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Abstract

In this paper we apply a quadrature method based on the tensor product trape-
zoidal rule to the solution of a singular integral equation over the two-dimensional
torus. We prove that this method is stable if and only if a certain numerical symbol
does not vanish. For a special kernel function, we present a plot of numerically com-
puted symbol values and, for symmetric kernels (Mikhlin-Giraud kernels), we show
that the symbol is different from zero if the singular integral operator is invertible.
Finally, we prove the convergence of our method and present numerical tests.

1 Introduction

In the last two decades a lot of problems in elasticity, fluid mechanics, acoustics, optics,
electrostatics, and other fields of engineering have been tackled by boundary element
methods (cf. e.g. the overview articles by Mazya [15] and Wendland [36]). These methods
include the analysis of strongly singular boundary integral equations

A = (al + K)u = f, (1.1)
where al stands for the multiplication operator

(al)u(s) : = a(s)a(s) (1.2)

multiplying by a real valued function a and K for the integral operator

(Ka)(s) : = /Sfc(s,t)'&(t)dtS (1.3)

over the boundary manifold S. We suppose that the kernel k(s,t) is strongly singular
(cf. Section 2). This means that the integral in (1.3) is to be understood in the sense
of a Cauchy principal value. In order to get the unknown function %@ we solve (1.1)
numerically. Originally, in the boundary element method this was done by a finite el-
ement discretization of (1.1). However, nowadays p- and h-p-methods, collocation, and
quadrature schemes are popular as well. Several monographs are devoted to the study of
Equation (1.1) and its numerical solution. Let us mention here e.g. the books written by
Mikhlin, Pré8dorf [16], Mikhlin, Morozov, Paukshto [17], Muskhelishvili [19], Pro8dorf,
Silbermann [28], and Parton, Perlin [20].

The main objective of this paper is to analyze quadrature methods for the numerical
solution of singular integral equations over two-dimensional boundary manifolds and to
prove convergence results similar to those known for collocation. Note that using the
concept of strong ellipticity (cf. Stephan and Wendland [35]), the analysis of Galerkin
methods for strongly elliptic singular integral equations is easy. The realization of these
Galerkin schemes, however requires the computation of two-fold integrals over the bound-
ary and, thus, is very time consuming. To reduce these efforts, collocation methods are
applied. In contrast to their successful implementation, the convergence analysis is done
for very special situations, only (cf. Profdorf and Schneider [26]). Moreover, the colloca-
tion still requires the computation of singular integrals, which is accomplished by using
quadratures. The advantage of quadrature schemes in comparison to Galerkin and col-
location methods is that all the integrals are discretized within one discretization step,



i.e., quadrature methods are so-called fully discrete schemes. The corresponding number
of quadrature knots and therewith, the computation time is much less than for other dis-
cretization schemes. The draw back of the quadrature methods is the larger discretization
error. Hence a quadrature method could be a good choice if the convergence of Galerkin
and collocation schemes is slow due to the lack of smoothness of the right-hand side and
the underlying manifold. Moreover, low order quadrature methods can be considered as a
starting point for an analysis of higher order fully discrete methods with minimal numbers
of quadrature points. We expect that the optimal methods are slight modifications of our
quadrature methods.

The theory of one-dimensional spline collocation has been established by Profldorf and
Schmidt [24, 25], Arnold and Wendland [1, 2], Saranen and Wendland [31], and Schmidt
[32, 33]. In the end of the 80-ies Hsiao, Prodorf, and Schneider started to generalize these
results to the case of multi-dimensional pseudo-differential equations. Unfortunately, the
technique of Arnold and Wendland [1] could be generalized only by a difficult technical
modification (cf. Hsiao and Profdorf [13]). The techniques of Fourier analysis (or circulant
techniques) take over to the multi-dimensional case if the underlying manifold is a torus or
an open subset of the plane (cf. Profidorf and Schneider [26, 27]). Note that the restriction
to the artificial torus manifold means the following: The stability of collocation is a local
property. Collocation is stable if and only if it is locally stable in the neighborhood of
any point of the underlying manifold. The problem of local stability, however, is solved
only for points where the mesh is regular, i.e., close to a rectangular mesh over a torus.
E.g., if we consider a sphere and take a partition along the lines of constant longitude
and latitude, then the resulting grid is regular at any point except the two poles. In
other words, the local stability problem is solved at any point of the sphere but the poles.
The local stability near the poles is not solved yet. Further investigations for collocation
methods are due to Costabel and McLean [8], Dahmen, Préfidorf, and Schneider [9], and
Hagen, Roch, and Silbermann [12]. Note that the authors of [9, 12] have even dealt with
wavelet collocation methods.

Similar to the analysis of collocation, we have to restrict our consideration for quadrature
methods to the special case that the underlying manifold is diffeomorphic to the torus.

Suppose
¢ :[0,1] x[0,1] = S

is a parametrization of S which is 1-periodic in each argument. Then Equation (1.1) takes

the form
Au(s) := a(s)u(s) + [0,1]x[0,1]k(s,t)u(t)dt = g(s), s€]0,1] x[0,1], (1.4)
where
a(s) = a(d(s)), g(s) = g(d(s)), uls) = a(d(s)), (1.5)
k(s,t) = k(d(s),9(t))|o ()]
Discretizing (1.4) with the help of the trapezoidal rule
/[o,l]x[o,l](’p(t)dt - % nz_: (’0(7%’ %)’ (16)

1,3=0



we arrive at the quadrature method

(ED)m(ED) s T k(EDED)WED

n n n
k,1=0
(k1) # (3,7)
= (20 o _
- g((n7n)) ? ,1/7.7 07"'7n 1' (1'7)

Note that this method can be derived using the so-called singularity subtraction technique
if the kernel function satisfies certain symmetry conditions (cf. Section 2). Only if this
symmetry assumption is fulfilled, then (1.7) can be convergent. If the assumption is
violated, then (1.7) needs to be modified.

For the quadrature method (1.7), we first investigate the stability, i.e., we check if the dis-
cretized integral operator is invertible and if the inverse discretized operator is uniformly
bounded for sufficiently small mesh size 1/n. Note that stability of the quadrature method
implies that the linear systems arising after discretization are well conditioned and that
the convergence order of the approximate solution is the same as that of the quadrature
rules. In analogy to the collocation, it turns out that stability is a local property. This
means, the quadrature method (1.7) for A in (1.4) is stable if and only if it is locally
stable (cf. Sections 3 and 4) at any point of the boundary S. The local stability at a
given point ¢ on S, however, is the same as the stability of the quadrature method to a
convolution operator defined over the tangent plane, if this convolution operator coincides
with A in the neighborhood of ¢. In other words, it is sufficient to consider the stability
of quadrature methods applied to singular convolution equations over the plane. The dis-
cretized convolution operator turns out to be a discrete convolution matrix. Its stability is
determined by the generating symbol which is called numerical symbol of the quadrature
method. As the first main result of this paper we prove that the numerical symbol is
bounded (cf. Proposition 3.2). It is invertible (cf. Theorem 3.1) if a simple symmetry
assumption for the kernel k(s,¢) is fulfilled. Thus we derive a sufficient condition for the
local stability. As the second main result we show that quadrature method (1.7) is stable
if and only if it is locally stable (cf. Theorem 4.1), i.e., if and only if the numerical symbol
does not vanish over S. Unfortunately, the values of the numerical symbol are given in
form of an infinite sum and can be computed by numerical methods, only. We give one
example for such a numerical computation (cf. Subsection 3.2). However, for the spe-
cial case of the integral operator corresponding to the oblique derivative boundary value
problem (cf. Section 6 and [18]), the sufficient condition for the local stability is fulfilled
and global stability can be proved. The third main result (cf. Theorem 5.1) concerns
the convergence of the quadrature method (1.7). Using the just established stability, we
prove that, for any Lipschitz continuous right-hand side f, the solution u, of (1.7) tends
to the exact solution u of (1.4) in L,, i.e.,

LIS i () -+ (D)

" \ig=o
To confirm the theoretically obtained results, we present some numerical tests in Section

2

6. We consider the singular integral equation corresponding to the oblique derivative
boundary value problem for Laplace’s equation on an unbounded domain with a boundary



manifold diffeomorphic to the torus. For this equation, we present the approximation
errors of the quadrature method (1.7).

2 The Quadrature Method over the Torus

Collocation methods and Galerkin methods are so-called semi-discrete schemes. In fact,
to compute the integrals contained in the definition of the matrix entries one has to apply
analytic formulas or quadrature schemes. We now like to give the quadratures in an
optimal way (minimal number of quadrature knots) and to perform the stability analysis
for the quadrature algorithm simultaneously. This can be done by considering quadrature
discretization schemes right from the start. In the case of one-dimensional singular integral
equations this is done by Belotserkovski, Lifanov, Profidorf, Rathsfeld, Sloan, Silbermann
[3, 23, 29, 28]. We shall try to generalize these results to two dimensions.

Let us consider the singular integral equation (with a classical pseudo-differential operator
of order zero corresponding to the symbol function c(z, &) € S°, cf. e.g. [7])

Au(z) = +/ W)d, I = g(z), «c T* (2.1)
over the torus T := Rz/Zz, where
k(z,y) = ks(z,z — y) + kr(z,y). (2:2)

Here ks(z,z — y) is defined by

ks(z, 2) = /R oa(z, €)e . (2.3)

We may suppose that o4 is a positive homogeneous function in £ of degree zero with
o4 € C®(T? x R?\{0}) and that the kernel kg satisfies the following conditions :

a) ks(z,2) € C°(T* x R*\{0}).
b) ks(z,tz) = t7%k(z,2),t > 0, z € T, z € R*\{0}.

) Jor ks(a,2)do(z) = J2" k(z, eM)dn = 0, = € T*.

The additional kernel kr(z,y) is supposed to be continuous and to generate a compact
operator. (Note that, for a general classical pseudo-differential operator of order zero,
the kernel kg is weakly singular only. The corresponding operators and discrete operators
should be treated in a similar manner as the singular operators. For the sake of simplicity,
however, we suppose kg to be continuous). The integral in (2.1) is to be understood as

E1+ EQ-I-—
Jo e = [7 [ byl iy,

2__

= lim k(z,y)u(y)dy.

e 0 Jy: e<|z—y|



For the computation of an integral over the square, we choose the tensor product trape-
zoidal rule. Setting N = n? with n even, m = (mj,m,), and ¢V = (M1, m2) and

. N N . my,m3 n’mn
assuming = = (21, za) =t =ty ;,, We write

:z1+ z2+— 1 ’ N ]_ kitg k2t 5
/ / y)dyrdys ~ —22 h(t') = Z Z h( tl1 Iy Wity (s
z1—5 Jwa—% nt 1=k =% la=ka-%

1 1f|l1—k1|<n/2, |lg—k2|<’n/2
W, = 1/4 if |y — ky| = |l; — kao| = n/2 (2.4)
1/2 else.

Note that 7' is the tensor product of the periodic interval [0,1] by itself. In this sense we
get tllin I, = tll I, = tﬁ[,lgﬂ:’n' To set up a quadrature method for solving (2.1) numerically,
we consider (2.1) at z from the set of collocation points {t} , } and replace the integration
by the corresponding quadrature rule (2.4). Since the value k(z,z) is infinite, we have
to modify the quadrature. We do this by dropping the term in the quadrature sum

containing k(z,z). This way we arrive at the quadrature method

1
a(tMun(t)) + 5 Y Bt un () = g(tY), ki ks =0,...,n—1. (2.5)
I: I£k

Unfortunately, the method (2.5) is not convergent in the general case. Namely, if usual
quadrature rules are applied to a singular integral, convergence cannot be expected. The
remedy for this is the so-called singularity subtraction technique. Suppose we can compute

(cf. (2.2))
ko1
btl) = [ ks, - w)a, ot = [T [T kst y)duidys
(analytically or numerically with finer quadrature procedures). Then, we write

| kst = pu)d, T = st + [ ksl — y)uly) - ult))d,T

The last integral is weakly singular only and the usual quadratures converge for this
weakly singular integral. Applying this step to (2.1), we arrive at the quadrature method

[a(ty) + () un (7)) Z ks(th  th — 1 )un (') — un(ty))
2 12k
-|- Z kr(ty, 6 Jun() = 9(t}), ki, ke =0,...,n—1, (2.6)
n?;; Ik

which is equivalent to

a(ty) +b(ty) — sttk,tk 8 ) |un (k)
ll;ék
+— ZktNtN v) = g(tY), ki,ka=0,...,n—1. (2.7)
ll;ék



E.g., if the kernel kg(z,z — y) is odd with respect to the second variable z = z — y (i.e.
if it is a Mikhlin-Giraud kernel), then we get b(t)) = 0 and

1 ,
ﬁl%k ks(ty ty — ) = 0. (2.8)

Note that (2.8) is true also if instead of

ks(z,(z1,22)) = —ks(z,(—21,—22)) (2.9)

one of the following symmetry properties is satisfied for the kernel:

ks(ma(zlaz2)) = —ks(m,(—21722)), (210)
ks(ma(zlaz2)) = —ks(a:,(22,zl)). (211)
Consequently,
1 /
) — 3 k(a8 — #Y)| =0 (212)
4k

and the method (2.7) is equivalent to (2.5). Hence, the quadrature method (2.5) is useful
if k(z,z — y) is odd with respect to the second variable (cf. (2.9)) or if (2.10) or (2.11) is
satisfied.

In the quadrature methods (2.5) and (2.7), the unknown solution uy is a sequence of
point values {uN(tkNl,kZ), ki,ks =0,...,n—1}. We denote the matrix in the linear system
(2.5) and (2.7) by Ay. However, we shall identify uy with a piecewise constant function
and Ay with an operator acting in the space of piecewise constant functions. To this
reason, we introduce the characteristic function

X;Y,IZ(:E) = {

1 if lJ/TLS:IJJ<(lJ—|-1)/’)’L, j:1,2

0 else

and denote the space of piecewise constant functions by S, i.e.,

SV = ésjr)an{xﬁf,l2 1, =0,...,n—1}.

Then we identify {uN(tﬁ[,lZ) 1,1, =0,..., n— 1} with the piecewise constant interpola-

tion
n—1

Uy = Z 'UIN(tﬁ[,lg)Xﬁ[,b
l1,lo0=0

and the matrix Ay with the operator in £(S¥) whose matrix with respect to the basis
{Xﬁ[,l2 1,1, =0,...,n— 1} is just Ay.

We call the quadrature method stable if the operators Ay are invertible for sufficiently
large N and if the inverse operators Ay' € £(SY) are uniformly bounded with respect to
N (i.e. the norms of Ay' € £L(SY) induced by the Ly norm are uniformly bounded). The
quadrature method is called convergent if, for any right-hand side g such that



n—1

Z g(tﬁf,lZ)Xﬁ[,lZ —9g

11,lb=0

— 0,
Ly(T2)

there exist unique solutions {un(#]];,)} of the quadrature equations (2.5) or (2.7) with

n—1

Uy = Z 'UIN(tﬁ[,lg)Xﬁ[,b
l1,lo0=0

tending in the Ly-norm to the exact solution wu.

The Sections 3, 4, and 5 are devoted to the stability and convergence analysis of method
(2.5). Method (2.7) can be treated with slight modifications.

3 Localized Operators and Localized Quadrature
Method on the Plane

Stability is a local property. Therefore it is necessary to introduce the quadrature scheme
for the localized singular integral operator over the plane and to investigate the stability
by analyzing the corresponding numerical symbol of the method. For singular kernels
with a natural symmetry property, we shall prove the local stability.

3.1 The Operators and the Numerical Scheme over the Plane

In this subsection we introduce simple local problems over the plane which later will turn
out to be the quadrature methods applied to the singular integral operators with frozen
symbols. We consider the singular integral operator

Au(z) = au(z)+ (Ku)(z), z € R?, (3.1)
(Ku)(e) = [ k(z—y)uly)dy. (3.2)
with a real constant a > 0 and the convolution kernel

f(é z—y
k(z —y) = ;),r:m—m,ezm_yy

Moreover, we suppose f to be a Lipschitz function and

/S f(z)da(z) = 0. (3.3)

To define the quadrature method for singular integral equation (3.1), we rewrite (3.1) in
the form

Au(e) = aue)+ [ k(e —y)[uly) —u(e)dy+ [ ko —y)dyu(e). (34



Since fq f(6)d8 =0 (cf. (3.3)), we have [k(z — y)dy = 0 and get
f(9)

2 |z —yl?

Au(z) = au(z)+ /R [u(y) — u(m)}dy : (3.5)

In order to evaluate the integral in Equation (3.5), we use the quadrature rule
Ji J2
/R2 ~ 2 h(ty)—, ti= ) (3.6)
jeZ?

Applying this to (3.5) and neglecting the term corresponding to j = k, we obtain

f(e(tkatj)) 1

Au(ty) ~ au(te) + Y W[u(m (tk)} 2

jez?
i#k
(0 t) 1 F(60tk 1)) 1
~ aut -+ — 2 ult;)— — _ 7 w(t
)+ 3 T g " L2 T g )
itk i#k
th — 1
O(tr, t;) = I 3.7
(k7 J) |tk_tj| ( )

Now we shall show that the last sum vanishes under an additional assumption. To this

end, we suppose that f can be split into f(0) = f1(8) + f2(0) + f3(0), where
fi ((cos ©, sin cp)) = —fi ((—cos @, —sin cp)), (3.8)
fa ((cos ©, sin cp)) = —f ((—cos ©, sin cp)), (3.9)
fa ((cos ©, sin cp)) = —fg((SiIl ©, COos cp)) (3.10)

Similarly to (2.12), we obtain

f(e(tk,t-)) L
jez?
ik
Equation (3.7) takes the form
F(60tk,ty)) 1
Au(tk) ~ au(tk) + jezz:Z Wu(tj)ﬁ
ik

Hence, the quadrature method over the plane is defined by

f H(tkat') 1
a'uN(tk) + Z %UN(tj)—z = g(tk), k¢ /A (312)
jez? | 7 k| n
itk

Though this method (3.12) could be used as a numerical scheme for the plane equation,
the application of (3.12) would require a further step of reduction to a finite linear system
of equations. However, we are not interested in solving the plane equation. The method
(3.12) serves us only as a tool in the stability analysis of the corresponding method over
the torus.



3.2 Stability of the Quadrature Method over the Plane

The matrix of the system (3.12) is

-
O ERRA ).

Ay = (arjejez?s @i =\ Jto— ;7 02 |j— k| ity #k (3.13)
a ifg==k.

Thus the entries of Ay are independent of N = n? and we get Ay = A;. Moreover, the
entries of A; depend only on the difference & — 7.

F () lml ™ ifm 0 (3.14)

Ak j = Og—j, Om = )
a fm=0.

We identify Ax with the operator acting in the space of piecewise constant functions

SY(R?) = ésjr)cm{Xthk2 tkiky € Z}

whose matrix with respect to the basis {x¥,k € Z?} is Ay. Since

H kg 1 |, sy = %m (3.15)

the operator norm of Ay induced by the L, space is equivalent to the matrix norm of the

space
L(Z?) = {f = (&jeze | D &l? < OO}'
keZ?

It is a well-known fact that each discrete convolution operator can be represented as
(cf. eg. [4]) Ax = F™'MF, where the unitary operators F' : [y(Z?) — Ly(T?) and
F~Y: Ly(T?) — 1,(Z?) are defined by

F:{&Yiem = Y & e F1: f(t) = {&} e,

JEZ?
1ol . S
5‘7 — / / f(ez27rsl 7 61271'32)6—1271'31]1 6—12775212 dSl ng.
o Jo
The operator M mapping La(T'?) into Ly(T'?), takes the form M f(t) = o(t) f(t) with

the continuous function o : '* — R given by (cf. (3.14))

o(t) = Z ay €2k, (3.16)

kez?
Obviously, the inverse operator M ' mapping La(T'?) to Ly(T?) is of the form M~ f(t) =
o~ (t) £(2).

Proposition 3.1 1) There holds

| ALl = | M| 2z, (m2)) = ess sup |o(t), [|M 7Y gep, ) = ess sup [o7*(¢)].
tETZ tETZ



lllf t . .]_i

The function o is called the symbol of the discrete convolution operator and the numerical
symbol of the method (3.12). Now let us show that the sequence Ay is uniformly bounded.
In view of Ay = A; and of Proposition 3.1, we have to prove that o : T'? — R defined
by the formula (3.16) is bounded.

Proposition 3.2 For the function o, we get sup |o(t)| < oco.

Proof. We shall utilize the Galerkin method with piecewise constant trial functions.
Let @, be the orthogonal projection onto the span of the system {x; : 7 € Z?}, where

Xj = X;-
Qn:  L(R®) = span{x; 1 € Z°}, Qnf = Y. (fix5)xs
JEZ?

With respect to the basis {x;};ez> of im Q, the matrix of AS=Q,Al|img, is bounded
(because ||@n]| = 1 and A is bounded). The matrix of AS with respect to the basis
{x;j}jez> is defined by

e e e e
A = (a’w')kjeZ?’ g~ (AXj’Xk) - (AXO’X’“—j) = k-
Then AS = (afj)k _is a discrete convolution operator. Since AS is a bounded operator
J
in [5(Z?), there exist a bounded m¢ : T — R,

— Z a$ e'i27'rk-t

keZz?
such that AS = F~1MgF, that Mg is the operator of multiplication by mg, and that Mg
is bounded (cf. Proposition 3.1). Now let (ak_j)k _ denote the matrix of the quadrature
7-7
method and m = o the corresponding symbol. We write
m(t) = [m(t) —me(t)] +me(t) = > (ax— ay )™t | > af et
kez? kez?

In order to prove that m is bounded, it is sufficient to prove that (m — mg) is bounded.
We prove this by showing

> lak — af| < oo. (3.18)

ke 2?2

Since ay = ak,0, we get

of = (Axoxx) :/k1+1 /:H (Axo) (t)dt
t—s

ki +1 ko +1 |t — S|)
= / / / / ngdSldtgdtl,
ky ks |t — s|2

— s k
G Y ) f(m) dsydsy dt,dt 3.19
of ~ae = [ [ // |t_s|z — | derddndn. (319

10



For the integrand, we get

e

1
t—s? kP |7 VK| ‘It—SP_

1

[t —sf?

t—s k
F=) —f(m)‘. (3.20)

Estimating the first term on the right-hand side, we easily conclude

1
< —_
S O

1
o

— 21
‘f wl=E (3.21)

To estimate the second term in (3.20), we observe that f is Lipschitz by assumption.
Hence

t— k 1 t— k 1
s|2‘f( s)_f(m)‘ < C|t—s|2‘|t—z|_m‘ < CW'
We arrive at

Yolag —ax] < C > k[T < oo o

kcZz? ke Z?
k#(0,0)

Remark 3.1 It is not hard to see that o is continuous on [—3,3]*\{(0,0)}. At (0,0) the
function o has limits along all rays starting at (0,0).

Next we turn to the stability of Ay. Since Ay = A;, we only have to prove the invertibility,

e. (3.17). Unfortunately, we cannot prove stability for the general case or for the case of
strongly elliptic singular integral equation either. Instead we prove stability for the special
case of singular integral equation with Mikhlin-Giraud kernels and present a numerical
stability proof for singular kernels with an operator for which the constant a is a complex
number.

Theorem 3.1 Suppose the integral equation to which we apply (3.12) is given by (3.1)
with constant a > 0 and a convolution kernel k(z,y)=f(0)r=2? such that f(—0)=—7f(8).
Then the quadrature method (8.12) is stable.

Proof. We only have to show (3.17). Recall that (cf. (3.14) and (3.16))

ot) —atot(t), oH(t) = ¥ ae®™, ap = () k2,
ke z? |k|
k#(0,0)

Since f is an odd function, we get a_r=—ay, as well as

—U#(t) _ Z ay, e Rt — Z a_y e 2Tkt — —a#(t).

ke Z? ke z2
k#(0,0) k#(0,0)

Hence, o#(t) is purely imaginary and

11



Finally, let us suppose there exist real constants «, 8 with o? + 3%=1 and

f6) = s-{asing +Beosp}, 6= e (3.22)
The symbol of the corresponding singular operator is
oa(z, &) = a+i{asing+Bcosp}, €&=e". (3.23)
In this case we get the numerical symbol
o(t) = a+i{aoi(t) + Boa(t)},

where the numerical symbols o; and o, are real and correspond to the characteristics
% sin ¢ and % cos @, respectively. Numerical computations of o2 +¢Z confirm (cf. Figure
1) that o2 + 02 < 1. Hence, —1 < [ao; + Boz] <1 and we obtain: If f is given by (3.22)
with real numbers a, § such that /a2 + 2 =1andifac C\{z € C: —1 <Imz <1},
then the quadrature method (3.12) is stable. Note that the condition a € €'\ {2z € € :
—1 < Imz < 1}, is equivalent to the fact that A defined by (3.23) is strongly elliptic at

least after multiplication by a suitable constant.

Num.Symb. ——
1 —
0.5 \\\\\\§\\‘~
RIS SO

".--’Q- > .
LSS

Figure 1: The numerical symbol o2 + o2.

12



4 Localization Principle

4.1 The Theorem

Let us start with a few historical remarks. Localization techniques (principle of freezing
the coefficients) have been known and applied for a long time to the analysis of partial
differential operators or pseudo-differential operators. Later on these techniques have been
reformulated in an algebra language which has turned out to be useful in the analysis of
several kind of operator classes (cf. Simonenko [34], Gohberg, Krupnik [11], and Douglas
[10]). The first one to apply these techniques to numerical methods was Kozak [14]. His
ideas have been generalized and developed into a very nice abstract scheme by the school
of Silbermann (for details cf. the corresponding chapters of [28]). Parallel to this, an
abstract setting for the application to spline methods is due to Profdorf [21].

We shall use the same localization techniques. However, instead of using the abstract
schemes of e.g. Silbermann, we perform the corresponding steps of proof directly. This
is possible because the local principle in our situation is not very complicated. To get a
better feeling for the localization, we recommend the reader to study the corresponding
sections of [11, 28|.

Let us consider the quadrature method (2.5) applied to the singular integral equation
(2.1) over the torus and suppose (2.9) is satisfied. To the corresponding singular integral
operator and to this quadrature method, we introduce a localized singular integral oper-
ator and a localized quadrature method at any point 7 € T'?. Thus let us fix a 7 € T2
The localized operator is the singular integral operator over the tangent plane with the
same values of the kernel function ks(z,z —y) at « = 7. To get an operator over the
plane, we freeze the local variable z and consider the convolution kernel ks(7,z — y). In
other words the localized singular integral operator A, at 7 is the singular convolution
operator over the plane R? with the kernel function

kr(z —y) = ks(mz —y) ,

and with the multiplication operator a(z) replaced by the constant a, = a(7). Thus the
localized equation corresponding to (2.1) is

aru(e) + [ ke(o ~ y)uly)dy = 9(a). (4.1)

To this we apply the quadrature method (3.12). The resulting scheme is the localized
quadrature method of (2.5). We denote the matrix (or the discretized operator of the
quadrature method) by (A, )y € £ (SN(Rz)). With this notation the localization principle
for the quadrature method can be formulated as follows:

Theorem 4.1 Let us consider the quadrature method (2.5) applied to the singular inte-
gral equation (2.1) including the invertible operator A which is supposed to be a pseudo-
differential operator of order zero and to posses a symbol from the class S°. Suppose the
local operators A, are defined by the left-hand side of (4.1) and consider their quadrature
approzimation (A;)n of the form (8.12). Then the method (2.5) is stable if and only if it
is locally stable, i.e., if for any 7 € T'?, the quadrature operators (A,)n are stable.

The stability of the quadrature methods (A,)ny has been investigated in Section 3.
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4.2 Sufficiency of Local Stability

In this subsection, we prove the sufficiency of the local stability. We retain the notation
S¥ for the space of piecewise constant functions (cf. Section 2) and denote the orthogonal
projection onto S¥ by Ly. For the stability of the sequence of operators Ay it is sufficient
to prove a representation

ANBN = IN—I-DN—I-LNTCN s (42)

where Iy € L£(SY) is the identity, D || gsvy < %, the operators Oy, By € L(SV) are
uniformly bounded with respect to N, and T € L(Ly(T?)) is compact. Indeed, from
(4.2), we get
-1 -1
Aw|By(In + Dy) | = Iy + LyTCn(Iy + Dy) . (4.3)
and the stability of Ay follows from the following lemma and the strong convergence
AnxLy — A which will be proved in Section 5.

Lemma 4.1 (cf. e.g. [22]) Suppose A € L(Ly(T?)) is invertible and AyLy — A for
An € L(SY). Moreover, suppose Ex, Fy € L(SY) are sequences of uniformly bounded
operators and T € L(Ly(T'?)) 1s compact. Then

AnvEny = Iy + LNyTFn

implies that Ay s stable. The same conclusion holds if there exist more than one term

of the form LyT Fy on the right-hand side.

Let us derive (4.2). To get By, we introduce a finite set of points 7, € T2, k=1,..., M.
We choose cut off functions i, € C*(T'?) in the neighborhood of 74 such that

i) The values of ¥y, 1}, belong to [0, 1].
ii) There holds:

i € supp Yr C {t € T? : Y (t) = 1} C supp ¥y, Yy = Vx.

iii) Let f = 3™ 4. Then we suppose that f is a positive function with values less
than 4. Moreover, we suppose that, for any ¢, € %, there exist at most four
functions )} not vanishing at to.

We introduce the piecewise constant interpolation projector by

n—1
Kyh = Z h(tﬁf,lg)xﬁf,b'

11,lo=0

For a function g on 7', we set gy := Kyg|sv. In other words, the matrix of gy with
respect to the basis {x'} is

gn = (g(tfv)&,j)éfl

4,j=0

and we get (Yp)n(ve)y = (Yr¥e)n = (Yr)n. Using all these definitions, we choose the
matrix operator By for (4.2) as

14



M
By = ($x)w(By) " ($)w (F ),
k=1
where the operator BY is defined as BY = (A4,)n and (A4,)x is the localized quadrature
operator of Subsection 4.1 defined for a fixed 7 € supp ¥r. To explain the expression
(Yr)n (B%)™! (41)n, we note that, for fixed 7 = (71, 7h2) € T?, the torus 7? can be
identified with the periodic square

1 1 1 1
[Tk — §;Tk,1 + 5] X [Th2 — §;Tk,2 + 5]

and can be embedded into R2. The functions 1, 1} with

1 1 1

, 1
supp Yr, supp¢k C (71— §7Tk,1 + 5 X\ Tk2 — §;Tk,2 + 5

can be considered as functions over R2. If Ky stands for the interpolation projection onto
SY(R?) (We use the same symbol as for the corresponding operator on 7'2.), then we
can set hy = Knh|sn g2y for any function h over R2. In particular, we arrive at a second
definition for (¢%)y and (¢} )n. These different operators, one over T'? and the other over
R?, however, can be identified since for each piecewise constant basis function Xﬁ[,lz over
T? with supp Xﬁ[,lz N supp ¥r # 0 there exists a unique basis function X;Z[Jé over R? with
X;Z[,l; = Xﬁ[,lz over (Tx1 — %, Tk + %) X (T2 — %, T2+ %) Identifying these basis functions,
we can identify the two operators. In this sense the operator (B%)~! over R? multiplied

by (¢x)n and (1)n over R? can be considered as an operator (¢%)n (B%)™! (¢})n over
the torus.

We conclude

() (BR) " (i) (f )N

M=

ANBN = AN
k

An(h)y — (W) v An | ($e)n(BE) (@) (F )

1

I
M=

£
Il

1

+ 3 [N An($)n — () By (e)w | (BY) " ($)n (£

k

Il
—

_|_
M=

($1)n | B (¥r)w — (x)w BY | (BE) 7 (9w (f )

£
Il
-

($1)x (Ye)w By (Bx) ™ (¥ )w (S )

_|_
M=

£
Il
-

I
M=

An(h)y — (W) v An | () v (BE) @) (f ) + T

£
Il

_|_
Mz~

($1)n | B (¥r)w — (¥r)w BE | (BE) 7 (i (f v + In, (4.4)

£
Il
-

where

t

2
I
M=

[(%)NAN(%)N - (%)NBJI%(?/%)N](lefr)_l(%'c)N(f_l)N- (4.5)

£
Il
-
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The representation (4.4) will imply (4.2) if we can show :

a) The operator [AN(zﬁk)N — (¢k)NAN} is the sum of an operator LyTCy with T
compact and Cy uniformly bounded plus an operator Dy tending to zero in the
operator norm.

b) The operator (¢,'C)N{B]’f,(z/}k)N — (¢k)NB]’f,} is the sum of an operator LyTCy with
T compact and Cx uniformly bounded plus an operator Dy tending to zero in the
operator norm.

¢) The operator Ty of (4.5) has a norm less than any prescribed € > 0 if the 7, ¥k, ¥},
are chosen suitably.

It remains to prove a), b), and c). We start with a). Let us consider the kernel

k(z,y) = k(z,) [de(z) — ()], (4.6)

which is the weakly singular kernel of a compact integral operator 7' and which satisfies

|k(z,y)| < Clz —y|™ (4.7)
It is not hard to see that

An(r)v — (V) NAn =Tn = (if(t;vatkN)%)Jk
Consequently, it remains to prove that
| Txy — LnT|s~|| — 0. (4.8)
We put k=k'+ l~62,

B(ey) = kzy)x(z-y), Fly) = k@y)|[l-x(=z-y))],

where x* € C* is chosen such that supp x* C (—¢,¢) and x* = 1 on (—¢/2,¢/2) for a
prescribed € > 0. According to the splitting of the kernel, we get the splitting

T=T"+T°

Operator T2 has a smooth kernel. For (4.8) it remains to prove that

|(T?)w = LaT?|sn]| = 0, (4.9)
| LnT snl| < Ce, (4.10)
|| < ce (4.11)

where the constant C is independent of € and x*. Let us prove (4.9). Since T?: Ly, — C
is compact, since Ly, Ky : C — Ly are uniformly bounded, and since (Ky — Ly) tends
to zero strongly, the operator (Ky — Ly )T? tends to zero in operator norm. On the other
hand, for the quadrature discretization

) 1
T2 — (kz(tf,tkN)ﬁ)j,k,
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we obtain
KNT?|imzy — (T*)n = (b?k)Jk

For the difference of the entries, we conclude

\bfk\ = /k2 j »Y) Xk y)dy — kz(t;v:tkN)%‘
= | [ [P v - B, 8] )y
< /‘Xk (y ‘dy sup ‘kz J ,y)—icz(t;-v,tkN)‘.
Y€ supp X3

Since
(5 y) — B, 1) <

7

1
Yy — t;cv‘ S 06_7

n
we continue

Clj\ka J|dy < (Jl-i2

n
I ael < 0. &

k: |k|<n

S
w7
=
IN

<ol (4.12)

11
n n? n

N
S
ST
=
g
S
=
IN

This implies HKNT2|SN — (Tz)NH — 0 for any fixed € > 0. And, together with H(KN —
LN)TzH — 0, we obtain (4.9).

Let us turn to (4.11) and estimate the entries b}, = kl(t;v,tkN)/nz

1 1 1 . -
= — = if |j—k|<Ce-n
Bl| < o{tfﬁ*nz 7=k (4.13)

0 otherwise

Here € is the number used for supp x* C (—¢, €) in the splitting of k. By Young’s inequality
we conclude

|G| < ¢ X2 1l <ce (4.14)
n 17

Hence, (4.11) is proved. Relation (4.10) follows analogously if instead of the entry of the
discretized operator the kernel function of the integral operator T is considered. The
proof of (4.9), (4.10), and (4.11) finishes the proof of assertion a).

Let us turn to the proof of b). This proof, however, is completely analogous to that of a).
Indeed, instead of (4.6) we get

k(z,y) = ¥i(z)k(z, y) [¥r(y) — Pr()] (4.15)
which satisfies (cf. (4.7))

) Celz —y|™" if |y| <€
|k(z,y)| <4 0 if ¢ supp
Clz —y|™% else
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for sufficiently small € > 0. Since the support of ¢}, is compact, the integral operator with
kernel function (4.15) is compact. Using the function x*, we split T into T and T2, and,
analogously to (4.12) we arrive at

Cn™2 if |k|<e'n
Clk|™2 if |k| > e !n,

|| < Cntre Y bt < Gt Ce

gk |E[>e—in, j<2n

Bl <

Thus we obtain ||(T?)y — LyT?|snmz)|| < Ce for sufficiently large n. Similarly to (4.13)
and (4.14), we get

C|jik|% if |j—k|<Ce-n, |kl<e'n
by <
55 - Clk|™2 if |k| > e 'n,
0 if |7 —k| > Ce-mn,
|(B50)ik| < cetc 3 k|-* < Ce+ Ce.

7.k: |k|>e 1n, j<2n
This means || LyT"|sngrz)|| < Ce and all these facts together prove that b) is valid.

Now let us prove assertion c). We consider a vector £ = (§;)75, ! and arbitrary matrices
F%. Then we get

IN

M 9 M )
DTS {CAIYS W (CAN TR

M 2 2
< 0% @ mhwin] Jodwe]

2 M 2
< C suwp H(%)NF}G(%)NH I;H(XZ)MH

< ¢ swp |@wEEwN] ¢ (4.16)

k=1,...,.M

Here x;}, denotes the characteristic function of the support of ; and satisfies the relation
(Yp)n(xi)n = (Ypxe)y = (¥1)n. Moreover, the estimates corresponding to the second
and last line of (4.16) are correct since, for each 7 = (J1,72) with 0 < 71,72 < n —1, there
exist at most four vectors (¢} )nFi(;)n€ and at most four (x})n€ such that the j-th
component does not vanish (cf. condition iii) for the definition of the ;). Hence,

M
| > (W PR w| <0 swp WiwFR |

and, choosing

Fly = [(xk)vAn(e)w — (xk)v Bl (i) | (B) ™ (F ),

we arrive at

< 0 s |[(WiwAn(ely — (S B (b (B (8w (7|

k=1,...M
< C supM H(q/)k)NAN(i/Jk)N - (7/Jk)NBN (73 NH
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It remains to prove that [(1/},’6)NAN(¢;C)N — (¢,'C)NB§,(¢;C)N} is small provided that the
supports of 15 and v; have a small diameter.

First we consider the case that A is a multiplication operator. We get

()N AN () — Bw By (e)v] = [(Wh)vaw($e)w — (k) (a(m))w($e)w]
= (et )la(t] ) — alr)16is),
| [w An(i)w — (Wh)NBi(e)n ]| < € sup () — a(r)].

tEsupp ¥y

Since 7 is taken from supp ¥y too, we obtain that [(1/},’6)NAN(¢;C)N — (¢,'C)NB§,(¢;C)N} is
small for ¢, with sufficiently small support supp ¥%.

Now, in the second case, suppose that operator A is an integral operator with bounded
kernel function kg. For this A, the localized operator A, is zero. Thus BY = 0 and we
have to prove that (¢, )nvAn(¢k)n is small provided the functions g, ) have supports
with sufficiently small diameter. However, due to the quadrature weight n=2, each entry of
(Y1) v An(¢r)n is less than Cn~2. The dimension of the non-zero part of (¢} )vAn(¥r)n
is less than [én]? if the diameter of the supports supp v and supp v is less than §.
Consequently, Young’s inequality implies

H(%)NAN(%)NH < Y cn?<0oéf
e Z2: |I|<én
and [(¢L)NAN(¢k)N - (¢IIC)NB§/(¢1¢)N} is small for a small diameter ¢ of supp ¥ and
supp Py

In the third and last case we suppose that A is the singular integral operator with kernel
ks. Moreover, we may assume that

m JE—
ks(z, 2 —y) = b(2) f(—)|e — y| 2 (4.17)
|z —y]
Indeed, the characteristic f(z,z —y) = |z — y|*ks(z,z — y) is a smooth function for a

pseudo-differential operator with a symbol from the class S°. We can approximate f in the
Lipschitz norm by the truncated trigonometric series with respect to the second variable
z = z —y. The singular integral operator and its quadrature discretization corresponding
to the approximated characteristic are close to the original singular operator and its
quadrature discretization (cf. [5, 6] and Lemma 5.1 for the discretized operators). Hence,
we can replace A by the operator corresponding to the truncated trigonometric series
of its characteristic and can treat each term of the sum separately. This way we arrive
at kernels of the form (4.17). However, operators with kernel (4.17) are products of a
multiplication operator (multiplication by b) and a convolution operator G with kernel

=Yy —2
flg—ale —3l (4.18)

Similarly, Ay is the product of the diagonal matrix by (discretized multiplication opera-
tor) and the discretized convolution operator Gy, and B¥ the product of b(7)Iy and G%,
(discretized convolution operator over R?). We conclude

(V)N An(r)w — () v BY (i) w
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= (Y1) vbnGn(Pr)y — () vb(T) InG (1) v
= [@iwbn(Xi)n — (G wb(T) In(xe)w | G ()n

+H(h)wb(7) In [ (Xk)NCN ()N — (kNG (B)n ], (4.19)

The last bracket is zero since the kernel of the frozen operator with kernel (4.18) is the
same as (4.18). The first bracket on the right-hand side of (4.19) is small by the proof for
the case when A is a multiplication operator. This completes the proof of assertion c).

4.3 Necessity of Local Stability

Suppose { Ay} is stable and fix a 7 € T'2. We have to show that (A,), i.e., the quadrature
operator (A,)y for N =1 is invertible. We shall show that {Ax} can be considered as a
stable and convergent approximation method for operator (A,); which implies that (A,);
is invertible. In order to simplify the notation we suppose 7 = (0, 0).

In the previous subsections we have identified the operator (A, )y € ,C(SN(Rz)) with its

matrix. Now we consider (A4,)n = (4,); to be the fixed matrix operator acting in l(Z?).
For the identification of Ay € £(SY) with its matrix, we introduce the isomorphism of
S¥ and the finite ly-space explicitly. We consider the set

Zy ={leZ: -

and introduce Ey : lo(Z%) — SN by

EN(fl)leZ,%, = Z & va-

lezy

Clearly, Ex is invertible. To each operator By € L(S") there corresponds the matrix
operator BY := Ey'ByEy, ie., BY is the matrix of By with respect to the basis {x :
l € Z3%}. Moreover

HBNHL(SN) - BNHE(lz(Z?v))'

Now l5(Z%) can be embedded into l5(Z?) by identifying l( Z%) with

{(&) ez € L(Z?) : & =0 for l € Z*\Z3}.

We denote the orthogonal projection from ly(Z?) to I,(Z%) by Py. Clearly, Py tends
strongly to the identity operator in {?(Z?). Thus we can consider the operator Ay €
L(¢mPy) corresponding to our quadrature operator Ay as an approximate operator for

(A;)1 € L(12(Z?)). We shall prove that
ANPN — (AT)17 A}VPN — (AT)I (420)

is true in strong operator topology. If this is done, then we conclude from the stability
|A5'|| € C (which means also ||Ay'|| < C) that

|| = Jlim |Awpue]| > Yim 07| Pae] = 07l (421)
lanie] > cjel (4.22)
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holds for any ¢ € l,. Relation (4.21) implies that (A,); has a trivial null space and that
the image space of (A,); is closed. The inequality (4.22) proves that the kernel of (A,);
is trivial, i.e., the cokernel of (A,); is trivial, too. Hence, (A;); is invertible. It remains

to show (4.20).

To prove the strong convergence we use the Banach-Steinhaus theorem. The uniform
boundedness of the operators Ay (and hence also of the Ay) will be proved in Lemma
5.1. Thus it remains to prove that, for any fixed e,, = (0;m);cz2,

AnPyen — (Ar)1em , A}VPNem — (A;) em. (4.23)

Moreover, the adjoint matrices A%, (A,)* are of the same structure as Ay, (A,); since
they correspond to the adjoint singular integral operators. In other words, we only prove
the first part of (4.23). We observe that, for any cut off function ¢ which is equal to one
in a small neighborhood of 7 = 0, there holds

1/;Nem = (1/J(t§y)5i,j)em = ¢(tﬁ)em =en

for sufficiently large N. We introduce a cut off function ¢’ such that

suppp C{te T :9' =1}

and write (Recall that the matrix (A,)x is independent of N.)

AnPyen = (Ar)iem + (7/35\7 - jN)(AT)N,l;ZNem
+ [%vANiN - 1/;§V(AT)N1/;N} Dnem + (jN — 1/35\7) Axdnen.

The third term on the right-hand side is small if 1 and ' are suitably chosen. Indeed,
the corresponding operators without the tilde have been shown to be small in the proof
to assertion c) in Subsection 4.2. The smallness of the second and of the last term follows
from the next lemma. In other words, for any € > 0, we can choose appropriate i and 9’
such that

<e

2

HANPNem — (AT)lem I

for N sufficiently large. Thus ANPN — (A,); and the necessity is proved.

Lemma 4.2 Suppose that
suppyp C {z € Z®:|z| <&} C {zecZ?: |z| <&} C {zecZ®: Y (z)=1},
where 0 < §; < 85 and &5 is much larger than é;. Then we get

o1

|y — In)(Ar)webw|| < Cg—:, |G — D) Awen| < OF- (4.24)

Proof. Let us consider the matrices of (¢¥x)n, (¥;)n, (A-)n with respect to the basis
{xVN :le Z*}. We get

(Adw = (bis), g Widv = (ei6i), g Iv— W)y = (&), o0
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where obviously

bs| < O -t 5 < Clim
o < 1 if tN € supp s <1 if |¢/n| < 6,
al = 0 if t ¢ supp i 0 else,
) < 0 if ¢/n| <&,
= 1 else.

Consequently, the norm in the first part of (4.24), i.e., the l; matrix norm of the corre-
sponding matrix with respect to the basis {x} : I € Z?} is less than the norm of the
matrix Ey Fy, where

0 else,

Cli—3™2 if|s—7]> (-6
En = (eij)ijeme, e'i,jzez'_j:{oh Il if o = 5] 2 (2 1)n

Fy = (fiy) € Z*, fi= {

else.

Applying En to a vector ¢ = (&)icz2, we get from Young’s inequality

[Ene|, < [ X cril el < [ —8n] Yl

4[> (82—381)n

Now we use the Cauchy-Schwarz inequality to get

|ExFxe], < Cl@&—bn] |Fng], < Cl&-d)n] " ¥l
] <é1m
< Cl&-am” [ 1Y ap.
l{{<éin | [i]<éin
Consequently,
41 )

|EnFue], < 5 |BnEn| < 0575 < 0%

The second estimate of (4.24) follows analogously. o

5 The Convergence of the Quadrature Method

This section is devoted to the convergence of the quadrature method. We shall show that
the discretized operator Ay is uniformly bounded with respect to N. Using a Banach-
Steinhaus argument, we shall prove the strong convergence of the discretized operator
AnLy to the singular integral operator A. This together with the stability implies the
convergence of the quadrature method.
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Theorem 5.1 (c¢f. e.g. [28]) Suppose the quadrature method (2.5) applied to (2.1) is
stable and that the discretized operator AyLy corresponding to (2.5) converges strongly
to the operator on the left-hand side of (2.1). Then the method (2.5) is convergent, i.e.
for any right-hand side g such that

n—1
Y gty XY, — gl — 0,

J1,32=0

the equation (2.5) has a unique solution uy if N is sufficiently large, and uy tends in L,
to the ezact solution u of (2.1).

Now let us turn to the boundedness of the discretized operator Ay defined in Section 3.3.

Lemma 5.1 There exists a constant C independent of N and of the operator A defined
on the left-hand side of (2.1) such that the Ljy-operator norm of Ay (or equivalently the
ly-matriz norm of Ay ) is bounded as

|An] < C{llAlleczamn) + allzwim) + 11l + Rl otz
Here the Lipschitz norm ||f||Lip of the characteristic of kernel kg is defined by

z.0)— f(z'. 8 z.0)— flz. 6
Wl = [fllee + sup H@O=FEOL 0 o 1f(2,60) = f(z,6)]

2o € T |z — ' 6.6 c 5 |6 — 6]
2 4 0 +6
6cst z € T2

Proof. Let us consider the Galerkin method where the trial space is spanned by the
orthonormal basis {nxY : ki,ky = 0,...,n — 1}. For the entries afk of the Galerkin
matrix A§ we get

iln iln k/n

aSe = (Al ) = Siun? [

z,z —y)dzdy.
(G-1)/n

a(z)dz + nz/ k(
(3=1)/n J(k=1)/n
We denote the corresponding entries of the matrix Ay for the quadrature method by a,.

Since

1AV = | Ly Alimzll < AL,

we only have to show

| (@5 = a§)is] oy < {1 N2io + lallzes + [Erllz.. | (5.1)

Moreover, since the boundedness proofs for the multiplication operator and for the integral
operator with bounded kernel function kg are straight forward, we suppose a = 0 and
kr = 0. We shall estimate (a;; — afk)j,k in two steps. First we shall derive a bound
for the matrix with all entries corresponding to the indices i,j such that |¢ — 7| > 2 (“off
diagonal” entries) and later we consider the matrix with the entries such that |z — 7| <2
(“almost diagonal” entries). Let us estimate the “off diagonal” entries.
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If we put z = 2 149 y= %—I— 6 = (0:1,6>), and v = (v1, 1), then

sl - [
k(; +0,%+0— (§+y))]d0dzj\.

Puttingl =7 — k, and A = 0 — v we get

‘/ / /(:2__/: [ l—l—kl

—k(ﬂ 04 A, i + A)]dAdH‘

[ 61
< / / / / [Ty + T3] dAdd, (5.2)
92—— 6, —

G
‘aj,k - a’j,k‘

T, = \k(ﬂ+6+A l)—k(ﬂ+0+A i+A)
o= k(R D k(R0 D)
For T, we get
(R e, l)_k(ﬂwH )
<[r(EE m—f(ﬂwe ) ]
‘(L v+ 0 W) b~

Il/ E \f(”k +>\,£)—f(ﬂ+6+>\i+>\)‘ (5.3)

The function f is bounded and

’)’L2

_ < O
e e < O

(5.4)

Since f satisfies a Lipschitz condition with respect to the second variable, we find for the
second term on the right-hand side of (5.3)

I+k l I+k l I/n I/n+ ) C
‘f(—+>\+0 —)—f(—+>\+6 +2)] < C‘|l/n|_|l/n—|—)\|‘ < (5.5)
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Substitution of (5.4) and (5.5) into (5.3) provides us with |Ti| < Cn?|l|=3. For T, we
arrive at

4k Iy d+k z Lik 1y oLtk z
F() ~R(m oA )] = |l/n|2‘f( Il G LR |
1 1 n?

Substituting the estimates for 77 and T3 into (5.2), we obtain

G 61 6 pt 1
jaje —afy| < C/ / /61__/ WHdA<CW.

Young’s inequality implies for the “off diagonal” part of Ay — A% that

H(aj,k - ajG,k)ikHL(lg(ZZ)) : CIEEZ:Z {1+ |l|}3 B

On the other hand, let us turn to the “almost diagonal” entries. For the Galerkin matrix
A$ we conclude

a8k < [(@50)ik] p, ey = 14F] = 1LaAL|| < CllA] < C.

For the “almost diagonal” entries of the quadrature method, we get

#ks(i k)t k>0

n'mn
0 if 7==%F.
Ifl=7—k #0, then we obtain

l—2

n

2 < e

v lagel < i

11
k = Ef(;:;)

Hence, each “almost diagonal” entry [a;z — a x| is bounded. Consequently, the “almost
diagonal” part of Ay — A% is bounded, too. o

Lemma 5.2 Suppose that the operator A given by the left-hand side of (2.1) is a pseudo-
differential operator of order zero with a symbol from S°. Moreover, let Ay stand for the
discretized quadrature operator of (2.5). We suppose that (2.9) is satisfied. Then AyLyu
tends to u in the Ly-norm for any u € Lyo(T?).

Proof. In Lemma 5.1 we have shown that Ay is uniformly bounded. Hence, in view
of the Banach-Steinhaus theorem, we may suppose that f is smooth and have to prove
|AnLnf — Af|| — 0 for any smooth f. Since f is smooth, Ky Af tends to Af if Ky is
the piecewise linear interpolation projector. It remains to prove ||AxLyf — KnAf|| — 0.
Moreover, since Ky f — f and since Ay is bounded, we conclude AyLyf — ANKnf —
0. It remains to prove ||AvKnf — KnAf|| — 0. This, however, is a consequence of
|AnKnf — KNAf||L., — 0 which is equivalent to

sup | Aw K f(1) = Af(¢)] = 0. (5.7)

Now we study the difference Af(¢)) — Ay Ky f(¢)) in three cases :
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1) A is a multiplication operator
2) A is an integral operator with a continuous and bounded kernel kg

3) A is the singular integral operator with kernel ks.

Case 1) is very simple since Af(tN) = Ay Ky f(t)) holds for multiplication operators. The
assertion for Case 2) is well known, too. Indeed, the quadrature rule used for Ay Ky f(tY)
has non-negative quadrature weights. Hence, it converges on continuous functions and
even uniformly over the compact set of functions y — kr(z,y)f(y). It remains to consider

Case 3).
The difference Af(tN) — Ay Ky f(tN) takes the form (cf. Section 2)

AF() — AnEnS) = [ k(6 —y)[() - ST (59
X k(e A~ ) = T T
LA
T = [y B =) ) — AT (59)
1

= 20 k(L =) - FED

LIt [ >e
17 = [ kO ) ) — SN (5.10)
SR ks = - S,

L i, [tN—tN|<e

where the number € stands for a fixed positive real, and B(tY,€) C T'? is the ball with
center ¢tV and radius €. In a minute we will prove that 72 — 0 for € — 0. On the other
hand, the integral in T is regular for fixed € > 0. Thus the same arguments as for Case
2) imply T* — 0 for N — co. We conclude T, 7% — 0 for N — 0, and, using (5.8), we
get (5.7). It remains to show T2 — 0 for € — 0.

We estimate the two terms in (5.9) separately. For the integral, we get

| B =) = ST < [ cl -y < ce

The quadrature sum can be estimated as

S ks, ) - fE S| < -

n
L, [N -t | <e

> i -7 < Ce

I: 141, |l—i|<en

Hence |T?| < Ce and T? — 0 for € — 0 is proved. o

6 Numerical Tests

In order to check the convergence properties of our quadrature method, we consider the
following oblique derivative problem. We define the two-dimensional surface S by the
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parametrization

S = {é(s,1),0<s,t <1}, (6.1)
#(s,t) = ( [2 4 cos(2ms)] cos(27t) , sin(27s) , [2 4 cos(27s)] sin(27t) )
Clearly, S is homeomorphic to the torus. The space R*\S is the union of the bounded

ring shaped domain 2_ and the unbounded exterior domain 2. For this domain €2, we
solve the oblique derivative boundary value problem (cf. [18])

AV = 0 in Q (6.2)
%V:gonS:(?Q, f: §=00 — R (6.3)
The oblique direction vector f(P) is defined as
1

where n(P) is the normal vector of unit length at P € S pointing into _. We represent
the unknown potential V' in the form of a Newton potential

Va(P) = i/s Ilf(—Qé?I doS, (6.5)

where z(Q) denotes an unknown single layer surface density. We apply the boundary
operator of oblique derivative, and, with the well-known jump relations for the Newton
potential, we obtain the boundary integral equation

o(P) = %(V@(P)
1

1 Py — P
= _§<f(P)7n(P)>m(P)_E/Sf( ) (Q )

P - QP

This is a strongly singular integral equation of the second kind for the unknown function
z(Q). Using the parametrization ¢, we transform (6.6) into (1.4), where the kernel takes

the form
_ [((t) - (8(s) — ¢(2)) | g,

z(Q) dgS.  (6.6)

and where
¢'(s)] = [0s,0(s) x Os,d(s)]

is the density of the surface measure. Note that operator A is strongly elliptic since
(f,n) > 0. Moreover, the singular part kg of the kernel is a Mikhlin-Giraud kernel, i.e., it
satisfies (2.9). This equation (1.4) is solved numerically by the quadrature method (2.5).

Before we solve the linear equations, we check whether the quadrature approximation
of the singular integral operator converges. For this purpose, we consider the singular
integral

v(P) = —%<f(P),n(P)>w(P) + i/s <f(|];)7_PQ_|3Q>

w(gp(t)) = sin(27ty)sin(27nty), t= (t1,t2) € [0,1]?
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together with its approximation vy given at the grid points ¢; =¢; j, by

vy (B(25)) == "i a;xw (P(tr)),

k1 ,ko=0

where Ay = (a;k);x is the matrix of the quadrature method. For several n = n; = 2! and
N; = n?, we compute the Ly,-Norm error

1 nl—l

||UNL — UNip || = n_l Z |UNL(¢(tj)) - UNL+1(¢(tj))|2

J1,32=0

and the approximate convergence order

— 1Og ||UNL — UNip || - 1Og ||UNL—1 - UNLH
M log 2 '

The results are presented in Table 1. It turns out that the approximate operator Ay
converges with order 1.

n; | Degrees of Freedom: N; | |lvy, —vn,, | | an,
4 16 | 5.35-1072

8 64 | 2.00- 1072 1.42

16 256 | 8.48 - 1073 1.24

32 1024 | 4.16 -1073 1.03

64 4096 | 2.08-1073 1.00

128 16384 | 1.04-1073 1.00

Table 1: Approximation order of the quadratures

The discretized operators are stable by the Theorems 3.1 and 4.1. Stability means that
the matrices Ay together with their inverses Ay' are uniformly bounded with respect
to N. Though we have not computed the Euclidean matrix norms of Ay and Ay, we
have an indicator for the uniform boundedness. Normally, for bounded norms || Ax|| and
| A5']|, the iterative solution of the matrix equation requires a number of iteration steps
which is bounded independently of N. In Table 2 we present the number of GMRES
iterations (cf. [30]) necessary to achieve an error less than 107'2. Indeed, these numbers
seem to grow very slowly.

g N; | Number of GMRES iterations
2 4 4
4 16 12
8 64 22

16 | 256 25

32 | 1024 28

64 | 4096 32

Table 2: Numbers of GMRES iterations

Next we compute an approximate solution from solving (2.5). After determining the
solution uy of the quadrature method at the grid points ¢;, j;,, 71,72 = 0,...,n — 1, we
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compute an approximate solution Uy for the Laplace equation by discretizing the single
layer representation (6.5).

U(e) ~ Une) = oy > sy ) (6.8)

47r nz ]1 _72 =0 |¢( .71 .72) |
In our first example, we take a known solution of (6.2), (6.3) given by
U(p)=|P- (27070)|_1' (6.9)
The oblique derivative is given by
P)=—=U(P
g( ) af ( ) |(27070)_P|3

For this right-hand side g, we have solved the quadrature equations (2.5) and computed
the L, errors

(6.10)

1 nl—l
lum, = um |l = — | D2 luw, ((t5)) — umiy, (6(25) 17
T\ 51,52=0
and the approximate convergence orders
B L 1Og ||u’Nl — UN;, || — 1Og ||u’Nl—1 — u’NlH
N log 2 '
g

Moreover, we have computed the approximate values Uy(P) for P = (1,0,0) and P =
(0.3,0.2,0.1), the relative errors |Uyx(P) — U(P)|/|U(P)| with U(P) from (6.9), and the

approximate convergence orders

log |Uw,(P) — U(P)| — log |Un,_, (P) — U(P)|
log 2 '

TN, =

The numerical results are presented in the Table 3. They show that our quadrature
solutions converge to the exact solutions. The convergence orders are close to one.

™ Ni | luw, — UNyys || Bm, |UNL(|U)(P)[|](P)| TN, |UNL(|];])(P)[((P)| TN,
P =(1,0,0) P =1(0.3,0.2,0.1)

2 4 1.49 1.95

4 16 | 0.87 0.0032 8.88 | 0.79 1.32

8 64 | 0.13 2.69 | 0.22 -6.12 | 0.13 2.62
16 | 256 | 0.04 1.76 | 0.16 0.49 | 0.028 2.24
32 | 1024 | 0.019 1.09 | 0.08 0.98 | 0.013 1.12
64 | 4096 | 0.01 0.81 | 0.04 1.00 | 0.0063 1.00

Table 3: Convergence of the quadrature method for g(Q) = %K) —(2,0,0)|*

In a second example we consider an oblique derivative g for which the exact solution is
unknown. Since our quadrature method is a low order method, we choose g with a low
degree of smoothness. In particular, we have taken

n(@s,0) = {

1 ifs<%
0 else,

29



Note that g € H?(s) for o < 1. Instead of the error |Un,(P) — U(P)|/|U(P)| we now

compute the error |Uy,(P) — Un,,, (P)| and the corresponding convergence rates

1Og |UNL(P) - UNL+1(P)| - 1Og |UNL—1(P) - UNL(P)|

om = log 2

i

The numerical results are presented in Table 4. They show that our quadrature method

converges with order one even for solutions with low degree of smoothness.

n | N | |Un(P) = Un,,, (P)| | 6w,
214

4116 0.53

8 | 64 0.59 -0.14
16 | 256 0.31 0.93
32 11024 | 0.13 1.35
64 | 4096 | 0.049 1.30

Table 4: Convergence of the quadrature method for g; and € = 0.5 at P=(1,0,0)
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