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domain is considered. For systems with zero drift the next approximate point on the phase
trajectory is found as a solution of the system with coefficients frozen at the previous point
by a random walk over the boundary of a small ellipsoid. Theorems on mean-square order of
accuracy for such an approximation are proved. An algorithm for approximate construction
of exit points from the bounded domain is given.
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1. Introduction

The present preprint adjoints the paper [8] and essentially strengthens its results.
We try, on the one hand, to make the exposition here as self-contained as possible and,
on the other hand, to give only new results. That is why several necessary results from
(8] are presented without proofs, and systems with drift (see [8]) are not considered
here.

Let us remind about the main motivation and notation of the paper [8]. Consider
an autonomous system of stochastic differential equations

dX = xr,+00(X)dw(t), X(0) = z, (1.1)

in a bounded domain G C R? with a boundary 0G.

Here w(t) = (w'(t),...,w(t))", ¢t > 0, is a standard F;-measurable Wiener process
of dimension d defined on a probability space (2, F, P), where F; is a non-increasing
family of sub-o-algebras of F; X = (X1,..., X9)7 is a vector of dimension d, o(z) =
{0" (z)} is a matrix of dimension d X d, 7, is a random time at which the path X,(t)
leaves the region G.

The following conditions are assumed to be satisfied:

(1) G is a convex open bounded set with twice continuously differentiable boundary
0G;

(4i) the coefficients 0*(z) belong to the class C® (G) ;

(13¢) the matrix

a(z) = o(z)o’ (z), a(z) = {a"(z)},
satisfies the strict ellipticity condition, i.e.,

A? = min min A\}(z) > 0,

(2

2eG 1<i<d
where A(z) < A3(z) < --- < Xj(x) are eigenvalues of the matrix a (z).
Let A2 = max A3(z). Then for any = € G, y € R? the following inequality
el
N A
MYy < D al @)Yy <Ay (1.2)
i=1 ij=1 i=1
holds.

Due to (1.2) 7, is finite with probability one. We shall consider the process X,(t)
defined on 0 <t < oo regarding it as the stopped one after 7.

In addition to (1.1), we introduce the system with coefficients frozen at z
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dX = o(z)dw(t), X(0) =z. (1.3)

Let 7 > 0 be a small number, U, C R? be an open sphere of radius r with centre at
the origin and with the boundary 8U,. Let @ be the first time at which the process w(t)
leaves the sphere U,. Clearly, w(f) has the uniform distribution on 8U,. Let U?(x)
be an open ellipsoid with the boundary 0U?(z) obtained from the sphere U, with the
help of the linear transformation o(z) and the shift z. It is assumed that r is small
enough to satisfy the including U?(z) C G. The solution X,(t) of the problem (1.3)

at the time @ is equal to

X,(0) = z + o(z)w(d), (1.4)

X.(0) € 8U7 (z) and 0 is the first exit time from U7 (z) for the trajectory X,(t).

Consider the point X, () (of course if 7, <  then X,(0) = X,(7,)). It turns out
that X,(0) is close to X,(#) in the mean-square sense. Thus, the point X,(f) is an
approximation of a point which belongs to the phase trajectory starting at z.

Note that the construction of the point (8, X,(0)) amounts to modeling § and X, (8)
separately because of their independence. It is important to underline that if we are
interested only in phase trajectories, it is possible to simulate them without modeling
0, which is a rather difficult problem. To simulate X (), we need only in w(f) which
has the uniform distribution on 9U,, i.e., modeling of the point X,(f) € U’ (z) is a
fairly simple problem.

Denote Xy =z, X; = X, (). We shall find the point X, on the boundary U7 (X;)
by the same way as we found X; coming from X, = z. Then we construct X3 and
so on until a point X, with a random subscript 7. As a result the sequence Xy, ..., X,
is obtained which can be considered as a mean-square approximation of the phase
trajectory of the solution X,(t). If the point X, is sufficiently close to the boundary
0G, it is possible to simulate the exit point X, (7).

In comparison with [8], we give a more strong version of the local approximation
theorem here. In addition, the adduced proof of this theorem is essentially simpler
than in [8]. Further, we give two different convergence theorems with complete proofs.
One of these theorems is devoted to approximation properties of the sequence Xy, ..., X,
till leaving an open domain D C G with p(8D,dG) > 0 which does not depend on r.
In the second convergence theorem the point X, belongs to a boundary layer which
decreases in a definite way with decreasing r, i.e., X; becomes sufficiently close to
OG with decreasing r (more exactly, p(X;,0G) = O(r'=¢) with a sufficiently small
e > 0). In the both situations the mean-square order of accuracy is equal to O(r). The
second theorem is important for approximation of the exit point X, (7,). It is shown
that this point can be approximated by X, with the mean-square order which is close
to O(4/r). Such a lowering of exactness can be explained in the following way. Because
p(X5,0G) = O(r'¢) and p(X,,X;) = O(r) in the mean-square sense, the distance
p(X5,0G), which is evaluated by O(r' 7€), is comparatively big. As a result the point
X, (7,) may be far from X, and, consequently, far from X;. Let us note in passing that
the proof of the convergence theorem in [8] contains a mistake which is eliminated now.

In conclusion we note that the weak approximation with restrictions is regarded in
[5—7,9, 10]. The main aim of these works consists in development of probabilistic
methods using the numerical integration of ordinary stochastic differential equations

(2, 4, 12] for solving boundary value problems. Another approach is available in [3].
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Everywhere below X,(t) is the solution of the problem (1.1), Xy .(t), t > t, is
the solution of the equation (1.1) with initial data X (¢)) = =, X,(t) is found from
(1.3). Let I's be the interior of a d-neighborhood of the boundary dG belonging to G.
Obviously, if z € G\I'ay,,, then the inclusion U7 (z) C Ug.(z) C G holds for sufficiently
small r.

Theorem 1. For every natural number n there exists a constant K > 0 such that
for any sufficiently small v > 0 and for any x € G\I'az,r the following inequality
E|X,(0) — X, (0)" < Kr'" (2.1)
is fulfilled.
Proof. Introduce the Markov moment 6 as the first time at which the process X,(t)
leaves the ellipsoid Ug.(z). (In order to avoid an ambiguity, let us note that in [8] ¢

means the moment at which the process X,(t) leaves the ellipsoid U?(z)). At the
beginning let us prove the theorem for n = 1. We have

B [ (trass0 (Xel5)) — 0@)dw(s)? = B [ [0 (Xe(s)) — o(z) P

— E/OfW 0(X,(s)) — o(z)[’ds + E/eio X250 (Xo(s)) — o (z)[2ds

< E/OW 0(X.(5)) — o(z)|2ds + K - E(8 — 8 A 0). (2.2)

Here the notation |z| means the Euclidean norm for a vector z and |o| means
(trooT)Y/2 for a matrix o. Note that the various constants which depend only on the
system (1.1) and do not depend on z, r and so on are given by the same letter K
without any index. In connection with this, instead of, e.g., K + K, 2K, K2, etc., we
write K. )

2
Since Ef = %, then E( A 0) < % Further, on the interval (0,0 A ) we have
X.(s) € US.(z). Therefore
E|X(ON0) — X, (010))

WY _
- E/ 0(X,(s)) — o(z)2ds < K12 - E(§ A 0) < Kr*. (2.3)
0
Due to (1.2) it is easy to show that if £ € U, (z), n € dUZ.(z), then |€ —n| > A7
Because X,(0 A 0) € U, (z), X.(0) € 0UZ.(x), we have for every m > 0
E(Xo<al Xa(0 A 0) — Xo(0 A O)[™)
= E(xp<glX:(0) — Xo(0 A 0)|™) > P(0 < 0) - AT'r™. (2.4)
On the other hand,
E(xo<| X (0 A 0) — X (0 A 0)™)

< (P(0 < 0))> - (E|X,(0A0) — X,(6 A 0)2™)>
3
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Let ¢ be one of the indices 1, ...,d. Introduce the variable

Z(t) = XEONONL) — XE(ONOAL)

_ /:Ae/\t;(aij(Xz(s)) — 0 (z))dwi (s) = /Ot XanozsP(8)dw(s),

where ¢(s) is the i-th row vector of the matrix o(X,(s)) — o(z). We do not write the
index ¢ under Z and ¢ because it does not lead to any misunderstanding.
Clearly, Z(t), t > 0, is a uniformly bounded scalar, and

|0(s)] < [0(Xa(s)) —o(@)| < Kr, 0< s <OAD.
We have for every natural m > 1
dZ°™(t) = 2mZ"™ 1 (t)Xgnosep () dw (t) + m(2m — 1) Z*™ 2 () xgroxi |0 (1) dt -
From here

t
EZ*™(t) = m(2m — I)E/ 7272 (5)Xanoss | 0(5)*ds
A >

2. (AAD. 2m—2
< Km(2m — 1)r*-EO N6 62?%%|Z(8)| ) .

: , : : : 2m : :
Applying the Holder inequality with p = 5 (see such a reception, for instance,

m —
in [1] and in [9]) and taking into account that (see [9])

_ _ !
E@AO)™ < BI™ < ;”—mﬁm,
we get

E|Z@®)P™ < Km(2m — 1)r? - (E max |Z(s)*™) %= - (E(@ A 0)™)

0<s<t

3=

< Km(2m —1)r* - (E max |Z(s) ™) 5. (2.6)

As Z(t) is a martingale, we can use the Doob inequality

2
E max |Z(s)]?™ < (=
0<s<t 2m — 1

) E|Z(E)
Now we obtain from (2.6)
E|Z@)™ < Kr'*™,

where K does not depend on ¢ (of course, K depends on m).
Hence

E|Z(@ A Q)™ < Kr*™

and, consequently,

one
Bl [ (0(Xe(s)) — o(e))du(s) P < K™ (2.7)
0
The inequalities (2.4) and (2.5) imply
PO <0) - A"r™ < K- (P(6 < 0)) - r*™
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PO <0) < Kr*™, (2.8)

Further,

whence
E@—-0A0) < Kr™t2. (2.9)

Using this inequality for m = 2 together with (2.2) and (2.3), we arrive at (2.1) for
n = 1. Thus the theorem is proved for n = 1.
Further, we get

= ) [ (0(5) — o) dw(s) + [ (s (X)) — o))

one

< KE|A (0(Xu(5)) — o(z))dw(s)"

VKB [ (a0 (Xa(s)) — (o)) du(s), (2.10)

where the constant K depends on n only.
The first term from the right is bounded by Kr** due to (2.7). The second term can
be bounded in the following way (see (2.2) and (2.9) under m = 4n — 2) :

Bl [ (s (Xul) — o@)du()

= Bl [ (a0 (Xul5)) — o(@))dus) - 1X.0) ~ Xol0 7 6) ~ K(0) + XulB A O)P 2

< KE| /éie(XTDsa(Xz(s)) —o(z))dw(s)|? < KE(§ — 0 A0) < Kr'™,

Now (2.10) implies (2.1). Theorem 1 is proved fully.

Remark 1. Clearly, the inequality (2.8) remains true if 6 is the first time at which
the process X(t) leaves the ellipsoid U{ ), (z) for any a > 0. Therefore, the condition
r € G\I'zy,r in Theorem 1 may be interchanged by = € G\I'a)r,r, @ > 0. Moreover,
it is not difficult to show that the theorem remains true under the condition z €
G\T'(14r8)5,r if only 0 < B < 2. But for definiteness we take here and in what follows

the layer ['sy,,.
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Let 0, be the first time at which the Wiener process w(t) leaves the sphere U,, 6, +0,
be the first time at which the process w(t) — w(6,), t > 6;, leaves the same sphere U,

a_nd so on. Let z € G\I'ay,,. We construct a recurrence sequence of random vectors
Xy, k=0,1,...,0:

Xo=z o

Xl = X() + O'(Xg)w(el)

where 7 = 7, is the first number for which X € FZ/\dr-

Of course, the random moment 7 also depends on the domain G\I'sy,, which is left
by X,. Therefore, the more detailed notation for 7 = 7, is ¥ = 7, (G\Lax,r).-

Let us set 0y = 0 and X;, = X, for k > .

We have obtained a random walk

O,

which stops at a random step ©. It is a Markov chain.
Let us present some average characteristics of 7 = 7,.

Lemma 1. There exists a constant C > 0 depending only on a diameter of the
domain G such that the inequality
Ev, < — (3.1)

takes place.
Lemma 2. The probability P(, > L/r?) decreases exponentially as L increases.
More exactly, for every L > 0 the inequality
P, > %) < (14 C)e ol (3.2)
where a, — 1 asr — 0, is valid. The constant C in (3.2) is the same as in (3.1).
Proofs of these lemmas are available in [8].

Lemma 3. For every natural number n there exists a constant K > 0 such that for
any sufficiently small r > 0 and for any z,y € G\I'ay,, the inequality

7

Bl / (Xre 50 (Xa(8)) = Xr, 550 (Xy(5)))dw(s) [ < Kl — y[*"'r®" + Kr'"
0 (3.3)

holds.

Proof. We have

/00(X7'z>sU(Xz(S)) — XTy>sU(Xy(S)))dw(s)



= |(X2(0) — Xa(0)) — (X,(0) — X,(0)) + (0(2) — o(y)) - w(B)*"

< K[X.(0) = Xo(0) + K[Xy(0) — X, (0)]" + Klo(z) — o(y) ™" - [w(®)*",

where the constant K depends on n only.
Now Theorem 1 and the relations

o(2) ~ o(y)] < Klo —yl, [w(@)P" ="

imply (3.3). Lemma 3 is proved.

Let D be an open domain such that D C G. Let A = p(0D,8G). We consider
r < A so that D C G\I'ap,. Let z € D and 7 = 0, = (D) be the first moment
at which X, € G\D. For brevity, we conserve the old notation # for the new Markov
moment 7,(D) as this does not cause any confusion. As earlier we set 6, = 0 and
X, = X, for k > 7, i.e., we stop the above constructed trajectory X, at the moment
U = U,(D) < 7,(G\I'a»,r). Therefore, the inequality (3.1) is fulfilled for the moment
v = 1,(D) as well.

Consider now the sequence

Xppr = Xo(Or+ -+ 4 Or1) = Xg, 15, %00+ -+ Orp1)

which is connected with the solution of the system (1.1).

If 0, +---+ 0, > 7, then naturally X; = X, (7,) and if k > 7 = 7,(D) then
X = X, as 9,,+1 = .. =0, = 0. Thus, X stops at a random step 7 A k, where
k =min{k : 0, +- —i—9k > 7.} if 7, < 0y +---+0; and k = ¥ otherwise. The sequence
Xy, just as X} ,is a Markov chain. Furthermore both X; and X} are martingales over
o-algebras Fo = {0,Q}, Fr = F4, 405, k=1,2,....

Consider sequences X, X for N = L/r? steps.

The closeness of Xj to X, for N steps is established in the following theorem.

Theorem 2. Let v = (D) be the first exit time of the approzimate trajectory Xy
from the domain D. There exist constants K > 0 and v > 0 (which do not depend
on z, v, L, and A) such that for any x € D and for any sufficiently small r > 0 the
inequality

— 1201 1 K
(8, g, [ = ) = (B o X - D)< Jeor 0 3)
holds.
Proof. Let v be the first number at which X, € I';y,.. More exactly,
| min{k: Xy € Tay,., k <7},
V= { oo, Xk ¢F2)\dm kzl,...,ﬂ (35)
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A
X, - K25 ifv<y. (3.6)

Introduce the stopped at ¥ Markov chains X,nm, Xyam and the differences
dm = Xoam — Xuam, m=0,1, ...

As v is a Markov moment with respect to the system of o-algebras (F,,,) , the stopped
sequences (X,am, Fm)s (Xuam, Fm) and (dp,, Frn) are martingales. X,am (X,am) is the
stopped at the moment v Markov chain X,, (X,,). This is equivalent to the fact that
0,, = 0 not only for m > 7 but also for m > v, i.e., we may consider 6,, = 0 for

m > U A v. Consequently, if ? Av = k then dy = dy,1 = ... = dy. This implies
d2 — d2 — — d2

k k41 = N*

We have

dm = lel?/\u:l +-+ dm—le?/\u:m—l + del?/\uZm )

dmfl = leﬁ/\Vzl +-- dmfZXﬁ/\V:m72 + dm71X17/\u:m71 + dmflxw\l/Zm )
and therefore

dm = dm—1+ (dm — dm—1)Xorv>m - (3.7)
Analogously,

d?n = d?n—l + (dzn - d?n—l)Xﬁ/\uZm .
We get

O1+4Om—1,X 1(9_1 T+t e’m) - X’m

m—

S

= X971+---+9m—1,Xm71(9_1 +eet ém) - X971+---+9m71,)?m71(91 +eet em)

+X9_1+"'+9_m71,)?m71(§1 +eeet ém) - Xm . (3'8)

The first difference at the right-hand side of (3.8) is the error of the solution because
of the error in the initial data at the time (6;+---+6,, 1), accumulated to the (m—1)-st
step. The second difference is the one-step error at the m-th step.

For m < o A v the vectors X,,_; and X,,_; belong to G\I'2y,» and we obtain from
the equality (3.8)

O14-+0m

Xorvsm8m = Xoavsm(Xm—1 + [ — x(s)- U(Xél+---+9’m,1,Xm,1(5))dw(5))
O1++0m—1
_ él++0_m
_Xﬁ/\VZm(mel + _ _ )_C(S) : O'(X9’1+___+gm_17xm_1(8))d’lU(S))
R
+X,j/\y2m(X9_1+___+9_m71’)?m71(9_1 + -+ ém) - Xm) . (3.9)

Here

X(S) = XT(51+---+t§m—1,Xm—1)>s ) X(S) = XT(§1+"'+§m—lme—1)>S )

where 7(0; + - - - 4 0py 1, ) is a random time at which the path X5, 5  .(¢) leaves
the region G.
8



0(5) = 0(Xgy 41, X1 (5)), 0(8) = 0(Xg, 40, %01 () -
From (3.9) and (3.7) we have
dm - dm—l = (dm - dm—l)XD/\uZm

oo [ (x(s) - (s) - () - () (s

Bat et B

+Xorvsm (X 4 oiyy 1 % (01 + 4 Om) — X)) (3.10)

Due to F,,_1-measurability of the random variable xyn,>m, the equality (3.10) im-
plies

E (dm — dpm_1)”

O14+0m

< 2BxonenB(| 7 (x(s) - 0(8) = X(s) - 0(8))du(s) | Foumr)

+2EXonemE(1 Xyt s8p 1, %y (1 4+ 4 Om) = X' | Frns)
By the conditional versions of Lemma 3 and Theorem 1 under n = 1, we obtain

E(dpm — dm 1) < Kr?E(Xonvsmd?, 1) + Kr* < Kr?Ed?, | + Kr?,
(3.11)

where the constant K does not depend on z, r, L, and A.
Because (dp,, ) is a martingale, we have

Ed% = Ed?,_ |+ E (dpm — dm 1)* . (3.12)
The relations (3.11) and (3.12) imply
Ed’, < Ed®, |+ Kr’Ed?, |+ Kr*, dy,=0.
From here we get for N = L/r?
Ed% = E|Xyay — Xoan[? < (1 + Kr?)P™ — 1) - Kr? < Ke?'" .12, 519
3.13

where the constant > 0 does not depend on z,r, L, and A.
Further, X;aoany = Xoan , Xoavan = Xoaw - Indeed, it is evident for # > v A N. For
v <v AN it is also valid because both X and X stop after the moment 7. Hence,
E|Xunonnw — Xonoan|? < Ke?'* - r2, (3.14)

Let us prove now that
P <oAN)<K-—— 1% (3.15)

In fact, due to (3.6) we have
_ _ A
EXVSI?/\N|XD/\U/\N - Xl?/\u/\N| = EXVSI?/\N|XU - Xu| 2 P(V S UA N) P
2 (3.16)

On the other hand, using (3.14) we get

EXuga/\N |X17/\u/\N - Xl?/\u/\N|

< (P(v <7 AN)E - (B[ Xopny — Xononn|?)?
9



The relations (3.16) and (3.17) imply (3.15).
Since Xyan = Xn , Xoan = X, we obtain from (3.14) and (3.15):

E|XN - XN|2 = E|X17/\N - Xﬁ/\N|2
= EXVZE/\N|X17/\N - Xﬁ/\N|2 + EXV<I7/\N|XI7/\N - Xﬁ/\N|2

% 2 % 2
= EXuzﬁ/\N|X:7/\u/\N - Xﬁ/\u/\N| + EXV<I7/\N|XI7/\N - Xﬁ/\N|

_ e?'yL
< E|Xonunn — Xopoan | + KP(v <O AN) < K—5- r2, (3.18)
Using Doob’s inequality for the martingale (X,, — X,n, F), we arrive at (3.4). The-
orem 2 is proved.

Remark 2. We pay attention to the proof of this theorem which uses only the
mean-square versions of Theorem 1 and Lemma 3. The more complicated versions are
needed later.

Remark 3. It will be proved later (see Remark 4) that it is possible to avoid the
multiplier 1/A in (3.4), i.e., in reality, the following inequality

(E  max ‘Xk — Xk‘z)% = (E max ‘Xk — X’k‘Z)% < Ke™.r (3.19)

1<k<wAN 1<k<N

is valid.

Theorem 3. Let v = (D). The inequality

1

_ 2 1 A
Xk — Xk‘ )% S K(KG’YL -r+ E_EQTH'_CL) (320)

(E max
1<k<p

18 valid.

Proof. Introduce two sets C = {7 < L/r?} and Q\C= {7 > L/r?}. In view of (3.2)
and (3.4) we have (let [ be the diameter of G)

Elx, - %[ = B(X, - %[ 50 + B(X, - %[ 50\ 0)

_ 2 _ |2
= B(|Xonn — Xoan| :€) + B(| X, — X[ ;0\ C)

— 2
< B(|Xoaw = Xonn| ) + 12 P(Q\C)

2yL

e —ay 2L
S KF . 7'2 4+ lz . (1 + C)e 1+CL (321)

from which (3.20) follows. Theorem 3 is proved.

The domain D in Theorems 2 and 3 is not changed with decreasing r. Now consider
the domain G\Fcrl—% , where ¢ > 0 is a certain number and n > 2 is a natural
number. Let z € G. Consider r to be sufficiently small such that Fcrk% D I'yy,r and
T E G\Fcrl,%. We construct the approximate phase trajectory X, till its exit into the

layer Tcy«l*% , i.e., we stop the approximate trajectory, which was constructed in the
10



satisfies the inequality
EE(G\FCTI,%) < U (G\Tanyr) -

As before we conserve the same notation both for X; with the new stopping moment
and for the very stopping moment v = DZ(G\FCTI_ 1) as there is no risk of ambiguity.

And as before N = L/r?. '

Theorem 4. Let v = 7,(G\I'_,_1) be the first exit time of the approzimate trajec-
tory Xy from the domain G\Fm«l—% . There ezist constants K > 0 and v > 0 (which do
not depend on x, r, and L) such that for any sufficiently small r > 0 the inequality

—_ 12,1 — 12,1
— 3 — — 3 L
(Elgrgl&%\xk Xi)? = (Elg%v\xk Xe|)r < Ketor (3.22)
holds.

Proof. Introduce the number v analogously to (3.5) (emphasize that now 7 is equal
to 7,(G\I'_,_1)):

| min{k: Xy € Tay,, k <7},
V= o0, Xk¢F2)‘dT,k: sy VL

and the sequences Xynm, Xyam -
c
Clearly, for sufficiently small r (if only G\FCTI,% C G\I'ap,r and 3Agr < 57"1’%)

X, — X,| > grlﬁ ifv <. (3.23)
We have
EXVSI?/\N|XD/\U/\N - XD/\V/\N|n = EXVSD/\N|XV - Xu|n
> (5)"Pv < v AN) -7 (3:24)
and

n
EXugﬁ/\N |X:7/\u/\N — XonvaN |

< (P(v <oAN))E - (E|Xspunn — Xonoan|?")?. (3.25)

Let us bound the mathematical expectation E|X, ny — X,an|?". To this end let us
return to the proof of Theorem 2. All the reasonings can be repeated without any
change. Of course, 7 and v are the others now.

From (3.10) we have for any natural number [ :

|dm — dm—1|2l = |dm - dm—1|2lX17/\V2m = XD/\VZm'
é1++ém — — _ 21
L )o(s) = X(5)o())dw(s) + Koyt s (B + -+ ) = Ko
O14-+0m

<K Xonme| [ (x(5)o(s) ~ (s)3()du(s)

+K - XoAv>m |X9_1+"'+9_m71,)?m71(§1 +eeet gm) - va|2l’

where the constant K depends on n only.
11



E|dm - dm71|2l S

O14-+0m

KBXonwzm - B [ ((s)o(s) = () (s))du(s)[* | Foner)
Br+eeetm 1

+KEX17/\VZ’H’Z ' E(|X§1+...+§m71,)?m71(§1 +- 1+ ém) - Xm|2l | fm—l)

S KEXI?/\uZm(|dmfl|2l’r2l + KT4Z) + KEXﬁ/\uZm’rAl S KTZZE|dm71|Zl + K’r4l-

(3.26)
We get
| = ldm—s + (dn — dins)[*
- (dm—l + (dm — dm—l); dm—l + (dm - dm—l))l
— (|dm71|2 + 2(dmfla dm - dmfl) + |dm - dm71|2)la
where (-, - ) denotes the scalar product of d-dimensional vectors.
Further

1
|d | = |dm—1* + D" Cfldm-1 " P (2(dm-1, dm — dm—1) + |dm — dm—1]*)"

k=1

— |dm—1|2l + 2l|dm—1|2l72(dm—17 dm - dm—l) + l|dm,—1|2l72 - |dm — dm—1|2

l
+ Z Clk|dm—1|2(l_k)(2(dm—1; dm - dm—l) + |dm - dm_1|2)k- (327)

k=2
As d,, is a martingale, we have

E|dm71|2l_2(dmfla dm - dmfl)

- E|dm_1|2l_2(dm_1, E( dm — dm—l | fm—l)) - 0 . (328)
Since

(2(dm—1; dm - dm—l) + |dm - dm—1|2)k

S K(|dmfl|k ) |dm — dm71|k + |dm — dm71|2k) S K(|dmfl|2k + |dm - dmfl|2k) )
we obtain from (3.27) and (3.28)

I
Eldn|* < Eldpm1/* + KE Y |dpm1|** ¥ |dm — dps|*. (3.29)
k=1
B . : . [ l _
Holder’s inequality with p = 9Ty and then (3.26) imply

Eldp 1 [2P|dy — d i | < (Eldp s [T - (Bldp — dm1[?)T
< (Bldm1[")T - (K1 Bldm 1 [ + Krt')t
I—k
l

< K(Bldm 1|2)T - (%5 (Eldm 1[*)T + rt¥)

= K(E|dm_1|* - 1% + (E|dp_1|") T - %) . (3.30)
12



(E|dm71|21)l_T -tk < K(E|dm71|2l ol ?,,4l+2—%’)

IN

KE|dp 1*-r? + Kr¥t2 %), (3.31)
The relations (3.29)-(3.31) give
Eldpn|* < Eldn 1" + Kr?Eldm 1" + Kr?™*2, |do|* = 0.
From here we get for N = L/r?
Eldy " = E|Xynn — X[ < K2t 1%,

where the constants K > 0 and v > 0 depend on [ but do not depend on z, r, L.
Just as in Theorem 2 X ,anv = Xoanv , Xoavan = Xuan - Hence

E|Xonunn — Xonuan|* < K& - r?. (3.32)
Now from (3.24), (3.25) and (3.32) under [ = n we get
Pw<oAN)-r" ' < K(P(w<pAN))? -Ke'™ ",
whence
P(v <o AN) < Ke?™* .2 (3.33)
Finishing the proof in just the same way as in Theorem 2, we arrive at (3.22).
Theorem 4 is proved.
Remark 4. Now the inequality (3.19) which reinforces Theorem 2 can be approved
in the following way. Instead of (3.16) let us write the following inequality
EXu§x7/\N|X17/\u/\N - XEAV/\N|2
2

. A
= EXVSﬁ/\N|XV - Xu|2 Z P(V S IZWAN N) . T . (334)

Then instead of (3.17) due to (3.32) under [ = 2 (clearly, the same inequality (3.32)
is true on condition of Theorem 2) we obtain

EXuga/\N |X17/\u/\N - Xﬂ/\u/\N |2
< (P(v< o AN))? - (E|Xoaonn — Xonoan|?)?

<KPW<oAN)z-e%.r?. (3.35)
The inequalities (3.34) and (3.35) imply
2
Plv <o AN)< Ke**. &TQ
and (3.19) follows from (3.18) if only » < A? in addition to the previous restrictions to
smallness of r.

The following theorem is proved in the same way as Theorem 3.
13



— 2 \
(B max |Xi — X )7 < K(e" -7 4 e 2mi0h)

1<k<p

18 valid.

Theorem 6. Letn > 1, | > 1 be some natural numbers and v = 7,(G\I'_,_1)
be the first exit moment of the approzimate trajectory X from the domain G\Fcrl,%.

There exist constants K > 0 and v > 0 (which do not depend on x, r, L) such that for
any sufficiently small r > 0 the inequality

— 121
% = (E max |X;— Xi| )7 < K™ -r

(E max ‘Xk - Xk‘m) O

1<k<wAN

(3.36)
is fulfilled.
Proof. First let us show that for every [ > 1 the following inequality
Pv <o AN) < Ke?t.p% (3.37)
holds. We can come to (3.37) in the same way as to (3.33). To this end let us write

EXu§x7/\N|X:7/\u/\N - Xﬁ/\u/\N|ln = EXu§:7/\N|Xu - Xu|ln

c

> (5

)"P(v <7 AN)-rinD (3.38)

instead of (3.24).
As [ in (3.32) is arbitrary, we have (of course, with another K and another =)

% 2ln 2vL 2in
E|X17/\u/\N - Xﬁ/\u/\N| < Ke“ "™ . roh,
Therefore

Pw<pAN)- rln=1) < KEXuga/\N|X:7/\u/\N — Xﬁ/\u/\N|ln

<K(PWw<oAN)z-e%.pin

whence the inequality (3.37) follows.
Now we get

E|XN - XN|2l = E|X:7/\N - Xﬂ/\N|2l

Ve 21 Ve 21
= EXuzﬁ/\N|X:7/\u/\N - Xﬁ/\u/\N| + EXV<I7/\N|XI7/\N - Xﬁ/\N|

< E|Xpaan — Xﬁ/\u/\N|21 + KPw<pvAN)< K2k p2,

The relation (3.36) follows from here due to the Doob inequality. Theorem 6 is

proved.
14



We have obtained the point Xy = X;,n , where N = L/r?, ©» = DZ(G\Fcrl,%).

What distance is between Xy and exit point X,(7,)? What point on &G can we take
as an approximation for X, (7,)?

On the set C = {7 < L/r’} we have Xy = X, €T _, 1.

Let & (w), w € C, be a point on OG such that

‘)_(N — &l < eri=n weC. (4.1)

_ It is natural to take this point as an approximate point for exit point X, (7;) if
Xy €T, 1. Due to Theorem 4 and (4.1) we obtain

E(| Xy —€;C0) < K(&@ + ) -2 7. (4.2)

Lemma 4. There exists a constant K such that for anyz € G, y € G the inequality
E(X.(1:) —y)’ <K |z —y|

is fulfilled.
Proof. Consider the Dirichlet problem
1 & 0%u
- V(p)———— =
5 > a (x)axiaaﬂ' 0, z €@,

ij=1

u |og= (z — y)°.
The solution of the problem is

uy(x) = E(Xa:(Tz) o y)z'
From the conditions (i) —(iii) it follows that u, € C® (G) (see [11]). Since u,(y) =0,

we have
uy(z) = uy(z) —uy(y) < K|z —y .
Lemma 4 is proved.
We have defined the variable {,(w) only on C. To complete the definition of &, (w)
on the set Q \ C, let us take as £,(w), e.g., the nearest point to Xy on dG in the case

when w € 2\ C.
By Lemma 4 we have

E((Xo(2) — &)° | Fiv) = E(Xxy () — &)* | F) < K | Xy — &
Since C € Fy , from the above inequality and (4.2) we get
E((Xu(rs) — €)% C) < KE(| Xy — &I C)

< K(B(|Xy - &[*50)? <K (c+e™) 0

We can also evaluate the mathematical expectation E (X, (1,) — &)° analogously to
(3.21). As a result we obtain the following theorem.

Theorem 7. Let &, (w) € OG be the nearest point to Xy . Then (for clearness we
reduce some non-essential constants)

yL 1 1

(B((Xa(r) = &)%C))? < Ke™ -727,
15



2L

(B(Xo(rs) — &)%) < Ke™™ -r3 3 4 Ke 3% 170l
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