary gratings by gradient descent we presented

explicit formulae for the gradients with respect to the parameters of the grating pro�le

and the thicknesses of layers. These formulae involve the solutions of direct and adjoint

TE and TM problems and reduce considerably the computational costs compared to

simple di�erence approximations of the gradients. The GFEM and the gradient formulae

were integrated into a computer program to �nd the optimal design of binary gratings

with desired phase or intensity pattern for a given range of incidence angles or wavelength.

Several numerical examples including polarisation gratings and beam splitters successfully

demonstrate the e�ciency of the algorithm.
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