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domain is considered. For systems with zero drift the next approximate point on the phase

trajectory is found as a solution of the system with coe�cients frozen at the previous point

by a random walk over the boundary of a small ellipsoid. Theorems on mean-square order of

accuracy for such an approximation are proved. An algorithm for approximate construction

of exit points from the bounded domain is given.

Key words: mean-square approximation, random walk, exit point.

AMS Subject Classi�cation: 60H10, 60J15, 65U05.

1. Introduction

The present preprint adjoints the paper [8] and essentially strengthens its results.

We try, on the one hand, to make the exposition here as self-contained as possible and,

on the other hand, to give only new results. That is why several necessary results from

[8] are presented without proofs, and systems with drift (see [8]) are not considered

here.

Let us remind about the main motivation and notation of the paper [8]. Consider

an autonomous system of stochastic di�erential equations

dX = ��x>t�(X)dw(t); X(0) = x; (1.1)

in a bounded domain G � Rd with a boundary @G.
Here w(t) = (w1(t); :::; wd(t))>; t � 0; is a standard Ft-measurable Wiener process

of dimension d de�ned on a probability space (
;F ; P ), where Ft is a non-increasing

family of sub-�-algebras of F ; X = (X1; :::; Xd)> is a vector of dimension d; �(x) =
f�ij (x)g is a matrix of dimension d� d, �x is a random time at which the path Xx(t)
leaves the region G.
The following conditions are assumed to be satis�ed:

(i) G is a convex open bounded set with twice continuously di�erentiable boundary

@G;

(ii) the coe�cients �ij(x) belong to the class C(2)
�
�G
�
;

(iii) the matrix

a(x) = �(x)�>(x); a(x) =
n
aij(x)

o
;

satis�es the strict ellipticity condition, i.e.,

�21 = min
x2 �G

min
1�i�d

�2
i
(x) > 0;

where �21(x) � �22(x) � � � � � �2
d
(x) are eigenvalues of the matrix a (x) :

Let �2
d
= max

x2 �G
�2
d
(x): Then for any x 2 �G; y 2 Rd the following inequality

�21

dX
i=1

yi
2 �

dX
i;j=1

aij (x) yiyj � �2
d

dX
i=1

yi
2

(1.2)

holds.

Due to (1.2) �x is �nite with probability one. We shall consider the process Xx(t)
de�ned on 0 � t <1 regarding it as the stopped one after �x.
In addition to (1.1), we introduce the system with coe�cients frozen at x
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d �X = �(x)dw(t); �X(0) = x: (1.3)

Let r > 0 be a small number, Ur � Rd be an open sphere of radius r with centre at

the origin and with the boundary @Ur. Let �� be the �rst time at which the process w(t)
leaves the sphere Ur. Clearly, w(��) has the uniform distribution on @Ur. Let U�

r
(x)

be an open ellipsoid with the boundary @U�

r
(x) obtained from the sphere Ur with the

help of the linear transformation �(x) and the shift x. It is assumed that r is small

enough to satisfy the including U�

r
(x) � G. The solution �Xx(t) of the problem (1.3)

at the time �� is equal to

�Xx(��) = x + �(x)w(��); (1.4)

�Xx(��) 2 @U�

r
(x) and �� is the �rst exit time from U�

r
(x) for the trajectory �Xx(t).

Consider the point Xx(��) (of course if �x � �� then Xx(��) = Xx(�x)). It turns out

that �Xx(��) is close to Xx(��) in the mean-square sense. Thus, the point �Xx(��) is an
approximation of a point which belongs to the phase trajectory starting at x.
Note that the construction of the point (��; �Xx(��)) amounts to modeling �� and �Xx(��)

separately because of their independence. It is important to underline that if we are

interested only in phase trajectories, it is possible to simulate them without modeling
��, which is a rather di�cult problem. To simulate �X(��); we need only in w(��) which
has the uniform distribution on @Ur, i.e., modeling of the point �Xx(��) 2 @U�

r
(x) is a

fairly simple problem.

Denote �X0 = x; �X1 = �Xx(��). We shall �nd the point �X2 on the boundary @U�

r
( �X1)

by the same way as we found �X1 coming from �X0 = x. Then we construct �X3 and

so on until a point �X�� with a random subscript ��: As a result the sequence �X0; :::; �X��

is obtained which can be considered as a mean-square approximation of the phase

trajectory of the solution Xx(t). If the point �X�� is su�ciently close to the boundary

@G; it is possible to simulate the exit point Xx(�x).
In comparison with [8], we give a more strong version of the local approximation

theorem here. In addition, the adduced proof of this theorem is essentially simpler

than in [8]. Further, we give two di�erent convergence theorems with complete proofs.

One of these theorems is devoted to approximation properties of the sequence �X0; :::; �X��

till leaving an open domain D � G with �(@D; @G) > 0 which does not depend on r.
In the second convergence theorem the point �X�� belongs to a boundary layer which

decreases in a de�nite way with decreasing r, i.e., �X�� becomes su�ciently close to

@G with decreasing r (more exactly, �( �X�� ; @G) = O(r1�") with a su�ciently small

" > 0). In the both situations the mean-square order of accuracy is equal to O(r): The
second theorem is important for approximation of the exit point Xx(�x): It is shown
that this point can be approximated by �X�� with the mean-square order which is close

to O(
p
r): Such a lowering of exactness can be explained in the following way. Because

�( �X�� ; @G) = O(r1�") and �(X��; �X��) = O(r) in the mean-square sense, the distance

�(X�� ; @G), which is evaluated by O(r1�"); is comparatively big. As a result the point

Xx(�x) may be far from X�� and, consequently, far from �X��: Let us note in passing that

the proof of the convergence theorem in [8] contains a mistake which is eliminated now.

In conclusion we note that the weak approximation with restrictions is regarded in

[5 � 7, 9, 10]. The main aim of these works consists in development of probabilistic

methods using the numerical integration of ordinary stochastic di�erential equations

[2, 4, 12] for solving boundary value problems. Another approach is available in [3].
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Everywhere below Xx(t) is the solution of the problem (1.1), Xt0;x
(t); t � t0; is

the solution of the equation (1.1) with initial data X(t0) = x; �Xx(t) is found from

(1.3). Let �� be the interior of a �-neighborhood of the boundary @G belonging to G.
Obviously, if x 2 Gn�2�dr; then the inclusion U�

r
(x) � U�

2r(x) � G holds for su�ciently

small r.

Theorem 1. For every natural number n there exists a constant K > 0 such that

for any su�ciently small r > 0 and for any x 2 Gn�2�dr the following inequality

EjXx(��)� �Xx(��)j2n � Kr4n (2.1)

is ful�lled.

Proof. Introduce the Markov moment � as the �rst time at which the process Xx(t)
leaves the ellipsoid U�

2r(x): (In order to avoid an ambiguity, let us note that in [8] �
means the moment at which the process Xx(t) leaves the ellipsoid U�

r
(x)). At the

beginning let us prove the theorem for n = 1: We have

EjXx(��)� �Xx(��)j2 =

Ej
Z ��

0
(��x>s�(Xx(s))� �(x))dw(s)j2 = E

Z ��

0
j��x>s�(Xx(s))� �(x)j2ds

= E
Z ��^�

0
j�(Xx(s))� �(x)j2ds+ E

Z ��

��^�
j��x>s�(Xx(s))� �(x)j2ds

� E
Z ��^�

0
j�(Xx(s))� �(x)j2ds+K � E(�� � �� ^ �): (2.2)

Here the notation jxj means the Euclidean norm for a vector x and j�j means

(tr��>)1=2 for a matrix �: Note that the various constants which depend only on the

system (1.1) and do not depend on x; r and so on are given by the same letter K
without any index. In connection with this, instead of, e.g., K +K; 2K; K2; etc., we
write K.

Since E�� =
r2

d
, then E(�� ^ �) � r2

d
. Further, on the interval (0; �� ^ �) we have

Xx(s) 2 U�

2r(x). Therefore

EjXx(�� ^ �)� �Xx(�� ^ �)j2

= E
Z ��^�

0
j�(Xx(s))� �(x)j2ds � Kr2 � E(�� ^ �) � Kr4: (2.3)

Due to (1.2) it is easy to show that if � 2 U
�

r
(x); � 2 @U�

2r(x); then j� � �j � �1r:

Because �Xx(�� ^ �) 2 U
�

r
(x); Xx(�) 2 @U�

2r(x); we have for every m > 0

E(��<��jXx(�� ^ �)� �Xx(�� ^ �)jm)

= E(��<��jXx(�)� �Xx(�� ^ �)jm) � P (� < ��) � �m1 rm: (2.4)

On the other hand,

E(��<��jXx(�� ^ �)� �Xx(�� ^ �)jm)

� (P (� < ��))
1
2 � (EjXx(�� ^ �)� �Xx(�� ^ �)j2m) 12
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= (P (� < �))2 (Ej
Z
0

(�(Xx(s)) �(x))dw(s)j ) 2 : (2.5)

Let i be one of the indices 1; :::; d: Introduce the variable

Z(t) = X i

x
(�� ^ � ^ t)� �X i

x
(�� ^ � ^ t)

=

Z ��^�^t

0

dX
j=1

(�ij(Xx(s))� �ij(x))dwj(s) =
Z

t

0
���^��s'(s)dw(s);

where '(s) is the i-th row vector of the matrix �(Xx(s))� �(x): We do not write the

index i under Z and ' because it does not lead to any misunderstanding.

Clearly, Z(t); t � 0; is a uniformly bounded scalar, and

j'(s)j � j�(Xx(s))� �(x)j � Kr; 0 � s � �� ^ � :

We have for every natural m � 1

dZ2m(t) = 2mZ2m�1(t)���^��t'(t)dw(t) +m(2m� 1)Z2m�2(t)���^��tj'(t)j2dt :
From here

EZ2m(t) = m(2m� 1)E
Z

t

0
Z2m�2(s)���^��sj'(s)j2ds

� Km(2m� 1)r2 � E(�� ^ � � max
0�s�t

jZ(s)j2m�2) :

Applying the H�older inequality with p =
2m

2m� 2
(see such a reception, for instance,

in [1] and in [9]) and taking into account that (see [9])

E(�� ^ �)m � E��m � m!

dm
r2m;

we get

EjZ(t)j2m � Km(2m� 1)r2 � (E max
0�s�t

jZ(s)j2m) 2m�22m � (E(�� ^ �)m)
1
m

� Km(2m� 1)r4 � (E max
0�s�t

jZ(s)j2m) 2m�22m : (2.6)

As Z(t) is a martingale, we can use the Doob inequality

E max
0�s�t

jZ(s)j2m � (
2m

2m� 1
)2mEjZ(t)j2m:

Now we obtain from (2.6)

EjZ(t)j2m � Kr4m;

where K does not depend on t (of course, K depends on m).

Hence

EjZ(�� ^ �)j2m � Kr4m

and, consequently,

Ej
Z ��^�

0
(�(Xx(s))� �(x))dw(s)j2m � Kr4m: (2.7)

The inequalities (2.4) and (2.5) imply

P (� < ��) � �m1 rm � K � (P (� < ��))
1
2 � r2m:
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P (� < ��) � Kr2m: (2.8)

Further,

E(�� � �� ^ �) = E��<��(
�� � �� ^ �) � (P (� < ��))

1
2 � (E(�� � �� ^ �)2)

1
2

� (P (� < ��))
1
2 � (E��2)

1
2 � K(P (� < ��))

1
2 � r2;

whence

E(�� � �� ^ �) � Krm+2: (2.9)

Using this inequality for m = 2 together with (2.2) and (2.3), we arrive at (2.1) for

n = 1. Thus the theorem is proved for n = 1.

Further, we get

EjXx(��)� �Xx(��)j2n

= Ej
Z ��^�

0
(�(Xx(s))� �(x))dw(s) +

Z ��

��^�
(��x>s�(Xx(s))� �(x))dw(s)j2n

� KEj
Z ��^�

0
(�(Xx(s))� �(x))dw(s)j2n

+KEj
Z ��

��^�
(��x>s�(Xx(s))� �(x))dw(s)j2n; (2.10)

where the constant K depends on n only.

The �rst term from the right is bounded by Kr4n due to (2.7). The second term can

be bounded in the following way (see (2.2) and (2.9) under m = 4n� 2) :

Ej
Z ��

��^�
(��x>s�(Xx(s))� �(x))dw(s)j2n

= Ej
Z ��

��^�
(��x>s�(Xx(s))� �(x))dw(s)j2 � jXx(��)�Xx(�� ^ �)� �Xx(��) + �Xx(�� ^ �)j2n�2

� KEj
Z ��

��^�
(��x>s�(Xx(s))� �(x))dw(s)j2 � KE(�� � �� ^ �) � Kr4n:

Now (2.10) implies (2.1). Theorem 1 is proved fully.

Remark 1. Clearly, the inequality (2.8) remains true if � is the �rst time at which

the process Xx(t) leaves the ellipsoid U
�

(1+�)r(x) for any � > 0: Therefore, the condition

x 2 Gn�2�dr in Theorem 1 may be interchanged by x 2 Gn�(1+�)�dr; � > 0: Moreover,

it is not di�cult to show that the theorem remains true under the condition x 2
Gn�(1+r�)�dr

if only 0 � � < 2: But for de�niteness we take here and in what follows

the layer �2�dr:
5



Let ��1 be the �rst time at which the Wiener process w(t) leaves the sphere Ur; ��1+��2
be the �rst time at which the process w(t)�w(��1); t � ��1; leaves the same sphere Ur

and so on. Let x 2 Gn�2�dr: We construct a recurrence sequence of random vectors
�Xk; k = 0; 1; :::; �� :

�X0 = x
�X1 = �X0 + �( �X0)w(��1)
: : : : : : : : : : : : :
�Xk+1 = �Xk + �( �Xk)(w(��1 + � � �+ ��k+1)� w(��1 + � � �+ ��k));
: : : : : : : : : : : : :

where �� = ��x is the �rst number for which �Xk 2 �2�dr.

Of course, the random moment �� also depends on the domain Gn�2�dr which is left

by �X��: Therefore, the more detailed notation for �� = ��x is �� = ��x(Gn�2�dr):
Let us set ��k = 0 and �Xk = �X�� for k > ��.
We have obtained a random walk

�X0; :::; �Xk; :::;

which stops at a random step ��: It is a Markov chain.

Let us present some average characteristics of �� = ��x.

Lemma 1. There exists a constant C > 0 depending only on a diameter of the
domain G such that the inequality

E��x �
C

�1r2
(3.1)

takes place.

Lemma 2. The probability P (��x � L=r2) decreases exponentially as L increases.

More exactly, for every L > 0 the inequality

P (��x �
L

r2
) � (1 + C)e��r

�1
1+C

L; (3.2)

where �r ! 1 as r! 0 ; is valid. The constant C in (3.2) is the same as in (3.1).

Proofs of these lemmas are available in [8].

Lemma 3. For every natural number n there exists a constant K > 0 such that for
any su�ciently small r > 0 and for any x; y 2 Gn�2�dr the inequality

Ej
Z ��

0
(��x>s�(Xx(s))� ��y>s�(Xy(s)))dw(s)j2n � Kjx� yj2nr2n +Kr4n

(3.3)

holds.

Proof. We have Z ��

0
(��x>s�(Xx(s))� ��y>s�(Xy(s)))dw(s)

=

Z ��

0
(��x>s�(Xx(s))� �(x))dw(s)�

Z ��

0
(��y>s�(Xy(s))� �(y))dw(s)

+

Z ��

0
(�(x)� �(y))dw(s) = (Xx(��)� �Xx(��))� (Xy(��)� �Xy(��))

+(�(x)� �(y)) � w(��) :
6



j
Z ��

0
(��x>s�(Xx(s))� ��y>s�(Xy(s)))dw(s)j2n

= j(Xx(��)� �Xx(��))� (Xy(��)� �Xy(��)) + (�(x)� �(y)) � w(��)j2n

� KjXx(��)� �Xx(��)j2n +KjXy(��)� �Xy(��)j2n +Kj�(x)� �(y)j2n � jw(��)j2n;
where the constant K depends on n only.

Now Theorem 1 and the relations

j�(x)� �(y)j � Kjx� yj; jw(��)j2n = r2n

imply (3.3). Lemma 3 is proved.

Let D be an open domain such that �D � G: Let � = �(@D; @G): We consider

r � � so that D � Gn�2�dr: Let x 2 D and �� = ��x = ��x(D) be the �rst moment

at which �X�� 2 GnD: For brevity, we conserve the old notation �� for the new Markov

moment ��x(D) as this does not cause any confusion. As earlier we set �k = 0 and
�Xk = �X�� for k > ��; i.e., we stop the above constructed trajectory �Xk at the moment

�� = ��x(D) < ��x(Gn�2�dr): Therefore, the inequality (3.1) is ful�lled for the moment

�� = ��x(D) as well.

Consider now the sequence

X0 = x
X1 = Xx(��1)
: : : : : : : : : : : : :
Xk+1 = Xx(��1 + � � �+ ��k+1) = X��1+:::+��k;Xk

(��1 + � � �+ ��k+1)
: : : : : : : : : : : : :

which is connected with the solution of the system (1.1).

If ��1 + � � � + ��k � �x then naturally Xk = Xx (�x) and if k > �� = ��x(D) then

Xk = X�� as ����+1 = ::: = ��k = 0: Thus, Xk stops at a random step �� ^ �; where
� = minfk : ��1+ � � �+ ��k > �xg if �x < ��1+ � � �+ ���� and � = �� otherwise. The sequence

Xk; just as �Xk ; is a Markov chain. Furthermore both �Xk and Xk are martingales over

�-algebras F0 = f;;
g ; Fk = F��1+���+��k
; k = 1; 2; ::: .

Consider sequences �Xk; Xk for N = L=r2 steps.

The closeness of �Xk to Xk for N steps is established in the following theorem.

Theorem 2. Let �� = ��x(D) be the �rst exit time of the approximate trajectory �Xk

from the domain D: There exist constants K > 0 and  > 0 (which do not depend
on x; r; L; and �) such that for any x 2 D and for any su�ciently small r > 0 the

inequality

(E max
1�k���^N

���Xk � �Xk

���2) 12 = (E max
1�k�N

���Xk � �Xk

���2) 12 � K

�
eL � r (3.4)

holds.

Proof. Let � be the �rst number at which X� 2 �2�dr: More exactly,

� =

(
minfk : Xk 2 �2�dr ; k � ��g;
1; Xk =2 �2�dr; k = 1; :::; �� :

(3.5)

7



Clearly, for a su�ciently small r (if only D � Gn�2�dr and 3�dr �
2
)

jX� � �X�j �
�

2
; if � � �� : (3.6)

Introduce the stopped at � Markov chains �X�^m; X�^m and the di�erences

dm = X�^m � �X�^m; m = 0; 1; ::: :

As � is a Markov moment with respect to the system of �-algebras (Fm) ; the stopped
sequences ( �X�^m;Fm); (X�^m;Fm) and (dm;Fm) are martingales. �X�^m (X�^m) is the

stopped at the moment � Markov chain �Xm (Xm): This is equivalent to the fact that
��m = 0 not only for m > �� but also for m > �; i.e., we may consider ��m = 0 for

m > �� ^ �: Consequently, if �� ^ � = k then dk = dk+1 = ::: = dN : This implies

d2
k
= d2

k+1 = ::: = d2
N
:

We have

dm = d1���^�=1 + � � �+ dm�1���^�=m�1 + dm���^��m ;

dm�1 = d1���^�=1 + � � �+ dm�2���^�=m�2 + dm�1���^�=m�1 + dm�1���^��m ;

and therefore

dm = dm�1 + (dm � dm�1)���^��m : (3.7)

Analogously,

d2
m
= d2

m�1 + (d2
m
� d2

m�1)���^��m :

We get

dm = Xm � �Xm = Xx(��1 + � � �+ ��m)� �Xm

= X��1+���+��m�1;Xm�1
(��1 + � � �+ ��m)� �Xm

= X��1+���+��m�1;Xm�1
(��1 + � � �+ ��m)�X��1+���+��m�1; �Xm�1

(��1 + � � �+ ��m)

+X��1+���+��m�1; �Xm�1
(��1 + � � �+ ��m)� �Xm : (3.8)

The �rst di�erence at the right-hand side of (3.8) is the error of the solution because

of the error in the initial data at the time (��1+���+��m�1), accumulated to the (m�1)-st
step. The second di�erence is the one-step error at the m-th step.

For m � �� ^ � the vectors �Xm�1 and Xm�1 belong to Gn�2�dr and we obtain from

the equality (3.8)

���^��mdm = ���^��m(Xm�1 +

Z ��1+���+��m

��1+���+��m�1

�(s) � �(X��1+���+��m�1;Xm�1
(s))dw(s))

����^��m( �Xm�1 +

Z ��1+���+��m

��1+���+��m�1

��(s) � �(X��1+���+��m�1; �Xm�1
(s))dw(s))

+���^��m(X��1+���+��m�1; �Xm�1
(��1 + � � �+ ��m)� �Xm) : (3.9)

Here

�(s) := ��(��1+���+��m�1;Xm�1)>s ; ��(s) := ��(��1+���+��m�1; �Xm�1)>s ;

where �(��1 + � � �+ ��m�1; x) is a random time at which the path X��1+���+��m�1;x
(t) leaves

the region G:
8



�(s) := �(X��1+���+��m�1;Xm�1
(s)); ��(s) := �(X��1+���+��m�1; �Xm�1

(s)) :

From (3.9) and (3.7) we have

dm � dm�1 = (dm � dm�1)���^��m

= ���^��m

Z ��1+���+��m

��1+���+��m�1

(�(s) � �(s)� ��(s) � ��(s))dw(s)

+���^��m(X��1+���+��m�1; �Xm�1
(��1 + � � �+ ��m)� �Xm) : (3.10)

Due to Fm�1-measurability of the random variable ���^��m; the equality (3.10) im-

plies

E (dm � dm�1)
2

� 2E���^��mE(j
Z ��1+���+��m

��1+���+��m�1

(�(s) � �(s)� ��(s) � ��(s))dw(s)j2 j Fm�1)

+2E���^��mE(jX��1+���+��m�1; �Xm�1
(��1 + � � �+ ��m)� �Xmj2 j Fm�1) :

By the conditional versions of Lemma 3 and Theorem 1 under n = 1; we obtain

E(dm � dm�1)
2 � Kr2E(���^��md

2
m�1) +Kr4 � Kr2Ed2

m�1 +Kr4;
(3.11)

where the constant K does not depend on x; r; L; and �:
Because (dm;Fm) is a martingale, we have

Ed2
m
= Ed2

m�1 + E (dm � dm�1)
2
: (3.12)

The relations (3.11) and (3.12) imply

Ed2
m
� Ed2

m�1 +Kr2Ed2
m�1 +Kr4; d0 = 0:

From here we get for N = L=r2

Ed2
N
= EjX�^N � �X�^N j2 � ((1 +Kr2)L=r

2 � 1) �Kr2 � Ke2L � r2;
(3.13)

where the constant  > 0 does not depend on x; r; L; and �:
Further, X��^�^N = X�^N ; �X��^�^N = �X�^N : Indeed, it is evident for �� � � ^N: For

�� < � ^N it is also valid because both X and �X stop after the moment ��: Hence,

EjX��^�^N � �X��^�^N j2 � Ke2L � r2: (3.14)

Let us prove now that

P (� � �� ^N) � K
e2L

�2
� r2: (3.15)

In fact, due to (3.6) we have

E�����^N jX��^�^N � �X��^�^N j = E�����^N jX� � �X�j � P (� � �� ^N) � �
2
:
(3.16)

On the other hand, using (3.14) we get

E�����^N jX��^�^N � �X��^�^N j

� (P (� � �� ^N))
1
2 � (EjX��^�^N � �X��^�^N j2)

1
2

9



The relations (3.16) and (3.17) imply (3.15).

Since X��^N = XN ; �X��^N = �XN ; we obtain from (3.14) and (3.15):

EjXN � �XN j2 = EjX��^N � �X��^N j2

= E�����^N jX��^N � �X��^N j2 + E��<��^N jX��^N � �X��^N j2

= E�����^N jX��^�^N � �X��^�^N j2 + E��<��^N jX��^N � �X��^N j2

� EjX��^�^N � �X��^�^N j2 +KP (� � �� ^N) � K
e2L

�2
� r2: (3.18)

Using Doob's inequality for the martingale (Xm� �Xm; Fm); we arrive at (3.4). The-
orem 2 is proved.

Remark 2. We pay attention to the proof of this theorem which uses only the

mean-square versions of Theorem 1 and Lemma 3. The more complicated versions are

needed later.

Remark 3. It will be proved later (see Remark 4) that it is possible to avoid the

multiplier 1=� in (3.4), i.e., in reality, the following inequality

(E max
1�k���^N

���Xk � �Xk

���2) 12 = (E max
1�k�N

���Xk � �Xk

���2) 12 � KeL � r (3.19)

is valid.

Theorem 3. Let �� = ��x(D). The inequality

(E max
1�k���

���Xk � �Xk

���2) 12 � K(
1

�
eL � r + e�

1
2
�r

�1
1+C

L) (3.20)

is valid.

Proof. Introduce two sets C = f�� � L=r2g and 
nC= f�� > L=r2g. In view of (3.2)

and (3.4) we have (let l be the diameter of G )

E
���X�� � �X��

���2 = E(
���X�� � �X��

���2 ; C) + E(
���X�� � �X��

���2 ; 
 n C)
= E(

���X��^N � �X��^N

���2 ; C) + E(
���X�� � �X��

���2 ; 
 n C)
� E(

���X��^N � �X��^N

���2) + l2 � P (
 n C)

� K
e2L

�2
� r2 + l2 � (1 + C)e��r

�1
1+C

L (3.21)

from which (3.20) follows. Theorem 3 is proved.

The domain D in Theorems 2 and 3 is not changed with decreasing r: Now consider

the domain Gn�
cr

1� 1
n
; where c > 0 is a certain number and n � 2 is a natural

number. Let x 2 G. Consider r to be su�ciently small such that �
cr

1� 1
n
� �2�dr and

x 2 Gn�
cr

1� 1
n
. We construct the approximate phase trajectory �Xk till its exit into the

layer �
cr

1� 1
n
; i.e., we stop the approximate trajectory, which was constructed in the

10



satis�es the inequality

��x(Gn�
cr

1� 1
n
) < ��x(Gn�2�dr) :

As before we conserve the same notation both for �Xk with the new stopping moment

and for the very stopping moment �� = ��x(Gn�
cr

1� 1
n
) as there is no risk of ambiguity.

And as before N = L=r2.

Theorem 4. Let �� = ��x(Gn�
cr

1� 1
n
) be the �rst exit time of the approximate trajec-

tory �Xk from the domain Gn�
cr

1� 1
n
: There exist constants K > 0 and  > 0 (which do

not depend on x; r; and L) such that for any su�ciently small r > 0 the inequality

(E max
1�k���^N

���Xk � �Xk

���2) 12 = (E max
1�k�N

���Xk � �Xk

���2) 12 � KeL � r (3.22)

holds.

Proof. Introduce the number � analogously to (3.5) (emphasize that now �� is equal

to ��x(Gn�
cr

1� 1
n
)):

� =

(
minfk : Xk 2 �2�dr ; k � ��g;
1; Xk =2 �2�dr; k = 1; :::; �� :

and the sequences �X�^m; X�^m .

Clearly, for su�ciently small r (if only Gn�
cr

1� 1
n
� Gn�2�dr and 3�dr �

c

2
r1�

1
n )

jX� � �X�j �
c

2
r1�

1
n ; if � � �� : (3.23)

We have

E�����^N jX��^�^N � �X��^�^N jn = E�����^N jX� � �X�jn

� (
c

2
)nP (� � �� ^N) � rn�1 (3.24)

and

E�����^N jX��^�^N � �X��^�^N jn

� (P (� � �� ^N))
1
2 � (EjX��^�^N � �X��^�^N j2n)

1
2 : (3.25)

Let us bound the mathematical expectation EjX�^N � �X�^N j2n: To this end let us

return to the proof of Theorem 2. All the reasonings can be repeated without any

change. Of course, �� and � are the others now.

From (3.10) we have for any natural number l :

jdm � dm�1j2l = jdm � dm�1j2l���^��m = ���^��m�

j
Z ��1+���+��m

��1+���+��m�1

(�(s)�(s)� ��(s)��(s))dw(s) +X��1+���+��m�1; �Xm�1
(��1 + � � �+ ��m)� �Xmj2l

� K � ���^��m � j
Z ��1+���+��m

��1+���+��m�1

(�(s)�(s)� ��(s)��(s))dw(s)j2l

+K � ���^��m � jX��1+���+��m�1; �Xm�1
(��1 + � � �+ ��m)� �Xmj2l;

where the constant K depends on n only.
11



Ejdm � dm�1j2l �

KE���^��m �E(j
Z ��1+���+��m

��1+���+��m�1

(�(s)�(s)� ��(s)��(s))dw(s)j2l j Fm�1)

+KE���^��m � E(jX��1+���+��m�1; �Xm�1
(��1 + � � �+ ��m)� �Xmj2l j Fm�1)

� KE���^��m(jdm�1j2lr2l +Kr4l) +KE���^��mr
4l � Kr2lEjdm�1j2l +Kr4l:

(3.26)

We get

jdmj2l = jdm�1 + (dm � dm�1)j2l

= (dm�1 + (dm � dm�1); dm�1 + (dm � dm�1))
l

= (jdm�1j2 + 2(dm�1; dm � dm�1) + jdm � dm�1j2)l;
where ( � ; � ) denotes the scalar product of d-dimensional vectors.

Further

jdmj2l = jdm�1j2l +
lX

k=1

Ck

l
jdm�1j2(l�k)(2(dm�1; dm � dm�1) + jdm � dm�1j2)k

= jdm�1j2l + 2ljdm�1j2l�2(dm�1; dm � dm�1) + ljdm�1j2l�2 � jdm � dm�1j2

+
lX

k=2

Ck

l
jdm�1j2(l�k)(2(dm�1; dm � dm�1) + jdm � dm�1j2)k: (3.27)

As dm is a martingale, we have

Ejdm�1j2l�2(dm�1; dm � dm�1)

= Ejdm�1j2l�2(dm�1; E( dm � dm�1 j Fm�1)) = 0 : (3.28)

Since

(2(dm�1; dm � dm�1) + jdm � dm�1j2)k

� K(jdm�1jk � jdm � dm�1jk + jdm � dm�1j2k) � K(jdm�1j2k + jdm � dm�1j2k) ;
we obtain from (3.27) and (3.28)

Ejdmj2l � Ejdm�1j2l +KE
lX

k=1

jdm�1j2(l�k)jdm � dm�1j2k: (3.29)

H�older's inequality with p =
l

l � k
; q =

l

k
and then (3.26) imply

Ejdm�1j2(l�k)jdm � dm�1j2k � (Ejdm�1j2l)
l�k

l � (Ejdm � dm�1j2l)
k

l

� (Ejdm�1j2l)
l�k

l � (Kr2lEjdm�1j2l +Kr4l)
k

l

� K(Ejdm�1j2l)
l�k

l � (r2k(Ejdm�1j2l)
k

l + r4k)

= K(Ejdm�1j2l � r2k + (Ejdm�1j2l)
l�k

l � r4k) : (3.30)
12



Using the elementary inequality ab �
p
+

q
with

a = (Ejdm�1j2l)
l�k

l � r 2(l�k)

l ; b = r4k�
2(l�k)

l ; p =
l

l � k
; q =

l

k
;

we obtain for k = 1; :::; l

(Ejdm�1j2l)
l�k

l � r4k � K(Ejdm�1j2l � r2 + r4l+2�
2l
k ) �

KEjdm�1j2l � r2 +Kr4l+2�
2l
k ): (3.31)

The relations (3.29)-(3.31) give

Ejdmj2l � Ejdm�1j2l +Kr2Ejdm�1j2l +Kr2l+2; jd0j2l = 0 :

From here we get for N = L=r2

EjdN j2l = EjX�^N � �X�^N j2l � Ke2L � r2l;
where the constants K > 0 and  > 0 depend on l but do not depend on x; r; L:
Just as in Theorem 2 X��^�^N = X�^N ; �X��^�^N = �X�^N : Hence

EjX��^�^N � �X��^�^N j2l � Ke2L � r2l: (3.32)

Now from (3.24), (3.25) and (3.32) under l = n we get

P (� � �� ^N) � rn�1 � K(P (� � �� ^N))
1
2 �KeL � rn;

whence

P (� � �� ^N) � Ke2L � r2: (3.33)

Finishing the proof in just the same way as in Theorem 2, we arrive at (3.22).

Theorem 4 is proved.

Remark 4. Now the inequality (3.19) which reinforces Theorem 2 can be approved

in the following way. Instead of (3.16) let us write the following inequality

E�����^N jX��^�^N � �X��^�^N j2

= E�����^N jX� � �X�j2 � P (� � �� ^N) � �
2

4
: (3.34)

Then instead of (3.17) due to (3.32) under l = 2 (clearly, the same inequality (3.32)

is true on condition of Theorem 2) we obtain

E�����^N jX��^�^N � �X��^�^N j2

� (P (� � �� ^N))
1
2 � (EjX��^�^N � �X��^�^N j4)

1
2

� K(P (� � �� ^N))
1
2 � eL � r2 : (3.35)

The inequalities (3.34) and (3.35) imply

P (� � �� ^N) � Ke2L � r
2

�4
r2

and (3.19) follows from (3.18) if only r � �2 in addition to the previous restrictions to

smallness of r.

The following theorem is proved in the same way as Theorem 3.
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(E max
1�k���

���Xk � �Xk

���2) 12 � K(eL � r + e�
1
2
�r

�1
1+C

L)

is valid.

Theorem 6. Let n > 1; l � 1 be some natural numbers and �� = ��x(Gn�
cr

1� 1
n
)

be the �rst exit moment of the approximate trajectory �Xk from the domain Gn�
cr

1� 1
n
:

There exist constants K > 0 and  > 0 (which do not depend on x; r; L) such that for
any su�ciently small r > 0 the inequality

(E max
1�k���^N

���Xk � �Xk

���2l) 1
2l = (E max

1�k�N

���Xk � �Xk

���2l) 1
2l � KeL � r

(3.36)

is ful�lled.

Proof. First let us show that for every l � 1 the following inequality

P (� � �� ^N) � Ke2L � r2l (3.37)

holds. We can come to (3.37) in the same way as to (3.33). To this end let us write

E�����^N jX��^�^N � �X��^�^N jln = E�����^N jX� � �X�jln

� (
c

2
)lnP (� � �� ^N) � rl(n�1) (3.38)

instead of (3.24).

As l in (3.32) is arbitrary, we have (of course, with another K and another )

EjX��^�^N � �X��^�^N j2ln � Ke2L � r2ln:

Therefore

P (� � �� ^N) � rl(n�1) � KE�����^N jX��^�^N � �X��^�^N jln

� K(P (� � �� ^N))
1
2 � eL � rln;

whence the inequality (3.37) follows.

Now we get

EjXN � �XN j2l = EjX��^N � �X��^N j2l

= E�����^N jX��^�^N � �X��^�^N j2l + E��<��^N jX��^N � �X��^N j2l

� EjX��^�^N � �X��^�^N j2l +KP (� � �� ^N) � Ke2L � r2l:

The relation (3.36) follows from here due to the Doob inequality. Theorem 6 is

proved.
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We have obtained the point �XN = �X��^N ; where N = L=r2; �� = ��x(Gn�
cr

1� 1
n
).

What distance is between �XN and exit point Xx(�x)? What point on @G can we take

as an approximation for Xx(�x)?
On the set C = f�� � L=r2g we have �XN = �X�� 2 ��

cr
1� 1

n
.

Let �x (!) ; ! 2 C; be a point on @G such that��� �XN � �x
��� � cr1�

1
n ; ! 2 C: (4.1)

It is natural to take this point as an approximate point for exit point Xx (�x) if
�XN 2 ��

cr
1� 1

n
. Due to Theorem 4 and (4.1) we obtain

E(jXN � �j2 ; C) � K(c2 + e2L) � r2� 2
n : (4.2)

Lemma 4. There exists a constant K such that for any x 2 �G; y 2 @G the inequality

E(Xx(�x)� y)2 � K jx� yj
is ful�lled.

Proof. Consider the Dirichlet problem

1

2

dX
i;j=1

aij(x)
@2u

@xi@xj
= 0; x 2 G;

u j@G= (x� y)2:

The solution of the problem is

uy(x) = E(Xx(�x)� y)2:

From the conditions (i)�(iii) it follows that uy 2 C(4)
�
�G
�
(see [11]). Since uy(y) = 0;

we have

uy(x) = uy(x)� uy(y) � K jx� yj :
Lemma 4 is proved.

We have de�ned the variable �x(!) only on C: To complete the de�nition of �x(w)
on the set 
 n C, let us take as �x(!); e.g., the nearest point to �XN on @G in the case

when ! 2 
 n C.
By Lemma 4 we have

E((Xx(�x)� �x)
2 j FN) = E((XXN

(�XN
)� �x)

2 j FN) � K jXN � �xj
Since C 2 FN , from the above inequality and (4.2) we get

E((Xx(�x)� �x)
2; C) � KE(jXN � �xj ; C)

� K(E(jXN � �xj2 ; C))
1
2 � K

�
c + eL

�
� r1� 1

n :

We can also evaluate the mathematical expectation E (Xx (�x)� �x)
2
analogously to

(3.21). As a result we obtain the following theorem.

Theorem 7. Let �x (!) 2 @G be the nearest point to �XN . Then (for clearness we

reduce some non-essential constants)

(E((Xx(�x)� �x)
2; C)) 12 � Ke

L

2 � r 1
2
� 1

2n ;
15



(E(Xx(�x)� �x)
2)

1
2 � Ke

L

2 � r 1
2
� 1

2n +Ke�
1
2
�r

�1
1+C

L:

5. Acknowledgments

The author would like to express his gratitude to Dr. M.V. Tret'yakov for fruitful

discussion.

References

[1] I.I. Gichman, A.V. Skorochod. Stochastic Di�erential Equations. Naukova Dumka, Kiev, 1968.

[2] P.E. Kloeden, E. Platen. Numerical Solution of Stochastic Di�erential Equations. Springer, Berlin,

1992.

[3] H.J. Kushner. Probability Methods for Approximations in Stochastic Control and for Elliptic

Equations. Academic Press, New York, 1977.

[4] G.N. Milstein. Numerical Integration of Stochastic Di�erential Equations (engl. transl.). Kluwer

Academic Publishers, 1995.

[5] G.N. Milstein. Solving the �rst boundary value problem of parabolic type by numerical integration

of stochastic di�erential equations. Theory Prob. Appl., 40(1995), 657-665.

[6] G.N. Milstein. Solving boundary value problems by numerical integration of stochastic equations.

Mathematics and Computers in Simulation, 38(1995), 77-85.

[7] G.N. Milstein. Application of numerical integration of stochastic equations for solving boundary

value problems with the Neumann boundary conditions. Theory Prob. Appl., 41(1996), 210-218.

[8] G.N. Milstein. The simulation of phase trajectories of a di�usion process in a bounded domain.

Stochastics and Stochastic Reports, 56(1996), 103-126.

[9] G.N. Milstein. Weak approximation of a di�usion process in a bounded domain. Stochastics and

Stochastic Reports, in print.

[10] G.N. Milstein and N.F. Rybkina. An algorithm for random walks over small ellipsoids for solving

the general Dirichlet problem. Comput. Maths Math. Phys. 33(1993), No. 5, 631-647.

[11] C. Miranda. Partial Di�erential Equations of Elliptic Type. Springer, 1970.

[12] E. Pardoux and D. Talay. Discretization and simulation of stochastic di�erential equations. Acta

Appl. Math., 3(1985), 23-47.

16


