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Abstract

We present a spline collocation method for the numerical solution of a system of
integral equations on a polygon in R?. This integral equation arises if one solves the
first boundary value problem for the Lamé equation with a double layer potential.
The derivation and the analysis of the integral equation is given in detail. The
optimal order of the spline collocation method is proved for sufficiently graded
meshes.

1 Introduction

In this paper we consider a collocation method for the approximate solution of a boundary
integral equation for the first boundary value problem for the Lamé equation in Q C R?
(see [15]). We assume that the domain 2 has a polygonal boundary.

To derive the integral equation of the second kind we use a double layer potential and a
generalized stress tensor (see [14],[11]). The resulting integral operator is not compact in
the case of a polygonal boundary so the standard theory for collocation methods does not
apply here. To the authors knowledge this special boundary integral equation is used here
for the first time to approximate the solution of the Lamé equation in polygonal domains.
In order to prove that the boundary integral equation has always a solution we first have
to show some properties of the double layer potential and here we imitate the proofs of
Costabel [4].

To analyze the integral equation we first localize the integral operator around each corner
and show the Fredholm property and the existence of the inverse for these localized
operators. Related results were obtained in the papers [18], [19], and [16]. With this
result we can prove the unique solvability of the integral equation on the polygon. We
also prove a regularity result for the solutions of the integral equations and this shows
that the use of higher order splines makes sense.

We use continuous splines of any order and graded meshes to get the optimal order of
convergence. In order to show the stability of our method we have to modify the spline
space in the vicinity of each corner. This technique is well known. In [5] it is used for
the solution of integral equations of the second kind with noncompact integral operators
and in [3] and in [7] this technique is used for the solution of the Laplace equation in
polygonal domains. The proof of stability relies on the stability of the finite section
method for systems of Wiener—Hopf operators [9].

The outline of the paper is as follows: In section 2 we derive the integral equation and
prove some results for the double layer potential and some uniqueness results for weak
solutions of the Lamé equation.

In section 3 we first localize the integral operator around each corner and then we study
the localized operators. We put this results together to prove that the integral equation
on the boundary of Q has a solution for every right hand side in L?(82). If the right
hand side has a higher regularity then the solution becomes more regular, i.e. belongs to
certain weighted Sobolev spaces.

In section 4 we define the meshes and the spline spaces which we use. Then we prove
the stability of our method if the the meshes fulfill some simple condition and if the
spline space is suitably modified. A further approximation result then shows the order of
convergence of our method.



2 The boundary value problem and the correspond-
ing boundary integral equation

In this section we define the boundary value problem, which we will study, and we in-
troduce the generalized stress operator (see [11]). We extend the trace operator and the
generalized stress operator to a sufficiently large function space. We prove the uniqueness
of the interior Dirichlet problem and the exterior boundary value problem, where the gen-
eralized stress is prescribed at the boundary. The mapping properties of the single and
double layer operator are studied and at the end of the section we derive the boundary
integral operator, which we study in the following sections. We follow closely the article
[4] of M. Costabel.

Let Q C R? be an open bounded domain with polygonal boundary I'. We denote by Q¢
the complement of Q, Q¢ := R2\ ), and we assume that {2 is contained in some sufficiently
large ball Bg,(0), Ry > 0.

For functions @ = (uy, up)T € (H(Q))? the Lamé operator P is defined by

Pi = —pAd— (A + p)grad(divad), p >0, A>0. (2.1)

It is the aim of the sections two and three to study the existence and the properties of
the solution of the equation

(P@)(z) = 0, a:EQ - 02
i = [ fe(Hin)

with the help of a corresponding boundary integral equation.
The operator P can be written in another way with the help of the following definitions
(see [15] for the physical meaning of the terms)
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(Pa); = =) 0i(0:;(1)). (2.4)

We further introduce the following notations

Vi= (H(Q)®,i=0,1,2,and Vi := (H}(Q)). (2.5)

Formula (2.4) and a partial integration gives us the following relation ( first Green formula)
for functions ¥ € V2 and v € V!



/Q (Pi) - Gdr = Bo(id, ) — /F (T(ny)d) - 7ds,, (2.6)

where n, denotes the outer normal at the point y on I The symmetric bilinear form
®q(-,-) on V1! is given by

Do (4, V) = /Q)\<Zsjj(ﬁ)> (Z%(U)) +

2/1 Z Si’j(ﬁ)é"i’j(ﬁ)d.’ﬂ. (27)

ij=1

The generalized stress operator 7, (see [11]) is defined in the following way

T.(n)d = pu E " + (A + p)div(d)n

tr Orugng — Oausny , (2.8)
82u1n1 — 81’(1,17’7/2

with k € R, n = (ny,n2)T € R2, 4 € V%
Because of the symmetry of ®q(+,-) we get the second Green formula for @, v € V2.

/Q (Pi) -7 — (P7) - ddz = / (T (ny)7) - @ — (T(ny)i) - s,

where A is given by

A = / ( (—Oaugu; + Oauyve + Oavouy — Gavruz) ny(y)
r

(81’(1,2’01 — 81’(1,1’02 — 81’02711 + 81'01’(1,2) ng(y)>dsy.

A short calculation shows

A = / ( — 83211,2’01 — 82U281’U1 + 812211,1’02 + 8211,181’02
Q

2 2
+312v2u1 + 821)28111,1 - 8121)1’(1,2 - 821)1811142

2 2
+812’U,2'Ul + 81U282’U1 - 812U1U2 - 81U182'U2

—8122’[1211,1 — 81’[1282’&1 + 81221)1U2 + 810162U2>d$

:/de
Q

= 0.



by Gauss’ formula. So we finally get the second Green formula in the following form

/Q(Pﬁ)-ﬁ—(Pﬁ)-ﬁdx - /Fn(ny)a-zz—n(ny)a-adsy (2.9)

for u,7€ V% k€ R
Let f € V be given. The function « € V! is the weak solution of

(2.10)

if and only if

Bo(ii, §) = /Qf-q;dx, v e V1. (2.11)

Korn’s inequality (see [8]) says, that there are constants ¢y, ¢y > 0, which depend only on
Q, for which

Cl||ﬁ||%/01 S @Q(ﬁ, ﬁ) S Cg“ﬁ”%/(}, V’L_I:E ‘/01. (212)
Equation (2.12) together with the Lax—Milgram Lemma gives us the following result.
Corollary 2.1. The equation (2.10) has always a uniquely determined weak solution.

In the following we denote by v, the trace operator

Gagliardo’s Trace Lemma (see [4]) implies

1
v © Hi (R?) — H*"2(T), s € (3> 1],is continuous (2.14)

and has a continuous right inverse v,

v : H2(T) - H}

loc

(R?). (2.15)

We now get the following existence theorem.

2
Lemma 2.2. Foreveryv € (H%(F)> there exists a unique solution TV of the equation

Pu = 0
(2.16)

<L

You =



The mapping v — T is linear and continuous, i.e. there exists a constant cr > 0, such
that

T3l < erll - (2.17)
Proof: We first note that the mapping

—

¢ — SQ_; = (I)Q(_/Y[;Ua (g)a Q_;E %la
is continuous, ||S]|| < 51||U“(H5(r))2' The Lax—Milgram Lemma and Korn’s inequality

(2.12) show that there exists exactly one @ € V' with

—, —,

Oo(T,4) = Po(—7,9), Vo € Vy,

and

lilhg < GlSI < Gl y e
We define
and get

®o(17,4) = 0,V4 e V.
So TV has the following properties
a. P(T7) = 0 (see (2.10) and (2.11))

b. [[Td]ly2 < (0102+01)||?7||(H%(F))2

c. %(TV) = Y@+ v =V
So T is a continuous mapping and 7% solves (2.16). We only have to show that 7T'¢ is the
only solution to (2.16). If 717 is a second solution for (2.16), then we get
TV -Tw € Vy
and

-

®6(T7 — T17,¢) = 0, Vg e VL.



By (2.12) this implies T — 717 = 0 and therefore T'% is uniquely determined. O

We denote by G(z,y) the fundamental solution for the operator P:

P,G(y,z) = dé(z—vy) =:0(z — y)Ioxa, (2.18)
01

where the index y denotes the differentiation with respect to y. The function G is given
by (see [1])

6n.0) = g (~ O30+ () T LG, 2.9

r,y € R? r := ||z — y||?>, ¢ # y. G is the kernel for the Green operator for P. We
will denote also the Green operator by G. If we substitute G(z,y) for u(y) in the Green
formula (2.9) then we get

i) = [ Ga Py
Q
T
+ / Gy, 2)" (Tey(m)3) ) — (Ten(m)G(y,2)) B(y) dsy,  (2:20)
r
req, veVe

By V3 we denote the set of all functions @ € V!, for which the distributional derivative

P belongs to V. The norm on V3 is given by
Il = ll@lys + 1P (2.21)

Now we extend the generalized stress operator to functions in V3. First we recall the
following lemma from [10, p. 113].

Lemma 2.3. V? is dense in V3.
The next lemma is an easy consequence of our definitions.

Lemma 2.4. Let @ € V. The mapping

= Pl 77— [ (PD)- (7 o (2.22)



2
is a continuous linear functional q/i“)ﬁ on (H%(F)> , which coincides for @ € V? with

6 — / ¢dsy (2.23)

The mapping

W vE o (HD) (2.24)

is continuous.
Proof:

a. The continuity of fyi" ) follows from the continuity of v, and from Pu € V°.

b. Formula (2.23) follows from the first Green formula (2.6).

c. The continuity in (2.24) follows from the definition of the norm in (2.21) and the
continuity of ®gq. O

Remark: That 1\* coincides with T, (n,) for functions in V2 and the density result in

Lemma 2.3 show that the definition of 7%“) is independent of the chosen operator 7, . The
operator v, is not unique.

As a next step we define 7y and then 7, xk € [0, u], for functions in V. The starting
point is formula (2.1) for P. For @ € V2 and ¥ € V! we get by partial integration

/Q (PQ) -9dz = — /Q u(aflul + 8§2u1>v1 + (A +p) (aflul + 8%2u2>vl
+ u(@flug + 8222u2>v2 + (A +p) (8%22“ + 8222u2>v2 dzx
= /Qu<81u1811)1 + Oou1 0501 + O1u201 V5 + 82u282v2> +
(A4 w) (81u1611)1 + Oouz01v1 + 01u102v9 + 82u282v2>d:1:
— /1“ u(alulnl + 82u1n2>1)1 + (A +p) (81u1n1 + 82u2n1)v1

+ u(@lulnl + 8211,2712) Vg + ()\ + ,U:) (81u1n2 + 82u2n2>v2 dsy

:/ (Zau]av]> (A + w)div(a@)div(v)dz

2,j=1

/(( )Udsy

ny )t
=! / (To(ny)T) - vds,. (2.25)



For ® we get the following properties

EIV)Q(ﬂ:aﬁ) = (I)Q(Uaﬁ)a ﬁaﬁevl

2 ) - (2.26)
Z/|ajui| do < Bo(d,@), dcV

ij=1v%

Now we extend the operator 7; to functions in V3. By convex combination we then define
T., & € [0, u], for functions in V3.

Lemma 2.5. a. Let @ € V2. The mapping

= Ba(i,759) - [ (PD)- (7 d)da (2.27)

2
is a continuous functional Ty on (H%(F)> , which coincides for u € V? with the
mapping

—

6 = [ (T s,
r
The mapping

2

W vE = (B
18 continuous.

b. For k € [0,p], k= A, A€ 0, 1], we define

W= X (1= )y, (2.28)

2
The mapping 'yfn) is contiuous from V3 into (H’%(F)> . OnV?2, 'yfn) coincides with

Te(ny). We further get

<@ g> = (@ d) - / (Pi) - vy $ds,, (2.29)
Q
where
() = AW )+ (1 =N (... 2.30
o () ¢ a () +( )20 (5 1) (2.30)

Because of (2.26) the inequality of Korn (2.12) also holds for @g), k € [0, p).

9



For a function @ € (L2(R?))? with @|q € V* and @ (€2))? the traces o (o) and

vo(@|qe) are well defined. Let

(91< E (Hl

loc

M

). (2.31)

vou] = yo(idla) — vo(tlae) € (H

For a function @ € (HL (Q°) and P7 € (L2_(R?))® the operator 'yf?zc, k € [0,p], is
given by (2.28) and (2.22), where © has to be replaced by Q°¢. Here we will assume

2
that supp(y, @) C Bag,(0), VU € (H%(F)> . We will denote the set of all functions
@ e (HL (Q°)? with Pi e (L2 (R?))? by VA(Q°).

loc
If @ € (L*(R?))® with @]q € V£ and @|ge € VA(Q°) then we define

a) = A (E@le) — 1. (@

Qc)- (2.32)
Now we can formulate the following lemma.

Lemma 2.6. Letk € [0,u].

a. Forw € V} and v € V! the first Green formula holds:

/ (Pi)-vdz = &% (i, 0)— <", y0 > (2.33)
Q

b. The second Green formula holds for all @,v € V}.

/ @-(P7)—7- (PR)dr = <A, y0>— <A"0,yi>  (2.34)
Q

c. Let @ € (L2(R?))® be given with

i|q € Vp and @|g- € VA(Q°).

Then

u(e) = (GPD)()+ < 17, G(,z) >
- [ Ten)G )" o ds, (239
r
Proof: Lemma 2.3 shows that for every @ € V} there exists a sequence (U, )nen C V2 for

which

Jim [~ iy = 0.

10



Now we have

<At o > = < A,y >

(o) Pi, & P2 = /(Pﬁn)-ﬁdx = /(Pa’)-ﬂdx
Q Q
B an S d = (., 0) —» B ()
Vi K -3 K) —
(v) U = @ = 'yf )ﬁn "2 yi )@
=

for every v € V1.
This implies

<tnnt> 2 800~ [ (PT) - (300 da
(2.6),(2.15) /(ﬁ(ny)ﬁn) (%) ds,
r
parti it o) (4, ) — /Q (P,) - (7) dz
@ 5 (i, V) /Q (Pd) - (7) dz

Now () proves a.
b. follows from a. and the symmetry of (bgf).
c. Let ¥ € V2 z € Q. Formula (2.20) and the symmetry of G(z,y) show

iz) = / Gy, 2)(PT) () dy

+/FG(.%$) (Ta(ny)3(y) — (Tu(n,)G (y, 2))" T(y)ds,.
For z € Q¢ we have PG(y, z)|q = 0. This implies

0 = / Gy, 2)(P7)(y) dy

+ /F G(y, z) (Ta(ny)T(y)) — (Te(ny)G(y, ©))" 5(y)ds,.

For 7 € (HZ(QC))2 with compact support we can apply the above two formulas for the

domain €2 := Q°N Bg(0) with supp(¥) C Bg/2(0). We will denote by n, the outer normal
on I with respect to 2. We get for z € Q¢

i) = / Gy, 2)(P7)(y) dy

- /F G(y, z) (Tu(ny)3(y)) — (Ta(ny)G(y, x))" ¥(y)ds,
and for z €

0 = / Gy, 2)(PT)(y) dy
- / Gy, 2) (To(n,)7(v)) — (Ta(m) G (y, 2))" 5()ds,.

11



—

For a function 7 € (L2(R?))? with compact support and ¥|q € V2 , &
get by addition of the above formulas

ac € (HX(Q0))?, we

ie) = [ Gl.o)Pow)dy
+ [ Glw.2) Talm)0) - (Ta(m)G(0: )" F(0)lds,
- [ cwarawa

+ < [Talny)?, G( ) > = i (Tuln,)Gly, )" [3(y)]ds,.

This implies formula (2.35), because every function @ as in c. can be approximated by a
sequence (7,), of functions in V2 by Lemma 2.4. O

Lemma 2.7. The trace mapping

Y0, 1)+ ¢ = (106,77 )

maps (C°(R?))? onto a dense subset of

Proof: We assume that for

—

(x.9) € (H

D=
—~
’1
~
N———
[ &)
X
SN
|
N[
—~
’1
~
N———
N

the equation

—, —

< (06,7%79), (~4,%) > = 0
holds for all ¢. This implies

— — k) o — 00 2
<P s> = <16x>, Ve (CFE)) . (2:36)
Now let T'x be the solution of
PT)? = Oa fYOT)_(» = )?a

see Lemma 2.2. .
For f € V° we denote by Sf the solution of

see Corollary 2.1.

12



Because of Sﬁ Tx € V2 we can apply the second Green formula in Lemma 2.6 and we
get

—

/ Sf+(PTX) — (TX) - (PSf)dz = <WISf,mTX > — <1 Tx,%Sf >
Q
This implies
—/ F-Tydz =<~+"¥Sf x>, Vfe V.
Q

Because (C2°(R?))? is dense in V2 and V2 is dense in V}, formula (2.36) holds for ¢ =
Sf € V3. Now we have

0 =<9, %Sf >=<AISF,%>.
Therefore we get
0= /f-T)‘(’dx, vf.
Q
But this means T¥ = 0 and ¥ = 0 by Lemma 2.2. By (2.36) this implies
< J; fYO(;> = 07 vgg
We finally get J = 0, because
. 2
ot VI o (HE(F)>
is surjective (it has a continuous right inverse by (2.15)) and the C'*°—functions are dense

in V1,
So we get J =0 and ¥ = 0, and this proves the Lemma. O

Lemma 2.8. The trace operator
Y :u — ulp @ H (R?) — HS_%(F)
is continuous for s € (3,3).

Proof: See [4, Lemma 3.6]. O

Lemma 2.9. The Green operator G fulfills

G : (H'(R))” - (HL2(R?)).

loc

Proof: We calculate the symbolmatrix o of P with the Fourier transform.

/J(8121 + 8222) + ()‘ + /J)8121 (>\ + M)a%Q
()‘ + M)8122 ﬂ(8121 + 8222) + ()‘ + N)6§2

P =

13



This implies for the symbol matrix o

u(€d +€3) + (A + p)ét

(A + p)éi&e

o(&,&) = —
A+ mwéide u(€l +8)+ A+ )&
_ [ MEre) ) or
0 (A +2u) (& +€2)
with an orthogonal matrix
1 —&asgn(&1)  &isgn(ée)
U = —F—= , (€1, &) # 0.
&+ &) ol olel)
This implies
1
. S — "ot
e M L.
and
C
lo (&, &) < m,
which proves the lemma. O

Now we define the single layer operator K, and the double layer operator Kj.

(K@) = [ Glno)i)ds,, o eRE\T

/F (To(n)G (v, )" T(y)ds,, € RE\T

(2.37)
(2.38)

The following lemma repeats the results of Theorem 1.(i)(ii) of [4] for the Lamé operator.

Lemma 2.10.

2
a. The mapping Ky : (H*%J“’(F)) — (H1+”(R2))2, o € (—3,3), is continuous.

loc

b. The mapping Kf”)

2
: (H%(F)> — (HL,(R?))?, & € [0, ], is continuous.
Proof:

14



2
a. Let v € (H_%JFU(F)) . Then ;v (where ~j is the adjoint of 7,) is a distribution in

R? with compact support
re T " e oo (Tp21) 2
<WT,¢> = <Tmp> Ve (CrRY) .
Now we have

and Lemma 2.8 shows

B (HM) o (R, s (500)

Lemma 2.9 finally implies

Gony : (HI()) — (HZ(®)).

loc

Defineoc =1—-s¢€ (—%, %) Then the above equation gives

loc

K : (H—%+o(r))2 —  (HE(R?))®.

2
b. Let ¥ € (H%(F)> and 4 := T'v € V3, where T is the solution of (2.16), see Lemma
2.2. Formula (2.35), where we define @

oc = 0, now gives us

T = / Gly, o) TH(y)ds, + < AT G(,z) > —(KOTF)
Q
= Ky\"T5— K7,
Therefore
Kfﬁ) = KOOfyp) ol'=T
= (Kyoy!™ —I)oT

and we have

T (Hé(r))2 — VR (Lemma 2.2)
A %5 — (H*% (F)) i (Lemma 2.5)
Ky : (Hé(F))2 — Vi (part a.)

15



In the next lemma we collect some smoothness properties for the double layer potential
and for a special parameter K we estimate the norm of K{”)U(x) and its derivatives.

. 2
Lemma 2.11. Forv € (HE(F)> and

A+ p
K 2.39
S (2.39)
the following results hold:
a. K®g e (C~(R2\T)),
b.
(KO0 @] = Owpoe (137
]
(%) _ 1
I(VE"0) (@)l = Ojaljsoo T2IE)
c. KPg e VAQ°), k€0, ).
Proof:
a. By a calculation we get
1 _ (y—o)y—2)"\y—z-n
Ti(ny)G(y,z) = —==((1—C)lax2 + 2€ Y (2.40)
! 27T( " Iz — ylI? ) Iz — ylf?
with
A+ p
c = . 2.41
¢ A+3u ( )

This shows that all components of Tz(n,)G are in C=(I' x (R? \ I')). The C*
property would also hold for every other value of k, but if kK # K a third term in
formula (2.40) would appear, which has a stronger singularity for x = y, and this
term does not allow the analysis in chapter 3 (see [14]).

b. Formula (2.40) gives us
)T

TG = o (1~ Dhaua + 26 ‘”j)_(ny )1y —2) -,

1
lz = ylI?

1
Cr—r.
Iz = yll

16



The calculation of the derivatives of the entries of 7z(n,)G with respect to z; and
o shows

1

IVTe(ny)G(y, 2)| < Cr—s.
Iz — yll

(2.42)

b. follows because the length of I' is finite.

c. We will repeat here the arguments of Lemma 2.5 and Lemma 2.10 for the domain
Q:=(R?*\ Q) n Br(0), R > Ry. We have 80 = I' U 8Bg(0) and the properties of
’f?i”) in Lemma 2.5 and the properties of Ky in Lemma 2.10 for 02 instead of I' are
valid.

L 2 ~ ~\2
Let v € (HE(F)) . Byu:=T7 ¢ (H1(9)> we denote the unique solution (see
Lemma 2.2) of

PTé = 0, in(Q
wIv = 7,
TU|6BT(0) = 0.
By Lemma 2.6.c. (where we define 77 g = 0) we get

Ty = <397T7,G(-,z) > +K"7,

where we have used that ¥]sp,(0) = 0 and that Kf”) depends on the outer normal
of I' with respect to 2. This equation implies

Kf”)ﬁ' = (I-Kpo %”)) oT.
As in Lemma 2.10 the last equation shows
(%) )
K"7 e (Hl(Q)> ,

R > Ry arbitrary. This proves c.

2
Lemma 2.12. Forv € (H%(F)> , & € [0, p], we get
WKP7) = 7, VK] = 0.

17



1 2 ré K)—
Proof: Let ¥ € (HE(F)> , ¢ € (C(R?)), @ := K. By Lemma 2.11 we can apply
Lemma 2.6 and get

/ﬁ- Pédz = <~da, ¢ > — < v la, Villa >
Q

/ ﬁ-ngd:L' == <_7§n)'&:9c,’)/0(;>+<’Y£n)$ﬂc,’)/0ﬁﬂc > .

The different signs in the second formula are caused by the choice of the outer normal for
Q in the definition of 7{*). This implies

[ Péde = <bd06> <7, bei > (243)
On the other hand we have
i = K77 = G((n")D),
where the distribution ('y£”))’17 with compact support is defined by
<OMNé>=<i176> de (CRE®))

Now the left side of equation (2.43) can be rewritten

/a-m}'dx = <Go(")y, Pg>
Q

= <7796 >. (2.44)

Formula (2.43) and (2.44) give us

K K e K) — — k) 7 e 00 2
<WKPA,ne> = <KD +5,976 >, Vé e (CPR))”.

Lemma 2.8 proves the lemma. O

Now we can prove the uniqueness of the solution of the exterior Neumann problem, where
instead of the normal derivative the generalized stress operator is used.

Lemma 2.13. Let k€ [0, 1) and @ € (H. (Q°))? with

loc
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¢ Gzag € (CE(R\ Q)" and
1 1

ji(z)| = O(W) Vi(z)| = O(W)-

Then we have © = 0.

Proof: The first Green formula for #|genp,(0), £ > Ro, and property b. give

0 = / iu- Pudzx
Q°NBg(0)
(k)

J— (K‘) b g — = N —
- (I)QcmBR(O)(U; )+ <y U, U > — ~/6BR(0) Tet - uds,.
=0

Because 7. contains only first derivatives of 4, we get by the Cauchy—Schwarz inequality

Now we have

B g (T@)| < CAnR? i3
290 .
On the other hand we have that
(I)gi)ﬂBR(O) (4,4) >0

is a monotonically increasing function of R, and this finally implies
0= %), o(@E), YR>R,

Now inequality (2.26) implies that @ is constant and property c. proves the lemma. O

In the next section we will prove the injectivity of our boundary integral equation with
the help of the last lemma. For the solution of the equation (2.2) we use the double layer
potential (2.38) with k = & (2.39) and finally we need the boundary values of the double
layer potential. For @ € (C(T"))* we get by direct calculation

lim _(K®a)(z) = —si(z) + 5 (kP (), (2.45)

Q3z—zo€y

where K\? is defined by

T

(k) (a0) = — / {w (=)o + @)@ —y)

m |z — y|? |z — y||?

)ﬁ(y)] ds(2.46)
See Lemma 2.11 for the definition of ¢ (see (2.41)) and for the kernel of ICgE) (see (2.40)).
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3 Results for the integral equation

In this section we prove the Fredholm property of the operator

I — k¥ (3.1)

which was defined in (2.46). We show that the operator is invertible and we prove a
regularity result, which we need for the numerical results in the next section and for the
proof of the injectivity of the operator.
We will assume that the polygon T is parametrized by « : [0,7] — R? in the following
way.

0=s5<8<...<s8, =T,

& = (s:), i = 0(1)n, are the corners of I' and &, = &,.

Visisia)(8) = &+ (s— )G (3:2)
where
cos(a;) sin(ay)
G o= , and we define 7; := (3.3)
sin(a;) — cos(a)

the outer normal for T' on 7(s;, Si11)-
In the following we will identify the functions on I' and on [0,7]. So the study of (3.1)
leads us to the study of the integral equation

u(s) —I—/O k@ (s, 7)d(r)dr = f(s), sel0,T], (3.4)

where k) is given by (see (2.46))

Oy _ _L0() ~ 1) -n(r)
e = e @]
(

. L) = () (v(s) — ()"
(o2 ) 69

f e (L*(0,T))? given, @ € (L2(0,T))” is the solution. Finally we are only interested in
k® (see (2.41)), but we will study &), w € [0, 1].

In the following we will localize equation (3.4) around each corner. Therefore we have to
introduce a couple of definitions.

We choose a real number § > 0 with

n—1
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WedeﬁneJ3i+]-,0 S ) S TL—]_,O §]§2,by

(53, 85 + 0], J=0
Jsivj = [8i +6,8i41—0), j=1, (3.7)
[3i+1 — 0, 3i+1]7 Jj=2
and Js, = [T,T + 6.
Let
3n
2 o= JI(z2)*. (3.8)
i=1

We notice that the mapping

® : (L2(0,T))° — L2 defined by (9@), = @

Ji (3.9)

is an isomorphism, where we have extended  periodically on R. It is clear that for
functions @ € (L2(0,T))?, @fs; 0] € (C5°([84, 8i11]))%, the operators K©)

(1)dr (3.10)

~~
3
&g
Sy
N—
~~
w
N—r
Il
o\
|
=
£
—~
)
\]
N—r
I3

and

B® = I + K@ (3.11)
are well defined.
We then get
BY = & 'o(lp + K¥)od (3.12)
where K\ is defined by
3n

K9 (@), () = 2 (Kd) (5

j=1
3n

= Z/ k@) (s, 1)id;(7) dr, s € J;. (3.13)
j=1 i

Remark: For i = 3ig + jo, jo € {0, 1,2}, we have
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K& = 0, je3i+{0,1,2} (3.14)

1’7]

Now we split up the matrix (ICE?) _in the following way
12y

K li—jl<lori—j=3n—1,

SR (3.15)
0, else,
w,2 w w,1 ..
K = Kk - ks, Vi, (3.16)
w,l L (w,1)
KD = (’Ci’j )ij’
e = (;c(“’:”)
" RVAN
Then we define
B = Ip + KWV, (3.17)
BY = 7 1oBWod (3.18)
KW .— e 1lg ,Cgrw;) o d (3.19)
kw2 .— o lo K:Trw,Z) o P (3.20)

We observe (see (3.14) and (3.15)) that the matrix B%) has the following structure

(¥ o o

B = 0 0 , where (3.21)
\0 0 LY
(1 0 0

i = [ or K | (3.22)

\ 0 Ky 1

First we calculate the kernels of the two operators IC:(,";’ZLM and IC:(;},,Z-?I, where

ngll,:}i (O (i, 8i + 5))° — (L2(Sz‘ — 9, Si))2
K1t (C&(si —6,8:))° — (L2(si, 55+ 6)) .

We will assume s; = 0.
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(i) K$ 4 5 € [-6,0], 7 € [0,4].

Y(s) = &1+ (5—8i1)Gi1

§io1+ (0= si1)Gio1 + (s — 0)Gis
= &+

() = &+1G

Y(s) = (1) = sG1 — 7¢

_ ( cos(a_1) ) . ( cos(a;) )
sin(a;—1) sin(a;)
Iv(s) —y(1)||>? = s®cos®(aj_1) — 257 cos(a;_1) cos(ay) + 72 cos?(ay)
+s%sin?(a; 1) — 287 sin(ay 1) sin(q;) + 72 sin®(a;)
= §° —2s7(cos(a;_1) cos(a;) + sin(a;_1) sin(ey)) + 7°
= s* —2stcos(a; — ) + T2
(v(s) =2(7)) - n(r) = sCiv-mi
= s(cos(a;_1)sin(a;) — cos(a;) sin(a;_1))

= ssin(a; — ;1)

T2 Vs
with
71 = s*cos®(a;_1) — 257 cos(ay_1) cos(ay) + 72 cos®(ay)
vy = s*sin(oy 1) cos(a; 1) — s7(sin(a; 1) cos(a;) + sin(oy) cos(a; 1))
+72 cos(ay) sin(a;)
v3 = s*sin®(q; 1) — 2s7sin(a; 1) sin(oy) + 72 sin?(oy)

Now we further assume «;_; = 0. Then the last formula implies

(v(s) = ¥(T)(x(s) = v(1))"
_ ( s% — 2s7cos(a;) + T2 cos?(a;) Tsin(a;)(T cos(a;) — s) )

7 sin(a;) (7 cos(a;) — s) 72 sin’(a;)
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The kernel of icg‘;lw is given by

1 s sin(ay) 2w
Ke)(s r) = L i (1= @)z +
(s,7) m % — 2s7 cos(a;) + 72 (1= w) o s — 2s7cos(q;) + 77
s* — 2s7 cos(a;) + 72 cos?(a;) Tsin(ay) (7 cos(ay) — ) )
7sin(a;) (7 cos(ay) — s) 72 sin? (o)
~ 1
_ syt 3.23
GRS (3.23)
where
R = 1 zsin(a;) ((1 ) Dps + 2w
i1 w22 —2zcos(q) + 1 P2 22— 2z cos(ay) + 1

sin(a;)(cos(a;) — 2) sin?(;)

( 22 _ 9, COS(ai) + COSZ(OZi) Sin(ai)(COS(ai) - Z) ) ) (324)

(11) Ki(’::,?Si—h s € [077-]7 T EC [_5a 0]

v(s) = & +sG
(1) = &+ TG

This implies the following equations:

1) ) = s [ ) g C@“i”)
sin(a) sin(a; 1)
1v(s) —y(1)|>? = s*— 2s7(cos(ai_1)cos(oy) + sin(a;_1)sin(oy)) + 7
= s* —2stcos(a; — oy 1) + T2

(v(s) = (7)) -n(7) = sGi-mia
= s(cos(ay)sin(a;_1) — cos(a;_1) sin(a;))

2

= —s(cos(a;-1)sin(a;) — sin(a;-1) cos(a;))

= —ssin(o; — a4 1)
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with

71 = s%cos®(a;) — 257 cos(ay_1) cos(a;) + 7% cos®(a;_1)

vy = s*sin(oy)cos(a;) — sT(sin(a; 1) cos(ay) + sin(ay) cos(a; 1))
+72 cos(a;_1) sin(a;_1)

v3 = s%sin®(q;) — 2s7sin(oy_1) sin(;) + 7% sin®(@;_1)

Now we again assume a; ; = 0. Then the last formula implies

(v(s) = (7)) (v(s) = 7(7))"

5% cos?(a;) — 287 cos(a;) + 72

ssin(a;)(s cos(a;) — 7)

ssin(o;)(scos(ay) — 7) s%sin®(a;)

The kernel of Ké‘;gi_l is given by

1 ssin(a;) 2w
k(s 7) = = : (1—w[ +
(5.7) T 8% — 257 cos(a;) + 72 ( V2 s* — 2s7 cos(q;) + 72
5% cos?(a;) — 2s7 cos(a;) + 72 ssin(oy)(scos(a;) — 7) )
ssin(a;) (s cos(a;) — T) s%sin®(oy)
~w), 8,1
= k()= 3.25
@) (3.25)
where
E(w)( ) 1 zsin(ay) <(1 Y. 2w
> VA = — — w
bl T 2% — 2z cos(oy) + 1 22T 29 cos(ay) + 1

cos(a;)?z” — 2z cos(e;) + 1 zsin(a)(z cos(a;) — 1) ) (3.26)

zsin(o;)(z cos(a;) — 1) 2% sin®(«v;)

If we now introduce the operator

BY + (C([-6,00)” x (C([0,4]))* — (L*(—6,0))” x (L*(0,))”

25



and ®; : (L2(0,T))* — (L*(—6,0))* x (L*(0,4))? by
(Ef)lﬁ) (.’E) — ﬁ(sz + ) ’
U(Si + )
then we get

(®;0B)i = (B od,)u (3.27)
for all functions @ for which both sides are well defined (we will later see that this is the

case for all @ € (L%(0,T))).
Finally we transform the equation on the interval (0,1) by

3. (L2(0,1))" — (L*(=6,0))" x (L*(0,4))?

with

dq = il , (3.28)
ui(—%)
h(s) = 0
u?(—g)
uz(%)
B(s) = 0
u4(§)
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— s € [-46,0],

N————
|5

U4(

(
(
o US(%) 0 T(w) S uy(—
wa(s) = + [ k5 (-) , s €10,0].
( (g)) /5 TT (u2(

g,
=
—~~
)
N—
I
~—
I
S
|
Slw ol
N—r N—r
N—————
+
o\
(=%
Kol
2G
~~
Nw
N—
S
IS
w
—~
SN sy X =N
~— ~— N—r N—r

N————
E

dr
) —, t €10,1],
-

) d—T, t €[0,1].

Substituting v := % in the first and v := —% in the second integral gives

So we define

1 (w) T dr
Iy Ko/ (), ()% ) | 529

where

kD (2) = k9 (~2)
2w

1 in(q;
1 zsin(oy) <(1 — W) Ipr + —
T z° + 2z cos(a;) + 1 2° + 2z cos(a;) + 1

( 2% + 2z cos(a;) + cos?(a;) sin(a;)(cos(a;) + 2) ) ) (3.30)

sin(a;)(cos(a;) + 2) sin?(a;)
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k7 () = k()
1 zsin(ay)
T 2% + 2z cos(ay) + 1

2w
22 + 2z cos(a;) + 1

((1 —w)loxe +

22 cos?(a;) + 2z cos(a;) + 1 zsin(ay)(z cos(a;) + 1)

) (3.31)

zsin(a;)(z cos(a;) + 1) 2% sin?(ay)
For
BY = 1+1¥ (3.32)
we get
(@; 0 BNz = (BY 03,4, (3.33)
with
3 = & od; (3.34)

In the next lemma we will prove some mapping properties of K“?2) (see (3.20)). Then we
will study the properties of B"Y) with the help of ng), i=1(1)n.

Lemma 3.1. Forw € [0,1] we have
a. K& (L2(0,T))* — (L*(0,T))? is compact.
b. @ e (L2(0,7)) = (K@2q)

ssisa] € (C([s4, si+1]))2, Vi. The mapping

i — K@i [si,8i41] € (Cl([siasi+1]))2

is continuous forl € Ny.
c. @€ (L*0,T))? = K@i e (Clo,T])>°.

Proof: We first use the relation (3.20) and look at the components of the operator matrix
K&, For |i—j] < lori—j=3n—1we have K% =0 and for i,j € {1,...,3n},

|i — j| > 2 we have k(s,7) € C*(J; x J;)*. This implies

a) K“? compact.

b) (K2 ad)(s) € (C=(J))?, @ € (L*(J;))>.

i,j

c) w2 . (LQ(J]-))Z — (C’l(Ji))2 is continuous, [ € Ny.

i,j
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Property a) shows that K2 s compact and (3.20) proves a. Property b) shows that
K@i € (C=(J;))? This implies K@, 5,,,,-4 is a C®—function. § > 0 is fixed but
arbitrary, so the first part of b. follows. Property c) shows the second part of b.

To prove c. we only have to show that

(K(“’Q)ﬁ) | 75i_1uJs; 1S continuous, Vi € {1,...,n}.

Choose i € {1,...,n}. For s € J3;_1 = [s; — 0, s;] we have

(K“7) (5) — /OSilk(s,T)ﬁ(T)dT—l— / k(s, 7)@(r) dr

i+6

= / k(s,T)u(r)dr
(O,Sifl)U(SiJrl,T)

si11
—i—/ k(s,T)u(r) dr.

itd

For s € J3; = [s4, 8; + 0] we have

(K“23) (s) = / K(s,7)d(r) dr
(O,Si_l)U(SZ‘J,_l,T)

8$;—0
—i—/ k(s,T)d(r) dr.

Now we note that k € C([s; — 6, s; + 8] x ([0, s;_1] U [siy1, T]))*, and we also have

k(s,7) — 0 ass Ms;, uniformly for 7 € [s; + 6, s;11],

k(s,7) — 0 ass \s;, uniformly for 7 € [s;_1, s; — d].
We define k on [s;i — 0, 8; + 0] X ([si,l, s; — 0] U [s; + 4, si+1]> by
k(s,7), (s,7) € ([si —96,s:i] X [si +06,8i:1])U

k(s,T) = ([si, 8 + 0] X [8i-1,8: — d])

0, else.

This implies k € C([s; — 6, 8; + 6] x ([s; 1,8 — 6] U [s; + 6, si41]))*. Because of this

/ (s, 7)i(r) dr
[si—1,8;—0]U[s;+0,5;41]

is continuous for s € [s; — 4, s; + 6]. But for s € [s;d, s; + ] we have

29



(IC(“”Z)QZ) (s) = / k(s,T)u(r)dr
[0 S I}U[S +1,T]

+ / k(s, 7)d(r) dr
[si—1,8;—0]U[s;+8,5i41]

which proves the continuity.

We now define four functions, which build up the functions kz(“{) and kz(‘;)

)

_ - z

lia2) 1+ 2cos(ay)z + 22

. o — Z

lia2) (1 +2cos(q;)z + 2°)?

l 2 >, a; € (—m,m)
i3(2) = (14 2cos(ay)z + 2°)*
l — Z3

i(2) = (14 2cos(ay)z + 2%)°

/

The following properties are clear.
li’j € Coo([0,00)), lZ’](O) = 0, li’j(.’E) > 0, ifz > 0and
/ l;1(z)de < 00, —2 < ¢ <0,
/ r)dr < oo, —2 < q < 2,
0
/:L'ql Ydr < o0, —3 < ¢ < 1,
0

/:qu Ydr < oo, —4 < g < 0,
This implies

/ zl; j(r)dr < oo, q€(—=2,0) Vi,j.
0

From now on we will omit the index ¢ for /; ; and kz(“]’) We get

k(l) k(l) W
K92) = (1 - wkp(2)laws + w 21)(Z) ?1)(2)
k? (Z) k3 (Z) \
k(2) k(2)
k(2) = (1 - wkp(2)laws + w 22)(Z) ?2)(2)
ks (Z) ks (z) )
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with

Ao (Ao I

1 zsin(a;)
T 2% + 2 cos(ay)z + 1
sin(oy

( )ll(z)

kD(Z) =

zsin(q;)®

zsin(ay)

2
T

2* +2cos(a;)z + 1)°

P
in(o;)3l5(2)
22 + 2 cos(q;)z + cos(a;)?

(2* +2cos(a;)z + 1)
sin(a;)32 2 zsin(ay)

(

(22 4+ 2cos(a;)z + 1)? T242 cos(ay)z + 1

= 2kp(2) — k()

™

1L

92 zsin(q;)*(z + cos(a))

(2° +2cos(ay)z + 1)°

sin(a;)%13(2) + % cos(a;) sin(a;)%la(2)

3

23 sin(a;)®

(22 +2cos(a;)z + 1)
sin(a;)?14(2)

cos(a;)?2% + 2 cos(ay)z + 1

Ao JAo o

zsin(a) (2% + 2 cos(a;)z + 1)°

sin(a;)®2° 2

zsin(ay)

e 5+
(2° +2cos(ay)z + 1)

= 2kp(z) — k()

9 2”sin(a)? (2 cos(ai) + 1)

T (2* 4+ 2cos(a;)z + 1)*

T 22+ 2cos(og)z + 1

2
T

sin(a;)%13(2) + % cos(a;) sin(a;)%l4(2)

J

(3.38)

(3.39)

(3.40)

Remark: The mapping properties of Mellin convolutions with kernel [;(2) also hold for
Mellin convolutions with kernel £\ or &{*). The kernel kp(z) is the kernel of the double

layer potential.

Now we recall some definitions from [5].
Let p> 0,1l €N, p€[l,00], be given. Then we define

|
X5*(0,1)

with the norm

= {ueD(0,1)|z/*D'u € I[P(0,1), j =0(1)l }
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[u

i) = > &7 Diul|,). (3.42)

0<j<t

In [5] also appear the following two conditions for functions g on [0, 00).

(H1P) / zr ! lg(z)| dz < 00
0

(Hlﬁ’l) / xz%flf”‘ijjg(x)‘ dz < oo, j =0(1)I.
0

Formula (3.36) shows that all I;, j € {1,...,4} fulfill the conditions (H1?), 1 < p < oo,
(H1"),1 < p < 00, and (H12Y), p € [0,3/2). Formulas (3.37)—(3.40) now show that B

(see (3.32)) maps (L?(0,1))* continuously into (L?(0,1))* for 1 < p < oo and (x7°(o, 1))4

continuously into (Xf’o([), 1))4 for 1 < p < oo (see [5, p. 275 and the proof of theorem
1.10]). We have shown the following lemma.

Lemma 3.2. Forw e R, i€ {l,...,n}, we have
4 B 4
(LP(0,1))" — (L*(0,1))" is continuous forl < p < oo,
(Xf’O(O, 1))4 B, (Xf’O(O, 1))4 is continuous for1 < p < 0o, and
B

(X2°(0, 1))4 —  (X2°(0, 1))4 is continuous for0 < p < 3/2.

To calculate the Mellin symbol of the operator ng) we first collect the Mellin transfor-
mations [;(s) of the [;(z) (see [13]).

h(s) = St (@) Ssii?l((?riss)) |
) = gactes s (s sl o
) ssin(ai)Zsin(ais)—sin(oz,-s)) S
5() = ~ysiman? Sin(lm) ( — ssin(a;) cos(ais) + cos(y) sin(ais)>
L) = ~ggimtant sintrs) (s os(as) sina) cos(aus)
s)

ssin(a;)? sin(a;

= sin(ozis))

/

In the next lemma we calculate the Mellin symbol matrix of the operator ng)

Lemma 3.3. The Mellin symbol matriz z§§‘”)(s) of ng), w € R, is given by
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S = ( cos(ai(s — 1)) sin(ai(sl))) ‘

Sir — ( cos(a;(s +1))  sin(a;(s+ 1))

Lyo  gi(8)Iaxa + whi(s)S;1(s)  (344)
9i(8)Iaxa + whi(s)S; 2(s) Iy
sin(q;s)

u(s) = S0 huls) = sine) gt (3.45)

—sin(ay(s — 1)) —cos(a(s — 1)) > (3.46)

sin(a;(s + 1)) —cos(ay(s + 1))

Proof: We substitute the formulas (3.43) into the formula (3.37) and use (3.38)—(3.40).

sin(ay)

m
in(ays

I (s)
)

[42]

sin(7s)

sin()%la(s)
1

~sin(ws)

3

(s cos(a;) sin(a;) cos(;s) + ssin(a;)? sin(a;s) — sin(oz,-s))

2kp(s) — ks (s)
1

sin(7s)

(s cos(a;) sin(a;) cos(a;s) + ssin(ay)? sin(a;s) + sin(ais)>

2 - 2 ~
~sin(a;)?l3(s) + = sin(a;)? cos(oy)l2(5)
7r T

1

~ sin(oy) sin(7s)

( — ssin(ay) cos(a;s)
+ cos(a;) sin(a;s) + s cos(a;)? sin(oy) cos(a;s)
+ ssin(a;)? cos(a;) sin(a;s) — cos(a;) sin(ais)>

1

~ sin(oy) sin(7s)

( — ssin(a;) cos(a;s) (1 — cos(ay)?)

+ ssin(a;)? cos(ay) sin(oz,-s))

— sin(oy) Sin(s) ( — sin(a;) cos(a;s) + cos(a;) sin(a,s))
- sin(ai)sin(sm) sin(ai(s — 1)) (3.47)

33



By formula (3.37) we have to calculate

—ED(S)—l—HI)(s) = sin(q;)— i

sin(ms)
s

= sin(a) sin(7s)

—kp(s) + k3 '(s) = _Sin(ai)sin(ws)
= —sin(ai)ﬁ

)
=)
)

We repeat the whole procedure to calculate Eg")(s).

~

cos(ai(s — 1))

cos(ai(s —

(cos(ai) cos(a;s) + sin(a;) sin(ais))

(3.48)

(cos(ai) cos(a;s) + sin(a;) sin(ais))

(3.49)

B(s) = ;sin(ai)3l4(s)

= (7rs (s cos(ay) sin(oy) cos(a;s) — 8% sin(a;)? sin(ays) — sin(ais)>
Eiz)(s) = sin(rs) (3 cos(ay) sin(ay) cos(ays) — ssin(a;)? sin(a;s) + sin(a,s))
%2)(3) = — s1n(al) Ts(s) + = sm(a,) cos(o;)4(s)

ssin(a;) cos(a;s)

~sin(oy) sm(7rs) (

+ cos(a;) sin(a;s) + s cos(a;)? sin(ay) cos(a;s)

— ssin(a;)? cos(ay) sin(a;s) — cos(oy) sin(a;s)

1

)

- _ ( — ssin(ay) cos(a;s)(1 — cos(a;)?)

sin(q;) sin(s)

— ssin(a;)? cos(ay) sin(ais))

= Sin(ai)sin(ws) (sin(ai) cos(a;s) + cos(a;) sin(a,s))
- sin(ai)$ sin(os(s + 1)) (3.50)
We again have to calculate the following two terms
—kp(s) + K (s) = sin(ai)m ( cos(a;) cos(a;s) — sin(ay) sin(ais)>
= Sin(ai)sin(sws) cos(ai(s + 1)) (3.51)
—kp(s) + kD (s) = — sin(Ozi)sin ) (cos(a,-) cos(a;s) — sin(ay) sin(ais)>
= — Sin(ai)sin(sws) cos(ai(s + 1)) (3.52)

Formula (3.32) and (3.37) together with (3.47)—(3.49), (3.50)—(3.52) and the formula for

kp(s) show (3.44) with the notations (3.45) and (3.46).
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Remark (on reflection matrices): The matrices S;; and S, o, which appear in Lemma
3.2 can be viewed as reflection matrices. A reflection matrix Ss in R?, which describes
the reflection at the straight line orthogonal to (cos(),sin(3))”, has the following form

Y
Y

1 —2cos(B8)? —2sin(B) cos(B)
—25sin(B) cos(8) 1 — 2sin(3)?
—cos(28) —sin(20)

—sin(268)  cos(20)

cos(
Sﬁ — [2><2—2 (

sin

; (cos(B), sin(B))

which shows Sg = S5 = S,*. Define

—~
Va)
|
—
~—

Bi(s) =
Ba(s) =

o; and

+
@
+ o
=

Q5.

N

[\

Then one obtains

Siyl(S) = Sﬁl(s) and 8572(3) = Sﬁz(s)-

This means that S;;(s) and S;2(s) are reflection matrices for real s . There is a fur-

ther reflection matrix S; independent of s by which the matrices S;;(s) and S;»(s) are
conjugated:

~ cos(a;) sin(ay)
S; = Spi(e)482(s) = Srta;, = . (3.53)
2 ? sin(a;) — cos(ay)

We obtain

gz’ Si,l(S) Sl = Sl 2(8).

’

Now (3.44) can be written in the following way

I i(8)[oxo + wh;(s)S; 1(s
B\lgw)(s) _ 2>f g( ) 2x2 ( ) ,1( ) (3.54)
Si(gi(8) Iaxz + whi(8)Si1(s))S: Iy
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As a next step we will prove the Fredholm property of ng). We will closely follow [12]
and we first recall Lemma 6.2 from [12].

Lemma 3.4. We consider the equation

() sin(yz) wsin(fy)

=0, ~ve/(0,2m).
vz v

a. Let w = 1. For 0 < v < 7.4t equation (x) has no solution in T'y; \ {0}, Ty, :=
{z € C|0 < Re(z) < 1}, for Yerit <y < 27 there is exactly one solution zy(1,7v) €
Io1\{0}. This solution is real and decreases monotonically from 1 to 1/2 if v varies
between Yeri; and 2m.

b. Let —1 <w < 1. For0 < v < 7 equation () has no solution in Ty, form <y < 2w
there is ezactly one solution zy(w,~y) € Lo, which decreases monotonically from 1
to 1/2 if v runs from m to 2.

Remark: We define

Z(w) = Z(w,0q,...,an)

= m_iln{zo(w,w + |ail), zo(—w, ™ + |as])}
= min{zp(—w,7+a)}, weo,1], (3.55)

because zp(w, ) is monotonically decreasing as a function of w. The Lemma of Lewis
shows

(3.56)

N | =
A\
N
=
I\
/tg\l
£
A\
=

and

sin((7 + «a;)2) N sin(m + «;)
(m+ a;)z T+ «;

£ 0,i€{l,...,n}, (3.57)

z€{ze€ C\{0}|0< Re(z) < z(w)}.
Lemma 3.5. Letw € [0,1].
a. ng) . (L2(0,1))* — (L*(0,1))* is a Fredholm operator for all p € (1/Z(w), 0],

ie{l,...,n}.
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c. ng) : (X200, 1))4 — (X2°(0, 1))4 is a Fredholm operator for all p € [0,1/2 +
z(w)),
ie{l,...,n}

Proof: By the transformation z — e~*/? we have the correspondence between the oper-
ator ng) on (0,1) and a Wiener—Hopf operator W) on [0, 00).

(2

The Wiener—Hopf operator is a Fredholm operator if the determinant of its symbol ﬁ/\i(“’) (s)

is different from zero on the real line [9, Theorem VIIL,6.1]. If we consider ng) as an

operator on (L?(0,1))* the corresponding Wiener-Hopf operator has the symbol z§§“’)(s),
Re(s) = 1/p (*1). If we consider 1§§“)(s) as an operator on (X2°(0, 1))4 the corresponding
Wiener—-Hopf operator has the symbol B\gw)(s), Re(s) = 1/p — p (*2), see [5].

This implies that we have to study the zeros of the function

det(B“)(s)), w € [0, 1].

By formula (3.54) we have

Bs) = [ _ ) , with

C(s) = (gi(8)Taxa + whi(5)Sia(s))S:. (3.58)

Because of det(S;) = —1 we get

det(B{)(s)) = det(B“)(s)).

Now we follow the proofs of Lewis in [12].
First we have

- I C“ (s
det(B“)(s)) = det 2z ()

= det(Toxz — C“)(s)) det(Loxs + C“)(s)).
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Furthermore we have

Ioyo — 6'(‘”)(3) = ! sin(ms) ’ — sin(ozis)gi
' sin(s) 0 sin(ms)

s sin(ay) cos(ai(s — 1)) —sin(a;(s — 1)) y
—sin(a;(s — 1)) —cos(a;(s — 1))

cos(a)  sin(ay)
sin(a;) — cos(ay)
1 sin(7s) 0 ~

= — — sin(a;$)S;
sin(7s) 0 sin(ms)

cos(a;s) sin(a;s)

— wssin(ay)
—sin(a;s) cos(;s)

1 ~

= — sin(a;s)S;
sin(ms) sin(ais)
sin(ws) — wssin(a;) cos(ay) —wssin(q;) sin(a;$)
wssin(a;) sin(a;s) sin(ms) — wssin(«;) cos(ay)

=: ! (A2 + Ap)
" sin(ms) '

Here A; has the form

1 1
agl) a§2)

(1 (1)

—Q1y Ay

Al —

(which is called antireflective by Lewis) and As has the form

(called reflective by Lewis). This implies
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det(A; £ As) = det(Ay) + det(As)
= (@) + @)?) - (@) + (@)

and we get

1

det(Iyxo — éi(w)(s)) = — ((sin(ﬂs) — wssin(q;) cos(;s))?

where

sin(ms)

+ w?s?sin(oy)? sin(a;s)? — sin(a,-s)2>

1

= —— (sin(7rs)2 — 2ws sin(ay) cos(a;s) sin(7s)

sin(7s)?

+ w?s? sin(oy)? — sin(oz,-s)2>

1

— - ((sin(ﬂs) cos(a;s) — wssin(a;))?

sin(rs)
— sin(ms)? cos(;s)? + sin(7s)?
1

= sin(a,-s)2>

= — ((sin(ws) cos(@;s) — wssin(e;))® +

sin(7s)?
(sin(ms)® — 1) sin(a,-s)2>
1

— . ((sin(ﬂs) cos(a;s) — wssin(a;))? —

sin(m

(cos(ms) sin(ais))2>
1

a = sin(7ws)cos(a;s) — wssin(a;)

B = cos(ms)sin(a;s).

For s = 0, a and B have a simple zero. Now we have

B1 LT

a—p
sin(ms) cos(a;s) — cos(ms) sin(a;8) — wssin(ay)
sin((m — a;)s) — wssin(oy)
sin((m — a;)s) — wssin(m — ;)
sin((m — a;)s) wsin(ﬁ — ;)
(m— a4)s T
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By Lemma 3.4 of Lewis we get

a—p#0, forseC, 0< Re(s) <Z(w)sF#D0.

On the other hand we have

a+pf

i

sin(ms) cos(a;s) + cos(ms) sin(a;s) — wssin(a;) =
sin((7m + a;)s

)
sin((7m + a;)s
sin((m + a4)s)

) — wssin(«;) =
) + wssin(m + o) =
sin(m + o)

© ©o o o o

(m+ a;)s

Tw T+ o

Again by the lemma of Lewis we know

a+0#0, for0< Re(s)<zZ(w), s#0.

This implies

det(Ioyo — C“)(s)) # 0, 0 < Re(s) < z(w).

Analogous to Ioxs — C“)(s) we now analyze Ioys + C ) (s).

1

I2x2+ai(w)(3) - sin(7s)

sin(a;s)S; +

sin(ms) + wssin(a;) cos(q;s) ws sin(a;) sin(a;s)

det(Ipxs + C(s)) =

—wssin(a;) sin(a;s) sin(ms) + wssin(a;) cos(a;s)

1

sin(7s)

5 ((sin(ﬂs) + ws sin(q;) cos(;s))?

+ w?s?sin(oy)? sin(a;s)? — sin(ais)z)
1

sin(7s)?

(sin(ws)2 + 2ws sin(q;) cos(a;s) sin(7s)

+ w?s? sin(y)? — sin(oz,-s)2)
1

W ((sin(ws) cos(a;s) + wssin(a;))? + sin(ms)

2

— sin(7s)?sin(qys)? — Sin(ai3)2>

5 ((sin(ﬂs) cos(;s) — wssin(q;))?

sin(7s)
— (cos(ms) sin(a,-s))2>
—(a>— )
sin(7s)?
1
sin(ws)Q (a - ,8)(0( + B)a
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where

a = sin(7s)cos(a;8) + wssin(a;)

B = cos(ws)sin(a;s).

For s = 0, a and 8 have a simple zero. Now we have

a—pf =0
<= sin(ws)cos(a;s) — cos(ms) sin(a;s) + wssin(a;) = 0
<= sin((7m — a;)s) + wssin(o;) =0
< sin((7 — a;)s) + wssin(m — ;) =0
s#20  sin((m — ay)s) sin(m — o) _
— (m — a;)s + T— =0

This implies @ — 8 # 0 for s with 0 < Re(s) < Z(w), s # 0.

a+f =
<= sin((m + a;)s) + wssin(oy) -

< sin((7 + a;)s) —wssin(r + ;) =
s#0  sin((m 4 ai)s) wsin((ﬂ + ;)
(71- —+ ai)s T+ o

o o o o

This proves oo+ § # 0 for all s with 0 < Re(s) < Z(w), s # 0. The last results imply

det(Toxs + C“(s)) # 0, 0 < Re(s) < z(w). (3.60)
det(Ioxa £ éi(w)(s)) are even functions, therefore (3.59) and (3.60) show
det(Ioys £ C(s)) # 0, if |Re(s)| < z(w).
This gives
det(B*)(s)) # 0, if |Re(s)] < z(w).

Lemma 3.2 now shows c. for 1/2 — p > —Z(w), and Lemma 3.2 and (*;) imply

BY (20, 1) — (17(0,1))"
is a Fredholm operator for

1
0<-<3Zw) < — < p < o0

zZ(w)

1
D
Lemma 3.2 and (*3) show
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BY : (x2°0,1)" — (x2°(0,1)’
is a Fredholm operator for

1
W) < - -1<0+=1<p< —— .
p 1 -7%(w)

Lemma 3.6. Letw € [0,1] andi € {1,...,n}. We have that
a. B+ (12(0,1))' — (L7(0,1))", p € (1/2(w), 00],
b. B (x700,1))" — (x7°00,1))", p € [1,1/(1 — Z(w))), and
e. B (x2900,1))" — (X290,1))", p € [0,1/2 + Z(w))
are Fredholm operators with index 0.
(1)

Proof: ng), w € [0, 1], is a homotopy between BEO) and B;’ in case a. and b. and for p
fixed and in case c. for fixed p. It remains in the set of Fredholm operators by Lemma
3.5 if p and p are restricted to the range which is given in Lemma 3.5 So it is sufficient to

prove that the index of BEO) is 0.

We define
-1
_ I —1I I -1
BZ(S) — 2x2 2x2 l/’);go)(s) 2x2 2x2
[2><2 IQ><2 IQ><2 [2><2
o 1 Inyo Ioxo Ioyo gi(s)[2><2 Inyo —1Iaxo
—Iyxo Ioxo gi(S)[2x2 Iy Iryo Iy
B 1 Iyxo Ioxo (1+gi(s))ax2 (gi(s) — 1)Iax2
2 —Iyyo Ioxo (14 gi(s))axa (1 — gi(s))Iaxa
(1 + gi(S))[2X2 0

0 (1—gi(s))lax2

So we see that EEO) can be diagonalized by a transformation not dependent on s. This
means that we can apply the one dimensional theory. By Lemma 3.5 we already know

that 1+ gi(s) # 0, Vs, |Re(s)| < Z(0).
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But in this special case we can prove even more.

/ kp(t)ts ! dt‘
0

< / o (£)] £79) 1 gt
0

sin(|a;| Re(s))
sin(m Re(s))
< 1
for all s with Re(s) € (—%(0),%(0)), because sin(|a;|Z(0)) = sin(nz(0)). If z € R,
|z| < Z(0), we get for the index of the functions 1 + g;(z +iy), y € R,

9:(s)| =

Index}? _ (14 gi(z +1y)) = 0.

y=—00

Now we obtain with the correspondence between EEO) and Wiener-Hopf operators on R"

(see the proof of Lemma 3.5) and by [9, Theorem 1.8.1]:

a. B is invertible on (LP(0,1))*, p € (1/2(0), 00| and

0

b. B is invertible on (X?°(0,1))", p € [1,1/(1 — 2(0))).
(

—(0

c. B is invertible on (X29(0, 1))4, p €10,1/2 +z(0)).

This shows a., b. and c. for w = 0. Thus the remarks at the beginning of the proof and
Z(w) < Z(0) show the statement of the lemma. O

The transformation which we used in the proof of the last lemma is now applied again.
With the help of S; (3.53) and C“)(s) (3.58) we construct a matrix B*(s) which is

i
similar to B (s) but has a simpler structure:

-1

~ I —1I I 0
Bl(w)(s) — 2x2 2x2 2x2 N f)’}“’)(s)x
Iy Iy 0 S;
[2><2 0 [2><2 _[2><2
0 gz [2><2 [2><2
! A(w)
. Inyo —Ioyo Iryo C,- (8) Iy —Ioxo
Iryo Iryo é\i(w)(s) Iryo Iryo Iryo
Inxa + C¥(s) 0

_ ~ (3.61)
0 [2><2 — Cz(w)(S)
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So Ei(w)(s) and 1§§“’)(s) are similar with a transformation independent of s. In the next

lemma we study the eigenvalues of B (s).

Lemma 3.7. There is a ¢ > 0 such that all eigenvalues of Re(glgw)(s)), Re(s) =0, are
greater than q for w € [0,1], i € {1,...,n}.

Proof: We have

For S;1(s) we get

Re(h;(s) cos(a;s)) +/—1Im(h;(s)sin(a;s))
—+v/—1Im(h;(s) sin(;s)) Re(h;(s) cos(a;s))

The first term is a reflective matrix and the second term is antireflective. This will be
used in the calculation of the eigenvalues of Re(Ci(“’)(s)).

= Re(gi(5))Si +w

~
i

det(Re(C)(s)) — Alaya) = det((

i(5))
= X — 2w Re(h;(s) cos(a;s))A +
w?(Re(hi(s) cos(a;s))? — Im(h;(s) sin(a;s))?)
— Re(gi(s))?

The two solutions for A are given by

Aj2(s) = wRe(hi(s)cos(a;s)) =
(Re(gi(s))? + w® Im(h;(s) sin(eys))?)? (3.62)

44

wRe(h;(s) cos(a;s)) — A +/—1w Im(h;(s)sin(a;s))
—+v/—=1w Im(h;(s) sin(ays)) Re(h;(s) cos(a;s)) — A
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We recall that

hi(s) sin(a;s)

hi(s) cos(a;s)

sin(ay)

sin(ay;)

sin(q;s)

9i(s) sin(ms)

We substitute s = v/—1y, y € R, and get

hi(s) sin(qs)

hi(s) cos(a;s)

By (3.62) we get

A1 /2 (Z/)

Let a; > 0. We define

fl(aia y)

fo(ai,y)

For a; < 0 we have

(

A(y)
wsin(ay)
A2(y)

w sin(a;)

w sin(a;)

sinh(a;y)?

w sin(a;)

sinh(o;y)
sinh(my)

v/—1 sin(a;)

ssin(q;s)

i Sy
sin(ms)

s cos(a;s)

T . 7N
sin(7s)

y sinh(a;y)
sinh(7y)

v/ —1ycosh(a;y)

)

sin(ay)

sin(a;)

sinh(a;y)

sinh(my)

y cosh(a,y)
sinh(7y)

2 0
sinh(ry)? + w”sin(a;)
y cosh(a,y)

sinh(7y)

ycosh(azy)  sinh(o4y)

,sinh(a;y)?

‘ (1 + w?sin(y)

sinh(7y) sinh(my)

ycosh(asy)  sinh(aiy)

sinh(7y) sinh(my)
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v/—1 sinh(7y)
y cosh(a;y)
sinh(7y)

Y

)g

sinh(7y)?
2y2)% ‘
(1 + w”sin(oy)

(1 + w?sin(ey)



, ycosh(a;y)  sinh(—a;y) 5 . o oyl

A = - —05)— . 1 i ?

1(v) wsin(—a) sinh(7y) sinh(7y) (1+wsin(as)’y”)
= —fa(—ai,y)

h 4 inh(— ] . 1

A(y) = —w sin(—Ozi)yCOS (asy) _ sinh(~aiy) (1 + w’sin(;)?y?)?

sinh(my) sinh(7y)
= —fi(-ai,y)

We are only interested in the absolute values of A;/2(y), so we only have to consider
fi2(qi,y), a; € [0,m), y € R. But we further have
(i) fi2(ei,y) = fi2(cw, —y), Yoy and y € R.

This means we only have to look at the case a; € [0,7), y > 0. But then we have

|filai, y)| > |f2(u, y)| and fi(as,y) > 0.

So it remains to show

dg; < 1such that fi(a;,y) < qf, Yy > 0. (3.63)

The statement of the lemma then follows with

¢ = 1-max{g}.
1=

Define

ycosh(a;y)  sinh(agy)

f(ai,y) = sin(ay) (1+Sin(ai)2y2)%

sinh(7y) sinh(7y)

(here w is equal to 1). We have the following properties

(11 fl(aiay) S f(aiay)a vai € [Oaﬂ—)a Yy Z 0.

From (ii) it follows that we have to prove (3.63) only for f(ay,y). (iii)—(v) show that it is
sufficient to prove that the mapping

a — f(o,y)
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is monotonically increasing, y > 0 (*;). Then (3.63) is proved. But we have

of B ycosh(azy) . y? sinh(q;y)
o (ci,y) = cos(a) sinh(7y) +sin(a) sinh(7y)
y cosh (o) - 2, 2\3
JPAI (1 ; 2
sinh(my) (1 + sin(a;)’y?)
h(a _1
+ sin(a;) cos(a )%((wy)) (1 + sin(a;)*y?) :
S (y cosh(a;y) (cos(oz,-) + (1 + sin(ai)2y2)%>
sinh(7y) A g
>0
+ y?sin(a;) sinh(aiy) (1 + cos(a;)(1 + sin(aify?)—%)
>0 h X g
> 0.
This proves (*;) and the lemma. O

Remark: The statement of Lemma 3.7 is wrong for Re(s) = 1/2. A numerical calcula-
tion shows that Re( Y(1/2)) has an eigenvalue greater than 1.05 if o; = 0.6 7.

Theorem 3.8. Letw €[0,1],i€ {1,...,n}. Then

a. BY

(2

b. B (xP0,1))" — (X2°(0,1))", p € [1,1/(1 — Z(w))),

. (L2(0,1))* — (LP(0,1))%, p € (1/Z(w), <], and

. B (x290,1))" — (X2°0,1))", p € [1,1/2 + Z(w)),
are invertible (see Lemma 3.4 and (3.55) for the definition of Z(w)).

Proof: Lemma 3.7 and (3.61) show that z§§“’)(s) is strongly elliptic for Re(s) = 0, if the
transformation (3.61) is applied. By the correspondence to the Wiener—Hopf operators
we get that

(i) BY . (L2(0,1))* — (L>(0,1))* is invertible and
(i) B ¢ (x100,1))" — (X1°(0,1))" is invertible.

EE“’) (LP(0,1))* — (L2(0,1))*, p € (1/2(0), c0], is a Fredholm operator of index 0 by

( )
Lemma 3.6 and L*(0,1) C L?(0,1) is dense. Then it follows by a standard argument for
Fredholm operators (see [17]) that

) =@)
N(B; | zeoay*) C N(B;  |ze(1y)) = {0}

47



where N (L) denotes the kernel of the linear mapping L. This implies ng) is invertible
and this proves a.

Lemma 3.6 also shows that Bz(w) : (X{”O(O, 1))4 — (Xf’o([), 1 )4, p€[1,1/(1-2(0))), is
a Fredholm operator with index 0. But we have (X7°(0, 1))4 c (X770, 1))4 and so we
get

=)
(Xf’o([],].))4) C N(BZ |(X11’0(0,]_))4) = {0}
This proves b, and the inclusion
=(@) =(@) -
N(Bz |(X3’0(0’1))4) - N(Bz |(Xf’0(0,1))4) = {O}a pE [la 1/2 + Z(O))

shows c. in a similiar way. O

Corollary 3.9. The operators B and B“Y (see (8.17), (3.18)) are invertible and
B (see (3.11)) is a Fredholm operator with index 0.

Proof: B¥") consists of identical operators on Ja; 1, i = 0(1)n — 1, and ng), i=1(1)n,
see (3.21),(3.22). By Theorem 3.8 we get

Ben 2 I2

is invertible. The relation (3.18) shows that B(®!) is invertible. Lemma 3.1.a. and
B« = B« 4 K«2) prove the statement for B(). O

Lemma 3.10. Let @ € (L?(0,1))", w € [0,1], p € [1,1/2 + Z(w)) and | € N. Then
a. ng)ﬁ e (XZ(o, 1))4 implies @ € (X24(0, 1))4 and
b. B@ e (X24(0,1)) R implies @ € (X24(0,1))" 4R
Proof: We follow closely [5, Theorem 1.10] and define
0 k()
k30

(see (3.37)). (3.38)-(3.40) and (3.35)(3.36) show that all entries of 7\ are in X>™(0, 1),
Vm € N. A simple calculation shows

zDBi)(z) = (B (2Da))(z) - T (2)a(1),



for 4 € (X3'(0, 1))4. By an induction we get

(2D +2)"Bd@)(2) = (B (2D +2)"@)](2) + (T (2)d)(2),

1,

TS (Xg’m((), 1))4, m € N. Here Ti(“’) is a finite dimensional operator, which consists of

,m

linear combinations of Ti(w)(z) and its derivatives. In [6] it is shown that
bm = (zD+2)™ : (X2™(0,1))" — (X2°(0,1))", 1 < p < o0,
is an isomorphism for all m € N.

This implies

B = ¢, oBogm+s, 0T

7 i,m )

where ng) is invertible on (X2 (0, 1))4 by Theorem 3.8 and ¢! o Tl(fn) is a finite di-

mensional operator and hence compact. Because of this we have that Bz(w) is a Fredholm
operator and its index is 0. But we also have

=(w) =(w) _
N(Bz |(X3’m(0,1))4) C N(Bz |(X3’0(0,1))4) - {0}

This shows that ng) is an isomorphism on (Xg’m(O, 1))4 and proves a.
We recall the formula

2DBi)(z) = [BY (2Did))(2) - T (2)i(1)

from above. By [6] it follows that

2D (X2™(0,1)) 4R —  (X2™7Y(0,1))"
is surjective with kernel R*. This implies
BY(®RY) c (x2m(0,1))* +RY,

i

and ng) is a Fredholm operator with index 0 on (X2™(0, 1))44—R4. But the kernel of
B“) in (L2(0,1))" is trivial by Theorem 3.8 and so b. follows. O

(2

Lemma 3.11. Let @ € (L%(0,T))? be a solution of the equation (3.4), with w € [0,1]
and ﬂ[si,sim € (Cls;, si_H])z, i=0(1)n—1,1€Ny. Then we have

a. ﬁ|(5i,si+1) € (Cl(si, 8i+1))2, 3 = 0(1)n — 1.
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7, (t) = d(si+8) € (X2(0,1)) +R, i€ {0,...,n— 1},
7 (t) == d(s; —t8) € (X20,1)'+RY, ie{l,...,n},

p

p€[1,1/2+Z(w)). (see (3.6) for the definition of § and Lemma 3.4 and (3.55) for the
definition of Z(w)).

Proof:
a. For 4 we have (see (3.9), (3.17)—(3.20))

—

B@lg = f—Kkwdqg
= BY(®1) = O(f) - K (Pa)

By the definition of Efrw) (see (3.17) and (3.15)) we have for j = 1mod 3:

—

U’|Jj = f|Jj_’C£rw’2)((I)ﬁ)|Jj'

The assumption on f and Lemma 3.1.b. show

. 2 .
u|[5j+575j+1*‘ﬂ S (Cl(‘]j)) A
0 > 0 is fixed but arbitrary, so we get

Ul[s,46,5,., 6] CONtinuous V4 > 0.

This implies property a.

b. By (3.64) and (3.20) we see that the function 7 := (7_, #,.)T € (L*(0,1))" fulfills the
equation

where
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The assumptions on fand Lemma 3.1.b. imply
g€ (C'o,1])".

For I > 1 and p € [1,1/2 + Z(w)) we have

and this proves b. O

—

Corollary 3.12. Let @ € (L2(0,T))’ be the solution of (3.4), w € [0,1], f
(C*0,1])?, Vi. Then we have

S

[8:,8i+1]

—

’u’|[5i,sz‘+1} S (Hl[sia3i+l])2'

Proof: Because of X;'(0,1)+R C H'[0,1] and by Lemma 3.11 it follows | ;, € (HY(J;))?,
Vj € {1,...,3n}. The continuity of @ on Js3; U J3; 11 U J3;49, @ € {1,...,n}, follows from
3.11.a. -

Lemma 3.13. Let @ € (C[0,T])*. Then we have

lim (Eﬁ‘”)a) () = E¥q(0),

z\,0
where
0 c¥
Ez(w) — [4><4 + Bi , (364)
cY 0
and
cos(ay)  sin(oy)

sin(a;) — cos(ay)
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Proof: It is proved in [2] that

. —(w) - _ Hw) -
lim (B"@) (2) = B (0)a(0),

for continuous @ (only in the scalar case, but this is sufficient). We get:

- oo
el = 5
lim wh L w
lim o i(s) = ;sm(a,)
cos(o; sin(oy;

lim 5,1 (s) =
lim gi,g(S) =
s—0

(see (3.45) and (3.46) for the definitions). But then (3.44) gives the result. O

Lemma 3.14. Letw € [0,1], a; € (—m, ). The matriz E) has the factorization

o ovalu o o D JVa\-ur ur )

where U; is a unitary matrix

U — cos(a;/2) —sin(e;/2) (3.66)
sin(a;/2)  cos(a;/2)

and Dg:‘{) and Dgf;) are diagonal matrices

o 14 % + w7rs1n(ai) 0 )
Dy = ,— wsin(e;)
0 14 % wﬁsm Q;
a; + wsin(q;) (- (3.67)
(w) 1 - —ﬂ. 0
D: = .
0,2 a; —wsin(a;)
0 1- T )

which are non singular.
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Proof: We first get

1 Irxa Ioxo Ipxo Cﬁ;‘j) Ipxa —Izxo B I+C§Ef) 0
2 _[2><2 [2><2 C(Eu:) ]2><2 [2><2 ]2><2 0 I- C(E'u:)
w Q; w .

I+ C(E'l) = (1 + ?> ]2><2 + ; Sln(ai) Sl,

w Qa; w .
I— C(E'l) = (1 — ?> [2><2 — ; sm(ai) Sl,
where S is defined by

g - cos(a;)  sin(ay)
sin(a;) — cos(ay)

S; is a reflection at the straight line parallel to

. —sin((a; +m)/2) cos(a;/2)
U1 = = —
cos((ai +m)/2) sin(a; /2
and orthogonal to
. cos((as +m)/2) —sin(a;/2)
Uy = =
sin((a; +m)/2) cos(a;/2)
(see the remark following Lemma 3.3). We get
Sith = U1, Sty = —U
We define
Uz — (_ﬁla 62)
and get
1 0
Ul s, U; =
0 —1

This implies

. 1 0
Ul +C¥NYu;, = (1 + %> Inxa + = sin(ay)
’ T T 0 -1
= D
. 1 0
Ur(I — C’g_’))Ui = (1 — %> Iyyo — v sin(a;)
' ™ ™ 0 -1
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Dl(f‘{) and Dg:‘;) are non singular because E\*) is non singular by Lemma 3.7.
The above calculations show

(w)
TTEWT, — D 0
0 DY
1 Lrxa —Ixx2 Ug 0
i = —
V2 \ bya Do 0 U,
1 Ui —U;
ve\o, wu )
T; is orthogonal. This gives
(w)
P D;} 0 T
0 DY
which is (3.65). O

Theorem 3.15. Let w € [0,1] and @ € (L*(0,T))* a solution of the equation (3.4),
F€(Cl0,T)?, flisisiia] € (Csi,si41])%. Then we have

i e (C[o,T]).

Proof: Because of Lemma 3.11 we only have to show the continuity of « in s;, ¢ €
{1,...,n}. We choose i € {1,...,n} and define

v_(z) = u(s; —zd), z€|0,1],
vy (z) = u(s; +xd), z€[0,1], and
v
7 o=
vy

We have by (3.17) and (3.19)

)
Il
S}

£
=
_|_
S
£
S

N

S

BWw)



and this implies

By our assumption on f and by Lemma 3.1.c. we have @ € (C*[0,1])* and @;(0) = @, (0).
By Corollary 3.12 we get ¥ € (H[0,1])* C (C[0,1])*. Lemma 3.13 gives

@ (0
550 = O
wy (0)
Lemma 3.14 shows
@ (0
50) = (BE&) j()
w1 (0)
U; —U; \ [ (DI 0 uf ol \ [ @(0)
U U 0 (D) ~Uf Uf @1 (0)

S;. O

Corollary 3.16. Let w € [0,1], @ € (L*(0,T)) a solution of the equation (3.4) and
f € (C[0,T1)?, fllsi,sit1] € (C'[si, 8i11])%. Then we have

i@ € (H'0,T])%
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Proof: The proof follows from Corollary 3.12 and Theorem 3.15 because u is a piecewise
H*'-function, which is continuous on the whole interval. O

Theorem 3.17.
B® . (L*(0,T))* — (L*(0,T))’
is an isomorphism (see (2.46) for the value of ¢ ).

Proof: By Corollary 3.9 B® is a Fredholm operator with index 0. If @ € (L2(0,7)) is
a solution of

B4 = o,

then we know by Corollary 3.16 that @ € (H*[0,7T])?. We define the double layer potential
U(z) := (K“u)(z) (see (2.38) and (2.39)). By Lemma 2.10 we get

Pﬁ|Q:0, ﬁEVI%,

and the relation (2.45) implies 7oU|q = 0. By Lemma 2.2 we know Ulg = 0 and this
implies ’)’£w)ﬁ|g = 0. By Lemma 2.11 U is also a weak solution of

PU = 0in Q°.

qc = 0. This shows 'yoﬁ e = 0.

Lemma 2.12 gives ,Yiw)[j oc = 0 and Lemma 2.13 implies U
But by Lemma 2.12 we obtain

0 = [yU] = [’Yowa)ﬁ] = —u.

So B® is injective and this proves the theorem. O

Remark: Theorem 3.8 shows in an analogous way that
B+ (170, 1)) — (L7(0,T))°
is a Fredholm operator with index 0 for p € [1/Z(¢), o], see Lemma 3.4 and (3.55) for the

definition of Z(¢). The inclusion LP(0,T) C L?(0,T) proves that B® : (L?(0,T))> —
(LP(0,T))? is an isomorphism for p € [2, oa].

Theorem 3.18. Let f € (C[0,T])?, ﬂ[si,5i+1] € (C’l[si,si+1])2, i=01)n—-1,1€N,
and @ € (L*(0,T))* be the solution of

BOg = f.
Then u has the following properties :
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a. @ € (C[0, 7))

b. @(si sy € (C'(siy8i01))° i € {0,...,n — 1},

c.
@(s;i +t0) € (X2(0,1))°+R, i€ {o,...,n—1},
@(s; —t8) € (X2(0,1))°+R?, ie{l,...,n},
p€l[1/2+7Z((¢))). See Lemma 3.4 and (8.55) for the definition of Z(c).
Proof: Corollary 3.6 shows a. and Lemma 3.11 implies b. and c. O

4 On the numerical approximation of the solution of
the Lamé equation

In this section we use a collocation method to approximate the solution of equation (3.4).
We use piecewise polynomials on [0,7], which are continuous and periodic on [0, 7.
The meshes must be graded near the corners to get a good convergence rate and a cut
off technique (i*-trick, see [7] and [3]) has to be used to guarantee the stability of the
method. The prove of stability here is not standard, because the operator is not strongly
elliptic in L? (see the remark after Lemma 3.6).

First we introduce projections Py, on (L?(0,T))” and projections @ on the reference space
(L2(0,1))" to construct the finite section approximations.

Let h € (0,6). The projector Py, : (L2(0,T))* — (L*(0,T))? is defined by

. u(z), |z —si|>h,Vie{0,...,n}
(Ppi)(z) = (4.1)
0, else

This implies

The finite section approximation for B() (3.11) is defined by

B“ .= p,B“ P, (4.2)

Our first aim is to prove that Bg") has an bounded inverse for h < hy, where hy > 0 is
some constant. To prove the stability we have to study the corresponding finite section
approximation for ng) (3.32). The projector Qp, : (L2(0,1))* — (L2(0,1))*, h € (0,1), is
given by
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. i(z), >
(Qri)(z) = : (4.3)
0, z<h
and the finite section approximation for ng) by
=W =(@)
B, = QuB; Q. (4.4)

Lemma 4.1. Let w € [0,1]. There exists hy > 0 such that ngjf has an inverse in

Qu (L2(0,1))* for all h < hy and i € {1,...,n}. There is a constant C for which

=@)y - )
1(Bir) 1||Qh(L2(0,1))4 < C,h<hyie{l,...,n}

Proof: The proof is based on the stability results for the finite section approximation
for Wiener—Hopf operators in [9]. The finite section approximation of a Wiener—Hopf
operator W is stable if the symbol matrix /W(s) has determinant different from zero,
s € R, and if the left and right partial indices of the symbol matrix /W?(s) are all zero (|9,
VIIL.6.2]). The left partial indices of ﬁ/\(s) are the right partial indices of /W?(—s) ([9, p-
222]). The vanishing of the right partial indices of W (s) is equivalent to the invertibility
of the operator W ([9, Theorem VIIIL.6.1]) .

Now we denote by W the Wiener—Hopf operator which corresponds to ng). Then W(s) =
B}-w)(l/Q +1is), s € R. Because ng) is invertible all right partial indices of W (s) vanish.
We denote by C“) the operator on (L2(0,1))* which has the symbol matrix B (1 — s).
Then the Wiener—Hopf operator W; which corresponds to CZ-(“’) has the symbol matrix
W(—s). If we can show that Ci(“’) is invertible then the right indices of W (—s) are zero
and then the finite section approximation for W and so for ng) is stable.

It remains to show that the opertor C) : (L2(0,1))* — (L2(0,1))" is invertible. If
Re(s) = 1 then C“)(s) = B*)(1 — s) is strongly elliptic (Lemma 3.6), i.e. all eigenvalues
of Re(é’\i(w)(s)), Re(s) = 1, are greater than some positive constant. This implies

4

c . (L'o,1)* = (£A0,1)*

is invertible. Now we remark that det(C“)(s)) # 0, for all s with Re(s) € [1/2,1] (see

Lemma 3.5). Therefore the operator Ci(“’) is a Fredholm operator on (L?(0,1))* for all
p € [1,2] and w € [0,1]. For w = 0 we get the operator, which corresponds to the double

layer potential (see Lemma 3.6). This operator is invertible in (L?(0,1))* and so C*) is
a Fredholm operator with index 0 for all p € [1,2], w € [0,1]. But

N (Ci(w)|(LP(0,1))4> cCN (Ci(w)|(L1(0,l))4) = {0},

which proves the invertibility of C’i(“’), especially for p = 2. O
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Theorem 4.2. There exists an hg > 0 and a constant C > 0 such that for h € (0, hy)
the operator Béc) is invertible in Py((L2(0,T))?) and

||(Bi(zC))_1||Ph((L2(O,T))2) < C.
Proof: By (3.11), (3.17)—(3.19) we get
BY = p,BeY P, + P, P,
with compact £(®?) | by Lemma 3.1 B is invertible by Theorem 3.17 and [9, I1.3.1] shows

that we only have to prove the invertibility of P,B®YP,. We have

PBEUR, = &7'oBEY o ®, where

Bff’hl) : IZ — E,Zr

has the following structure

L9 o o0
B,lrc”hl) = 0 0 )
0 o LY,
I 0 0
LY = | o p- PoK9 . .pP*
,h T i,h i,h " ¥3i—1,3it i.h ’
0 PhLEGN 1P, P},

Py (P(si—8,5))" = (L(si—8,5:))°
Pz—,l—h (LZ(Si,Si+5))2 N (LQ(si,3i+5))2

1

o 0, T € [s; — h, s
(Pri)z) — u(x), x € [si+h,s;+0)
o 0, T € [s4,8; + h]

It follows that we only have to show that
Pon PKsi 1 sl

+ 7@ - +
PinKsizioa Py P
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is invertible for A sufficiently small. But by the transformation ®; (3.28) this is equivalent
to the invertibility of

c

~

B

|

The invertibility of Eﬂ follows from Lemma 4.1 for all sufficiently small h. O
¥

Lemma 4.3. Letw € R, i€ {1,...,n}. The operator
(w) 2 4 2 4
gD (L*(0,1))" — (L*(0,1))
18 continuous.

Proof: The definition of ) in (3.29) and the formulas (3.37)—(3.40) show that we only
have to prove that
zDL; : L*(0,1) — L*(0,1), j = 1(1)4,

J

is continuous, where

L@ = [ LT

T

(see (3.35) for the definitions of the [;). For u € C§°(0, 1) we have

(Liw)(z) = [eD(Lu))(z)
- [ucxeno

This shows that L; is a Mellin convolution with kernel l’(s)s. But l%(s)s fulfills (H17),
€ (—1,1). This shows [5]

L; : L*(0,1) — L*0,1)

J

is continuous and the lemma is proved. O

Let ©,,, = (:L'(-m’q))m m € N, g > 0, be the partition of the interval [0, 1] given by

J j=0’
N’
m, J
xg D= <E> (4.5)

and define

"0, i =11)m. (4.6)
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Remark: We assume this spec1al artltlon only for simplicity. All of the following
statements are true for partitions (z 21, which fulfill

S\ 4 N
c1 <i> < x;-m) < ¢ <i> )
m m

c1,¢2,q > 0, and ¢y, ¢o, ¢ independent of 57 and m.

For a sequence ©,, 4, ¢ > 0, we define by

¢ = 1% (6m,) (4.7)

the space of all continuous functions, which are piecewise polynomials with respect to
the partition ©,,, and of degree smaller or equal to d. If we choose (&)¢_, C [0,1],
0=¢& < ...<& = 1, then the projector PZ : C[0,1] — 114, P2 = P4(0,,,, (&)i_,)
is defined by

(Phu)({™ + &) = u(@™ + &R\TY), (4.8)

j=0(1)m—1, k=0(1)d. For j > 1 we define

e = {uel m%<m>_o} (4.9)

and P3 ; : C[0,1] — C[0,1] by

(ﬁ’q+£mﬂ),l:j+unm—Lk:oum,
(Paw) (@™ + &hT0) = u(@™® 4+ A0, k=1(1)d, (4.10)
0, else

As a next step we introduce partitions of [0, 7] (see the beginning of section 3). For ¢ > 1

]
we define a sequence of partitions A, , = (sg ’q))?;”(;”rl, m € N, of [0,T] with

0=sm™ <. <M o~ (4.11)

by the demand that the 3mn + 1 real numbers

- q

j . .
- - =0(1 —0(1)n—1
a+5<m>, j=0(1)m, i=0(1)n—1,

si+ 0+ (5041 — 5 —20), j=0(1)m, i=01)n—1,
m



are elements of {s§m’q) |7 = 0(1)3mn + 1}. The stepwidth 5](-m’q) is defined by

ma) = gm0 g = 1(1)3mn + 1. (4.12)

Remark: Here we also consider this special mesh only for simplicity. For a sequence of
partitions (s§.’”))ﬁ(g”), M(m) € N, M(m) ~ m, it is sufficient that the greatest stepwidth

goes to zero like 1/m and that near the points s; the mesh behaves like s; + (j/m)?. All
results in this section are valid if this is fullfilled.

We define by

¢ = ¢ (Am,), deN, (4.13)

the space of all continuous functions on C[0,T], which are piecewise polynomials with
respect to A,, , and of degree smaller or equal to d. Given 0 =&, < & < ... <& =1 we

define the projector P4 : C[0,T] — II% by

(Plu)(si™ + &8D) = u(s'™ + &8T0), j = 0(1)3mn, k= 0(1)d. (4.14)

For j € N, 5 < m, we define

and a further projector R in (L?(0, T))? by

— m, )
g i(z), z€0,T]\E™,
(Rj'd)(z) = ) (4.15)
0, re =,
Finally we define the modifications of the space ﬁfn and its projector
ﬁgw- = {uelld | u|E§_m,q> =0} (4.16)

and f’,‘fw- : C[0,T] — ﬁgw- by

(P jw) (5™ + &6175")

( ) + &k 6l+1 ), 31 ) +§k l+1 € [0, T]\E§ )(4.17)

0, else.
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Vi, k. All of the above spaces and projectors can be defined for functions with values in
R, I eN.

Remark: If we look at the proof of Theorem 4.2 then it is clear that for a fixed 7 > 1
we have

51+ KO > el . (4.18)

2(oN=g™))’ L2(0TNE™)

2
Vi € (LZ([O, T)\ Egm’q))> , m sufficiently large.

Lemma 4.4. Letq>0and0=¢§ <& <...<& =1 be given. For everye > 0 there
isani>1 and m > 1 such that

2,1
(T — sz,j)uHLZ(zgm’q),l) < 6||U||Xg,1(0’1), u e Xy, (0,1),
j 2;, m > m.

Proof: For u € X."'(0,1) we have u € H'[a, 1], Vo > 0. P su is well defined for j > 1.
IfmeN, j>1, we get

I = Pry)

A
()
—
=
+ 3
2
N—
[\]
Nh
i
IS
—
N—
[\]
oW
)

2
u m m
||L2(“"t( ,q)’xl(+1,q))

2 (m,q)
h(qu) Zl+1
< (M) [ e
l z

where ¢ depends only on (&) (see [5, Section 2]). For € > 0 there exists an i*(¢) > 1 and
m*(e) such that

2
p(maa) 2
( 141 < —, I>dandm >m*,

and therefore

(m,q) (m»q)
Zip1 T
/ " ((I - P,‘fm-)u)2 dr < 82/ : (zu/(2))? de.

(m,q)
1

Summation over [ gives
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1 1
/( : ((I - P,‘,il’j)u)2 de < ¢€° /( )(xu'(:z:))Z dz, j > i,

and this implies

d li
I~ P2l < el gz
< 5”““){3’1(0,1)’
Vj > i*, m > m*. This shows the lemma with i =4* and m = m"*. O

Lemma 4.5. Letw e€R ¢g>0,and0=§ <& <...< & =1. For every € > 0 there

are i(¢) > 1 and m(e) > 1 such that

H([_P’f"")’c(w)ﬁ”(LZ([o,T}\sﬁ"‘)))z < ell@lzaomy

j>1i,m>m.

Proof: First we write

Dd w) = Dd w,1l) = Hd w,2) —
(I-PLIKWE = (I— Pt )KYg+(I— P2 K@i

(see (3.11), (3.19), (3.20)). By Lemma 3.1.b. we know that

n—1

Kw:2) . (L2(0,T))2 — H(Cl[siasm])Q

1=0

is continuous. By the definition of A,, , we know that there is a m{(¢) > 1, such that

€ *
Sl zoomyyz,  m > mg(e). (4.19)

I = PAYECD ) e <5

But (K@Yq)(x) is different from zero only for = € [s; — d, s; + 6]. By the transformation
(3.28) we can apply Lemma 4.4 and get for n > 0 an 4{(n) > 1 and mj(n) > 1 such that

o )z
(7 = Pa K oy, s ainsys < 1lIK iu||(X§’1(071))4

IN

770“6:'77” (L2(0,1))*

IN

,’7’5”&”([12(8175,814»(5))2’ Z. 2 Z‘T) m Z mI.
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Here the constant c is given by Lemma 4.3 and the constant ¢ depends on ¢ and §, because
the transformation ®; (see (3.12)) depends on §. So we can choose i*(¢) > 1 and mi(e) > 1
with

~ o) €.,
(T = PR KDl oy, s0im2 < o 1ll 2o, s.5,402
i >1i"(e), m > mj(e).

(4.19) and (4.20) together prove the theorem for m*(g) := {mj(e), mi(e)}. 0

Now we can prove the stability of our modified collocation method ﬁ,‘i’j (I + K(“))f’,‘fm if
j is sufficiently large.

Theorem 4.6. Let q >0 and 0 =& < ... < & = 1. There exist i*, m* € N, such
that for all i > ©*

1P+ Kl ooz > ellllza,mye,

i € 14

mu

m > m*, where the constant ¢ > 0 does not depend on 4 or m.

Proof: By Theorem 4.2 there is a hy > 0, such that
IPa(T + K Puidl| oryy> > cll@ll zogumyy> b € (0, ho), (4.20)
where c is independent of 4 and h. By Lemma 4.5 exist ¢* and m* with

~i Cc, .
I(T - Py K UII(L20T1\~<m>)) < Slullzaomye

m > m*, j > i*. Now we fix j. For m > mj the projector RJ* (see (4.15)) also fulfills the
inequality (4.20) (see the remark before Lemma 4.4). We further have

RMoPL. = P2 (4.21)

- 2
For m > max{m*, m}} we get for ¥ € (ng->

(4.21) _
|| (I+’C )) | (L2(0,T))? > ||R§H(I+K(C))R;’nu|| L2(0,T))?
Dd m @) m
— (P — B+ K )R ll (120,
(4.20) m = Dd m\ () pm
> c|| B} u||(L2(0,T))2 — [[(Pn,; — B")KR; u||(L2(0,T))2

o — Dd m—»
= C||u||(L2(0,T))2 — (P — I)’C R ||( 2([0,7] _(m>))2

Lemma 4.5 ¢ .
> §||u||(L2(0,T))2‘
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Lemma 4.7. Let @ € (L*(0,T))?,

7,_[ [Si,SH—ﬂ - (C’l[si, 8i+1])2 , Z = 0(1)7’L — 1,
U (z) = d(si+2d) € X3N0,1)+R?, i=0(1)n—1,
U; (z) = d(s;—zd) € X;i’l(O, 1)+R%, i = 1(1)n,

(see the beginning of section 3. for the meaning of s; and §) p; € (1,3/2), i = 0(1)n,
0=6<...<&=1,deN, r:=min{l,d+ 1}, and g > 2r. For j* € N we have

~ . c(i, j*)
||([_Pr(fz,j*)u||(L2(0,T))2 < mr
Proof: By the triangle inequality we get
(7= P )l ooy < DN = P i)l ass 070002
§=0

d —»
+Z|| (I = Pro i )l (1255 5, 4002

- Z I = Pd _»||(L2(SJ'757S]'))2'

For the first summand we get

c1(4)

m"’

(I - Bt )iz )‘ < T €[5+ 6, 8i11 — 0], (4.22)
because here @ is a C'—function, [ > r.
The terms in the second and third summand can all be estimated by the approximation

error for #:5(z) on (0,1). We look at one term in the second summand and because of
2r > r/p; we get by [5, Lemma 2.20]

d
I = P N )7 (4.23

H ||X2’01

where the constant c, depends only on (&)4_,. Now we notice
U = af + of, 0 € X2'(0,1), vf €R.

)

We get
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||([ — Pr‘fb’j*)ﬁ||(L2(O,z<T’q)))2 - ||_‘+||(L2 0,z (m ‘1)))

N =

3 £
+ ( [ e ||2dx>
0

[\
/N
C\&

Kl*/s\
3
~
T
QL
8
N~

) 2
< (e [T e ) -
(252 |13 |
< (@) (@)
T o). (4.24)
m
Now (4.22)—(4.24) prove the lemma. O

Remark: In the proof of Lemma 4.7 we see that the high grading exponent 27 is only
necessary for the proof of (4.24). If it is possible to prove stability for a modified projector
P,‘fl’j* where the functions are constant (but not necessarily zero) in a vicinity of zero, then
a grading exponent r/p; would be sufficient for the approximation result in Lemma 4.7.

For f € (C[0,T])* and ¢ > 0 we denote by i, the solution of the collocation equation

Bd N . pd

Pt .(I+Kid, = Pi.f. (4.25)
The next Theorem shows that for m large enough ., is well defined and we get an estimate
for the error.
A 2
[8i,8i+1] (Cl[sia si—l—l])

(I+Ka = f

(see Theorem 3.17). Let 0 = & < & < ... < & =1,d € N, r := min{l,d + 1}, and

q > 2r. There exists an t* € N, such that for 7* > i* and all sufficiently large m the
equation (4.25) has a solution U, and we get

Theorem 4.8. Let f € (C[0,T])%,
denote by u the solution of

,i=0(1)n—1,1l € N. We

c

|4 — UmH(L?(O,T))Z < m"

Proof: By Theorem 4.6 there exists an ¢* € N, such that for j* > ¢*

||P (I + Ke )_)” 20r)? = cl|v]| (L2(0,T))% \TAS ng*: (4.26)

m > m*, ¢ > 0. Because ﬁgw-* is finite dimensional this shows the solvability of (4.25)
and we get by the triangle inequality

—

|4 — ﬁm“(L?(O,T))z < |lg— Pi,j*“

—

lw2omy? + 1P @ = Gmll 20,12 (4.27)
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For the second summand we get by (4.26)

D S o L= o)\ D = )\
||P7‘i,j*u - um||(L2(0,T))2 < EHPi,j*(I + K ))Prlrlz,j*u’ - Prlrlz,j*(l + K ))um“(LZ(O’T))Z
1 = NTd - SdF
= EHPr(i,j*([ + K ))Pr(fz,j*u - sz,j*f“(Lz(O,T))z

L= o\ D > )\~
= EHP;i,]-*(I—l-’C( ))Prlrlz,j*u’ - Pi,j*(IJF’C( ))u||(L2(0,T))2

L~y =g o
= EHPr(i,j*’C( )(Pr(i,j*u - u)||(L2(0,T))2

IN

Here the continuity of 15,;1%].*16@) (see Lemma 4.5) has been used. (4.27) and (4.28) now
give

—

I = il gy < (U e)llE = Pyl ooy

but « fulfills the assumptions of Lemma 4.7 by Lemma 3.11 (p; = p, ¢ = 1(1)n, p €
[1,1/2+Z(¢)) ) and this proves Theorem 4.8. O
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