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Abstract

In this paper we apply a quadrature method based on the tensor product trape-

zoidal rule to the solution of a singular integral equation over the two-dimensional

torus. We prove that this method is stable if and only if a certain numerical symbol

does not vanish. For a special kernel function, we present a plot of numerically com-

puted symbol values and, for symmetric kernels (Mikhlin-Giraud kernels), we show

that the symbol is di�erent from zero if the singular integral operator is invertible.

Finally, we prove the convergence of our method and present numerical tests.

1 Introduction

In the last two decades a lot of problems in elasticity, 
uid mechanics, acoustics, optics,

electrostatics, and other �elds of engineering have been tackled by boundary element

methods (cf. e.g. the overview articles by Mazya [15] and Wendland [36]). These methods

include the analysis of strongly singular boundary integral equations

~A~u = (~aI + ~K)~u = ~f; (1.1)

where ~aI stands for the multiplication operator

(~aI)~u(s) : = ~a(s)~u(s) (1.2)

multiplying by a real valued function ~a and ~K for the integral operator

( ~K~u)(s) : =

Z
S

~k(s; t)~u(t)dtS (1.3)

over the boundary manifold S. We suppose that the kernel k(s; t) is strongly singular

(cf. Section 2). This means that the integral in (1.3) is to be understood in the sense

of a Cauchy principal value. In order to get the unknown function ~u we solve (1.1)

numerically. Originally, in the boundary element method this was done by a �nite el-

ement discretization of (1.1). However, nowadays p- and h-p-methods, collocation, and

quadrature schemes are popular as well. Several monographs are devoted to the study of

Equation (1.1) and its numerical solution. Let us mention here e.g. the books written by

Mikhlin, Pr�o�dorf [16], Mikhlin, Morozov, Paukshto [17], Muskhelishvili [19], Pr�o�dorf,

Silbermann [28], and Parton, Perlin [20].

The main objective of this paper is to analyze quadrature methods for the numerical

solution of singular integral equations over two-dimensional boundary manifolds and to

prove convergence results similar to those known for collocation. Note that using the

concept of strong ellipticity (cf. Stephan and Wendland [35]), the analysis of Galerkin

methods for strongly elliptic singular integral equations is easy. The realization of these

Galerkin schemes, however requires the computation of two-fold integrals over the bound-

ary and, thus, is very time consuming. To reduce these e�orts, collocation methods are

applied. In contrast to their successful implementation, the convergence analysis is done

for very special situations, only (cf. Pr�o�dorf and Schneider [26]). Moreover, the colloca-

tion still requires the computation of singular integrals, which is accomplished by using

quadratures. The advantage of quadrature schemes in comparison to Galerkin and col-

location methods is that all the integrals are discretized within one discretization step,
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i.e., quadrature methods are so-called fully discrete schemes. The corresponding number

of quadrature knots and therewith, the computation time is much less than for other dis-

cretization schemes. The draw back of the quadrature methods is the larger discretization

error. Hence a quadrature method could be a good choice if the convergence of Galerkin

and collocation schemes is slow due to the lack of smoothness of the right-hand side and

the underlying manifold. Moreover, low order quadrature methods can be considered as a

starting point for an analysis of higher order fully discrete methods with minimal numbers

of quadrature points. We expect that the optimal methods are slight modi�cations of our

quadrature methods.

The theory of one-dimensional spline collocation has been established by Pr�o�dorf and

Schmidt [24, 25], Arnold and Wendland [1, 2], Saranen and Wendland [31], and Schmidt

[32, 33]. In the end of the 80-ies Hsiao, Pr�o�dorf, and Schneider started to generalize these

results to the case of multi-dimensional pseudo-di�erential equations. Unfortunately, the

technique of Arnold and Wendland [1] could be generalized only by a di�cult technical

modi�cation (cf. Hsiao and Pr�o�dorf [13]). The techniques of Fourier analysis (or circulant

techniques) take over to the multi-dimensional case if the underlying manifold is a torus or

an open subset of the plane (cf. Pr�o�dorf and Schneider [26, 27]). Note that the restriction

to the arti�cial torus manifold means the following: The stability of collocation is a local

property. Collocation is stable if and only if it is locally stable in the neighborhood of

any point of the underlying manifold. The problem of local stability, however, is solved

only for points where the mesh is regular, i.e., close to a rectangular mesh over a torus.

E.g., if we consider a sphere and take a partition along the lines of constant longitude

and latitude, then the resulting grid is regular at any point except the two poles. In

other words, the local stability problem is solved at any point of the sphere but the poles.

The local stability near the poles is not solved yet. Further investigations for collocation

methods are due to Costabel and McLean [8], Dahmen, Pr�o�dorf, and Schneider [9], and

Hagen, Roch, and Silbermann [12]. Note that the authors of [9, 12] have even dealt with

wavelet collocation methods.

Similar to the analysis of collocation, we have to restrict our consideration for quadrature

methods to the special case that the underlying manifold is di�eomorphic to the torus.

Suppose

� : [0; 1]� [0; 1] ! S

is a parametrization of S which is 1-periodic in each argument. Then Equation (1.1) takes

the form

Au(s) := a(s)u(s) +

Z
[0;1]�[0;1]

k(s; t)u(t)dt = g(s); s 2 [0; 1]� [0; 1]; (1.4)

where

a(s) = ~a (�(s)) ; g(s) = ~g (�(s)) ; u(s) = ~u (�(s)) ; (1.5)

k(s; t) = ~k (�(s); �(t)) j�0(t)j:

Discretizing (1.4) with the help of the trapezoidal rule

Z
[0;1]�[0;1]

'(t)dt � 1

n2

n�1X
i;j=0

'(
i

n
;
j

n
); (1.6)
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we arrive at the quadrature method

a

�
(
i

n
;
j

n
)

�
un

�
(
i

n
;
j

n
)

�
+

1

n2

n�1X
k; l = 0

(k; l) 6= (i; j)

k

 
(
i

n
;
j

n
); (

k

n
;
l

n
)

!
un(

k

n
;
l

n
)

= g

�
(
i

n
;
j

n
)

�
; i; j = 0; : : : ; n � 1: (1.7)

Note that this method can be derived using the so-called singularity subtraction technique

if the kernel function satis�es certain symmetry conditions (cf. Section 2). Only if this

symmetry assumption is ful�lled, then (1.7) can be convergent. If the assumption is

violated, then (1.7) needs to be modi�ed.

For the quadrature method (1.7), we �rst investigate the stability, i.e., we check if the dis-

cretized integral operator is invertible and if the inverse discretized operator is uniformly

bounded for su�ciently small mesh size 1=n. Note that stability of the quadrature method

implies that the linear systems arising after discretization are well conditioned and that

the convergence order of the approximate solution is the same as that of the quadrature

rules. In analogy to the collocation, it turns out that stability is a local property. This

means, the quadrature method (1.7) for A in (1.4) is stable if and only if it is locally

stable (cf. Sections 3 and 4) at any point of the boundary S. The local stability at a

given point t on S, however, is the same as the stability of the quadrature method to a

convolution operator de�ned over the tangent plane, if this convolution operator coincides

with A in the neighborhood of t. In other words, it is su�cient to consider the stability

of quadrature methods applied to singular convolution equations over the plane. The dis-

cretized convolution operator turns out to be a discrete convolution matrix. Its stability is

determined by the generating symbol which is called numerical symbol of the quadrature

method. As the �rst main result of this paper we prove that the numerical symbol is

bounded (cf. Proposition 3.2). It is invertible (cf. Theorem 3.1) if a simple symmetry

assumption for the kernel k(s; t) is ful�lled. Thus we derive a su�cient condition for the

local stability. As the second main result we show that quadrature method (1.7) is stable

if and only if it is locally stable (cf. Theorem 4.1), i.e., if and only if the numerical symbol

does not vanish over S. Unfortunately, the values of the numerical symbol are given in

form of an in�nite sum and can be computed by numerical methods, only. We give one

example for such a numerical computation (cf. Subsection 3.2). However, for the spe-

cial case of the integral operator corresponding to the oblique derivative boundary value

problem (cf. Section 6 and [18]), the su�cient condition for the local stability is ful�lled

and global stability can be proved. The third main result (cf. Theorem 5.1) concerns

the convergence of the quadrature method (1.7). Using the just established stability, we

prove that, for any Lipschitz continuous right-hand side f , the solution un of (1.7) tends

to the exact solution u of (1.4) in L2, i.e.,

1

n

vuut n�1X
i;j=0

����un
�
(
i

n
;
j

n
)

�
� u

�
(
i

n
;
j

n
)

�����
2

! 0:

To con�rm the theoretically obtained results, we present some numerical tests in Section

6. We consider the singular integral equation corresponding to the oblique derivative

boundary value problem for Laplace's equation on an unbounded domain with a boundary
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manifold di�eomorphic to the torus. For this equation, we present the approximation

errors of the quadrature method (1.7).

2 The Quadrature Method over the Torus

Collocation methods and Galerkin methods are so-called semi-discrete schemes. In fact,

to compute the integrals contained in the de�nition of the matrix entries one has to apply

analytic formulas or quadrature schemes. We now like to give the quadratures in an

optimal way (minimal number of quadrature knots) and to perform the stability analysis

for the quadrature algorithm simultaneously. This can be done by considering quadrature

discretization schemes right from the start. In the case of one-dimensional singular integral

equations this is done by Belotserkovski, Lifanov, Pr�o�dorf, Rathsfeld, Sloan, Silbermann

[3, 23, 29, 28]. We shall try to generalize these results to two dimensions.

Let us consider the singular integral equation (with a classical pseudo-di�erential operator

of order zero corresponding to the symbol function �A(x; �) 2 S0, cf. e:g. [7])

Au(x) = a(x)u(x) +

Z
TT 2
k(x; y)u(y)dyTT

2 = g(x); x 2 TT 2 (2.1)

over the torus TT 2 := R2=ZZ2, where

k(x; y) = kS(x; x� y) + kR(x; y): (2.2)

Here kS(x; x� y) is de�ned by

kS(x; z) =

Z
R2
�A(x; �)e

iz��d�: (2.3)

We may suppose that �A is a positive homogeneous function in � of degree zero with

�A 2 C1(TT 2�R2nf0g) and that the kernel kS satis�es the following conditions :

a) kS(x; z) 2 C1(TT 2�R2nf0g).

b) kS(x; tz) = t�2k(x; z), t > 0, x 2 TT 2, z 2 R2nf0g.

c)
R
S1 kS(x; z)d�(z) =

R 2�
0 k(x; ei�)d� = 0, x 2 TT 2.

The additional kernel kR(x; y) is supposed to be continuous and to generate a compact

operator. (Note that, for a general classical pseudo-di�erential operator of order zero,

the kernel kR is weakly singular only. The corresponding operators and discrete operators

should be treated in a similar manner as the singular operators. For the sake of simplicity,

however, we suppose kR to be continuous). The integral in (2.1) is to be understood as

Z
TT 2
k(x; y)u(y)dyTT

2 =

Z x1+
1
2

x1�
1
2

Z x2+
1
2

x2�
1
2

k(x; y)u(y)dy1dy2

= lim
"�!0

Z
y: "�jx�yj

k(x; y)u(y)dy:
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For the computation of an integral over the square, we choose the tensor product trape-

zoidal rule. Setting N = n2 with n even, m = (m1;m2), and tNm1;m2
= (m1

n
; m2

n
) and

assuming x = (x1; x2) = tNk = tNk1;k2, we write

Z x1+
1
2

x1�
1
2

Z x2+
1
2

x2�
1
2

h(y)dy1dy2 � 1

n2

X
l

0

h(tNl ) :=
1

n2

8<
:

k1+
n

2X
l1=k1�

n

2

k2+
n

2X
l2=k2�

n

2

h(tNl1;l2)!l1;l2

9=
; ;

!l1;l2 :=

8><
>:

1 if jl1 � k1j < n=2; jl2 � k2j < n=2

1=4 if jl1 � k1j = jl2 � k2j = n=2

1=2 else.

(2.4)

Note that TT 2 is the tensor product of the periodic interval [0,1] by itself. In this sense we

get tNl1�n;l2 = tNl1;l2 = tNl1;l2�n. To set up a quadrature method for solving (2.1) numerically,

we consider (2.1) at x from the set of collocation points ftNk1 ;k2g and replace the integration
by the corresponding quadrature rule (2.4). Since the value k(x; x) is in�nite, we have

to modify the quadrature. We do this by dropping the term in the quadrature sum

containing k(x; x). This way we arrive at the quadrature method

a(tNk )uN (t
N
k ) +

1

n2

X
l: l6=k

0

k(tNk ; t
N
l )uN(t

N
l ) = g(tNk ); k1; k2 = 0; : : : ; n� 1: (2.5)

Unfortunately, the method (2.5) is not convergent in the general case. Namely, if usual

quadrature rules are applied to a singular integral, convergence cannot be expected. The

remedy for this is the so-called singularity subtraction technique. Suppose we can compute

(cf. (2.2))

b(tNk ) =

Z
TT 2
kS(t

N
k ; t

N
k � y)dyTT

2 =

Z k1
n
+ 1
2

k1
n
�
1
2

Z k2
n
+ 1

2

k2
n
�
1
2

kS(t
N
k ; t

N
k � y)dy1dy2

(analytically or numerically with �ner quadrature procedures). Then, we write

Z
TT 2
kS(t

N
k ; t

N
k � y)u(y)dyTT

2 = b(tNk )u(t
N
k ) +

Z
TT 2
kS(t

N
k ; t

N
k � y)[u(y)� u(tNk )]dyTT

2:

The last integral is weakly singular only and the usual quadratures converge for this

weakly singular integral. Applying this step to (2.1), we arrive at the quadrature method

[a(tNk ) + b(tNk )]uN(t
N
k ) +

1

n2

X
l: l6=k

0

kS(t
N
k ; t

N
k � tNl )[uN(t

N
l )� uN(t

N
k )]

+
1

n2

X
l: l6=k

0

kR(t
N
k ; t

N
l )uN(t

N
l ) = g(tNk ); k1; k2 = 0; : : : ; n� 1; (2.6)

which is equivalent to

"
a(tNk ) + b(tNk )�

1

n2

X
l: l6=k

0

kS(t
N
k ; t

N
k � tNl )

#
uN (t

N
k )

+
1

n2

X
l: l 6=k

0

k(tNk ; t
N
l )uN (t

N
l ) = g(tNk ); k1; k2 = 0; : : : ; n� 1: (2.7)
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E.g., if the kernel kS(x; x� y) is odd with respect to the second variable z = x � y (i.e.

if it is a Mikhlin-Giraud kernel), then we get b(tNk ) = 0 and

1

n2

X
l: l6=k

0

kS(t
N
k ; t

N
k � tNl ) = 0: (2.8)

Note that (2.8) is true also if instead of

kS(x; (z1; z2)) = �kS(x; (�z1;�z2)) (2.9)

one of the following symmetry properties is satis�ed for the kernel:

kS(x; (z1; z2)) = �kS(x; (�z1; z2)); (2.10)

kS(x; (z1; z2)) = �kS(x; (z2; z1)): (2.11)

Consequently,

"
b(tNk )�

1

n2

X
l: l6=k

0

kS(t
N
k ; t

N
k � tNl )

#
= 0 (2.12)

and the method (2.7) is equivalent to (2.5). Hence, the quadrature method (2.5) is useful

if k(x; x� y) is odd with respect to the second variable (cf. (2.9)) or if (2.10) or (2.11) is

satis�ed.

In the quadrature methods (2.5) and (2.7), the unknown solution uN is a sequence of

point values fuN (tNk1;k2); k1; k2 = 0; : : : ; n� 1g. We denote the matrix in the linear system

(2.5) and (2.7) by AN . However, we shall identify uN with a piecewise constant function

and AN with an operator acting in the space of piecewise constant functions. To this

reason, we introduce the characteristic function

�Nl1;l2(x) =

8<
:

1 if lj=n � xj < (lj + 1)=n; j = 1; 2

0 else

and denote the space of piecewise constant functions by SN , i.e.,

SN = spanf�Nl1;l2 : l1; l2 = 0; : : : ; n� 1g:

Then we identify fuN(tNl1;l2) : l1; l2 = 0; : : : ; n� 1g with the piecewise constant interpola-

tion

uN =
n�1X
l1;l2=0

uN (t
N
l1;l2

)�Nl1;l2

and the matrix AN with the operator in L(SN ) whose matrix with respect to the basis

f�Nl1;l2 : l1; l2 = 0; : : : ; n� 1g is just AN .

We call the quadrature method stable if the operators AN are invertible for su�ciently

large N and if the inverse operators A�1
N 2 L(SN ) are uniformly bounded with respect to

N (i.e. the norms of A�1
N 2 L(SN ) induced by the L2 norm are uniformly bounded). The

quadrature method is called convergent if, for any right-hand side g such that
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n�1X
l1;l2=0

g(tNl1;l2)�
N
l1;l2

� g








L2(TT 2)

! 0;

there exist unique solutions fuN (tNl1;l2)g of the quadrature equations (2.5) or (2.7) with

uN =
n�1X
l1;l2=0

uN (t
N
l1;l2

)�Nl1;l2

tending in the L2-norm to the exact solution u.

The Sections 3, 4, and 5 are devoted to the stability and convergence analysis of method

(2.5). Method (2.7) can be treated with slight modi�cations.

3 Localized Operators and Localized Quadrature

Method on the Plane

Stability is a local property. Therefore it is necessary to introduce the quadrature scheme

for the localized singular integral operator over the plane and to investigate the stability

by analyzing the corresponding numerical symbol of the method. For singular kernels

with a natural symmetry property, we shall prove the local stability.

3.1 The Operators and the Numerical Scheme over the Plane

In this subsection we introduce simple local problems over the plane which later will turn

out to be the quadrature methods applied to the singular integral operators with frozen

symbols. We consider the singular integral operator

Au(x) = au(x) + (Ku)(x); x 2 R2; (3.1)

(Ku)(x) =

Z
R2
k(x� y)u(y)dy: (3.2)

with a real constant a > 0 and the convolution kernel

k(x� y) =
f(�)

r2
; r = jx� yj; � =

x� y

jx� yj :

Moreover, we suppose f to be a Lipschitz function and

Z
S1
f(z)d�(z) = 0: (3.3)

To de�ne the quadrature method for singular integral equation (3.1), we rewrite (3.1) in

the form

Au(x) = au(x) +

Z
R2
k(x� y)

h
u(y)� u(x)

i
dy +

Z
R2
k(x� y)dy u(x): (3.4)
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Since
R
S1 f(�)d� = 0 (cf. (3.3)), we have

R
k(x� y)dy = 0 and get

Au(x) = au(x) +

Z
R2

f(�)

jx� yj2
h
u(y)� u(x)

i
dy : (3.5)

In order to evaluate the integral in Equation (3.5), we use the quadrature rule

Z
R2
h(t)dt �

X
j2ZZ2

h(tj)
1

n2
; tj = (

j1

n
;
j2

n
): (3.6)

Applying this to (3.5) and neglecting the term corresponding to j = k, we obtain

Au(tk) � au(tk) +
X
j2ZZ2

j 6=k

f
�
�(tk; tj)

�
jtj � tkj2

h
u(tj)� u(tk)

i 1
n2

� au(tk) +
X
j2ZZ2

j 6=k

f
�
�(tk; tj)

�
jtj � tkj2

u(tj)
1

n2
�
h X

j2ZZ2

j 6=k

f
�
�(tk; tj)

�
jtj � tkj2

1

n2

i
u(tk);

�(tk; tj) =
tk � tj

jtk � tjj
: (3.7)

Now we shall show that the last sum vanishes under an additional assumption. To this

end, we suppose that f can be split into f(�) = f1(�) + f2(�) + f3(�), where

f1
�
(cos'; sin')

�
= �f1

�
(� cos';� sin')

�
; (3.8)

f2
�
(cos'; sin')

�
= �f2

�
(� cos'; sin')

�
; (3.9)

f3
�
(cos'; sin')

�
= �f3

�
(sin'; cos')

�
: (3.10)

Similarly to (2.12), we obtain

X
j2ZZ2

j 6=k

f
�
�(tk; tj)

�
jtj � tkj2

1

n2
= 0: (3.11)

Equation (3.7) takes the form

Au(tk) � au(tk) +
X
j2ZZ2

j 6=k

f
�
�(tk; tj)

�
jtj � tkj2

u(tj)
1

n2
:

Hence, the quadrature method over the plane is de�ned by

auN(tk) +
X
j2ZZ2

j 6=k

f
�
�(tk; tj)

�
jtj � tkj2

uN(tj)
1

n2
= g(tk); k 2 ZZ2: (3.12)

Though this method (3.12) could be used as a numerical scheme for the plane equation,

the application of (3.12) would require a further step of reduction to a �nite linear system

of equations. However, we are not interested in solving the plane equation. The method

(3.12) serves us only as a tool in the stability analysis of the corresponding method over

the torus.
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3.2 Stability of the Quadrature Method over the Plane

The matrix of the system (3.12) is

AN = (ak;j)k;j2ZZ2; ak;j =

8>>>><
>>>>:
f(�(tk; tj))

jtk � tjj2
1
n2

=

f
� k � j

jk � jj
�

jj � kj2
if j 6= k

a if j = k :

(3.13)

Thus the entries of AN are independent of N = n2 and we get AN = A1. Moreover, the

entries of A1 depend only on the di�erence k � j.

ak;j = ak�j ; am =

(
f
�
m
jmj

�
jmj�2 if m 6= 0

a if m = 0 :
(3.14)

We identify AN with the operator acting in the space of piecewise constant functions

SN (R2) = spanf�Nk1;k2 : k1; k2 2 ZZg

whose matrix with respect to the basis f�Nk ; k 2 ZZ2g is AN . Since




 X
k2Zz2

�k�
N
k





L2(R2)

=
1

n

s X
k2ZZ2

j�kj2; (3.15)

the operator norm of AN induced by the L2 space is equivalent to the matrix norm of the

space

l2(ZZ
2) :=

n
� = (�j)j2ZZ2 :

s X
k2ZZ2

j�kj2 <1
o
:

It is a well-known fact that each discrete convolution operator can be represented as

(cf. e.g. [4]) AN = F�1MF , where the unitary operators F : l2(ZZ
2) ! L2(TT

2) and

F�1 : L2(TT
2)! l2(ZZ

2) are de�ned by

F : f�jgj2ZZ2 7!
X
j2ZZ2

�j e
i2�j�t; F�1 : f(t) 7! f�jgj2ZZ2;

�j :=

Z 1

0

Z 1

0
f(ei2�s1; ei2�s2)e�i2�s1j1 e�i2�s2j2ds1 ds2:

The operator M mapping L2(TT
2) into L2(TT

2), takes the form M f(t) = �(t) f(t) with

the continuous function � : TT 2 ! R given by (cf. (3.14))

� (t) =
X
k2ZZ2

ak e
i2�k�t: (3.16)

Obviously, the inverse operatorM�1 mapping L2(TT
2) to L2(TT

2) is of the formM�1 f(t) =

��1(t) f(t).

Proposition 3.1 1) There holds

kA1k = kMkL(L2(TT 2)) = ess sup
t2TT 2

j�(t)j; kM�1kL(L2(TT 2)) = ess sup
t2TT 2

j��1(t)j:

9



2) Operator A1 is invertible if and only if

ess inf
t2TT 2

j�(t)j > 0: (3.17)

The function � is called the symbol of the discrete convolution operator and the numerical

symbol of the method (3.12). Now let us show that the sequenceAN is uniformly bounded.

In view of AN = A1 and of Proposition 3.1, we have to prove that � : TT 2 ! R de�ned

by the formula (3.16) is bounded.

Proposition 3.2 For the function �, we get sup j�(t)j <1.

Proof. We shall utilize the Galerkin method with piecewise constant trial functions.

Let Qn be the orthogonal projection onto the span of the system f�j : j 2 ZZ2g, where
�j := �1

j .

Qn : L2(R
2)! spanf�j : i 2 ZZ2g; Qnf =

X
j2ZZ2

(f; �j)�j:

With respect to the basis f�jgj2ZZ2 of imQn the matrix of AG
n=QnAjimQn

is bounded

(because kQnk = 1 and A is bounded). The matrix of AG
n with respect to the basis

f�jgj2ZZ2 is de�ned by

AG
n =

�
aGk;j

�
k;j2ZZ2

; aGk;j =
�
A�j; �k

�
=
�
A�0; �k�j

�
= aGk�j :

Then AG
n =

�
aGk;j

�
k;j

is a discrete convolution operator. Since AG
n is a bounded operator

in l2(ZZ
2), there exist a bounded mG : TT 2 ! R,

mG(t) =
X
k2ZZ2

aGk e
i2�k�t

such that AG
n = F�1MGF , that MG is the operator of multiplication by mG, and thatMG

is bounded (cf. Proposition 3.1). Now let
�
ak�j

�
k;j

denote the matrix of the quadrature

method and m = � the corresponding symbol. We write

m(t) = [m(t)�mG(t)] +mG(t) =
X
k2ZZ2

(ak � aGk )e
i2�k�t +

X
k2ZZ2

aGk e
i2�k�t:

In order to prove that m is bounded, it is su�cient to prove that (m �mG) is bounded.

We prove this by showing X
k2ZZ2

jak � aGk j <1: (3.18)

Since ak = ak;0, we get

aGk =
�
A�0; �k

�
=

Z k1+1

k1

Z k2+1

k2

�
A�0

�
(t)dt

=

Z k1+1

k1

Z k2+1

k2

Z 1

0

Z 1

0

f
� t� s

jt� sj
�

jt� sj2 ds2ds1dt2dt1;

aGk � ak =

Z k1+1

k1

Z k2+1

k2

Z 1

0

Z 1

0

2
6664
f
� t� s

jt� sj
�

jt� sj2 �
f
� k
jkj
�

jkj2

3
7775 ds2ds1dt2dt1: (3.19)

10



For the integrand, we get

���������
f
� t� s

jt� sj
�

jt� sj2 �
f
� k
jkj
�

jkj2

���������
� f

� k
jkj
� ����� 1

jt� sj2 �
1

jkj2

�����+ 1

jt� sj2

�����f
� t� s

jt� sj
�
� f

� k
jkj
������ : (3.20)

Estimating the �rst term on the right-hand side, we easily conclude�����f
� k
jkj
���� 1

jt� sj2 �
1

jkj2
���
����� � C

1

jkj3 : (3.21)

To estimate the second term in (3.20), we observe that f is Lipschitz by assumption.

Hence

1

jt� sj2
���f� t� s

jt� sj
�
� f

� k
jkj
���� � C

1

jt� sj2
��� t� s

jt� sj �
k

jkj
��� � C

1

jkj3 :

We arrive at X
k2ZZ2

jaGk � akj < C
X
k2ZZ2

k 6=(0;0)

jkj�3 < 1: �

Remark 3.1 It is not hard to see that � is continuous on [�1
2;

1
2 ]

2nf(0; 0)g. At (0; 0) the
function � has limits along all rays starting at (0; 0).

Next we turn to the stability of AN . SinceAN = A1, we only have to prove the invertibility,

i:e. (3.17). Unfortunately, we cannot prove stability for the general case or for the case of

strongly elliptic singular integral equation either. Instead we prove stability for the special

case of singular integral equation with Mikhlin-Giraud kernels and present a numerical

stability proof for singular kernels with an operator for which the constant a is a complex

number.

Theorem 3.1 Suppose the integral equation to which we apply (3.12) is given by (3.1)

with constant a > 0 and a convolution kernel k(x; y)=f(�)r�2 such that f(��)=�f(�).
Then the quadrature method (3.12) is stable.

Proof. We only have to show (3.17). Recall that (cf. (3.14) and (3.16))

�(t) = a+ �#(t); �#(t) =
X
k2ZZ2

k 6=(0;0)

ake
i2�k�t; ak = f

� k
jkj
�
jkj�2:

Since f is an odd function, we get a�k=�ak as well as

�#(t) =
X
k2ZZ2

k 6=(0;0)

ak e
�i2�k�t = �

X
k2ZZ2

k 6=(0;0)

a�k e
�i2�k�t = ��#(t):

Hence, �#(t) is purely imaginary and

j�(t)j =
s
a2 + [

�#(t)

i
]2 � a: �

11



Finally, let us suppose there exist real constants �; � with �2 + �2=1 and

f(�) =
1

2�
f� sin'+ � cos'g; � = ei': (3.22)

The symbol of the corresponding singular operator is

�A(x; �) = a+ if� sin'+ � cos'g; � = ei': (3.23)

In this case we get the numerical symbol

�(t) = a+ if��1(t) + ��2(t)g;

where the numerical symbols �1 and �2 are real and correspond to the characteristics
1
i2�

sin' and 1
i2�

cos', respectively. Numerical computations of �21+�
2
2 con�rm (cf. Figure

1) that �21 + �22 � 1. Hence, �1 � [��1 + ��2] � 1 and we obtain: If f is given by (3.22)

with real numbers �, � such that
p
�2 + �2 = 1 and if a 2 CI n fz 2 CI : �1 � Im z � 1g,

then the quadrature method (3.12) is stable. Note that the condition a 2 CI n fz 2 CI :

�1 � Imz � 1g, is equivalent to the fact that A de�ned by (3.23) is strongly elliptic at

least after multiplication by a suitable constant.

Num.Symb.

-0.5

0

0.5 -0.5

0

0.5

0

0.5

1

Figure 1: The numerical symbol �21 + �22.
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4 Localization Principle

4.1 The Theorem

Let us start with a few historical remarks. Localization techniques (principle of freezing

the coe�cients) have been known and applied for a long time to the analysis of partial

di�erential operators or pseudo-di�erential operators. Later on these techniques have been

reformulated in an algebra language which has turned out to be useful in the analysis of

several kind of operator classes (cf. Simonenko [34], Gohberg, Krupnik [11], and Douglas

[10]). The �rst one to apply these techniques to numerical methods was Kozak [14]. His

ideas have been generalized and developed into a very nice abstract scheme by the school

of Silbermann (for details cf. the corresponding chapters of [28]). Parallel to this, an

abstract setting for the application to spline methods is due to Pr�o�dorf [21].

We shall use the same localization techniques. However, instead of using the abstract

schemes of e.g. Silbermann, we perform the corresponding steps of proof directly. This

is possible because the local principle in our situation is not very complicated. To get a

better feeling for the localization, we recommend the reader to study the corresponding

sections of [11, 28].

Let us consider the quadrature method (2.5) applied to the singular integral equation

(2.1) over the torus and suppose (2.9) is satis�ed. To the corresponding singular integral

operator and to this quadrature method, we introduce a localized singular integral oper-

ator and a localized quadrature method at any point � 2 TT 2. Thus let us �x a � 2 TT 2.

The localized operator is the singular integral operator over the tangent plane with the

same values of the kernel function kS(x; x � y) at x = � . To get an operator over the

plane, we freeze the local variable x and consider the convolution kernel kS(�; x� y). In

other words the localized singular integral operator A� at � is the singular convolution

operator over the plane R2 with the kernel function

k�(x� y) = kS(�; x� y) ;

and with the multiplication operator a(x) replaced by the constant a� = a(� ). Thus the

localized equation corresponding to (2.1) is

a�u(x) +

Z
R2
k� (x� y)u(y)dy = g(x): (4.1)

To this we apply the quadrature method (3.12). The resulting scheme is the localized

quadrature method of (2.5). We denote the matrix (or the discretized operator of the

quadrature method) by (A�)N 2 L
�
SN (R2)

�
. With this notation the localization principle

for the quadrature method can be formulated as follows:

Theorem 4.1 Let us consider the quadrature method (2.5) applied to the singular inte-

gral equation (2.1) including the invertible operator A which is supposed to be a pseudo-

di�erential operator of order zero and to posses a symbol from the class S0. Suppose the

local operators A� are de�ned by the left-hand side of (4.1) and consider their quadrature

approximation (A�)N of the form (3.12). Then the method (2.5) is stable if and only if it

is locally stable, i.e., if for any � 2 TT 2, the quadrature operators (A�)N are stable.

The stability of the quadrature methods (A�)N has been investigated in Section 3.
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4.2 Su�ciency of Local Stability

In this subsection, we prove the su�ciency of the local stability. We retain the notation

SN for the space of piecewise constant functions (cf. Section 2) and denote the orthogonal

projection onto SN by LN . For the stability of the sequence of operators AN it is su�cient

to prove a representation

ANBN = IN +DN + LNTCN ; (4.2)

where IN 2 L(SN) is the identity, kDNkL(SN ) � 1
2
, the operators CN ; BN 2 L(SN ) are

uniformly bounded with respect to N , and T 2 L(L2(TT
2)) is compact. Indeed, from

(4.2), we get

AN

h
BN

�
IN +DN

��1i
= IN + LNTCN

�
IN +DN

��1
: (4.3)

and the stability of AN follows from the following lemma and the strong convergence

ANLN ! A which will be proved in Section 5.

Lemma 4.1 (cf. e.g. [22]) Suppose A 2 L(L2(TT
2)) is invertible and ANLN ! A for

AN 2 L(SN ). Moreover, suppose EN , FN 2 L(SN ) are sequences of uniformly bounded

operators and T 2 L(L2(TT
2)) is compact. Then

ANEN = IN + LNTFN

implies that AN is stable. The same conclusion holds if there exist more than one term

of the form LNTFN on the right-hand side.

Let us derive (4.2). To get BN , we introduce a �nite set of points �k 2 TT 2, k = 1; : : : ;M .

We choose cut o� functions  k;  
0
k 2 C1(TT 2) in the neighborhood of �k such that

i) The values of  k;  
0
k belong to [0; 1].

ii) There holds:

�k 2 supp  k � ft 2 TT 2 :  0k(t) � 1g � supp  0k;  k 
0

k =  k:

iii) Let f =
PM
k=1  k. Then we suppose that f is a positive function with values less

than 4. Moreover, we suppose that, for any t0 2 TT 2, there exist at most four

functions  0k not vanishing at t0.

We introduce the piecewise constant interpolation projector by

KNh =
n�1X
l1;l2=0

h(tNl1;l2)�
N
l1;l2

:

For a function g on TT 2, we set gN := KNgjSN . In other words, the matrix of gN with

respect to the basis f�Nl g is

gN =
�
g(tNi )�i;j

�n�1
i;j=0

;

and we get ( 0k)N( k)N = ( 0k k)N = ( k)N . Using all these de�nitions, we choose the

matrix operator BN for (4.2) as

14



BN =
MX
k=1

( k)N(B
k
N )

�1( 0k)N (f
�1)N ;

where the operator Bk
N is de�ned as Bk

N = (A�)N and (A�)N is the localized quadrature

operator of Subsection 4.1 de�ned for a �xed � 2 supp  k. To explain the expression

( k)N (Bk
N)

�1 ( 0k)N , we note that, for �xed �k = (�k;1; �k;2) 2 TT 2, the torus TT 2 can be

identi�ed with the periodic square

[�k;1 �
1

2
; �k;1 +

1

2
]� [�k;2 �

1

2
; �k;2 +

1

2
]

and can be embedded into R2. The functions  k;  
0
k with

supp k; supp 
0

k �
�
�k;1 �

1

2
; �k;1 +

1

2

�
�
�
�k;2 �

1

2
; �k;2 +

1

2

�

can be considered as functions overR2. IfKN stands for the interpolation projection onto

SN(R2) (We use the same symbol as for the corresponding operator on TT 2.), then we

can set hN = KNhjSN (R2) for any function h over R2. In particular, we arrive at a second

de�nition for ( k)N and ( 0k)N . These di�erent operators, one over TT
2 and the other over

R2, however, can be identi�ed since for each piecewise constant basis function �Nl1;l2 over

TT 2 with supp �Nl1;l2 \ supp  k 6= ; there exists a unique basis function �Nl01;l02
over R2 with

�Nl01;l02
= �Nl1;l2 over (�k;1�

1
2
; �k;1+

1
2
)� (�k;2� 1

2
; �k;2+

1
2
). Identifying these basis functions,

we can identify the two operators. In this sense the operator (Bk
N )

�1 over R2 multiplied

by ( k)N and ( 0k)N over R2 can be considered as an operator ( k)N (Bk
N )

�1 ( 0k)N over

the torus.

We conclude

ANBN = AN

MX
k=1

( k)N (B
k
N)

�1( 0k)N(f
�1)N

=
MX
k=1

h
AN( 

0

k)N � ( 0k)NAN

i
( k)N(B

k
N )

�1( 0k)N (f
�1)N

+
MX
k=1

h
( 0k)NAN( k)N � ( 0k)NB

k
N( k)N

i
(Bk

N)
�1( 0k)N (f

�1)N

+
MX
k=1

( 0k)N
h
Bk
N ( k)N � ( k)NB

k
N

i
(Bk

N )
�1( 0k)N (f

�1)N

+
MX
k=1

( 0k)N ( k)NB
k
N (B

k
N )

�1( 0k)N(f
�1)N

=
MX
k=1

h
AN( 

0

k)N � ( 0k)NAN

i
( k)N(B

k
N )

�1( 0k)N (f
�1)N + ~TN

+
MX
k=1

( 0k)N
h
Bk
N ( k)N � ( k)NB

k
N

i
(Bk

N )
�1( 0k)N (f

�1)N + IN ; (4.4)

where

~TN =
MX
k=1

h
( 0k)NAN( k)N � ( 0k)NB

k
N ( k)N

i
(Bk

N )
�1( 0k)N (f

�1)N : (4.5)
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The representation (4.4) will imply (4.2) if we can show :

a) The operator
h
AN ( k)N � ( k)NAN

i
is the sum of an operator LNTCN with T

compact and CN uniformly bounded plus an operator DN tending to zero in the

operator norm.

b) The operator ( 0k)N
h
Bk
N ( k)N � ( k)NB

k
N

i
is the sum of an operator LNTCN with

T compact and CN uniformly bounded plus an operator DN tending to zero in the

operator norm.

c) The operator ~TN of (4.5) has a norm less than any prescribed � > 0 if the �k;  k;  
0
k

are chosen suitably.

It remains to prove a), b), and c). We start with a). Let us consider the kernel

~k(x; y) = k(x; y)
h
 k(x)�  k(y)

i
; (4.6)

which is the weakly singular kernel of a compact integral operator T and which satis�es

j~k(x; y)j � Cjx� yj�1: (4.7)

It is not hard to see that

AN ( k)N � ( k)NAN = TN = (~k(tNj ; t
N
k )

1

n2
)j;k:

Consequently, it remains to prove that

kTN � LNT jSNk ! 0: (4.8)

We put ~k = ~k1 + ~k2,

~k1(x; y) = ~k(x; y)��(jx� yj); ~k2(x; y) = ~k(x; y)
h
1� ��(jx� yj)

i
;

where �� 2 C1 is chosen such that supp �� � (��; �) and �� � 1 on (��=2; �=2) for a
prescribed � > 0. According to the splitting of the kernel, we get the splitting

T = T 1 + T 2:

Operator T 2 has a smooth kernel. For (4.8) it remains to prove that


(T 2)N � LNT
2jSN




 ! 0; (4.9)

kLNT 1jSN k � C�; (4.10)


(T 1)N



 � C�; (4.11)

where the constant C is independent of � and ��. Let us prove (4.9). Since T 2 : L2 ! C

is compact, since LN ;KN : C ! L2 are uniformly bounded, and since (KN � LN ) tends

to zero strongly, the operator (KN �LN )T 2 tends to zero in operator norm. On the other

hand, for the quadrature discretization

T 2
N =

�
~k2(tNj ; t

N
k )

1

n2

�
j;k
;
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we obtain

KNT
2jimLN � (T 2)N =

�
b2j;k

�
j;k
:

For the di�erence of the entries, we conclude

���b2j;k
��� =

��� Z ~k2(tNj ; y)�
N
k (y)dy � ~k2(tNj ; t

N
k )

1

n2

���
=

��� Z h
~k2(tNj ; y)� ~k2(tNj ; t

N
k )
i
�Nk (y)dy

���
�

Z ����Nk (y)
���dy � sup

y2supp �N
k

���~k2(tNj ; y)� ~k2(tNj ; t
N
k )
���:

Since ���~k2(tNj ; y)� ~k2(tNj ; t
N
k )
��� � C�

���y � tNk

��� � C�
1

n
;

we continue

���b2j;k
��� � C�

1

n

Z ����Nk (y)
���dy � C�

1

n
� 1

n2
;




(b2j;k)j;k



 �




( 1
n
� 1

n2
)j;k



 � C�

X
k: jkj�n

1

n
� 1

n2
� C�

1

n
: (4.12)

This implies



KNT

2jSN � (T 2)N



 ! 0 for any �xed � > 0. And, together with




(KN �
LN )T

2



! 0, we obtain (4.9).

Let us turn to (4.11) and estimate the entries b1j;k =
~k1(tNj ; t

N
k )=n

2.

���b1j;k
��� � C

8><
>:

1���tNj � tNk

��� � n2 = 1
jj � kj

1
n if jj � kj � C� � n

0 otherwise

(4.13)

Here � is the number used for supp �� � (��; �) in the splitting of ~k. By Young's inequality
we conclude




(b1j;k)j;k



 � C

X
j 6=0

jjj�C��n

1

jjj
1

n
� C�: (4.14)

Hence, (4.11) is proved. Relation (4.10) follows analogously if instead of the entry of the

discretized operator the kernel function of the integral operator T 1 is considered. The

proof of (4.9), (4.10), and (4.11) �nishes the proof of assertion a).

Let us turn to the proof of b). This proof, however, is completely analogous to that of a).

Indeed, instead of (4.6) we get

~k(x; y) =  0k(x)k(x; y)[ k(y)�  k(x)] (4.15)

which satis�es (cf. (4.7))

j~k(x; y)j �

8><
>:
C�jx� yj�1 if jyj � ��1

0 if x =2 supp  0k
Cjx� yj�2 else
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for su�ciently small � > 0. Since the support of  0k is compact, the integral operator with

kernel function (4.15) is compact. Using the function ��, we split T into T 1 and T 2, and,

analogously to (4.12) we arrive at

jb2j;kj �
(
C�n

�3 if jkj � ��1n

Cjkj�2 if jkj � ��1n;


(b2j;k)j;k



 � C�n

�1 + C
s X
j;k: jkj���1n; j�2n

jkj�4 � C�n
�1 + C�:

Thus we obtain k(T 2)N � LNT
2jSN (R2)k � C� for su�ciently large n. Similarly to (4.13)

and (4.14), we get

jb1j;kj �

8>>>><
>>>>:

C 1
jj � kj

1
n if jj � kj � C� � n; jkj � ��1n

Cjkj�2 if jkj � ��1n;

0 if jj � kj � C� � n;


(b1j;k)j;k



 � C�+ C

s X
j;k: jkj���1n; j�2n

jkj�4 � C�+ C�:

This means kLNT 1jSN (R2)k � C� and all these facts together prove that b) is valid.

Now let us prove assertion c). We consider a vector � = (�j)
n�1
j=0 and arbitrary matrices

F k
N . Then we get




 MX
k=1

( 0k)NF
k
N( 

0

k)N�



2 � C

MX
k=1




( 0k)NF k
N( 

0

k)N�



2

� C
MX
k=1




( 0k)NF k
N( 

0

k)N



2


(�0k)N�




2

� C sup
k=1;:::;M




( 0k)NF k
N( 

0

k)N



2 MX

k=1




(�0k)N�



2

� C sup
k=1;:::;M




( 0k)NF k
N( 

0

k)N



2


�


2: (4.16)

Here �0k denotes the characteristic function of the support of  0k and satis�es the relation

( 0k)N (�
0
k)N = ( 0k�

0
k)N = ( 0k)N . Moreover, the estimates corresponding to the second

and last line of (4.16) are correct since, for each j = (j1; j2) with 0 � j1; j2 � n� 1, there

exist at most four vectors ( 0k)NF
k
N( 

0
k)N� and at most four (�0k)N� such that the j-th

component does not vanish (cf. condition iii) for the de�nition of the  0k). Hence,




 MX
k=1

( 0k)NF
k
N( 

0

k)N



 � C sup

k=1;:::;M




( 0k)NF k
N( 

0

k)N





and, choosing

F k
N =

h
(�0k)NAN( k)N � (�0k)NB

k
N ( k)N

i
(Bk

N )
�1(f�1)N ;

we arrive at


 ~TN


 � C sup
k=1;:::;M




h( 0k)NAN( k)N � ( 0k)NB
k
N ( k)N

i
(Bk

N )
�1( 0k)N (f

�1)N





� C sup
k=1;:::;M




( 0k)NAN( k)N � ( 0k)NB
k
N( k)N




:
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It remains to prove that
h
( 0k)NAN ( k)N � ( 0k)NB

k
N ( k)N

i
is small provided that the

supports of  k and  
0
k have a small diameter.

First we consider the case that A is a multiplication operator. We geth
( 0k)NAN( k)N � ( 0k)NB

k
N ( k)N

i
=

h
( 0k)NaN( k)N � ( 0k)N(a(� ))N( k)N

i
=

�
 k(t

N
j1;j2

)[a(tNj1;j2)� a(� )]�i;j
�
i;j
;


h( 0k)NAN( k)N � ( 0k)NB

k
N ( k)N

i


 � C sup
t2supp  k

ja(t)� a(� )j:

Since � is taken from supp  k too, we obtain that
h
( 0k)NAN( k)N � ( 0k)NB

k
N ( k)N

i
is

small for  k with su�ciently small support supp  k.

Now, in the second case, suppose that operator A is an integral operator with bounded

kernel function kR. For this A, the localized operator A� is zero. Thus B
k
N = 0 and we

have to prove that ( 0k)NAN( k)N is small provided the functions  k;  
0
k have supports

with su�ciently small diameter. However, due to the quadrature weight n�2, each entry of

( 0k)NAN( k)N is less than Cn�2. The dimension of the non-zero part of ( 0k)NAN( k)N
is less than [�n]2 if the diameter of the supports supp  k and supp  0k is less than �.

Consequently, Young's inequality implies


( 0k)NAN( k)N



 � X

l2ZZ2: jlj��n

Cn�2 � C�2

and
h
( 0k)NAN( k)N � ( 0k)NB

k
N ( k)N

i
is small for a small diameter � of supp  k and

supp  0k.

In the third and last case we suppose that A is the singular integral operator with kernel

kS . Moreover, we may assume that

kS(x; x� y) = b(x)f(
x� y

jx� yj)jx� yj�2: (4.17)

Indeed, the characteristic f(x; x � y) = jx � yj2kS(x; x � y) is a smooth function for a

pseudo-di�erential operator with a symbol from the class S0. We can approximate f in the

Lipschitz norm by the truncated trigonometric series with respect to the second variable

z = x� y. The singular integral operator and its quadrature discretization corresponding

to the approximated characteristic are close to the original singular operator and its

quadrature discretization (cf. [5, 6] and Lemma 5.1 for the discretized operators). Hence,

we can replace A by the operator corresponding to the truncated trigonometric series

of its characteristic and can treat each term of the sum separately. This way we arrive

at kernels of the form (4.17). However, operators with kernel (4.17) are products of a

multiplication operator (multiplication by b) and a convolution operator G with kernel

f(
x� y

jx� yj)jx� yj�2: (4.18)

Similarly, AN is the product of the diagonal matrix bN (discretized multiplication opera-

tor) and the discretized convolution operator GN , and B
k
N the product of b(� )IN and Gk

N

(discretized convolution operator over R2). We conclude

( 0k)NAN( k)N � ( 0k)NB
k
N ( k)N
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= ( 0k)NbNGN ( k)N � ( 0k)Nb(� )ING
k
N ( k)N

=
h
( 0k)NbN(�

0

k)N � ( 0k)Nb(� )IN(�
0

k)N
i
GN ( k)N

+( 0k)Nb(� )IN
h
(�0k)NGN ( k)N � (�0k)NG

K
N ( k)N

i
: (4.19)

The last bracket is zero since the kernel of the frozen operator with kernel (4.18) is the

same as (4.18). The �rst bracket on the right-hand side of (4.19) is small by the proof for

the case when A is a multiplication operator. This completes the proof of assertion c).

4.3 Necessity of Local Stability

Suppose fANg is stable and �x a � 2 TT 2. We have to show that (A�)1, i.e., the quadrature

operator (A�)N for N = 1 is invertible. We shall show that fANg can be considered as a

stable and convergent approximation method for operator (A�)1 which implies that (A�)1
is invertible. In order to simplify the notation we suppose � = (0; 0).

In the previous subsections we have identi�ed the operator (A�)N 2 L
�
SN (R2)

�
with its

matrix. Now we consider (A�)N = (A�)1 to be the �xed matrix operator acting in l2(ZZ
2).

For the identi�cation of AN 2 L(SN ) with its matrix, we introduce the isomorphism of

SN and the �nite l2-space explicitly. We consider the set

ZZ2
N = fl 2 ZZ2 : �1

2
� lj

n
<

1

2
; j = 1; 2g � ZZ2

and introduce EN : l2(ZZ
2
N )! SN by

EN (�l)l2ZZ2
N

=
X
l2ZZ2

N

�l �
N
l :

Clearly, EN is invertible. To each operator BN 2 L(SN ) there corresponds the matrix

operator ~BN := E�1
N BNEN , i.e., ~BN is the matrix of BN with respect to the basis f�Nl :

l 2 ZZ2
Ng. Moreover 


BN





L(SN )

=



 ~BN





L(l2(ZZ

2
N
))
:

Now l2(ZZ
2
N ) can be embedded into l2(ZZ

2) by identifying l2(ZZ
2
N ) with

f(�l)l2ZZ2 2 l2(ZZ2) : �l = 0 for l 2 ZZ2nZZ2
Ng:

We denote the orthogonal projection from l2(ZZ
2) to l2(ZZ

2
N ) by PN . Clearly, PN tends

strongly to the identity operator in l2(ZZ2). Thus we can consider the operator ~AN 2
L(imPN ) corresponding to our quadrature operator AN as an approximate operator for

(A�)1 2 L(l2(ZZ2)). We shall prove that

~ANPN ! (A�)1; ~A�

NPN ! (A�)
�

1 (4.20)

is true in strong operator topology. If this is done, then we conclude from the stability

kA�1
N k � C (which means also k ~A�1

N k � C) that


(A� )1�



 = lim

N!1




 ~ANPN�



 � lim

N!1
C�1




PN�


 � C�1k�k; (4.21)


(A� )
�

1�



 � C�1k�k (4.22)
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holds for any � 2 l2. Relation (4.21) implies that (A�)1 has a trivial null space and that

the image space of (A�)1 is closed. The inequality (4.22) proves that the kernel of (A�)
�
1

is trivial, i.e., the cokernel of (A�)1 is trivial, too. Hence, (A� )1 is invertible. It remains

to show (4.20).

To prove the strong convergence we use the Banach-Steinhaus theorem. The uniform

boundedness of the operators AN (and hence also of the ~AN) will be proved in Lemma

5.1. Thus it remains to prove that, for any �xed em = (�j;m)j2ZZ2,

~ANPNem ! (A�)1em ; ~A�

NPNem ! (A�)
�

1em: (4.23)

Moreover, the adjoint matrices ~A�
N , (A�)

�
1 are of the same structure as ~AN , (A�)1 since

they correspond to the adjoint singular integral operators. In other words, we only prove

the �rst part of (4.23). We observe that, for any cut o� function  which is equal to one

in a small neighborhood of � = 0, there holds

~ Nem =
�
 (tNj )�i;j

�
em =  (tNm)em = em

for su�ciently large N . We introduce a cut o� function  0 such that

supp  � ft 2 TT 2 :  0 � 1g

and write (Recall that the matrix (A�)N is independent of N.)

~ANPNem = (A�)1em +
�
~ 0N � ~IN

�
(A�)N ~ Nem

+
h
~ 0N

~AN
~ N � ~ 0N(A� )N ~ N

i
~ Nem +

�
~IN � ~ 0N

�
~AN

~ Nem:

The third term on the right-hand side is small if  and  0 are suitably chosen. Indeed,

the corresponding operators without the tilde have been shown to be small in the proof

to assertion c) in Subsection 4.2. The smallness of the second and of the last term follows

from the next lemma. In other words, for any � > 0, we can choose appropriate  and  0

such that 


 ~ANPNem � (A� )1em




l2
< �

for N su�ciently large. Thus ~ANPN ! (A�)1 and the necessity is proved.

Lemma 4.2 Suppose that

supp  � fx 2 ZZ2 : jxj < �1g � fx 2 ZZ2 : jxj < �2g � fx 2 ZZ2 :  0(x) = 1g;

where 0 < �1 < �2 and �2 is much larger than �1. Then we get




( 0N � IN)(A�)N N



 � C

�1

�2
;



( 0N � IN)AN N




 � C
�1

�2
: (4.24)

Proof. Let us consider the matrices of ( k)N , ( 
0
k)N , (A�)N with respect to the basis

f�Nl : l 2 ZZ2g. We get

(A�)N =
�
bi;j
�
i;j2ZZ2

; ( k)N =
�
ci�ij

�
i;j2ZZ2

; IN � ( 0k)N =
�
di�ij

�
i;j2ZZ2

;
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where obviously

���bij��� � C
���tNi � tNj

����2 � 1

n2
� C

���i� j
����2;

jcij �
(

1 if tNi 2 supp  k
0 if tNi =2 supp  k

�
(

1 if ji=nj � �1
0 else ,

jdij �
(

0 if ji=nj � �2
1 else .

Consequently, the norm in the �rst part of (4.24), i.e., the l2 matrix norm of the corre-

sponding matrix with respect to the basis f�Nl : l 2 ZZ2g is less than the norm of the

matrix ENFN , where

FN = (fi�ij) 2 ZZ2; fi =

(
1 if i � �1n

0 else ,

EN = (ei;j)i;j2ZZ2; ei;j = ei�j =

(
Cji� jj�2 if ji� jj � (�2 � �1)n

0 else:

Applying EN to a vector � = (�l)l2ZZ2, we get from Young's inequality




EN�



l2

�
s X
jij�(�2��1)n

C2jij�4 � k�kl1 � C
h
(�2 � �1)n

i�1
� k�kl1:

Now we use the Cauchy-Schwarz inequality to get




ENFN�



l2

� C
h
(�2 � �1)n

i�1


FN�



l1
� C

h
(�2 � �1)n

i�1 X
jij��1n

j�ij

� C
h
(�2 � �1)n

i�1s X
jij��1n

1
s X
jij��1n

j�ij2 :

Consequently,




ENFN�



l2
� C

�1

�2 � �1
k�kl2;




ENFN


 � C
�1

�2 � �1
� C

�1

�2
:

The second estimate of (4.24) follows analogously. �

5 The Convergence of the Quadrature Method

This section is devoted to the convergence of the quadrature method. We shall show that

the discretized operator AN is uniformly bounded with respect to N . Using a Banach-

Steinhaus argument, we shall prove the strong convergence of the discretized operator

ANLN to the singular integral operator A. This together with the stability implies the

convergence of the quadrature method.
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Theorem 5.1 (cf. e.g. [28]) Suppose the quadrature method (2.5) applied to (2.1) is

stable and that the discretized operator ANLN corresponding to (2.5) converges strongly

to the operator on the left-hand side of (2.1). Then the method (2.5) is convergent, i.e.

for any right-hand side g such that

k
n�1X

j1;j2=0

g(tNj1;j2)�
N
j1;j2

� gkL2 ! 0;

the equation (2.5) has a unique solution uN if N is su�ciently large, and uN tends in L2

to the exact solution u of (2.1).

Now let us turn to the boundedness of the discretized operator AN de�ned in Section 3.3.

Lemma 5.1 There exists a constant C independent of N and of the operator A de�ned

on the left-hand side of (2.1) such that the L2-operator norm of AN (or equivalently the

l2-matrix norm of AN ) is bounded as

kANk � C
n
kAkL(L2(TT 2)) + kakL1(TT 2) + kfkLip + kkRkL1(TT 2�TT 2)

o
:

Here the Lipschitz norm kfkLip of the characteristic of kernel kS is de�ned by

kfkLip = kfkL1 + sup

x; x0 2 TT 2

x0 6= x

� 2 S1

jf(x; �)� f(x0; �)j
jx� x0j + sup

�; �0 2 S1

�0 6= �

x 2 TT 2

jf(x; �)� f(x; �0)j
j� � �0j :

Proof. Let us consider the Galerkin method where the trial space is spanned by the

orthonormal basis fn�Nk : k1; k2 = 0; : : : ; n � 1g. For the entries aGj;k of the Galerkin

matrix AG
N we get

aGj;k = hA[n�Nk ]; [n�Nj ]i = �j;kn
2
Z j=n

(j�1)=n
a(x)dx + n2

Z j=n

(j�1)=n

Z k=n

(k�1)=n
k(x; x� y)dxdy:

We denote the corresponding entries of the matrix AN for the quadrature method by aj;k.

Since

kAG
Nk = kLNAjimLNk � kAk;

we only have to show




(aj;k � aGj;k)j;k




L(l2)

� C
n
kfkLip + kakL1 + kkRkL1

o
(5.1)

Moreover, since the boundedness proofs for the multiplication operator and for the integral

operator with bounded kernel function kR are straight forward, we suppose a � 0 and

kR � 0. We shall estimate (aj;k � aGj;k)j;k in two steps. First we shall derive a bound

for the matrix with all entries corresponding to the indices i,j such that ji� jj > 2 (\o�

diagonal" entries) and later we consider the matrix with the entries such that ji� jj � 2

(\almost diagonal" entries). Let us estimate the \o� diagonal" entries.
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���aj;k � aGj;k

��� = ���k� j
n
;
j

n
� k

n

� 1

n2
� n2

Z j+1

n

j

n

Z k+1
n

k

n

k(x; x� y)dxdy
���

=
��� Z j+1

n

j

n

Z k+1
n

k

n

n2
h
k
� j
n
;
j

n
� k

n

�
� k(x; x� y)

i
dxdy

���:
If we put x = j

n
+ �, y = k

n
+ �, � = (�1; �2), and � = (�1; �2), then

���aj;k � aGj;k

��� =
��� Z 1

n

0

Z 1
n

0

Z 1
n

0

Z 1
n

0
n2
h
k
� j
n
;
j

n
� k

n

�
�

k
� j
n
+ �;

j

n
+ � � (

k

n
+ �)

�i
d�d�

���:
Putting l = j � k, and � = � � � we get

���aj;k � aGj;k

��� =
��� Z 1

n

0

Z 1
n

0

Z �2

�2�
1
n

Z �1

�1�
1
n

n2
"
k
� l + k

n
;
l

n

�

�k
� l+ k

n
+ � + �;

l

n
+ �

�#
d�d�

���
�

Z 1
n

0

Z 1
n

0

Z �2

�2�
1
n

Z �1

�1�
1
n

n2
h
T1 + T2

i
d�d�; (5.2)

T1 =
���k� l + k

n
+ � + �;

l

n

�
� k

� l + k

n
+ � + �;

l

n
+ �

����;
T2 =

���k� l + k

n
;
l

n

�
� k

� l + k

n
+ � + �;

l

n

����:
For T1 we get

���k� l + k

n
+ � + �;

l

n

�
� k

� l + k

n
+ � + �;

l

n
+ �

����
�
���f� l + k

n
+ �+ �;

l

n

� 1

jl=nj2 � f
� l+ k

n
+ �+ �;

l

n
+ �

� 1

jl=n+ �j2
���

�
���f� l + k

n
+ �+ �;

l

n
+ �

���� ��� 1

jl=nj2 �
1

jl=n+ �j2
���

+
1

jl=nj2 �
���f� l + k

n
+ � + �;

l

n

�
� f

� l+ k

n
+ � + �;

l

n
+ �

����: (5.3)

The function f is bounded and

��� 1

jl=nj2 �
1

jl=n+ �j2
��� � C

n2

jlj3 : (5.4)

Since f satis�es a Lipschitz condition with respect to the second variable, we �nd for the

second term on the right-hand side of (5.3)

���f� l + k

n
+ � + �;

l

n

�
� f

� l+ k

n
+ � + �;

l

n
+ �

���� � C
��� l=njl=nj �

l=n+ �

jl=n+ �j
��� � C

jlj : (5.5)
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Substitution of (5.4) and (5.5) into (5.3) provides us with jT1j � Cn2jlj�3. For T2, we

arrive at���k� l + k

n
;
l

n

�
� k

�l + k

n
+ � + �;

l

n

���� =
1

jl=nj2
���f� l+ k

n
;
l

n

�
� f

� l + k

n
+ � + �;

l

n

����
� C

1

n

1

jl=nj2 � C
n2

jlj3 : (5.6)

Substituting the estimates for T1 and T2 into (5.2), we obtain

���aj;k � aGj;k

��� � C
Z 1

n

0

Z 1
n

0

Z �1

�1�
1
n

Z �1

�2�
1
n

n4

jlj3d�d� � C
1

jlj3 :

Young's inequality implies for the \o� diagonal" part of AN �AG
N that




(aj;k � aGj;k)j;k




L(l2(ZZ2))

� C
X
l2ZZ2

1

f1 + jljg3 � C:

On the other hand, let us turn to the \almost diagonal" entries. For the Galerkin matrix

AG
N we conclude

jaGj;kj �



(aGj;k)j;k





L(l2(ZZ2))

= kAG
Nk = kLnALnk � CkAk � C:

For the \almost diagonal" entries of the quadrature method, we get

aj;k =

8>><
>>:

1
n2
kS
�
j
n;
j
n �

k
n

�
if jj � kj > 0

0 if j = k:

If l = j � k 6= 0, then we obtain

aj;k =
1

n2
f(
j

n
;
l

n
)

����� ln
�����
�2

; jaj;kj �
�����f( jn ;

l

n
)

����� � C:

Hence, each \almost diagonal" entry [aj;k � aGj;k] is bounded. Consequently, the \almost

diagonal" part of AN �AG
N is bounded, too. �

Lemma 5.2 Suppose that the operator A given by the left-hand side of (2.1) is a pseudo-

di�erential operator of order zero with a symbol from S0. Moreover, let AN stand for the

discretized quadrature operator of (2.5). We suppose that (2.9) is satis�ed. Then ANLNu

tends to u in the L2-norm for any u 2 L2(TT
2).

Proof. In Lemma 5.1 we have shown that AN is uniformly bounded. Hence, in view

of the Banach-Steinhaus theorem, we may suppose that f is smooth and have to prove

kANLNf �Afk ! 0 for any smooth f . Since f is smooth, KNAf tends to Af if KN is

the piecewise linear interpolation projector. It remains to prove kANLNf �KNAfk ! 0.

Moreover, since KNf ! f and since AN is bounded, we conclude ANLNf �ANKNf !
0. It remains to prove kANKNf � KNAfk ! 0. This, however, is a consequence of

kANKNf �KNAfkL1 ! 0 which is equivalent to

sup
i

���ANKNf(t
N
i )�Af(tNi )

���! 0: (5.7)

Now we study the di�erence Af(tNi )�ANKNf(t
N
i ) in three cases :
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1) A is a multiplication operator

2) A is an integral operator with a continuous and bounded kernel kR

3) A is the singular integral operator with kernel kS .

Case 1) is very simple sinceAf(tNi ) = ANKNf(t
N
i ) holds for multiplication operators. The

assertion for Case 2) is well known, too. Indeed, the quadrature rule used for ANKNf(t
N
i )

has non-negative quadrature weights. Hence, it converges on continuous functions and

even uniformly over the compact set of functions y 7! kR(x; y)f(y). It remains to consider

Case 3).

The di�erence Af(tNi ) �ANKNf(t
N
i ) takes the form (cf. Section 2)

Af(tNi )�ANKNf(t
N
i ) =

Z
TT 2
kS(t

N
i ; t

N
i � y)[f(y)� f(tNi )]dyTT

2 (5.8)

�
X
l: l6=i

kS(t
N
i ; t

N
i � tNl )[f(t

N
l )� f(tNi )]

1

n2
= T 1 + T 2;

T 1 =

Z
TT 2nB(tN

i
;�)
kS(t

N
i ; t

N
i � y)[f(y)� f(tNi )]dyTT

2 (5.9)

�
X

l: jtN
i
�tN

l
j>�

kS(t
N
i ; t

N
i � tNl )[f(t

N
l )� f(tNi )]

1

n2
;

T 2 =

Z
B(tN

i
;�)
kS(t

N
i ; t

N
i � y)[f(y)� f(tNi )]dyTT

2 (5.10)

�
X

l: l6=i; jtN
i
�tN

l
j��

kS(t
N
i ; t

N
i � tNl )[f(t

N
l )� f(tNi )]

1

n2
;

where the number � stands for a �xed positive real, and B(tNi ; �) � TT 2 is the ball with

center tNi and radius �. In a minute we will prove that T 2 ! 0 for � ! 0. On the other

hand, the integral in T 1 is regular for �xed � > 0. Thus the same arguments as for Case

2) imply T 1 ! 0 for N ! 1. We conclude T 1; T 2 ! 0 for N ! 0, and, using (5.8), we

get (5.7). It remains to show T 2 ! 0 for �! 0.

We estimate the two terms in (5.9) separately. For the integral, we get

��� Z
B(tN

i
;�)
kS(t

N
i ; t

N
i � y)[f(y)� f(tNi )]dyTT

2
��� � Z

B(tN
i
;�)
CjtNi � yj�1dyTT 2 � C�:

The quadrature sum can be estimated as�������
X

l: l6=i; jtN
i
�tN

l
j��

kS(t
N
i ; t

N
i � tNl )[f(t

N
l )� f(tNi )]

1

n2

������� � 1

n

X
l: l6=i; jl�ij��n

ji� lj�1 � C�:

Hence jT 2j � C� and T 2 ! 0 for �! 0 is proved. �

6 Numerical Tests

In order to check the convergence properties of our quadrature method, we consider the

following oblique derivative problem. We de�ne the two-dimensional surface S by the
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parametrization

S = f�(s; t); 0 � s; t � 1g; (6.1)

�(s; t) =
�
[2 + cos(2�s)] cos(2�t) ; sin(2�s) ; [2 + cos(2�s)] sin(2�t)

�
:

Clearly, S is homeomorphic to the torus. The space R2nS is the union of the bounded

ring shaped domain 
� and the unbounded exterior domain 
. For this domain 
, we

solve the oblique derivative boundary value problem (cf. [18])

4V = 0 in 
; (6.2)

@

@f
V = g on S = @
; f : S = @
 ! R3: (6.3)

The oblique direction vector f(P ) is de�ned as

f(P ) = n(P ) +
1

2
(0; 0; 1); (6.4)

where n(P ) is the normal vector of unit length at P 2 S pointing into 
�. We represent

the unknown potential V in the form of a Newton potential

V x(P ) =
1

4�

Z
S

x(Q)

jP �Qj dQS; (6.5)

where x(Q) denotes an unknown single layer surface density. We apply the boundary

operator of oblique derivative, and, with the well-known jump relations for the Newton

potential, we obtain the boundary integral equation

g(P ) =
@

@f(P )
(V x)(P )

= �1

2

D
f(P ); n(P )

E
x(P )� 1

4�

Z
S

f(P ) � (Q� P )

jP �Qj3 x(Q) dQS : (6.6)

This is a strongly singular integral equation of the second kind for the unknown function

x(Q). Using the parametrization �, we transform (6.6) into (1.4), where the kernel takes

the form

k(t; s) =
f (�(t)) � (�(s)� �(t))

j�(s)� �(t)j3 j�0(s)j; (6.7)

and where

j�0(s)j = j@s1�(s) � @s2�(s)j
is the density of the surface measure. Note that operator A is strongly elliptic since

hf; ni > 0. Moreover, the singular part kS of the kernel is a Mikhlin-Giraud kernel, i:e., it

satis�es (2.9). This equation (1.4) is solved numerically by the quadrature method (2.5).

Before we solve the linear equations, we check whether the quadrature approximation

of the singular integral operator converges. For this purpose, we consider the singular

integral

v(P ) = �1

2

D
f(P ); n(P )

E
w(P ) +

1

4�

Z
S

hf(P ); P �Qi
jP �Qj3 w(Q)dQS;

w (�(t)) = sin(2�t1) sin(2�t2); t = (t1; t2) 2 [0; 1]2
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together with its approximation vN given at the grid points tj = tj1;j2 by

vN (�(tj)) :=
n�1X

k1;k2=0

aj;kw (�(tk)) ;

where AN = (aj;k)j;k is the matrix of the quadrature method. For several n = nl = 2l and

Nl = n2l , we compute the L2-Norm error

kvNl
� vNl+1

k := 1

nl

vuuut nl�1X
j1;j2=0

jvNl
(�(tj))� vNl+1

(�(tj))j2

and the approximate convergence order

�Nl
:=

log kvNl
� vNl+1

k � log kvNl�1
� vNl

k
log 2

:

The results are presented in Table 1. It turns out that the approximate operator AN

converges with order 1.

nl Degrees of Freedom: Nl kvNl
� vNl+1

k �Nl

4 16 5:35 � 10�2
8 64 2:00 � 10�2 1.42

16 256 8:48 � 10�3 1.24

32 1024 4:16 � 10�3 1.03

64 4096 2:08 � 10�3 1.00

128 16384 1:04 � 10�3 1.00

Table 1: Approximation order of the quadratures

The discretized operators are stable by the Theorems 3.1 and 4.1. Stability means that

the matrices AN together with their inverses A�1
N are uniformly bounded with respect

to N . Though we have not computed the Euclidean matrix norms of AN and A�1
N , we

have an indicator for the uniform boundedness. Normally, for bounded norms kANk and
kA�1

N k, the iterative solution of the matrix equation requires a number of iteration steps

which is bounded independently of N . In Table 2 we present the number of GMRES

iterations (cf. [30]) necessary to achieve an error less than 10�12. Indeed, these numbers

seem to grow very slowly.

nl Nl Number of GMRES iterations

2 4 4

4 16 12

8 64 22

16 256 25

32 1024 28

64 4096 32

Table 2: Numbers of GMRES iterations

Next we compute an approximate solution from solving (2.5). After determining the

solution uN of the quadrature method at the grid points tj1;j2 , j1; j2 = 0; : : : ; n � 1, we
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compute an approximate solution UN for the Laplace equation by discretizing the single

layer representation (6.5).

U(x) � UN(x) :=
1

4�

1

n2

n�1X
j1;j2=0

uN (�(tj1;j2))

j�(tj1;j2)� xjj�
0(tj1;j2)j: (6.8)

In our �rst example, we take a known solution of (6.2), (6.3) given by

U(P ) = jP � (2; 0; 0)j�1: (6.9)

The oblique derivative is given by

g(P ) =
@

@f
U(P ) =

f(P ) � ((2; 0; 0) � P )

j(2; 0; 0) � P j3 : (6.10)

For this right-hand side g, we have solved the quadrature equations (2.5) and computed

the L2 errors

kuNl
� uNl+1

k := 1

nl

vuuut nl�1X
j1;j2=0

juNl
(�(tj))� uNl+1

(�(tj)) j2

and the approximate convergence orders

�Nl
:=

log kuNl
� uNl+1

k � log kuNl�1
� uNl

k
log 2

:

Moreover, we have computed the approximate values UN (P ) for P = (1; 0; 0) and P =

(0:3; 0:2; 0:1), the relative errors jUN (P ) � U(P )j=jU(P )j with U(P ) from (6.9), and the

approximate convergence orders


Nl
:=

log jUNl
(P )� U(P )j � log jUNl�1

(P )� U(P )j
log 2

:

The numerical results are presented in the Table 3. They show that our quadrature

solutions converge to the exact solutions. The convergence orders are close to one.

nl Nl kuNl
� uNl+1

k �Nl

jUNl
(P )� U(P )j
jU(P )j 
Nl

jUNl
(P )� U(P )j
jU(P )j 
Nl

P = (1; 0; 0) P = (0:3; 0:2; 0:1)

2 4 1.49 1.95

4 16 0.87 0.0032 8.88 0.79 1.32

8 64 0.13 2.69 0.22 -6.12 0.13 2.62

16 256 0.04 1.76 0.16 0.49 0.028 2.24

32 1024 0.019 1.09 0.08 0.98 0.013 1.12

64 4096 0.01 0.81 0.04 1.00 0.0063 1.00

Table 3: Convergence of the quadrature method for g(Q) = @
@f(Q)

jQ� (2; 0; 0)j�1

In a second example we consider an oblique derivative g for which the exact solution is

unknown. Since our quadrature method is a low order method, we choose g with a low

degree of smoothness. In particular, we have taken

g1 (�(s; t)) =

(
1 if s < 1

2

0 else ,
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Note that g1 2 H�(s) for � < 1. Instead of the error jUNl
(P )� U(P )j=jU(P )j we now

compute the error jUNl
(P )� UNl+1

(P )j and the corresponding convergence rates

�Nl
=

log jUNl
(P )� UNl+1

(P )j � log jUNl�1
(P ) � UNl

(P )j
log 2

:

The numerical results are presented in Table 4. They show that our quadrature method

converges with order one even for solutions with low degree of smoothness.

nl Nl jUNl
(P )� UNl+1

(P )j �Nl

2 4

4 16 0.53

8 64 0.59 -0.14

16 256 0.31 0.93

32 1024 0.13 1.35

64 4096 0.049 1.30

Table 4: Convergence of the quadrature method for g1 and � = 0.5 at P=(1,0,0)
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