WeierstraB-Institut
fir Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

A tensor network formalism for neuro-symbolic Al

Alex Goessmann], Janina Schutte, Maximilian Frohlich, Martin Eigel

submitted: January 22, 2026

Weierstrass Institute

Anton-Wilhelm-Amo-StraBe 39

10117 Berlin

Germany

E-Mail: alex.goessmann@wias-berlin.de
janina.schuette@wias-berlin.de
maximilian.froehlich@wias-berlin.de
martin.eigel@wias-berlin.de

No. 3257
Berlin 2026

\

ANl

2020 Mathematics Subject Classification. 68T27, 68T30, 68T37, 15A69, 65F99.
Key words and phrases. Neuro-symbolic Al, tensor networks.

AG and ME acknowledge funding from the German Federal Ministry of Education and Research (BMBF), grant number FKZ 13N17160,
"Verbundprojekt: Quantum Read-Once-Memory - Verwandlung von klassischen Daten zu Quantenzustédnden - Teilvorhaben: Quan-
tenschaltkreis-Optimierung von Quantenzustédnden durch Tensor-Netzwerke (QOQ-tn)". JS and ME acknowledge funding from the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany ‘s Excellence Strategy — The Berlin Math-
ematics Research Center MATH+ (EXC-2046/2, project ID: 390685689, Project PaA-7). MF acknowledges funding from Einstein Re-
search Unit on Quantum Devices. .

Edited by

WeierstraB3-Institut fir Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Anton-Wilhelm-Amo-Stra3e 39

10117 Berlin

Germany

Fax: +493020372-303

E-Mail: preprint@wias-berlin.de

World Wide Web: |http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/

A tensor network formalism for neuro-symbolic Al

Alex Goessmann, Janina Schitte, Maximilian Fréhlich, Martin Eigel

Abstract

The unification of neural and symbolic approaches to artificial intelligence remains a central open chal-
lenge. In this work, we introduce a tensor network formalism, which captures sparsity principles originating
in the different approaches in tensor decompositions. In particular, we describe a basis encoding scheme
for functions and model neural decompositions as tensor decompositions. The proposed formalism can be
applied to represent logical formulas and probability distributions as structured tensor decompositions. This
unified treatment identifies tensor network contractions as a fundamental inference class and formulates
efficiently scaling reasoning algorithms, originating from probability theory and propositional logic, as con-
traction message passing schemes. The framework enables the definition and training of hybrid logical and
probabilistic models, which we call Hybrid Logic Networks. The theoretical concepts are accompanied by
the python library tnreason, which enables the implementation and practical use of the proposed archi-
tectures.

1 Introduction

Modern artificial intelligence is dominated by large-scale neural models that excel at various tasks but mostly
remain black-boxes. While these models offer adaptability, the two main concerns when integrating these ar-
chitectures into safety-critical processes are reliability and explainability. To match these demands, artificial
intelligence has followed symbolic paradigms, including probabilistic and logical approaches. However, these
paradigms have been mostly neglected due to the success of black-box neural models. The logical tradition
of artificial intelligence, historically motivated by the resemblance of human thought to formal logics McCarthy
[1959], offers explicit structures and human-readable inference. However, the main problem hindering the suc-
cess of this classical approach is the inability of classical first-order logic to handle uncertainty or scale to com-
plex real-world data. Probabilistic graphical models |Pearl [1988], [Koller and Friedman| [2009] provide insights
based on encoded variable independences and causality |[Pearl [2009]. While probabilistic models and Statistical
Relational Al|Nickel et al.[[2016], Getoor and Taskar| [2019] have improved uncertainty handling, bridging these
paradigms remains the central goal of Neuro-Symbolic Al |Hochreiter| [2022], |Sarker et al.| [2022], |Colelough
and Regli| [2024]. The field seeks a single, mathematically coherent framework combining structural clarity with
neural adaptability. Although progress has been made, for example with Markov Logic Networks |Richardson
and Domingos|[2006], a fully unified substrate that treats logical and probabilistic inference as instances of the
same operation is still missing.

In this work, we propose to fill the gap between the probabilistic, neural, and logical paradigms with tensor
networks in a framework called tnreason. Tensor spaces capture both the semantics of logical formulas (by
boolean tensors) and probability distributions (by normalized non-negative tensors). This abstraction eliminates
the traditional divide between symbolic and neural representations: logical inference, probabilistic computations,
and neural inference become different instances of the same underlying operation. As naive tensors are prone
to the curse of dimensionality, we turn to distributed representation schemes by tensor networks. We show that
fundamental sparsity principles of neural and symbolic Al, such as conditional independence, the existence of
sufficient statistics, and neural model decomposition, are equivalent to tensor network decompositions. More-
over, we identify tensor network contraction as the fundamental operation underlying inference tasks, such as
computing marginal distributions and deciding entailment. While these contractions are in general computation-
ally hard, efficient schemes to perform inference are known as message passing schemes. These algorithms
have appeared in different communities under names such as belief propagation |Pearl [1988], [Méezard| [2009]

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 2

and constraint propagation |Mackworth|[1977]. We review these schemes based on our tensor network formal-
ism.

To capture both logical and probabilistic models, and exploit their neural decompositions, we introduce
Computation-Activation Networks (CompActNets), an expressive tensor network architecture. The architec-
ture consists of two complementary subarchitectures that serve the purpose of computation and activation,
respectively. The computation network prepares auxiliary hidden variables with deterministic dependence on
the main variables. We interpret the network as a distributed computation scheme of functions describing
this dependence, whose decomposition is related to sparsity concepts of the corresponding functions. These
auxiliary variables represent logical formulas or more generic statistics in different contexts. The activation
network then assigns numerical values to the states of those auxiliary variables, and in this way activates the
variables to represent factors of a model. Logical models emerge when the activation network is a boolean
tensor, probabilistic exponential families when they are elementary positive-valued tensors, and hybrid models
in the most general cases.

1.1 Related works

Historically rooted in quantum many-body physics |White|[1993], tensor networks found their first major success
with Matrix Product States (MPS), originally developed to efficiently capture the quantum dynamics and ground
states of one-dimensional spin chains |Affleck et al.|[1987]. This format remains a standard tool in the field, with
recent contributions refining it for tasks such as large-scale stochastic simulations and variational circuit opera-
tions |Sander et al.|[2025b}a]. To address the topological constraints of MPS, the landscape of architectures was
subsequently expanded to include Projected Entangled Pair States (PEPS) for two-dimensional lattices and the
Multi-scale Entanglement Renormalization Ansatz (MERA), which utilizes a hierarchical geometry to represent
scale-invariant critical systems and has recently been adapted for simulating quantum systems |Orus|[2019],
Berezutskii et al.|[2025].

Beyond the quantum realm, these formats have been successfully adapted to applied mathematics, particularly
for solving high-dimensional parametric PDEs [Eigel et al.| [2019, [2020], [Dolgov and Scheichl| [2019], [Dolgov
et al.| [2015], [Trunschke et al.| [2025], sampling problems and approximation of the Hamilton-Jacobi-Belman
equation|Gruhlke et al.[[2026], Eigel et al.|[2023], Dolgov et al.|[2023],|Cui and Dolgov|[2022], modeling complex
continuous fields and learning dynamical laws [Hagemann et al.| [2025], [Eigel et al.|[2017], |Goessmann et al.
[2020], [Lubich et al.[[2013]. Furthermore, they exhibit properties helpful for handling these high-dimensional
spaces, such as restricted isometry properties |(Goessmann|[2021]. Recent advancements have demonstrated
the efficacy of these methods in capturing multiscale phenomena in fluid dynamics and turbulence, proving that
the tensor network formalism offers a robust alternative to classical numerical schemes |Gourianov et al.|[2025].

The unification of neural, symbolic, and probabilistic approaches to interpretable model architectures has been
a long-standing aim of Neuro-Symbolic Al. A central goal is to achieve intrinsic explainability, which, unlike post-
hoc interpretations analysing input influence after training |Lipton| [2018], Barredo Arrieta et al.|[2020], aims at
explainability of the architecture itself. Early connectionist approaches [Towell and Shavlik| [1994], Avila Garcez
and Zaverucha| [1999] towards Neuro-Symbolic Al focus on embedding logical rules into neural connectivity.
Further, fruitful relations with statistical relational learning have been identified |Marra et al.|[2024].

Tensor networks have recently gained interest as a unifying language for Al, framed by Logical Tensor Net-
works [Badreddine et al.|[2022] and Tensor Logic [Domingos| [2025]. Furthermore, the MeLoCoToN approach
Ali|[2025] applies tensor network architectures similar to CompActNets in combinatorial optimization problems.
Specifically, tensor networks have emerged as a highly efficient mathematical framework for handling data in
high-dimensional spaces, effectively circumventing the "curse of dimensionality"that typically plagues grid-based
methods |Hackbusch|[2012]. By decomposing high-order tensors into networks of low-rank components, these
structures reduce the storage and computational complexity from exponential to polynomial with respect to the
dimension |Oseledets|[2011], [Hackbusch and Kuhn|[2009], [Hitchcock! [1927].

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 3

Neural paradigm

|
|
|
|
Decomposition of functions into neurons (Def.[4.2] Thm.[4:3) !
!
|

Fmmmm—-— - T mmmm e mmm i — - |
! s T T T T T T T oo o Tt == e e |
| I . |

! Syntactical
| Graphical models | CompActNets | decg)lmpositions |
|
|
(Det.57) | (Det. ETT) ‘ ‘
| @ £ s |

Independence and related concepts

|
|
|
|
|
|
|
|
|
|
| (Def.[3:4] Def.[3.5] Def.[3:13)
|
|
|
|
|
|
|
|

Semantics by boolean tensors

Hybrid Logic Networks (Def. BT}

|
|
|
|
|
|
|
| 1
|
. " T ‘
Marginal and conditional distributions : (Def. :
|
|
|
|
|
|
|

Entail Def.
(Def.[3:3) ntailment (Def.[5.7)

,,

Figure 1: Sketch of the concepts in the neural, probabilistic and logical paradigms, which we define based on
tensor network decompositions and contractions.

1.2 Structure of the paper

The paper is organized as follows. In Section [2| we introduce the basic concepts and notation for categorical
variables, tensors, and tensor networks, which are applied in the following sections. Sections[3} [4 and[5]anchor
the tensor network formalism in the basic paradigms of artificial intelligence (see Figure [1). The probabilistic
paradigm is discussed in Section [3] where we in particular show that concepts of independence, graphical
models, and sufficient statistics correspond to specific tensor network decompositions. Section 4] is dedicated
to the neural paradigm, where we show that generic function decompositions have analogous tensor network
representations. Section [5 turns to the logical paradigm, where we study tensor equivalents of propositional
formulas, knowledge bases, and entailment. In Section [6] we present Hybrid Logic Networks as an application
of the unified tensor network formalism, combining logical and probabilistic models. We briefly discuss the im-
plementation of these concepts in our open source python package tnreason in Section|7| before concluding
the paper in Section

2 Foundations

In this section, we introduce the hypergraph-based tensor network formalism and define the most general tensor
network architecture of CompActNets based on this formalism.

2.1 Tensors

Tensors are multiway arrays and a generalization of vectors and matrices to higher orders. We first provide a
formal definition as real maps from index sets enumerating the coordinates of vectors, matrices, and higher-
order tensors. To ease the notation, we abbreviate sets as [d] = {0,...,d — 1}, tuples of state indices by
g = (20, - .., Tq—1) and tuples of variables by X|q = (Xo, ..., Xq1).

Definition 2.1 (Tensor). For k € [d], let my, € N and let X}, be categorical variables taking values in [my]. A
tensor T [Xo, . .., X4—1] of order d and leg dimensions my, . .., m4—_1 is defined through its coordinates

T [X[d] = x[d]] =T [X() =xg,...,Xd-1= xd,l] eR
for index tuples

g = (x(), - ,Id_l) e X [mk] .
keld]

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 4

Tensors T [X [d]] are elements of the tensor space

®s",

ke[d]

which is a linear space, enriched with the operations of coordinate-wise summation and scalar multiplication.
We call a tensor T [X [d]] boolean, when all coordinates are in {0, 1}, and positive, when all coordinates are
greater than 0.

We introduced tensors here in a non-canonical way based on categorical variables assigned to their axes. While
this may look like syntactic sugar at this point, it allows us to define contractions without further specification of
axes, based on comparisons of shared variables. We occasionally also allow for variables X taking values in
infinite sets such as R, in which case we denote the set of values to a variable by val (X).

Example 2.2 (Delta tensor). Given a tuple of variables X [d = (Xo,...,Xq_1) with identical dimension m,
where d > 1, the delta tensor is the element

Fm [xg] € @ B

ke[d]
with coordinates
1 if xo=...=xTq-1
Slllbm X = xy] = i
K =20l =1, e

We depict this tensor by black dots, which sometimes appears as auxiliary elements in tensor network diagrams
(see e.g. Figure @ For d = 1, the delta tensor is the trivial vector, whose coordinates are constantly 1, which
we denote by 1 [X].

2.2 Tensor networks and contractions

We use a standard visualization of tensors (dating back to [Penrose| [1987]) by blocks with lines depicting the
axes of the tensor. Additionally, we assign to each axis of the tensor the corresponding variable X}.:

Xo | X1

N | Xa-1

We now associate categorical variables with nodes of a hypergraph and tensors with hyperedges, which are
arbitrary subsets of nodes. Based on this association we continue with the definition of tensor networks.

Definition 2.3 (Tensor network). LetG = (V, E) be a hypergraph, let X,, forv € V be categorical variables
with dimensions m,, € N, and let

7 [X] € QR™

vee

be tensors for e € £, where we denote by X the set of categorical variables X, withv € e. Then, we call the
set

79 Xy ={m°[X] : e€ &}

the tensor network of the decorated hypergraph G. The set of tensor networks on G such that all tensors have
non-negative coordinates is denoted by T9.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 5

I
CL) W\
7_0 7_1 . 7_d-l
| Xo | X1 | Xd-1

Figure 2: Hypergraph to a CP format (see Example . a) Node-centric design. b) Corresponding tensor
network on the edges of the hypergraph.

" D@ - @

ed—2 0 I 1 Iy Igo
eq—1 T T e Td’l

@ @ @ | - | - | o

Figure 3: Hypergraph to a T'T format (see Example . a) Node-centric design. b) Corresponding tensor
network on the edges of the hypergraph.

As examples we now present the CP and the T'T formats in our hypergraph notation.

Example 2.4 (The CP format). The Candecomp-Parafac (CP) tensor format (see Hitchcock [1927]) corre-
sponds in our notation to a hypergraph (see Figure[2) defined by

B nodes X [d] @nd a single hidden variable 1, decorated by dimensions mjq) and the CP-rankn, respectively
W edges {e;, = {Xy, I} : k € [d]} each decorated by a matrix T [X},, I] € R™+>™,

Example 2.5 (The T'T format). The Tensor-Train (I'T) format (see|Oseledets [2011|]) corresponds in our nota-
tion to a hypergraph (see Figure[3) defined by

B nodes X [d] and hidden variables 1 [d—1], €ach decorated by a dimension mq) and njq_1),
B edges
{60 = {Xo,fo}} U {ek = {Ik—lkaHIk} ke {1, e, d— 2}} U {ed_l = {Id_Q,Xd_l}}

each decorated by a tensor of order 3 (respectively 2 for k € {0,d — 1}).

2.3 Generic contractions

Let us now exploit our graphical approach to tensor networks in the definition of contractions.

Definition 2.6. Let 7Y be a tensor network on a decorated hypergraph G = (V, £). For any subsetU C V we
define the contraction of 79 with open variables Xy, to be the tensor (for an example see Figure

() € QR™

veU

with coordinates at indices xyy € X, c;,[my] by

Dy = (er[xezme])
[mo]

TV\UE Xyev\u eef

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 6

€ e e —
(teo,te1 1 ’-’>[X1$X3] = €0 rez
{xo
X1 X3 X | X2 Xo | X3
)
X, /Tel

Figure 4: Graphical depiction of a tensor network contraction with the open variables X1, X3. Open variables
are depicted by those without a dot at the end of the line.

When an open variable X does not appear in any tensor in a contraction, we define the contraction as a tensor
product with the trivial tensor I [X] (see Example . To ease notation, we often omit the set notation by
brackets {-}.

Example 2.7 (Tensor product). The simplest contraction is the tensor product, which maps a pair of two ten-
sors with distinct variables onto a third tensor and has an interpretation by coordinate-wise products. Such a
contraction corresponds with a tensor network of two tensors with disjoint variables. Let there be two tensors

T [X[d]] S ® R™k and T [Y[p]] S ®Rné
keld] Lep]

with disjoint tuples of categorical variables assigned to their axes. Then their tensor product is the tensor

(X)o7 oDy v, € | QR™ | @ | QR™

keld] te[p]

with coordinates to tuples of x(q) € X (g [mik] and yp) € Xyep,[nel as

(7 (X 7 [Yi)] >[X[d]:55[d]vy[p]:y[1’]]
=1 (X = o) 7 Vi) = v -

2.4 Normalizations

Based on generic contractions, we now introduce the normalization of tensors, which introduces certain con-
traints on tensors to be depicted by directed hyperedges.

Definition 2.8. The normalization of a tensor T [X)] on incoming nodes V™™ C 'V and outgoing nodes V°"* C
V\V™ is the tensor (T [Xv]>[Xypous | X, 5] OEINEC fOT Zyjin @S

(T>[

Xvout 7XVin :xvin}

- it (T)ix . —p 170
<T [XV]>[X = { >[Xvin:””yin] [va vm})
ﬁﬂ [_Xvout] else

veyout My

yout |Xvin :xvin]

We say that T [Xy)| is normalized with incoming nodes V'™ C V), if

T [Xy] = (7 [Xy]) [XV\Vin|XviI‘] .

In our graphical tensor notation, we depict normalized tensors by directed hyperedges (a), which are decorated
by directed tensors (b), for example when Xin = (X2, X3) and Xy\yin = (Xo, X1):

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 7

¢ [Xo, X1, X2, X3]
HOO® T
2.5 Function encoding and Computation-Activation Networks
Towards presenting the function encoding schemes, we define one-hot encodings mapping the states of vari-

ables to basis tensors.

Definition 2.9 (One-hot encoding). To any variable X taking values in [m], the one-hot encoding of any state
x € [m] is the vector with coordinates

1 if x=12
€ [X =17 = { =
0 else.

To any tuple X [of variables taking values in XX keld) [myg], the one-hot encoding of a state tuple x[q) Is the
tensor product

€y [X[d]] = ® €xp [Xk -

ke(d]

We now use one-hot encodings to encode functions between state sets.

Definition 2.10 (Basis encoding of maps between state sets). Let there be two sets of variables X (4] and Y[p],
and let there be a map

q: X [my] = X [ng]

keld] Lep]

between their state sets. Then, the basis encoding of q is a tensor

B[V X) € | QR | o [QR™

Celp] keld]

defined by

BV Xl = DL Eg(ag) Vil ® g [Xia] -

T[4 €Xpe(a) [Mok]

Basis encodings are normalized tensors and are thus depicted as decorations of directed edges in hypergraphs:

YopAYiA ¢ AYp2
Bq
Xo X1 -+ A Xy

We further generalize basis encodings to arbitrary functions between finite sets by the use of bijective image
enumeration maps. Given an arbitrary set I/, we say a map

I: X [mgl—-U
keld)

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 8

is an enumeration map of I by d variables X}, taking values in my,. Given a function ¢ : U™ — L/°"* between
arbitrary sets and enumerating maps I;, and I, for both sets, we define the basis encoding of ¢ as

B Y Xa] = D et gy Yinl) @ €110 [Xia] -

uelyin

where X[y, Y], are variables taking values in [‘L{in’] and HZ/{O'“H. In Examplewe present index enumer-
ation maps for summations in m-adic integer representations. Based on these concepts, we define the most
general tensor network architecture to be applied in the rest of this work.

Definition 2.11 (Computation-Activation Network (CompActNets)). Let there be a function t : Xke[d] [m]

— IRP with basis encoding 3! [Y[p},X [d]], where Y[p] is a tuple of variables to an enumeration map of the
image of t. Let there further be a hypergraph G = (V,) with nodes V' containing [p]. We define the by t
computable and by G activated family of distributions by

A = {<Bt [Yip)s X(a] v<f>[y[p]]>[x[d]z] Evle Tg} '

We refer to any member P [X [d}] e A9 asa Computation-Activation Network (or shorter as a CompActNet).
We call 3¢ [Y[p] , X [dﬂ (and any decomposition of it) the computation network and & [Y3,] the activation network.

The elementary activated networks are representable by an elementary activation tensor with respect to the
graph

= (V,{{v} : veV})

and we denote such networks by ABEL, Any CompActNet is representable with respect to the maximal hyper-
graph

MAX = (V,{V}).

We therefore have for any graph that A9 ¢ AHEMAX,

3 The probabilistic paradigm

In the following we investigate tensor network decomposition mechanisms of probability distributions. After in-
troducing probability distributions as tensors and independencies as decomposition schemes, we derive tensor
network decompositions based on conditional independencies (applying a classical theorem of Hammersley-
Clifford, see|Clifford and Hammersley|[1971]) to motivate graphical models. Furthermore, we present the Fisher-
Neyman Factorization Theorem as providing decompositions in the presence of sufficient statistics.

3.1 Basic concepts

As defined next, distributions IP over a discrete state space can be represented by tensors, where each entry
corresponds to the probability of a corresponding state.

Definition 3.1 (Joint probability distribution). Let there be for each k € [d] a categorical variable X, taking
values in [my]. A joint probability distribution of these categorical variables is a tensor

P[X] € ® R™*

keld]

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 9

which coordinates are non-negative, that is for any x(q) € X (g [mu] it holds
P [Xjg = g 20,

and which is normalized with no incoming variables, that is

(P [X[d]]>[g] =1

Let Z be another variable taking values in a possibly infinite set val (Z). Then, a tensor P [X (d] ’Z] is a family
of joint probability distributions if, for any z € val (Z), the slice P[X 4| Z = z] is a joint probability distribution.
Example 3.2 (Family of independent coin tosses). Consider tossing a coin with head probability z € [0, 1] and
repeating the experiment independently d € N times. We define a variable Z taking values in val(Z) = [0, 1]

and denote by X [d] d boolean variables. Then, the family of coin toss distributions is the tensor IP [X [d] }Z] with
coordinates x(q) € X¢(y[2] and z € [0, 1] defined by

P[Xpg = 1|2 = 2] = J] 2% (1 - 2)' 7 = 22wea (1 — o) Zneta o,
ke[d]

Note that by the binomial theorem we have (P [X{q, Z = z|),_. = 1 for each slice with respect to z € [0, 1].

(@]
Therefore, P [X [d]> Z] is indeed a family of probability distributions. For d = 2 we have more explicitly for any
z € [0, 1] that

0 -2 z-(1-z
pialz=2) = w0 T

A basic inference operation on probability distributions is the computation of marginal and conditional distribu-
tions.

Definition 3.3. For any distribution P [X, X1] the marginal distribution is the contraction (see Def.
P [Xo] = (P [Xo, X1])(x,) »

-

The conditional distribution of X on X is the normalization (see Def.

which is depicted by the diagram

P[Xo|X1] = (P [Xo, X1]) xo1x,] -

For z1 € [m] with (P [Xo, X7 = z1]) | we depict the normalization by

(@

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schitte, M. Fréhlich, M. Eigel 10

3.2 Factorization into graphical models

The number of coordinates in a tensor representation of probability distributions is the product
I
keld]

It therefore scales exponentially in the number of coordinates. To find efficient representation schemes of proba-
bility distributions by tensor networks, we need to exploit additional properties of the distribution. Independence
leads to severe sparsifications of conditional probabilities and is hence the key assumption to gain sparse de-
compositions of probability distributions.

Definition 3.4 (Independence). We say that X is independent of X with respect to a distribution P [X, X1]
if the distribution is the tensor product of the marginal distributions, that is

P[Xo, X1] =P [Xo] @ P[X1] .

In this case we write (Xo L X1).

Thus, independence appears directly as a tensor—product decomposition of probability distribution. Using tensor

network diagrams, we depict this property by
® P[XQ,Xl] ==]P)[Xo] ® P[Xl]
Xo X Xo X,

]P)[Xo,Xl] - P[Xo,Xl}
Xo X1 Xo X1
Note that the assumption of independence reduces the degrees of freedom from (mg - my) — 1to (mo—1) +

(my—1). The decomposition into marginal distributions furthermore exploits this reduced freedom and provides
an efficient storage. Having a joint distribution of multiple variables whose disjoint subsets are independent, we
can iteratively apply the decomposition scheme. As a result, we can reduce the scaling of the degrees of freedom
from exponential to linear by the assumption of independence.

As we observed, independence is a strong assumption, which is often too restrictive. Less demanding is con-
ditional independence, which still implies efficient tensor network decomposition schemes. We introduce condi-
tional independence as independence of variables with respect to conditional distributions.

Definition 3.5 (Conditional independence). Assume a joint distribution of variables Xg, X1 and X5. We say
that X is independent of X conditioned on X5 if

P[Xo, X1|X,] = <P[XO‘X2]aP[X1’X2]>[XO,X1,X2} :

In this case we write (Xo L X1)| Xo.

Conditional independence stated in Def.[3.5|has a close connection with independence stated in Def.[3.4] To be
more precise, X is independent of X conditioned on X if and only if X is independent of X with respect
to any slice P[Xo, X1 | X3 = @] of the conditional distribution [X, X1|X].

We can further exploit conditional independence to find tensor network decompositions of probabilities as we
show in the next corollary.

Corollary 3.6. LetIP [X, X1, X2| be ajoint distribution. If and only if X is independent of X1 conditioned on
X5, the distribution satisfies

P [Xo, X1, Xo] = (P[Xo| X2, P[X1|X2], P[Xa]))« x, -

In a diagrammatic notation, this is depicted by

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 11

[Pl X0 X | = [Pxaxs) | [PIxa)] [Bxifxa] |
X0+ X1+ Xz+ XO+ Xo Xo Xo Xl+
Xa

This conditional independence pattern is the basic local building block that is generalized in Markov networks,
which we define in the following.

Definition 3.7 (Markov network). Let 79 be a tensor network of non-negative tensors decorating a hypergraph
G. Then the Markov network PY to 79 is the probability distribution of Xy, defined by the tensor

({r° ree&h)x,

P = e eee T e

We call the denominator
Z (Tg) = ({7 e€ &}y
the partition function of the tensor network 79.

We define graphical models based on hypergraphs to establish a direct connection with tensor networks deco-
rating the hypergraph. In a more canonical way, Markov networks are instead defined by graphs, where instead
of the edges the cliques are decorated by factor tensors (see for example Koller and Friedman|[2009]). Following
this alternative description, the graphs of the tensor networks are dual to the graphs of the graphical models
Robeva and Seigal [2019], |Glasser et al.|[2019].

We can interpret the factors 7 [X[dﬂ as activation cores placed on the hyperedges e of the graph. The global
activation tensor (and hence the joint distribution) is obtained by contracting this activation network and normal-
izing by its partition function.

While so far we have defined Markov networks as decomposed probability distributions, we now want to derive
assumptions on a distribution, assuring that such decompositions exist. The sets of conditional independencies
encoded by a hypergraph are captured by its separation properties, as we define next.

Definition 3.8 (Separation of hypergraph). A path in a hypergraph is a sequence of nodes vy, for k € [d], such
that for any k € [d — 1] we find a hyperedge e € & such that (vy,vi11) C e. Given disjoint subsets A, B, C
of nodes in a hypergraph G, we say that C separates A and B with respect to G when any path starting at a
node in A and ending in a node in B contains a node in C'.

To characterize Markov networks in terms of conditional independencies, we need to further define the property
of clique-capturing. This property establishes a correspondence of hyperedges with maximal cliques in the more
canonical graph-based definition of Markov networks [Koller and Friedman|[2009].

Definition 3.9 (Clique-capturing hypergraph). We call a hypergraph G clique-capturing, if the following holds:
Each subsetUd C V), which fulfills that for any a,b € U with a # b, there is a hyperedge e € £ witha,b € e,
is contained in a hyperedge.

We are now ready to state the Hammersley-Clifford theorem characterizing the sets of Markov networks on a
hypergraph by conditional independence.

Theorem 3.10 (Hammersley-Clifford factorization theorem). Let there be a positive probability distribution
P[Xy] and a clique-capturing hypergraph G = (V, £). Then the following are equivalent:

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 12

a) €o el €d-1 b)

@ . P =]PO]P>1 e]P)d—l

Xo| |X1 |Xd71 |X0 |X1 |Xd,—1

Figure 5: Decomposition of a probability distribution with independent variables (see Example [3.71). The inde-
pendencies are captured by the elementary hypergraph a), whose edges contain single nodes. The correspond-
ing tensor P [X[d]] is then represented by a Markov network on the elementary hypergraph, where each factor
is the marginal distribution of the corresponding variable as visualized in b).

i The distribution P [Xy] is representable by a Markov network on G, that is for each edge e € £ there is
atensor 7¢ [X.| such that

P[Xy] = ({r[X.] : e € EPpxppo) -

i For any subsets A, B, C' C V such that C' separates A from B, we have

(Xa L Xp)| Xc.
Proof. This is shown in Appendix Sect. O

By Thm. the conditional independence structure of P [Xy,] determines a global tensor network decom-
position of P [Xy,]. Note that the assumption of a positive distribution is required (i.e. for all Z[q) we have
P [X[d] = a:[dﬂ > (). The assumption of positivity is however not required in our characterization of indepen-
dencies and conditional independencies by the existence of corresponding tensor decompositions (see Def.

and Def.[3.5).

Example 3.11 (Independent boolean variables). Let there be d boolean variables X [d], which are i.i.d. drawn
from a positive distribution P [X]. From the pairwise independencies of X}, it follows with the Hammersley-
Clifford Factorization Thm. that the distribution is representable by an elementary tensor network, that
is

P [Xg) = Q) PF[X4] .
ke[d]

The corresponding hypergraph is the elementary graph, with respect to which any two disjoint subsets of nodes
are separated (see Figure[5).

Example 3.12. We consider a classical example of a graphical model (see [Koller and Friedman, |2009, Ex-
ample 4.3]): A student of intelligence (X 1) and SAT score (X g) is assigned a test of difficulty (X p), for which

he gets a grade (X ¢) depending on which he gets a recommendation letter (X 1,) by its teacher. We make the
following modelling assumptions:

W "The SAT score depends only on the students intelligence: (Xs L X(p ¢ ry) | Xr.

W "The recommendation letter depends only on the grade: (X1, L X(p 1 s}) | Xe-

The associated hypergraph capturing these conditional independencies is drawn in Figure|6 a).

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 13

B O ORI
€1
DERO

Figure 6: Hypergraph a) capturing the conditional independencies of the student example. The cliques of the
node adjacency graph are highlighted in b) and coincide with hyperedges of the hypergraph. The hypergraph is
therefore clique-capturing (see Def.[3.9).

3.3 Factorization based on sufficient statistics
Let us now introduce sufficient statistics towards studying further tensor network decompositions of probability
distributions.

Definition 3.13. Let P [X, Z] be a joint distribution of the m-dimensional variable X and the n-dimensional
variable Z and let

t : [m] — [n]

be a statistic. We are interested in the distribution P [X, Z, Y] = (P [X, Z], B! [Y¢, X])
t is a sufficient statistic for Z if X is independent of Z conditioned on Y.

(X.ZYi]" We say that

Example 3.14 (Sufficient statistics for the probability). Let Z be the value P [X4 = x(4| when drawing X g
from P [X [d]] . Then't is a sufficient statistic for Z = P [X [d]] if for all y in the image of t we have

I
P[X[d} = T[g] ‘Y} = y] — |{l‘[d] :t(x[d]):y}‘
0 else

if t(x[d]) =y

When knowing the value t (:E[d]) of the sufficient statistic at a given index x[q), we then also know the probability
P [X [d = x[d}]. The function t is thus a sufficient statistic for Z = P [X [d]] if and only if there is a tensor
£ [Y[pﬁ with

P [Xa] = (8" Y Xta] - € Vi) -

Example hints at a connection between sufficient statistics and decompositions into CompActNets. More
generally, such decompositions are provided by the Fisher-Neyman Factorization Theorem.

Theorem 3.15 (Fisher-Neyman Factorization Theorem). Let IP be a joint distribution of variables X, Z with
values val (X)), val (Z). Let there further be a finite set val (Y;), which is enumerated with a variable Y.
Thent : val (X) — val (Y}) is a sufficient statistic for Z if and only if there are tensors v [X] and & [Yy, Z]
such that

P[Xv Z} = <€ [YtaZ] 75t D/t’X] aV[XD[Xz} :

We depict this equation diagrammatically by

Iy }

X |

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 14

Proof. Shown in the appendix, see Thm.[A.3 O

Note that the definition of sufficient statistic does not make use of the marginal distribution P [Z]. We therefore
can define sufficient statistics also for families of distributions IP [X ‘ Z] with respect to arbitrary non-degenerate
marginal distributions P [Z]. We then use Thm. to embed such families in CompActNets.

Corollary 3.16. Let P[X [[d] |Z] be an arbitrary family of distributions of X [a) and t a sufficient statistic for Z.

Then, there is a tensor v | X|g | and an activation tensor & [}, Z| such that for any z € val (Z) we have

P[X(q|Z = 2] € ABMAXSE,

The Factorization Theorem of Fisher-Neyman provides the fundamental motivation for the CompActNets ar-
chitecture. Any decomposition of 3% [Y[p] , X [d]] is called a computation network and common to all members
of a family with sufficient statistic ¢. The activation tensor £ [Y[p], Z = z], whose decomposition is called the
activation network, is specific to each member of the family. We now show in two examples how families of

distributions can be represented in CompActNets by sufficient statistics.

Example 3.17 (Order statistic for boolean variables). Let there be d boolean variables X [d] and a family
IP’[X [d] ‘Z } of distributions. The order statistic assigns the ordered tuple to each tuple Zid)- The ordered tu-
ple effectively counts the number of 1 coordinates in the tuple x|q), that is the statistic

£ X [l = o], T () =k 2 =1}
keld]

When the order statistic is sufficient for Z, the detailed order of the outcomes is uninformative about the member
z from which the random variables have been drawn. By the Fisher-Neyman Factorization Thm. ttisa
sufficient statistic if and only if there are tensors v [X [d]] and & [Y4, ©] such that for each 6 € ©

P[Xyg|Z = 2] = (¢1V4. 2 = 2], 8" [Yi, Xig] v [X[d]]>[X[d]] .

For each member z of the family, the probability of each sequence x1q) Is thus the product of a base measure
factor v [X[q = (4] and a factor & [Y, = +(x(g), Z = z| depending only on the count +(x(4)) of 1 coor-
dinates in x (). We later continue this example in Examp/e where further interpretations to the case of i.i.d.
variables are provided.

Example 3.18 (Graphical models as a special case of CompActNets). For graphical models we take the identity
statistic

§(zp) = za)

so that the image coordinates coincide with the variables and there are no non-trivial computation cores. The
associated basis encoding is just the identity tensor

B [Yia Xa)) = 8 [X(a)» Yia)]

Therefore, for any activation tensor & [Y,]| we obtain

P [X1q] = (& [¥] .4 [¥ia. Xia]) 1o~ XD o]

[Xa

Put differently, in the graphical-model case the activation tensor coincides with the joint distribution tensor. In
this setting, structural properties of the distribution such as (conditional) independences can be read off as
algebraic factorization patterns of the activation (and hence joint) tensor.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 15

3.4 Exponential families

We now show that exponential families are specific instances of CompActNets, whose activation tensors have
elementary decompositions. The importance of exponential families in statistics stems from their universal prop-
erties. A classical theorem by Pitman, Koopman and Darmois (see|Pitman|[1936]) states, that whenever a family
exhibits constant support and a finite sufficient statistic for arbitrary large data sets, then it is in an exponential
family. For a discussion of further universal properties of exponential families such as the existence of priors and
entropy maximizers, see Murphy|[2022].

Definition 3.19 (Exponential family). Given a base measure v and a statistic

t: >< [mk] — RP
ke(d]

we enumerate for each coordinate { € [p] the image im (t,) by an interpretation map
Ig : [|1m (tg)H — im (t[) .

For any canonical parameter vector 0 [L] € RP, we build the activation cores % [Y;] for each coordinate
ye € [[im (£0)[] by

o [V, =y = exp [0 [L = €] - Ip(ye)]
and define the distribution

P [X] = <{V [Xia]} U{B% [Ye, Xig] = L€} U{a™[Yy] : L€ [p]}>[X[d1|®] .

We then call the tensor P"* [X(|©)] with val (©) = RP and slices for 6 € RP given by
P [X(q]© = 6] = P44 [X(q]

the exponential family to the statistic t and the base measure v.

To see that Def. is consistent with the typical definition of exponential families (see |Brown|[1987]), note that
for each # € RP the normalization amounts to the division by

2(0) = ({v X} U {8 [V, Xa] + €€ pl}U{at Vi) : L€ [p]})

(o] ’

a quantity which is referred to as the partition function. Then, we have for each coordinate x| € Xke[d} [m]
that

PO Xy = ayq)]

= 5 (I Xy U (8" [Xia) < bl e[: £ e) e
= zl(e) v [Xjg =aqq] exp | Y O1L =]t [Xjg = 2yq)

L€[p)]

Note that by construction each member of an exponential family is an element in a CompActNet with elementary
activation cores, that is

P [X(q|© = 6] € AYFMY.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schitte, M. Fréhlich, M. Eigel 16

050’9 ap-l,(‘)
Yo @ ... oY, 1
AN AN
— _1 t
P(t,e,l/) == Z(O) B

X0+X1+ o e +Xd_1 XoPM X1 -0 MXga

Xo X1 Xgo1

Figure 7: Tensor Network diagram of a member of an exponential family % [X[d] O = 0} before normaliza-
tion as an CompActNet with elementary activation, that is an element in ABELY,

Example 3.20 (Exponential family of coin tosses). Recall the family of distributions of boolean X [d) from Exam-
ple[3.17, which has the order statistic t+ as a sufficient statistic. We now in addition assume that the variables
X [d] are i.i.d. with respect to any member of the family (see Example . For the variables to be i.i.d., we
need v [X [d]] =1 [X [d}] and can thus choose a representation such that for z € val (Z)

PXua|Z = 2] = (57 (Ve X €122 = Z]>[x[d]]

where for each k € [d + 1]
EYy =k, Z=2]=(1-2)%F. 2~

The marginal distribution P[Y.,.| Z = z| is then the binominal distribution B(d, z). When excluding the case of
z € {0, 1}, the family is a subset of the exponential family with the head count statistic, where each member is
reparametrized by
z
0 :=1In .

To see that this is true, we observe that the coordinate y € [d + 1] of the activation tensor of P00 g

Vi =y = o
@l meply 0= (1—2z)y+
Now, with Z (0) = ﬁ we have for any x|y with Zkze[d} T, = y4 that
1 t+ o] o d Zy+ o diy
% . <5 [Y+7X[d] —m[dﬂ , [Y+]>[®] =(1-2)7 m — (1=)

Comparing with the activation tensor & [Y.] above, we note that Z (0) is the partition function of the exponen-
tial family and P00 [X)] coincides with the member P[X (g]Z = z|. We further observe that since the
statistic t ™ decomposes as a sum of terms depending on single variables only, we have a decomposition of the
corresponding CompActNet by

1 expl] - expld-d]]

+y+

5 = [ewl] [ew] - [ewi]

Xo’f +X1 . +Xd-1 | Xo | X1 | Xd-1

This reproduces the fact that distributions of independent variables are representable by elementary tensors

(see Example .

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 17

3.5 Efficient contractions by message passing

Contractions of tensor networks are generally hard to solve. Here, we investigate message passing algorithms,
which decompose global contractions into a sequence of local contractions, whose results are passed as mes-
sages through the tensor network. The resulting algorithm is called the Tree Belief Propagation (see Algo-
rithm[T). While various scheduling strategies for the message passing exist, we focus on the case of tree hyper-
graphs, for which exactness and efficiency can be shown. We denote £ to be all tuples (eg, e1) of hyperedges
ep,e1 € € such that ey # e1 and eg N e; # &. For our purposes we call a hypergraph G a tree when the
graph with nodes by the hyperedges £ and edges by £ is a tree (for an example see Figure [8).

Algorithm 1 Tree Belief Propagation

Require: Tensor network 79 ona hypergraph G
Ensure: Messages {Xe,—e; [Xeone,] : (€0,€1) € E7}

Initialize a message scheduler S = {(eg,e1) € £ : ep aleafinthe tree (£,€7)}]
while S not empty do

Pop a (eg, e1) pair from S

Compute the message

Xeo—er [Xeoner]) = ({7 [Xeol} U {Xes—eo [Xeaneo) * (€2,€0) € E7 e # 61}>[Xeome1]

Update S by all messages (e1, e3) which have not yet been sent, if all messages (e2, e1) with ea # e3
have been sent.
end while
return Messages { Xe,—e, [Xegne,] @ (€0,€1) € E7}

For an implementation of Algorithm in the python package tnreason, see Sect.

The following theorem states that the contraction of a whole tensor network can be replaced by local contractions
with messages. Since contracting the whole network can be infeasible, this shows that calculating the messages
with the Algorithm [f]can be advantageous.

Theorem 3.21. Let 79 be a tensor network on a tree hypergraph G (i.e. the graph (£,E7") is a tree). The
messages in the tree belief propagation Algorithm[1] are contracted to local marginals, meaning that for each
eg € £ we have

<Tg>[XeO] = ({7 [Xeol} U{Xea—eo [Xeaneo] : (€2, €0) € 5H}>[X80] :

We show Thm. based on the following lemma. We denote for each pair (eq, e1) the subset E—(eoer) - g
as the subset of edges e € &, for which each path in (£,£7") to e; passes through ey. The tree hypergraph
property makes this definition equivalent to an existing path through e, which is used in the proof of the following
lemma. Note that by construction e € £ (€0-€1).,

Lemma 3.22. For any tensor network on a tree hypergraph, Algorithm[1] terminates in the tree-based imple-
mentation and returns final messages

Xeomres Weapes) = ({r°[Xe] e g eloen})
coflel

Proof. We show this property by induction over the size of the edge sets E—(eoe1) for pairs (ep,e1) € £,
such that }5‘“50761” < n. Note that since always eg € £7(€0¢1) we have that n > 1.

n = 1: In this case we have £ (c0:e1) — {eo} and e is a leaf of the tree-hypergraph G. The claimed message
property holds thus by definition.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schitte, M. Fréhlich, M. Eigel 18

n — n-+ 1: Assume that the message obeys the claimed property for edge sets with cardinality up to n. If there
is no edge set with cardinality n 4 1, the property holds also for those with cardinality up to n + 1. If there is an
edge set £ (¢0-€1) with size n + 1, we have

5—>(eo,el) _ {60} U U 5—)(62,60)

el

The message Xe,—e, iS sentonce all messages X e, —se, 10 (62, eg) e £ (€0:e1) grrived. By definition we have
that

Xeo—e1 [XeoﬁeJ = <{7_60 [Xeo}} U {X62%€0 [X€2ﬁeo] : (62360) € 5_>, €2 7& 61}>[X

eoﬁel] :

Now we use the induction assumption on £ (e2.e0) (since its cardinality is at most n) and get

Xegser [XeoﬁeJ _ <{7_€0 [Xeo]} U U <{T€3 [Xeg] ez € gﬁ(BQ’EO)}>[X6 .] >

(e2,e0)€E, ea#er [Xﬁoﬂq]

— <{7‘€0 [Xeo]} U U {7_63 [Xeg] :eg € g—>(eg,eo)}
(e2,e0)EE™, eaeq [XeOmel]

- <{Te [Xe] s e€ 5_)(80761)}>[X80m51] '

Here, we used the commutation of contraction property in the second equation, which is justified by the assumed
tree property of the hypergraph. Thus, the message property holds also for any edge sets of size n + 1.

By induction, the claimed message property therefore holds for all final messages. O

Proof of Thm. Since the hypergraph is by assumption a tree, we can partition £ into disjoint subsets {eq }
and £7(¢2:¢0) for (eg, e0) € £. We then have

79 = ({7 [Xe, 7¢[X,] : e € £7(e2e0) . (ea, e -
(g = (I b { (13 o) (e < }>[Xeo]
= <{7_eo [Xeo]} U {X82—>60 [Xe2ﬁ€0] : (627 60) € 5_)}>[X60] ’

where we used Lem. [3.22]in the second equation. O

We illustrate the usage of Algorithm[f]on the Markov network of Example

Example 3.23 (Continuation of Example[3.12). We exemplify the Belief Propagation Algorithm([1] on the Markov
network in the student example (see Example[3.12). The directions of the messages result from the hyper-
edge overlaps (see Figure[g a) and the resulting directions £ are sketched in Figure@ b). The messages to
{(e2, €p), (eo, €2)} are vectors of X and the messages { (e, e1), (e1,eo)} are vectors of X;.

Since the hyperedges are minimally connected, we can implement Algorithm by a tree scheduler S':
B The scheduler is initialized with messages from leafs, in our example {(ez2, ep), (e1, €p)}.

B Each message is placed exactly once on S, when at a hyperedge all but the reverse message have
been received. In our example, after execution of (es, e) the message (e, 1) is placed on S and after
execution of (e1, ey) the message (eq, €2).

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 19

------------ 62,60 60761

@o@g@

———————————— 62,60 61;60

Rt

Figure 8: a) Sketch of the overlap of the edges, resulting in the message directions b) £E7 =
{(62760)>(60762)7(60761))(61760)}-

In this implementation, Algorithm terminates after || = 4 iterations of the while loop. The exact marginals
of the edge variables are then

P [XLaxG} = <7_62 [XL7XG] » Xeo—rea [XGD[XL,XC”g})
P [XGyXDyXI} = <T€O [XGvXDa XI] y Xea—req [XG] y Xe1—eq [XI]>[XG7XD7XI|@] s
P[leXS} — <7-61 [XlaXS] aX60*>61 [XI]>[X1,X5|®] .

4 The neural paradigm

The neural paradigm of artificial intelligence exploits the decomposition of functions into neurons, which are
aligned in a directed acyclic graph. We show in this section how functions decomposable into neurons can be
represented by tensor networks. To this end, we formalize discrete neural models by decomposition graphs and
formally prove the corresponding decomposition of their basis encodings.

4.1 Function decomposition

As a main principle of tensor decompositions, we now show that basis encodings of composition functions are
contractions of the basis encodings of their components.

Lemma 4.1. Let f [X [d]] be a composition of a p-ary connective function h and functions fy [X [dﬂ, where
{ € [p], that is for x(q) € X.c(4[2] we have

fw) =h(folzal,- Lo [2a]) -

Then, we have (see Figure[9)

B Yy, Xa] = <{5 [V Yip]} {87 [Ye, X = £ € [p]}>[vaX[d1] .

Proof. For any x4 € Xj,c (4[] we have
(6" Yl U8 Ve Xia] - e€ W)

= ({8" [V Yial} U (8" [Ye. Xiq = w1a] : £ € [D)})

= <{Bh (Y5, Y]} U gy Vel < £ € [p]}>

= €f(za) [Y7]
=B [Yy, Xpg = 2] -

[v7]

[¥7]

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 20

Figure 9: Tensor network decomposition of the basis encoding of a function f, which is the composition of the
functions fo, ..., fp—1 with a function h.

Thus, the tensors on both sides of the equation coincide in all slices to X[d] and are thus equal. O

We now define a more generic decomposition of discrete functions.

Definition 4.2. A decomposition hypergraph is a directed acyclic hypergraph G = (V, £) such that the following
holds.

B Each nodev € V is decorated by a setU" of finite cardinality m.,, a variable X,,, and an index interpre-
tation function

I, : [my) = U".

B Each directed hyperedge (e, e°"*) has at least one outgoing node, that is ¢°"* # @, and is decorated
by an activation function

X U= X U

veein vEeOUt

B Each node v € V appears at most once as an outgoing node.

B The nodes not appearing as an outgoing node are enumerated by v%g} . We abbreviate the corresponding
variables by X oy = Xiq)-

B The nodes not appearing as an incoming node are enumerated by UE}]“. We abbreviate the variables by
X,Uffl]n — }/[P} .

We assign for each k € [d] restriction functions

q%n X U — U s x[d]‘k:xk
keld]

to the nodes v%g} and recursively assign to each further node v a node function

@ X UN U, qleg) =g (X Qﬁ(fv[d])> v

keld) eein

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 21

where e, is to eachv € e™ the unique hyperedge with outgoing nodes {v}. We then call the function
in out
qg . >< UU’“ — >< Z/lve 5 qg == >< qv?ut
keld] 2€(p) ¢€(p]
the composition function to the decomposition hypergraph G.

The neural paradigm in Al can be modeled by the existence of decomposition hypergraphs for functions on large
sets. We now show how decomposition hypergraphs enable the sparse representation of composition functions
by tensor networks.

Theorem 4.3. For any decomposition hypergraph G with composition formula qg, we have

B9 [V, Xig] = ({89 [Xeont, Xoin] : €= (e, ™) € 5}>[Y[p]7x[d]] .

Proof. We show by induction over the number of edges in G that, for any x[g € Xke[d] [mg] and v € V, we
have

<{,398 [Xeout, Xoin] €= (ein,eout) € 5}>{ []} = ® €qu(1a)) [Xy] - 4.1)

X in 7X =T .
Vieig veV\uit

d]

€] = 1: If there is a single edge e = (e, €®"") in £, we have X4 = X, and V\v%g} = €°", In this case
.1) holds since
/Bg [Xeout,Xein - xein] - ® Eqv(m[d]) [XU] .

’UEV\UEE]

(I€] = n) = (J€] = n + 1): Let us now assume that (1) holds for all graphs with || < n and let G be
a graph with |€| = n + 1. We find an edge ¢ = (e'™, e°"*) such that all nodes in ™ are only appearing as
outgoing nodes in other edges.

({87 [X] e 5}>[

in »X[q]=7T
V\v[d] [d] [d]}

_ < 5 e X ({57 1615 €@

XV\{UE] Ueout} s X[d) :x[d]} > {X

<Bé [Xeout,Xein] 5 ® Eqv(x[d]) [X’U]>

’UGV\{UE;] Ueout}

= ® GQU(x[d]) [X’U] .

’UGV\’UEE]

Vol X[d)=71d)

X in 7X =
|: V\v[d] [d] m[d]]

Here, in the second equation we used the induction hypothesis on the subgraph (V, £\{€}) with |E\{é}| = n
and a generic contraction property of basis encodings in the third equation.

Thus, holds always and we have for any (g € X.cq [my] that

<{Bge [Xeou%Xein] Pe= (ein’eout) € 6}>[Y[p],X[d]=x[d]] = < ® eqv(x[d]) [Xv}>

vEV\vi?
& [Yip): X1a]

= ® €qu (i) [Xo]

vEYOUt

[p]
= g [Vl
= % Vi), Xig) = 2(a] -

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 22

Keeping X[d] open, the claim is established. O

When neurons have tunable parameters, we can discretize those by sets U* and understand them as additional
input variables.

Example 4.4 (Sum of integers in m-adic representation). We develop a tensor network representation of integer
summations on the set [m?] = {0,...,m% — 1}, wherem, d € N,

+ o mY x m] = ™Y +(6,0) =i+,
which have a m-adic representation of length d. We define an index interpretation map

I X ml—=[m? , I(zqg) = Zwk‘mk7
keld] keld)

which enables the parameterization of [md] as the states of d categorical variables X g of dimension m. We

analogously represent a second set [m®] by variables X [d and the set [m+1] of possible sums by Yia4+1)- The
basis encoding of the sum is then

N _ ~ -

B Wiarn Xiap Yia] = D e ttaa 1)) [Yiar] © ag [Xia) @ €3 | Xia] -
(4] 2 [d]

Note that the tensor space of 37 is of dimension m3dtl increasing exponentially in d. Feasible representation

of this tensor for large d therefore requires tensor network decompositions, which we now provide based on a
decomposition hypergraph. The targeted function to be decomposed is the representation of the integer sum by

+m <>< [m]> X <>< [m]> = X m] , A, Fg) =T () + 1(Eg)) -
keld] ke[d] keld+1]

We build a decomposition hypergraph G = (V,) (see Def. consisting of 4 - d nodes (see Figure|[10a)
. The nodes carry the (3 - d + 1) variables X (> Y[d)» Y]a+1) of dimension m constructed above and d — 1
auxiliary variables Z, [d—1] of dimension 2 representing carry bits. The directed hyperedges of G are

& ={({Xo, Ko}, (¥ ZoD) } U { ({21 Xe, Kuh, (Ve Z}) = b€ {1, d— 2}
U {({de, X1, Xa—1} {Ya-1, Yd})}
and are decorated by local summation functions

Loxmx[m = mx[2 , Toi) = <(z—|—a:+53) mod m, {”;*””D .

Since to the first hyperedge we do not have a carry bit, the decorating function is the restriction of the first
argument to 0.

It is known that the composition of the local summations + is the global summation +™ of integers in m-adic
representation. Thus, the composition function qg is +"*. By Thm. we have a decomposition of the basis
encoding to qg (see Figure[10b) as

gt |:Y[d+1],X[d}7X[d]} = ({pH [Y(LZo,Xo,Xo}}U
{ﬁjr’k [Yk,Zk,Xk,Xk,Zk_l] t ke {1; s 7d - 2}}U

-T—,d—?[y_YX_ X, Z_} ST
{8 d-1,tds Ad—1, Ad—1, £4d—2 }>[Y[d+l]7X[d]’X[d]]

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 23

a)
b)
Yo* o *Yd-l Y°+ Yl+ Yd—1+ ﬁ
335 - ﬁ;,o f” 5;,1 Zf .. Z)‘” /Bql,dfl

XOHXU Xd*lHdel Xo’f ’f}?o Xl’f +X1 qu’t* ’f}?d,l

Figure 10: Example of a decomposition hypergraph to the sum of integers (see Example [4.4). a) Hypergraph of
directed edges ey, for k € [d], each decorated by an integer summation + preparing an index Y}, of the resulting
sum. b) Corresponding tensor network decomposition of the basis encoded composition function, which is the
sum of integers in m-adic representation.

4.2 Function evaluation by message passing

We are now concerned with an efficient inference algorithm based on tensor network contractions. To evaluate a
function given as a tensor network decomposition of its basis encoding, the whole network has to be contracted.
As this can be infeasible for large networks, a message passing algorithm based on local contractions can be
applied, compare Algorithm[T]for a message passing algorithm for tensor networks on a on tree hypergraph.

Algorithm 2 Directed Belief Propagation

Require: Tensor network 79 on a directed hypergraph G
Ensure: Messages {Xe,—e; [Xeone,] : (€0,€1) €E7}

Prepare directed message directions
7 = {((el,e8™), (e, ™) e N (e, ™) = 2, e N (el ™) = 2, e N e} # 2}

Initialize a message queue S = {(e2,ep) : ez has empty incoming nodes}
while S not empty do

Pop a (eg, e1) pair from S

Update the message

Xeoser [Keoner] = (7% [Xeo]} U {Xeasen Xeareo] © (e2,€0) € €75 ea # eadpy, 1]

Update S by all messages (e1, e3) which have not yet been sent, if all messages (e2, e1) have been sent.
end while
return Messages { Xe,—e, [Xegne,] @ (€2,€0) € E7}

We apply the Directed Belief Propagation, Algorithm Algorithm[2] on a decomposition hypergraph, where we add
hyperedges to each leaf node and assign one-hot encodings of input states. We then show that the messages
are the one-hot encodings to the evaluations of the node functions.

Theorem 4.5. Let G be a decomposition graph and let us add hyperedges containing single input nodes, which

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 24

are decorated by one-hot encodings. Then the messages computed in Algorithm[d are characterized by

Xeo—e1 [Xeoﬁel] = ® €qv(z(q) [Xv] :

vEepNel

Proof. We show the theorem inductively over the messages computed in Algorithm[2| The first message is sent
from an input edge {[k]} to an edge e of the decomposition graph and is by assumption the one-hot encoding
of an input state €, [Xp].

We now assume that all previous messages satisfy the claimed equation at an arbitrary stage of the algorithm.
The message computed in the while loop is then a contraction of one-hot encodings with basis encodings and

Xeo—e1 [Xeoﬂel} = <{Bgeo [Xeouthein]} U {Xezﬁeo [Xezﬂeo] : (62760) S 5ﬁ}>[xeomel]

— <{/3g60 [Xeout7Xein]} U {un(x[d]) [XU} = ein}>

— ® 6(]v(m[d]) [XU] .

vEepNey

{Xeoﬁﬂ]

Thus, the new message is also the tensor product of the one-hot encodings of the evaluated node functions. By
induction, the property is therefore true for all messages. O

We notice that we can interpret any directed acyclic hypergraph for which each node appears exactly once as
an outgoing node and which is decorated by boolean and directed tensors 79. Edges with empty incoming sets
are carrying one-hot encodings of input states and all further edges carry functions.

Example 4.6 (Continuation of Example[4.4). We now show how Algorithm[Z can be exploited to compute an ef-
ficient message passing algorithm for the digits of the m-adic sum. Given two numbers in m-adic representation
by the tuples x4 and JE[d], we add the hyperedges with empty incoming nodes and single outgoing node

U {(e.). (2,450}

keld]

to the hypergraph of Examp/e and decorate them by the digit one-hot encodings €, [X« and €34, [f(k}
(see Figure[T1). We then apply the Directed Belief Propagation Algorithm[3 The initial messages queue then
consists of the messages from the digit encoding. As sketched in Figure to each digit there are three
messages (with the exception of the first being two), which can be scheduled in consecutive epochs X(k’m).
We then have by Thm.[4.5for k € [d — 1] that

<5J~“k [ka Z, Xy X, Zk—l} D[Z5], x RO [XG], x (D [Xk]>[z |~ [Zk] ,
k
where zy, is the value of the k-th carry bit. The k-th digit of the sum ;. can further be obtained by the contraction
<5+’k [Yk, Z, X, X, Zk—l} XEEDZ 1], x B0 L], x B [Xk]>[y | (Y] -
k
Note that the hypergraph representing this instance is a tree and by Thm. [3.21] also the message passing
scheme of Algorithm([] is guaranteed to produce the exact contractions. We can exploit this fact for example in
the efficient computation of averages of the summation digits, when we have an elementary distribution of input

digits. We emphasize that the directed belief propagation Algorithm([1]is exact even if the hypergraph fails to be
a tree, provided that we have directed and boolean tensors..

5 The logical paradigm

A tensor-based representation of propositional logic is developed by defining formulas as boolean valued ten-
sors, and showing how logical connectives and normal forms can be expressed as tensor contractions.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 25

0,2 1,2 d-2,2
Yo X(__) Y1 X(__) X(__) Ya-1 Yy
- ~A - A - ~A

- Zo - Z1 Zg-2 ~
3+,0 N 5+71 s PR — 5+,d-1

r r 7‘ N F\
l’ Xo A%, ‘I l’ X194 e ‘I I’ Xga X4 \I
\ 1 \ 1 \ 1
\] \ 1 \ € - ’
Y | €xo €y | ¢ N | € €z, | / N -] [Fama| 7

x(0:0) x(051) 5 (1,0 XD (31,0) NCEEY)

Figure 11: Computation of the integer sum in m-adic representation by the Directed Belief Propagation Algo-
rithm [2| (see Example . The summands are represented by one-hot encodings of the digits x4 and i[d],
from which the messages start. The k-th digit (for & € {0,...,d — 1}) of the sum is computed based on the
first messages of the epoch labeled by X(k’[z]), The third message X(k’2) in each epoch communicates the
carry bit to the next digit summation core. In the last message epoch the digit d — 1 and d are computed based.

5.1 Propositional semantics by boolean tensors

Starting with the introduction of propositional formulas as boolean tensors their decomposition is discussed with
respect to a basis encoding.

Definition 5.1. A propositional formula f Xy] depending on d boolean variables X}, is a tensor

f[Xu) € QR

keld]
with coordinates in {0, 1}. We call a state x4 € X,c|4[2] @ model of a propositional formula f, if

[Xg=2a] =1,

where we understand 1 as a representation of True and 0 of False. If there is a model of a propositional
formula, we say the formula is satisfiable.

Example 5.2. Let there be d = 3 boolean variables X (3] and a propositional formula
f [X[g]] = (X(] V Xl) N —Xs.
In a graphical depiction and in the coordinatewise representation this formula can be represented as

X1

000 11 [0 O]
Flxm = L7 = X, L } 00

Xo

X1 | X2

In the state set X .4 [2] ={0,1} x {0,1} x {0, 1} we have three models of the formula by the positions of
the non-zero entries in the tensor, that is f [X5 = x[3)| = 1 if and only if

w5 € {(1,0,0),(0,1,0),(1,1,0)} .

The formula f is therefore satisfiable.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 26

Model counts by contraction Each coordinate of a propositional formula is either 1 or 0, indicating whether
the indexed state is a model of the formula or not. In this way, the contraction <f>[@] counts the number of
models of the propositional formula f. One can therefore decide the satisfiability of a formula by testing for

<f>[®] > 0.

CP decomposition We can decompose a formula into the sum of the one-hot encodings of its models:

I

VRN

= . € =
f = Z €xo a1 -0 71 Ce Fd-1

Tq) EX e pa) k]
: | Xa-1 f {X[d] = z[d]] =1 +XO +Xd’1 | Xo | X1 | Xg-1

Xo |x1

As already depicted, one can exploit this summation to find a CP decomposition of the formula. To this end, we
enumerate the models z{, of f by a decomposition variable I with values i € [{f) 4] and define, for & € [d],
cores with slices

[]
Example 5.3. For the formula described in Example[5.2, we have

f [Xg] = (a1 [Xo] ® €0 [X1] @ €0 [X2]) + (€0 [Xo] © €1 [X1] @ €0 [X2])
+ (€1 [Xo] ® €1 [X1] ® €0 [X2]) .

Note that we have < f [X [dﬂ >[o = 3 and we can interpret this sum as a CP decomposition of f with rank 3.
We use the decomposition to evaluate the formula f atrpg = (1,1,0) and get

X =2p) = (@[Xo=1®e X1 =1] ® e [Xa = 0])

+ (€0 [Xo =1 ®e1 [X1 = 1] ® €0 [X2 = 0])

+ (a1 [Xo=1®e [X1 =1]® e [X2 =0])
—1.0-140-1-141-1-1=1,

which verifies that z3) = (1, 1, 0) is a model of the formula f .
Basis encoding Representing booleans by elements in {0, 1} leads to the problem that the negation is an
affine transformation and cannot be represented by multilinear tensors. To be able to express different kinds of

connectives by contractions, booleans are encoded by one-hot encodings as defined in Def. Propositional
formulas f can then be expressed by their basis encodings

Uit f [X = 2] = s

B Y =yp X = 2(g] {0 oo

This basis encoding 3/ [Yf, X[dﬂ € {0, 1}2X2d encodes the formula itself and its negation in its slices, since

B Yy, Xia] = et [Yp] @ f [Xpg] + e V7] @ ~f [Xg] -

In our graphical notation this property is visualized by

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 27

28l b L
+Yf

fXa=a1a] €0 €1
Trg1 EX 2] R
X0+X1+ . .+X¢1 el Cata) ~f f
Xo* Xl* A *Xd—l Xo| X1 ... | Xa-1 Xo | X1 | Xa-1

We further provide a more detailed example in coordinate sensitive notation in the following.

Example 5.4 (Logical negation and conjunction). The basis encodings of the negation — : [2] — [2] is the
matrix

Y-,

0

. 010 1
ﬁ [Y—.,X]— Xo\l‘/1 |:1 O:|

The 2-ary conjunctions A : [2] x [2] — [2] is encoded by the order-3 tensor

X1 X1 X1

- - -

0 1 0 1 0 1 00
BAYXX—Y”@xollJrYO®XOOO—X011[01]
[Yas Xo, Xal= v Tol@ %00 1y "1t oo 1] T w1 o] B,

0 T

Furthermore, the 2-ary disjunction \ : [2] x [2] — [2] is encoded by the order-3 tensor

X1

0 1 |:0 1:|
BY [y, Xo, X1)= XOOB 0] 11
hg!

Interpretation as CompActNets The propositional formula and its negation can be represented by this tensor
via

f [X[d}] = <€1 [Yf] ,ﬁf [Yf’X[d]]>[X[d]] and —f [X[d]] = <€0 [Yf] 7Bf [Yf7X[d}]>[X[d]]

Both f and —f are thus Computation-Activation Networks to the statistic { f} and the hard activation tensor

€1 [Y7], respectively €q [Yy].

5.2 Syntactic decomposition of propositional formulas

Propositional formulas of concern often have a syntactic specification as composed functions. We can therefore
apply the neural paradigm to find efficient representations of them.

Definition 5.5 (Syntactic decompositions). A syntactic decomposition of a propositional formula f is a decom-
position hypergraph (see Def. such that all nodes are decorated with the dimension m, = 2 and the
composition function f.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 28

We thus have a tensor network representation of any propositional formula based on its syntactic decomposition,
where the hypergraph of the syntactic decomposition equals the hypergraph of the representing tensor network.

Example 5.6. For the formula f [X [3]] = (Xo V X1) A =Xy from Example we have the following
syntactical decomposition of its basis encoding:

€1
Yovi)a-2
[]
I~
ﬂ/\
AYy AYovi AY=2
57" = B8Y 8

Xo+ A X1 +X2 Xu+ +X1 A X2

5.3 Entailment decision by contractions

We have already seen that the contraction of a propositional formula counts its models. This allows to define
entailment between two propositional formulas as defined in the following. To generalize the treatment, we no
longer demand that the variables of a formula are of dimension 2. We further use — f [X[dﬂ =1 [X[d]] —

f [Xa]-

Definition 5.7 (Entailment of propositional formulas). Given two propositional formulas ICBB and f, we say that
KB entails f, denoted by KCB |= f, if any model of KCBB is also a model of f, that is

(KB [Xiq], ~f [X(g])p =0
IfICB |= —f holds (i.e. <ICB [X [d}] f [X [d}] >[o =0), we say that KB contradicts f.

Classically (see e.g.|Russell and Norvig|[2021]) entailment in propositional logics is defined as the unsatisfiability
of KB A —f. This is equivalent to Def. due to the equivalence of <ICB [X[d}] ,—f [X[d]] >[®} = 0 and

(KB A (= f))[X[d]]>[®} = 0, which is the unsatisfiability of CB A - f.

Example 5.8 (n? x n? Sudoku). We index the rows and the columns by tuples (r0,71) and (co, c1), where
r0,r1,c0,cl € [n]. The first index indicates the block and the second counts the row or column inside that
block. For each r0,71,c0,cl € [n] andi € [n?] we then define an atomic variable Xror1,c0,c1,i € {0,1}
indicating whether in the row (r0,71) and column (co, cl) the number i is written. The Sudoku rules then
amount to the formula

(1)

(1)
KB" = /\ @ Xr0,r1,c0,¢1,i A /\ @ Xr0,r1,60,¢1,i A

r0,r1,c0,c1€[n] \:€[n?] r0,r1€[n],i€[n?] \c0,cl€(n]
1) (1)
/\ @ Xr0,r1,c0,¢1, A /\ @ Xr0,r1,c0,¢1,i ;
c0,cl€[n],ie[n?] \c0,cl€[n] r0,c0€[n],i€[n?] \rl,cl€[n]

where @(1) is the n? -ary exclusive or connective (that is 1 if and only if exactly one of the arguments is 1). The
four outer brackets in KCI3 mark the constraints that at each position exactly one number is assigned, further that
in each row each number is assigned once, and similar for the columns and the squares of the board. When
solving a specific Sudoku instance, one typically knows from an initial board assignment E5%2** a collection of

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 29

atomic variables, which hold, and needs to find further atomic variables, which are entailed. This means, we
need to decide for each (ro, 71, co,c1,i) ¢ ES* whether the Sudoku rules and the initial board imply that
the atomic variable X 70,r1,c0,c1,4 (i.€. assignment to the board) is true

KB™ A /\ Xror1,e0,e1,i | FE Xr0r1,00,e1,i

(ro,r1,c0,c1,i) € Estart

or false

KB A /\ Xr0r1,0,e1,i | 7 Xr0r1,c0,c1,i -

(ro,r1,c0,c1,1) EEstart

If and only if the Sudoku has a unique solution given the initial board assignment E5%*** exactly one of these
entailment statements holds for each (19,71, co, c1,1) & ES'. Deciding which is equivalent to solving the
Sudoku.

For a more concrete example, letn = 2 and

Es2 — £(0,0,0,0,0),(0,0,1,0,2),(0,0,1,1,1),(0,1,0,1, 1),
(1,0,1,0,3),(1,1,0,0,3),(1,1,0,1,2)}.

We visualize this evidence by writing i + 1 in a grid cell (10,1, c0, c1) to indicate that (r0,r1,c0,cl,i) €
Estart -

After deriving a sparse tensor network representations in Example[5.13, we demonstrate a solution algorithm to
solve this instance in Example[5.8,

5.4 Efficient representation of knowledge bases

We now investigate the representation of propositional knowledge bases KB = {f; : ¢ € [p]}, which are sets
of propositional formulas f. The conjunction of these formulas is the knowledge base formula

KB [Xig] = N\ fe[Xa] -

Lelp]

To show efficient representations, we use the following identities.

Lemma 5.9 (Computation Network Symmetries). For the d-ary /\-connective (where d € N) and the unary
—-connective it holds that

(e V], 6" [V X)) 1x) = @ e [Xi] and (e [Y], 57V, X))y = €0 [X] -
keld]

Proof. Follows directly from the definitions of the basis encodings and the connectives. O

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 30

Example 5.10. For the propositional formula from Example[5.3
X)) = XoV X1) A =Xy,

we can write the formula in terms of a Computation-Activation Network with activation tensor €1 and computation
network decomposed by the basis encodings as depicted below. First, it is written with one activation vector.
Second, we see that it can also be interpreted with multiple features.

€1

Y,
(0OV1)A=2
[]

A

ph €1

AYovi AY-2 ®yvous

® | €o

(Xo\/Xl)/\ﬁXg = 5\/ 5\/
X2 X0+ +X1 AX2 Xo+ +X1

We use this to decompose knowledge bases into their individual formulas as follows.

Xo X1 X2

Theorem 5.11. For any knowledge base KI5 [X [dﬂ = /\€e[p} fe [X [d]] it holds that
KB [Xia] = ({fe [Xia] = £€ Py, -
Proof. With Lem. 5.9 we have

KB [X1g] = ({e1 YA, 8" [Ya, Yy FU {87 [Y, X(g] : €€ [p]}>[x[d]]

- < U {er i1 87 [Ye. Xia] = t € [P1}>
¢elpl [X(a]

= (e (X = €Iy, -
O

Example 5.12 (Sparse representation of Sudoku rule knowledge base). We now exploit Thm. to find
efficient tensor network representation of the Sudoku knowledge base from Example[5.8 We directly get, that
the knowledge base ICB™ of Sudoku rules is a tensor network of the 4 - n* constraint formulas using the
n?-ary connective EB(I), and the evidence E5*** can be encoded by vectors €1 [X (ro,71,€04€1 ,)] To get a
representation by matrices instead of tensors of order n?, we introduce a hidden variable I taking values in [n2]
for each of the constraints. With the usage of matrices

o (X, 1] = €0 [Xe] @ 1[1) + (2 [X4] — 0 [Xe]) @ e [1]
we have the decomposition
1)
P X = ({7 X, 1] < k € [”2”>{x[n2]]

which is a CP decomposition (see Example[2.4) depicted in Figure[13 a).

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 31

Io,0,0,0,:

— a) W\
Z 2
@ = 7_0 7_1 . T 1
X0,0,0,0,0 | X0,0,0,0,1 | X0,0,0,0,n2-1 | X0,0,0,0,0 | X0,0,0,0,1 | X0,0,0,0,n2-1
= il n2-2
b)) 76,0,0,0.:) 100,00+ Ig.00,0,[
— 7 7 e Fn -1
| X0,0,0,0,0 | X0,0,0,0,1 | X0,0,0,0,n2-1

Figure 12: Decomposition of the position constraint @(1) at position (70,71, c0,cl) = (0,0,0,0) into a)
a CP decomposition with hidden variable 1p0,0,0,: and b) a T'T' decomposition with d — 1 hidden variables
I(’io,o,o,:v keld-1].

Alternatively there is a T'T' decomposition (see Example of the constraint @(1), which we depict in Fig-
ure |12 b). We introduce for k € [d — 1] hidden variables I* of dimension 2, which are interpreted as the
indicator, whether one of the variables X [k] Is true. Following this interpretation we introduce TT cores

70 [XO, fﬂ = €1 [Xo] ® €1 [io] + €0 [Xo] © €0 [fﬂ
Fi-l [fdd? Xd—l} = €0 [fdd} ®e [Xg-1] + e [fd*z} ® €o [Xg-1]
andfork € {1,...,d — 2}
[7] a0] e 0 o [P e i e [P

We notice, that the T'T decomposition of the constraint @(1) introduces d — 1 many hidden variables of
dimension 2, whereas the CP decomposition introduces a single hidden variable of dimension d. However, in
the following we will further apply the CP decomposition.

Given evidence E*%* we denote the Sudoku knowledge base KB """ We model the Sudoku knowledge
start
base KB as a tensor network on a hypergraph G54k consistent in

B 15 + 4 - n* nodes by n’ categorical variables X (r0,r1,c0,c1,i) @nd by 4 - n* decomposition variables to
the constraints

m5-n’ edges
&= U HX (r0,01,00,61,0) b {X(r0.01,00,1,0) Lr0,r1,c0,61,: 1> {X (10,010,610 Lr0rL, i
r0,r1,c0,c1€[n]
{X(T‘O,TI,CO,CI,i)’ I:,:,cO,cl,i}v {X(TO,TI,CO,cl,z’)a ITO,:,CO,:,i}}

We denote the decomposition variables to the position, row, column and square constraints by
IrO,rl,cO,cl,:i Ir()ml,:,:,iy I:7:,00,cl,i and IrO,:,cO,:,i-

Each edge containing a decomposition variable is decorated by a matrix Tk [X, I] corresponding to a core in
the CP decomposition of a constraint. Here k is determined by the tuple (10,1, c0, c1,i) and the type of the
constraint (for example, for the variable X (0,1,1,2,1) and the row constraint 1 (0,1,:,:,1) We have k=1-n+2. We
further assign to each edge containing a single variable { X (rO,rl,cO,cl,i)} either the vector €1 [X (TO,rl,CO,cl,i)]
if (r0,71,c0,cl,i) € ES*™" orthe trivial vector I [X (10,11,¢0,¢1,i)) -

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 32

5.5 Entailment decision by message passing

Since contracting the whole tensor network is often infeasible, local contractions can be considered to decide
entailment in some cases. Here, a local contraction describes the calculation of contractions along few closely
connected tensors in the network. Before presenting the resulting Constraint Propagation algorithm, we first
show two important properties of local entailment motivating the procedure.

Theorem 5.13 (Monotonicity of propositional logics). IfXCB C KB and KB = fthenalso KB |= f.

Proof. Since KB |= f it holds that <IC~B[X[d]], ﬁf[X[d}]>[| = 0 and thus
%]

(KBIXg]~fXual) =0 Xu] -

[X(a]

Denoting by ICB/ICNB the conjunctions of formulas in '3 not in K13, we have

(KB [Xu] \~f [Xua]) = ((KB/KB)Xia), KBIX(a]. ~f [X[dﬂ>[.

< KB/KB) Xia). (KBXia). ~f [X[d]w[m]>[]
(¢
0.

KB/KB)[X(a),0 [X H]>[@]

O

To decide entailment, we can therefore investigate entailment on smaller parts of the knowledge base. This is
sound by the above theorem but not complete since it can happen that no smaller part of the knowledge base
entails the formula while the whole knowledge base does. We can furthermore add entailed formulas to the
knowledge base without changing it as is shown next.

Theorem 5.14 (Invariance of adding entailed formulas). If and only if KB |= f we have that

KB [Xi] = (KB [Xa] . f [X))y, -

Proof. We use that f [Xq] + —f [X[g] =1 [X[q] and thus

KB [Xig] = (KB [Xig] . (f [Xa] +=f [Xa]))x,]
= (KB [Xia] ./ [Xia])y, + (KB [Xa] = XDy, -

Since <ICB [X[d} =f [X[d]]>{ al is boolean, we have that
KB [Xig] = (KB [Xa] . f [Xia]) [y,
it and only if (KB [X(g] , ~f [X[q)]),; = 0, thatis KB |= . O

The mechanism of Thm. provides us with a means to store entailment information in small-order auxil-
iary tensors. One way to exploit this accessibility of local entailment information are message passing schemes
similar to Algorithm 1| propagating the information. This approach decides local entailment by iteratively adding

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 33

entailed formulas to the knowledge base and checking further entailment on neighboring tensors of the knowl-
edge base. Since for entailment decisions the support of the contractions is sufficient, we can apply non-zero
indicators before sending contraction messages. We then schedule new messages in the direction (eg, e1)
once the support of a message received at eg has been changed. Note that such a scheduling system is guar-
anteed to converge since there can only be a finite number of message changes. We further directly reduce the
computation of messages to their support and call the resulting Constraint Propagation (Algorithm [3).

Algorithm 3 Constraint Propagation

Require: Tensor network 79 ona hypergraph G
Ensure: Messages {Xe,—e, [Xeore,] @ (€0,€1) € £} containing entailment statements

Initialize a queue S = £ of message directions
Initialize messages Xey—se; [Xeone;] = 1 [Xegne, | for (eg,e1) € E7
while S not empty do

Pop a (eg, e1) pair from S

Update the message

Xeo—e1 [Xeoﬂel] =]I750 (<{TEO [Xeo]} U {X€2~>€0 [Xezﬂeo] : (627 60) € 5_>, es # 81}>[Xeome1])

if 7 [Xegner] # Xeg—er [Xeones] then
Update the message: Xeo—e; [Xeoner) = T [Xeone
Add S = S U {(61,62) : (61,62) € 5—>}
end if
end while
return Messages { Xe,—e, [Xegne,) @ (€0,€1) € E7}

Theorem 5.15. All messages during constraint propagation are sound, meaning that for all (ep,e1) € E7 it
holds that

H7£0 <<Tg>[X€0mel}> = Xeoﬁel [Xeoﬂel] .

Proof. We show this theorem by induction over the while loop of Algorithm 3| At the first iteration, we have for
all messages Xeg—se; [Xeoner] = I[Xegne, | and thus

79 = ({r9} U {Xeoser [Xenea] : (e0,e1) € E7}) ;- (5.1)
By Thm. we then have for the first message send along the pair (e, e1) that

L0 (<Tg>[XeOmel]) <Izg (<{Te° [(Xeol} U{Xez—eq [Xeareo] : (€2,€0) €E7, €2 # 61}>[Xeom81]>

= X€0i>€1 [X60ﬂ€1] .

We now assume that at an arbitrary state of the algorithm the inequality holds for all previously sent messages.
By Thm. we can contract the messages with the tensor network without changing it and thus still
holds. We then conclude with Thm. that the claimed property also holds for the new message. O

Example 5.16 (Message passing for the Sudoku instance of Example[5.8). We iteratively solve a Sudoku puzzle
by determining a possible value based on neighboring cells, rows and squares (using Thm. and adding
to our knowledge (using Thm.[5.14). For example, consider the following n = 2 Sudoku puzzle, where a first
entailment step uses only the knowledge of the rules and the blue cells to determine the value 3 in the first
square:

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schitte, M. Fréhlich, M. Eigel 34

1 32 1 3 2 1 3 2
2 _ 2 _ _ 2
4 4 4
4 3 4 3 4 3
To illustrate the first reasoning step of assigning we make the following entailment steps applying

Thm. We also depict in Figure 13 the corresponding messages in the Constraint Propagation Algorithm
on the hypergraph GSudoku,n

B From X 1011 (ie. the 2 in the cell (0,1,0, 1)) and the Sudoku rule that at the cell (0, 1,0, 1) exactly
one number is assigned, we get
1)
@ Xo,1,0,1,i | AXo000 E—-Xo1,01,2,
i€[n?]

That is, that the number 3 is not in the cell (0,1, 0, 1). This entailment step is performed by three con-
secutive messages (see X(O’BD in Figure along the directions

(eo,e1) € [({Xo,1,01,1 % {Xo0,1.0,1,15 Lo,1,0,1,: 1), ({X0,1,0,1,15 o101, 3 { Xo0,10,1.25 10.1,0.1,:}),
({Xo0,1,01.2,10.1,0,1,:}, {X0,1,0,1,2, D0,.0,:2})] -

Intuitively, the messages commmunicate to the square constraint Iy . ¢ . 2, that by the position constraint
Io 10,1, the variable 3 cannot be assigned at (0,1,0,1).

B From X102 (i.e. the 3 inthe cell (0,0,1,0)) and the Sudoku rule that at the row (0, 0) exactly one
number is assigned, we get

(1)
P Xooeoerz | A Xoo102 E ~Xooo02 A X002,
c0,cl€[n]

That is, that the number 3 is neither in the cell (0,0,0,0) nor in (0,0,0,1). This entailment step is

performed by five consecutive messages (see X(l’m) in Figure along the directions

(eo, 1) € [({Xo0,0,1,0,2}: {X0,0,1,02: L0,0,:.:,2})s ({X0,0,1,0,2, 10,0,:,:,2} {X0,0,00,25 10,0,:1:,2})
({Xo0,0,1,0,2, L0,0,:,:.2}, {X0,0,0,1,2, L0,0,:,:.2})5 ({X0,0,0,0,25 L0,0,:.:,2}> 1X0,0,0,0,25 L0,:,0,:,2})
({X0,00,1.2:10,0,:,:.2 15 {X0,0,0,1,25 Lo,:0,:2})] -

The messages communicate that based on the decomposition cores of the constraint to the numberi = 3
in the first row (ro, 1) = (0, 0), that the number 3 cannot be assigned at (0, 0, 0,0) and (0, 0,0, 1).

We add these formulas to our knowledge base (justified by Thm. and use the rule, that 3 appears exactly
once in the first square

(1)
@ Xor1,0e12 | A(=Xo0,1,01,2) A (7X0,0,002 AN Xo000,1,2) =
rl,cl€(n]

That is, we conclude that the number 3 must be in the cell (0, 1,0, 0), which information is also included in the
updated knowledge base for further reasoning steps. This last entailment step is performed by four consecutive
messages (see X(Q’[‘”) in Figure along the directions
(e0,€1) € [({X0,1,0,1,2: Lo,:,0,:.2 1 {X0,1,0,0,2, Lo,:0,:.21) s ({X0,0,0,1,2, 10,:,0,:,2} {X0,1,0,0,25 10,:,0,:,2})
({X0,0,1,02: Lo,:,0,:2} {X0,1,0,0,2: L0,:,0,:.2 1), ({X0,1,0,0,2, 10,:,0,:.2 > {X0,1,00,2})]

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 35

€1 €1

’ A A ’ » ’
X(l-,())’ Xo u'" 05 Xg,o,'o,o,2 Xo,olg,lyﬂ X0,1\,‘o,1,2 X(o,n)' X0.1.0.1.1
! — 1 — ! —e ! (& 1 ! [&
\ \ 1 \
X0,0,1,1,2 \ X(1~3\ XUA\& x (233 (02| Xo,150,1,0 | X0,1,0,1,1 | X0,1,0,1,3
N \ \ hve ’ Y
7_2 7_O 7.1 7.3
K 7’
\\ /’
(0,1)
Io,1,0,1,:

Figure 13: The tensor network decomposition of 3 out of 4-22 = 64 rules in the 22 x 22 Sudoku knowledge base
(see Example, namely to the number 3 appearing once in the (0, 0)-square (top), the number 3 appearing
once in the (0, 0)-row (bottom left) and a unique number appearing at the (0, 1, 0, 1)-position (bottom right).
The evidence of the number 3 already being assigned at the position (0, 0, 1, 0) is sketched by a basis vector
¢1 on the left side, and the number 2 assigned at position (0, 1,0, 1) analogously on the right side. During
Constraint Propagation Algorithm [3] on the hypergraph of Sudoku rules and evidence (see Example [5.16), this
evidence is in three epochs of messages propagated to the constraints by partial entailment steps and imply
that is true, that is that at the position (0, 1,0,0) the number 3 needs to be assigned. We depict
the messages between the cores by dashed lines labeled by X(O’[?’D, X(L[‘r’]) and X(z,[4]) and provide further
interpretation in Example [5.76]

The first three messages communicate, that the 3 is not possible the positions (0,1,0,1),(0,0,0,1) and
(0,0, 1,0) and the fourth message concludes that the 3 then has to be at position (0, 1,0, 0).

We now iteratively apply similar reasoning steps and store the entailed variables in , until we arrive at
the right side of the above sketch. We conclude that

KB% A /\ Xro,1,00,c1 | FE

(ro,r1,co,c1,i) € Estart

Since all Sudoku rules are satisfied in the final assignment and to each cell (1o, r1, ¢, c1) we found exactly
onei € [n?] such that (g, 71, co, c1,4) € ESrt U , there is a unique solution of the puzzle and we
conclude

’CB2 A /\ XrO,rl,cO,cl,i

(ro,r1,c0,c1,i) € Estart

= A Xrorteeti | A

(ro,r1,c0,c1,i)€EStart

6 Hybrid Logic Networks

Let us now exploit the common formulation of logical formulas and probabilistic models in CompActNets to
define hybrid models that combine both aspects. We call CompActNets Hybrid Logic Networks in the special
case of Boolean statistics ¢ and elementary activations.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 36

6.1 Parametrization

We first introduce Hybrid Logic Networks, which can be regarded as a unification of logical and probabilistic
models.

Definition 6.1 (Hybrid Logic Network (HLN)). Given a Boolean statistic t, we call any element of Ab*™ a Hybrid
Logic Network. The extended canonical parameter set fort is the set

Ppi={(A,ya) : AC[p], ya € X[2]} x RP.
leA

For each Hybrid Logic Network Pt (Aya.f) [X [d}] , we can associate a tuple (A, ya, 0) consisting of a subset
A C [pl, atupleya € X, 4[2], and 0 [L] € RP such that

BrAva) [xig] = (8" [V, Xia] €449 [¥)y])

where the activation core is

g(A,yAﬁ) [Y[p]] = <049 [Y[P]] ’H(A’yA) [Y[p]]>[y[p]] .

We notice that the parametrization by P, is one-to-one for any non-vanishing elementary activation tensor
up to a scalar factor. Given an arbitrary elementary activation tensor ®£6[p] 55 [Y7], we can always find a
corresponding tuple in 7P, by choosin

A= {0 Ty (€ Vi]) £ T[]}

furtherforall ¢ € A

, :{o it Tzo (6°[Y2]) = eo Y]
T i Ly (€YH]) = e [V

and a parameter vector 6 [L] € R? defined for all £ € [p] as

o1 — 0 {0 it e A
=t = gyve=1]
1 [Wﬁzoﬂ it (¢ A.

Then we have by construction that there is A > 0 with

Q& vl =AW [y]
telp)

Let us demonstrate the utility of Hybrid Logic Networks with an example from accounting.

Example 6.2 (Hybrid Logic Network for a toy accounting model). We consider a system of three variables Al
Account 1 is booked, A2 Account 2 is booked, F' a feature on an invoice. Assume the following two rules have
to be respected:

B Exactly one account must be booked.

W /ffeature F is present on the invoice, the account A1 is typically booked.

"Here Iz (-) is the indicator of non-zero entries acting coordinatewise and I [Y7] is the vector [1, 1]

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 37

We formalize this with the statistic
t=(Xa1 @ Xaz2, Xp = Xa1).

While the first formula is a hard feature, the second is soft since prone to exceptions. We parameterize the
first output of the statistic with the hard parameters by setting the set of indices to be initialized with hard logic
A = {0} and the corresponding initialization yo = 1, meaning that the first output of the statistic has to be true
for the input to have positive probability. The “hard logic activation tensor” should be indifferent to the second
part of the statistic and only impose rules on the first part, leading to

RAID [V, V1] = e, [Yo] @ T[¥] = m ® m -

Since the first feature is hard, the “soft logic activation tensor” should be invariant under the first coordinate of

the canonical parameter and we set 6 [L = 0] = 0. The soft parameters are chosen as 0|L] = [0,0[L = 1]|T
to achieve
= a0 [YVp] @ o= Y] = e 1
1 exp [0 [L = 1]]

The activation tensor of the hybrid network then has the form

£Awad) [y, y;] = m ® [exp [0 [1L = 1]]] '

We get the following tensor network representation of the Hybrid Logic Network representing the toy accounting
example before normalization to a distribution
0
YAleaAz;F 1 YF¢A1+

PXA1®X a2, Xp=Xa1),({0},(1,000) | = - 39 8=

S SO S S |

The resulting Hybrid Logic Network is a tensor Pt (Aya0) [X a1, X a2, XF| of order 3. With Yp_. 4, = 1 for
F = 0 and any A1 it has the coordinates

Xaz
0T [0 1]
10 A lexpl@] 0O
P(XM@XAQ’XFéXAl)’({0}1(1)7(0’0)) [Xa1, Xaz, Xp| = 1+3-;xp[9] X [exg[e] exg[]] p[1]
¥ .y

6.2 Parameter estimation in Hybrid Logic Networks

Let us now briefly discuss how Hybrid Logic Networks can be trained on data based on likelihood maximization.
Given a dataset ((xo, Lah) jE [m]) consisting of m independent and identically distributed samples

from an unknown distribution, we want to find a Hybrid Logic Network Pt (4:44,0) [X[d]] with a statistic ¢ =
(fo,-- -, fp—1) that minimizes the negative log likelihood

Lo (A, ya,0)) = —— Z In [Pt Aya,0) [H_{L‘[d]“

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 38

We can rewrite the loss using the empirical mean vector pup [L] € RP, which is defined for £ € [p] as

pp [L = 1] = % Z fe [X[d} = ${d]} ;

JEm]

by
Lp ((A,ya,0)) = (up [L], 0 [L])) — In [<§(A’yA’0) (Y] .8 [Y[p],X[d}D[QJ)
Since (A, y4) influences only the second term, the best hard parameters can be found by
A={l: up[L=4]€{0,1}} and yy=pup[L =14¢] for L€ A.

We further optimize the coordinates ¢ € [p]\ A of 6 [L] € RP alternately by the coordinate descent steps

LD (A, y4,0)) plL =1 _T[Ye:m]
90 [L = 1] Q-pZ=0) 7Ve=1]"

:oﬁew:azm[

where
TV, = <{/3f‘Z leplyu{al? Tefpl, I #00 {V}>[YA '

Based on an interpretation of the coordinate descent steps as matching steps for the mean parameters or
moments to f,, we call this method alternating moment matching for Hybrid Logic Networks and provide pseu-
docode for it it in Algorithm (4, We notice that, during the coordinate descent steps, computing the marginal
probability of the variable Y, with respect to the current network parameters is required. This is the compu-
tational bottleneck of the algorithm and can be approached by various approximate inference methods, e.g.,
variational inference (see for example the CAMEL method (Ganapathi et al.|[2008]).

Algorithm 4 Alternating Moment Matching for Hybrid Logic Networks
Require: Mean parameter pip [L]
Ensure: Parameters (A, 1.4, #) for the approximating HLN P(%:0:¥)

Set
A:{E:Ee@LuUﬁ:ﬂe{Qrﬁ

and a tuple y4 with yp = p[L = {] for £ € A.

Setf[L] =0]L]

while Convergence criterion is not met do
forall £ € [p]\ A do

Compute
rvi) = ({87 : Le plhufal : Lepl, E#Z}U{”}M
Set
O[L=/(]=In [(1_/“[/:4]).7[3’5:]]
end for
end while

return (A, y4,0[L])

It can be shown that the algorithm converges if and only if there is a Hybrid Logic Network matching the empirical
moments of the data. For more details we refer to [Goessmann, |2025 Chapter 9].

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 39

Example 6.3 (Continuation of Example [6.2). Recall the statistic of Example [6.3 and consider a dataset of
m = 20 states summarized in the frequency table:

Frequency in Dataset | to1 A2 <X
0 0 0 0
0 0 0 1
7 0 1 0
2 0 1 1
1 1 0 0
10 1 0 1
0 1 1 0
0 1 1 1

We then have for the satisfaction rates of fo = X a1 ® X a2 and f1 = Xp = X a1 that

2 1+1
polL=0]= 20 =1 and pplr=1)="" "0

= 0.9.
20

A/gorithm yields a reasonable convergence criterion choice (such as finite iterations or convergence of 0 [L])
0 0 0
A={0} , ya=1 and O[L]= [m [(29). (;)}] - [m [3]} ~ [1.098612} '

To derive this, we notice that Algorithm @ treats formula fy as a hard constraint and assigns A = {0} and
ya = 1. In the while loop we then have for the formula f;

1
(] = (@ [¥0] 8% [0, X, Xoan, Xaol .87 Ve, X X, XKool) | = M
1

since fo has 4 models, of which 3 are also models of f1 and 1 is instead a model of —f,. Notice, that the
tensor T [Y1] will not change in any further iteration of the while and the parameter 6 [L = 1] will therefore stay
constant until the termination of the algorithm.

6.3 Entailment by Hybrid Logic Networks

Let us now demonstrate a further use of our unified treatment of probabilistic and logical models by investigating
a generalized concept of entailment. Entailment can be generalized to probabilistic models by deciding whether
a propositional formula is always satisfied given a probabilistic model.

Theorem 6.4. Let Pt:(Ava.0) [X [dﬂ be a Hybrid Logic Network and h [X [d]] a propositional formula. Then
Pt(Avad) propabilistically entails h, that is,

(P40 [xg] (X)) =1,

@]

if and only if
ft7(A7yA) = h,

where

A gl = AN Rxa Al A Xl

LeA yp=1 LeA :yp=0

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schitte, M. Fréhlich, M. Eigel 40

Proof. We have

<]P)t,(A,yA:9) [X[d]] h [X[dﬂ> =1

[]

if and only if

(B0 [X1] 1 [X1q] ~1[X)) =0

[]

which is equal to

(P40 [X], —h [X >[@1 -0

Since Pt (4v4.0) [X[g] is non-negative this is equivalent to

(Lo (B9 [X1g]) .~k [Xia]), =0

(]

We use that
Lio (Pt7(A7yA79) [X[d]D _ ft,(A,yA) [X[d]]

and get that this is further equivalent to

(4 [Xig] ,~h [X[d1]>[@] =0,

which is by Def.[5.7] f-(A%4) |= . 0
Example 6.5 (Continuation of Example[6.3). Consider again the Hybrid Logic Network

POXA18X a2, Xp=Xa0), (0L OMBD) (X, X4 X

from Example[6.3 and assume we want to decide the probabilistic entailment of the formula
h[Xa1, Xaz, Xp] = =Xa1V-Xa2 V-XF,

which has all states but (1,1, 1) as a model (and is therefore refered to as a maxterm). Using Thm. we have
that

<p(XA1@XA2,XF:XA1),({0},(1>,<o,1n[31>) (X a0, Xt X] b [Xar, X to, XF]> _q

[]

ifand only if X 41 ® X g2 = =X 41V =X 42V -Xp. By Def. this entailment holds since by the De-Morgan
rule

A1 D XAQyXAleA27XF>[®]

(Xa1 @ Xaz, 7 (2 Xa1 V2 Xag2 VoXp))p = (X
— <XF>[®] : <XA1 S XAQ) XAI) XA2>[®]
0.

We thus conclude, that h is probabilistically entailed by P(Xa18X a2, Xp=Xa1), ({0}’(1)7(0’1n[3”))

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 41

7 Implementation in the python library tnreason

The concepts presented in this paper have been implemented in the open source python library tnreasonﬂ
In this section, we explain the basic design and functionality of this library and draw close connections to the
theoretical exposition in the previous sections. In particular, Appendix [B| provides detailed implementations of
the algorithms and examples in this work.

7.1 Architecture

The package consists of four subpackages and three layers of abstraction:

3 Layer 3: Applications in reasoning application }
i Layer 2: Specification of workload representation reasoning !
| Layer 1: Storage and manipulations engine !

In the subpackage tnreason.engine we implement tensors, tensor networks, contractions, and normalizations.
In the subpackage tnreason.representation the basic tensor encoding schemes such as basis encodings are
available. In the subpackage tnreason.reasoning we implement reasoning algorithms, such as generalizations
of the message passing algorithms presented in Algorithm {1} Algorithm 3} and Algorithm |4} In the subpackage
tnreason.application one can construct tensor network encodings of propositional formulas and datasets.

7.2 Basic usage

We demonstrate the basic usage of the tnreason package with the implementation of Example We first
install the package (e.g. by pip install tnreason == 2.0.0)andimportit by

from tnreason import engine, application

Keeping Def. 2.1]in mind, the tensor instances in shape and colors arguments are 11 st instances specifying
the int dimension myj and a str identifier for Xj. The formula in Example is a sum of the one-hot
encodings of its three models (see Example [5.3) and is created by

formula = engine.create_from_slice_iterator (shape=[2,2,2],

— colors=["X_0O","X_1","X_2"7],

— sliceIterator=[(1,{"X_0":0,"X_1":1,"X2":0}),

- (1,{"X_0":1,"X_1":0,"X2":0}), (1,{"X_0":1,"X_1":1,"X2":0})])

The slice iterator is an iterator over tuples (val,posDict), which specifies elementary tensors to be
summed. The posDict are dict instances, where the keys are the str tensor colors and the values are

2tnreason is available in version 2.0.0 at pypi.org/tnreason and maintained at github.com/tnreason/
tnreason—-py.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

pypi.org/tnreason
github.com/tnreason/tnreason-py
github.com/tnreason/tnreason-py

A.Goessmann, J. Schitte, M. Fréhlich, M. Eigel 42

(not_X_2) cC

X1V / (not X_2)_cv

(or X 0 X 1) cC X 2_dv

for_X_0_X=

—x-0—X_1)_(not_X_2})_cC
- k\\\\\\

—X_1)_{not_X_2))_cV

Figure 14: Factor graph highlighting a tensor network decomposition of the syntactic decomposition of the
propositional formula of Example [5.10] Blue blocks highlight hyperedges carrying tensors and red blocks high-
light variables. The tensor label suffices "_cC" and "_aC" indicate whether the tensor is part of the compu-
tation network or the activation network. The variable label suffices "_dv" and "_cV" indicate whether the
variable is distributed or computed and therefore auxiliary. This graph has been generated with the method
tnreason.engine.draw_factor_graph of tnreason.

int. Each posDict collects leg vectors of the corresponding elementary tensor that are not trivial. These leg
vectors are the basis vectors enumerated by the corresponding int value.

Single tensor coordinates can be retrieved by indexing with a posDict. We can, for example, check whether
{"X_0":0,"X_1":1,"X_2":0} is a model:

assert formulal[{"X_ 0":0,"X_1":1,"X_2"}] == 1

By default the tensor is created as a engine . NumpyCore instance, where coordinates are stored as instances
of numpy . array. Further core types exploiting different sparsity principles can be chosen by the argument
coreType, see [Goessmannl 2025, Appendix A].

Following Def. tensor networks are implemented as tensor valued dict instances with str keys. For
example a tensor network is created from the propositional syntax of the above formula (see Example[5.10):

fDecomp = application.create_cores_to_expressionsDict ({"f0":
N ["and", ["OI", "X_O", "X_l"] , ["not", "X_ZH]] })

Here we apply a nested-list description of decomposition hypergraphs (see Def. with a specification of the
logical connectives in the first position of the list (by "and", "or", "not " we refer to the connectives A, V,).
Equivalently, we can exploit the A symmetry and create it by multiple formulas:

fDecomp = application.create_cores_to_expressionsDict ({"f0":
SN ["or","X O","X 1"], "fl": ["not",llx 2"]})

A depiction of the underlying hypergraph as a factor graph, which highlights edges as blue blocks and nodes as
red blocks, can be created with engine.draw_factor_graph (fDecomp) (see Figure[T4). Single tensors
can be obtained by contracting a tensor network while specifying the open variables (for an explanation of the
suffixes, see Figure , for example:

contracted = engine.contract (fDecomp,
— openColors=["X_0_dv","X 1 dv","X 2 dv"])

By default the contractions are performed using numpy . einsum and further execution schemes can be se-
lected with the argument contract ionMethod, see [Goessmann, [2025, Appendix A].

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 43

8 Conclusion & outlook

This work developed a tensor network formalism to capture in a unifying way the main concepts of Al, which build
the core of the probabilistic, neural and logical approaches. We introduced Computation-Activation Networks
(CompActNets) as a generic architecture to represent classes of propositional knowledge bases, graphical
models and more generic exponential families. Moreover, we demonstrate the representation and training of
hybrid models combining logical and probabilistic aspects, illustrating that CompActNets represent a powerful,
versatile and mathematically grounded framework for Neuro-Symbolic Al.

We have shown that model inference such as the calculating marginal distributions and deciding entailment
correspond with tensor network contractions. To efficiently perform these inferences, we presented message
passing schemes, which have been shown to be exact in specific cases. In general, however, the efficient
computation of contractions is not possible, since they are related to the NP-hardness of probabilistic inferences
in graphical models (see [Koller and Friedman|[2009]) and of logical reasoning (see |Russell and Norvig|[2021]).
In cases where exact inference is not feasible, the derivation of error bounds for approximate inference schemes
on CompActNets is an interesting direction for future research.

Further approximation schemes to overcome this bottleneck are summarized under the umbrella of variational
inference (see|Wainwright and Jordan|[2008]), such as generic expectation-propagation methods or mean field
methods. While these schemes are developed either for graphical models or more general exponential families,
we plan to derive similar methods for more general CompActNets, such as Hybrid Logic Networks. Further
frequently applied schemes are particle-based inference schemes such as Gibbs sampling.

The integration of symbolic and neural methods is an active research area (see|Colelough and Regli|[2024] for
a systematic review). The CompActNets framework enables both, symbolic logical as well as probabilistic mod-
els, but enables also the representation of generic functions. CompActNets based on architectures combining
symbolically verbalizable and more generic neural parts are thus a promising direction for Neuro-Symbolic Al.

The CompActNets framework offers an immediate practical application as a verifiable reasoning engine for Al
agents in high-stakes domains such as regulatory compliance, clinical decision support, accounting, process
planning and security. By leveraging the framework’s inherent flexibility, Large Language Models (see |Vaswani
et al.[[2017]) can be adapted to function as semantic translators that dynamically construct problem-specific ten-
sor networks in the form of CompActNets from natural language descriptions, effectively treating the reasoning
engine as an external tool. This approach mitigates the hallucination risks of probabilistic models by delegating
complex logical execution to the exact linear algebra of the tensor network, ensuring that the inference process is
both rigorous and reproducible. Consequently, this synergy enables the deployment of reliable Al systems where
the intuitive power of the Large Language Model is grounded by the explainable, instance-adaptive topology of
the CompActNets.

References

lan Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki. Rigorous results on valence-bond ground states in
antiferromagnets. Physical Review Letters, 59(7):799-802, August 1987. doi: 10.1103/PhysRevLett.59.799.
URLhttps://link.aps.org/doi/10.1103/PhysRevLett.59.799.

Alejandro Mata Ali. Explicit Solution Equation for Every Combinatorial Problem via Tensor Networks: MeLoCo-
ToN, February 2025. URL http://arxiv.org/abs/2502.05981.

Artur S. Avila Garcez and Gerson Zaverucha. The Connectionist Inductive Learning and Logic Programming
System. Applied Intelligence, 11(1):59-77, July 1999. ISSN 1573-7497. doi: 10.1023/A:1008328630915.
URLhttps://doi.org/10.1023/A:1008328630915!

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic Tensor Networks. Ar-

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

https://link.aps.org/doi/10.1103/PhysRevLett.59.799
http://arxiv.org/abs/2502.05981
https://doi.org/10.1023/A:1008328630915

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 44

tificial Intelligence, 303:103649, February 2022. ISSN 0004-3702. doi: 10.1016/j.artint.2021.103649. URL
https://www.sciencedirect.com/science/article/pii/S00043702210020009.

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto
Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Fran-
cisco Herrera. Explainable Artificial Intelligence (XAl): Concepts, taxonomies, opportunities and challenges
toward responsible Al. Information Fusion, 58:82—115, June 2020. ISSN 1566-2535. doi: 10.1016/
j-inffus.2019.12.012. URL https://www.sciencedirect.com/science/article/pii/
S1566253519308103.

A. V. Berezutskii, I. A. Luchnikov, and A. K. Fedorov. Simulating quantum circuits using the
multi-scale entanglement renormalization ansatz. Physical Review Research, 7(1):013063, January
2025. doi: 10.1103/PhysRevResearch.7.013063. URL|https://link.aps.org/doi/10.1103/
PhysRevResearch.7.013063.

Lawrence D. Brown. Fundamentals of Statistical Exponential Families. Institute of mathematical Statistics,
Hayward, Calif, June 1987. ISBN 978-0-940600-10-2.

George Casella and Roger Berger. Statistical Inference. Cengage Learning, Pacific Grove, Calif, June 2001.
ISBN 978-0-534-24312-8.

P. Clifford and J. M. Hammersley. Markov fields on finite graphs and lattices. Unpublished, 1971. URL https:
//ora.ox.ac.uk/objects/uuid:4ea849da-1511-4578-bb88-6a8d02f457a6.

Brandon C Colelough and William Regli. Neuro-Symbolic Al in 2024: A Systematic Review. Jeju, South Korea,
2024.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, Hoboken, N.J, 2nd
edition edition, September 2006. ISBN 978-0-471-24195-9.

Tiangang Cui and Sergey Dolgov. Deep Composition of Tensor-Trains Using Squared Inverse Rosenblatt Trans-
ports. Foundations of Computational Mathematics, 22(6):1863—1922, December 2022. ISSN 1615-3383. doi:
10.1007/s10208-021-09537-5. URL https://doi.org/10.1007/s10208-021-09537-5.

Sergey Dolgov and Robert Scheichl. A Hybrid Alternating Least Squares—TT-Cross Algorithm for Parametric
PDEs. SIAM/ASA Journal on Uncertainty Quantification, March 2019. doi: 10.1137/17M1138881. URL
https://epubs.siam.orqg/doi/10.1137/17M1138881\

Sergey Dolgov, Boris N. Khoromskij, Alexander Litvinenko, and Hermann G. Matthies. Polynomial Chaos Ex-
pansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor
Train Format. SIAM/ASA Journal on Uncertainty Quantification, November 2015. doi: 10.1137/140972536.
URLhttps://epubs.siam.org/doi/10.1137/140972536l

Sergey Dolgov, Dante Kalise, and Luca Saluzzi. Data-Driven Tensor Train Gradient Cross Approximation for
Hamilton—Jacobi—Bellman Equations. SIAM Journal on Scientific Computing, September 2023. doi: 10.
1137/22M1498401. URL https://epubs.siam.org/doi/10.1137/22M1498401l

Pedro Domingos. Tensor Logic: The Language of Al, October 2025. URL http://arxiv.org/abs/
2510.12269. arXiv:2510.12269 [cs].

Martin Eigel, Max Pfeffer, and Reinhold Schneider. Adaptive stochastic Galerkin FEM with hierarchical tensor

representations. Numerische Mathematik, 136(3):765-803, July 2017. ISSN 0945-3245. doi: 10.1007/
s00211-016-0850-x. URL/https://doi.org/10.1007/s00211-016-0850—-x.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://link.aps.org/doi/10.1103/PhysRevResearch.7.013063
https://link.aps.org/doi/10.1103/PhysRevResearch.7.013063
https://ora.ox.ac.uk/objects/uuid:4ea849da-1511-4578-bb88-6a8d02f457a6
https://ora.ox.ac.uk/objects/uuid:4ea849da-1511-4578-bb88-6a8d02f457a6
https://doi.org/10.1007/s10208-021-09537-5
https://epubs.siam.org/doi/10.1137/17M1138881
https://epubs.siam.org/doi/10.1137/140972536
https://epubs.siam.org/doi/10.1137/22M1498401
http://arxiv.org/abs/2510.12269
http://arxiv.org/abs/2510.12269
https://doi.org/10.1007/s00211-016-0850-x

A tensor network formalism for neuro-symbolic Al 45

Martin Eigel, Reinhold Schneider, Philipp Trunschke, and Sebastian Wolf. Variational Monte Carlo—bridging
concepts of machine learning and high-dimensional partial differential equations. Advances in Computational
Mathematics, 45(5):2503-2532, December 2019. ISSN 1572-9044. doi: 10.1007/s10444-019-09723-8. URL
https://doi.org/10.1007/s10444-019-09723-8l

Martin Eigel, Manuel Marschall, Max Pfeffer, and Reinhold Schneider. Adaptive stochastic Galerkin FEM for
lognormal coefficients in hierarchical tensor representations. Numerische Mathematik, 145(3):655-692, July
2020. ISSN 0945-3245. doi: 10.1007/s00211-020-01123-1. URL https://doi.org/10.1007/
s00211-020-01123-1.

Martin Eigel, Reinhold Schneider, and David Sommer. Dynamical low-rank approximations of solutions to the
Hamilton—Jacobi—Bellman equation. Numerical Linear Algebra with Applications, 30(3):e2463, 2023. ISSN
1099-1506. doi: 10.1002/nla.2463. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/nla.2463. _eprint: hitps://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2463.

Varun Ganapathi, David Vickrey, John Duchi, and Daphne Koller. Constrained approximate maximum entropy
learning of Markov random fields. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, UAI'08, pages 196—203, Arlington, Virginia, USA, July 2008. AUAI Press. ISBN 978-0-9749039-
4-1.

Lise Getoor and Ben Taskar. Infroduction to Statistical Relational Learning. MIT Press, September 2019. ISBN
978-0-262-53868-8.

Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, and Ignacio Cirac. Expressive power of tensor-network
factorizations for probabilistic modeling. Advances in Neural Information Processing Systems, 32, 2019.

Alex Goessmann. Uniform Concentration of Tensor and Neural Networks: An Approach towards Recovery
Guarantees. PhD Thesis, Technische Universitét Berlin, Berlin, 2021. URL https://depositonce.
tu-berlin.de/handle/11303/15990.

Alex Goessmann. The Tensor-Network Approach to Efficient and Explainable Al, 2025. URL https://
github.com/EnexaProject/enexa-tensor—-reasoning—-documentation/.

Alex Goessmann, Ingo Roth, Gitta Kutyniok, Michael Gétte, Ryan Sweke, and Jens Eisert. Tensor network
approaches for data-driven identification of non-linear dynamical laws. In Advances in Neural Information
Processing Systems - First Workshop on Quantum Tensor Networks in Machine Learning, page 21, 2020.

Nikita Gourianov, Peyman Givi, Dieter Jaksch, and Stephen B. Pope. Tensor networks enable the calculation of
turbulence probability distributions. Science Advances, 11(5):eads5990, January 2025. doi: 10.1126/sciadv.
ads5990. URL https://www.science.org/doi1/10.1126/sciadv.ads5990.

Robert Gruhlke, David Sommer, Max Kirstein, Martin Eigel, and Claudia Schillings. Reverse Diffusion Sam-
pling with Tensor Train Approximations of Hamilton—Jacobi—Bellman Equations. SIAM Journal on Scientific
Computing, January 2026. doi: 10.1137/24M1637210. URL https://epubs.siam.org/doi/10.
1137/24M1637210.

W. Hackbusch and S. Kiihn. A New Scheme for the Tensor Representation. Journal of Fourier Analysis and
Applications, 15(5):706—722, October 2009. ISSN 1531-5851.

Wolfgang Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computa-
tional Mathematics. Springer-Verlag, Berlin Heidelberg, 2012. ISBN 978-3-642-28026-9. doi: 10.1007/
978-3-642-28027-6.

Paul Hagemann, Janina Schiitte, David Sommer, Martin Eigel, and Gabriele Steidl. Sampling from Boltzmann
Densities with Physics Informed Low-Rank Formats. In Tatiana A. Bubba, Romina Gaburro, Silvia Gazzola,
Kostas Papafitsoros, Marcelo Pereyra, and Carola-Bibiane Schénlieb, editors, Scale Space and Variational

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

https://doi.org/10.1007/s10444-019-09723-8
https://doi.org/10.1007/s00211-020-01123-1
https://doi.org/10.1007/s00211-020-01123-1
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2463
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2463
https://depositonce.tu-berlin.de/handle/11303/15990
https://depositonce.tu-berlin.de/handle/11303/15990
https://github.com/EnexaProject/enexa-tensor-reasoning-documentation/
https://github.com/EnexaProject/enexa-tensor-reasoning-documentation/
https://www.science.org/doi/10.1126/sciadv.ads5990
https://epubs.siam.org/doi/10.1137/24M1637210
https://epubs.siam.org/doi/10.1137/24M1637210

A.Goessmann, J. Schitte, M. Fréhlich, M. Eigel 46

Methods in Computer Vision, pages 374-386. Springer Nature Switzerland, Cham, 2025. ISBN 978-3-031-
92366-1.

Frank L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products. Journal of Mathematics
and Physics, 6(1-4):164-189, 1927. ISSN 1467-9590. doi: https://doi.org/10.1002/sapm192761164.

Sepp Hochreiter. Toward a broad Al. Communications of the ACM, 65(4):56-57, January 2022. ISSN 0001-
0782, 1557-7317. doi: 10.1145/3512715. URL|https://dl.acm.org/doi/10.1145/3512715|

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press,
Cambridge, Mass., 1. edition edition, July 2009. ISBN 978-0-262-01319-2.

Zachary C. Lipton. The mythos of model interpretability. Commun. ACM, 61(10):36—43, September 2018. ISSN
0001-0782. doi: 10.1145/3233231. URL https://dl.acm.org/doi/10.1145/3233231.

Christian Lubich, Thorsten Rohwedder, Reinhold Schneider, and Bart Vandereycken. Dynamical Approximation
by Hierarchical Tucker and Tensor-Train Tensors. SIAM Journal on Matrix Analysis and Applications, May
2013. doi: 10.1137/120885723. URLhttps://epubs.siam.org/doi/10.1137/120885723|

Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99—118, February 1977.
ISSN 0004-3702. doi: 10.1016/0004-3702(77)90007-8. URL https://www.sciencedirect.
com/science/article/pii/0004370277900078.

Giuseppe Marra, Sebastijan Dumanci¢, Robin Manhaeve, and Luc De Raedt. From statistical relational to
neurosymbolic artificial intelligence: A survey. Atrtificial Intelligence, 328:104062, March 2024. ISSN 0004-
3702. doi: 10.1016/j.artint.2023.104062. URL https://www.sciencedirect.com/science/
article/pii/S0004370223002084!

John McCarthy. Programs with Common Sense. In Proceedings of the Teddington Conference on the
Mechanization of Thought Processes, pages 75-91. Her Majesty’s Stationary Office, London, 1959. URL
http://www—formal.stanford.edu/jmc/mcc59.htmll

Kevin P. Murphy. Probabilistic Machine Learning: An Introduction. The MIT Press, Cambridge, Massachusetts
London, England, March 2022. ISBN 978-0-262-04682-4.

Marc Mézard. Information, Physics, and Computation. ACADEMIC, Oxford ; New York, March 2009. ISBN
978-0-19-857083-7.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A Review of Relational Machine Learn-
ing for Knowledge Graphs. Proceedings of the IEEE, 104(1):11-33, January 2016. ISSN 0018-9219, 1558-
2256. doi: 10.1109/JPROC.2015.2483592. URL https://ieeexplore.ieee.org/document/
7358050/.

Roman Orus. Tensor networks for complex quantum systems. Nature Reviews Physics, 1(9):538-550, Septem-
ber 2019. ISSN 2522-5820. doi: 10.1038/542254-019-0086-7.

I. V. Oseledets. Tensor-Train Decomposition. SIAM Journal on Scientific Computing, 33(5):2295-2317, January
2011. ISSN 1064-8275. doi: 10.1137/090752286. URL https://epubs.siam.org/doi/10.
1137/09075228¢6l

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, s.l., September 1988. ISBN 978-1-55860-479-7.

Judea Pearl. Causality: Models, Reasoning and Inference. Ausgezeichnet: ACM Turing Award for Transforming
Artificial Intelligence 2011. Cambridge University Press, Cambridge New York, NY Port Melbourne New Delhi
Singapore, 2 edition, November 2009. ISBN 978-0-521-89560-6.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

https://dl.acm.org/doi/10.1145/3512715
https://dl.acm.org/doi/10.1145/3233231
https://epubs.siam.org/doi/10.1137/120885723
https://www.sciencedirect.com/science/article/pii/0004370277900078
https://www.sciencedirect.com/science/article/pii/0004370277900078
https://www.sciencedirect.com/science/article/pii/S0004370223002084
https://www.sciencedirect.com/science/article/pii/S0004370223002084
http://www-formal.stanford.edu/jmc/mcc59.html
https://ieeexplore.ieee.org/document/7358050/
https://ieeexplore.ieee.org/document/7358050/
https://epubs.siam.org/doi/10.1137/090752286
https://epubs.siam.org/doi/10.1137/090752286

A tensor network formalism for neuro-symbolic Al 47

Roger Penrose. Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields. Cambridge
University Press, Cambridge, February 1987. ISBN 978-0-521-33707-6.

E. J. G. Pitman. Sufficient statistics and intrinsic accuracy. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 32(4):567-579, December 1936. ISSN 1469-8064, 0305-0041. doi:
10.1017/S0305004100019307. URL https://www.cambridge.org/core/journals/
mathematical-proceedings—of-the—-cambridge—-philosophical—-society/
article/abs/sufficient-statistics—and-intrinsic—-accuracy/
6A3E45FB1C423F3F684308F8910D6919.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1-2):107—136,
February 2006. ISSN 0885-6125, 1573-0565. doi: 10.1007/s10994-006-5833-1. URL http://link.
springer.com/10.1007/s10994-006-5833-1.

Elina Robeva and Anna Seigal. Duality of graphical models and tensor networks. Information and Inference: A
Journal of the IMA, 8(2):273-288, June 2019. ISSN 2049-8772. doi: 10.1093/imaiai/iay009.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, Global Edition: A Modern Approach,
Global Edition. Pearson, Boston, 4 edition, May 2021. ISBN 978-1-292-40113-3.

Aaron Sander, Maximilian Fréhlich, Mazen Ali, Martin Eigel, Jens Eisert, Michael Hintermdller, Christian B.
Mendl, Richard M. Milbradt, and Robert Wille. Quantum circuit simulation with a local time-dependent vari-
ational principle, August 2025a. URL http://arxiv.org/abs/2508.10096. arXiv:2508.10096
[quant-ph].

Aaron Sander, Maximilian Fréhlich, Martin Eigel, Jens Eisert, Patrick Gel3, Michael Hintermdiller, Richard M. Mil-
bradt, Robert Wille, and Christian B. Mendl. Large-scale stochastic simulation of open quantum systems. Na-
ture Communications, 16(1):11074, December 2025b. ISSN 2041-1723. doi: 10.1038/s41467-025-66846-x.
URLhttp://arxiv.org/abs/2501.17913. arXiv:2501.17913 [quant-ph].

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler. Neuro-symbolic artificial intelli-
gence: Current trends. Al Communications, 34(3):197—209, March 2022. ISSN 18758452, 09217126. doi:
10.3233/AIC-210084. URL https://www.medra.org/servlet/aliasResolver?alias=
iospress&doi=10.3233/AIC-210084.

Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural networks. Atrtificial Intelligence,
70(1):119-165, October 1994. ISSN 0004-3702. doi: 10.1016/0004-3702(94)90105-8. URL https://
Wwww.Sclencedirect.com/science/article/pii/0004370294901058.

Philipp Trunschke, Martin Eigel, and Anthony Nouy. Weighted sparsity and sparse tensor networks for
least squares approximation. The SMAI Journal of computational mathematics, 11:289-333, 2025. ISSN
2426-8399. doi: 10.5802/smai-jcm.126. URL https://smai-jcm.centre-mersenne.orqg/
articles/10.5802/smai-jcm.126/l

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, £ ukasz Kaiser, and
lllia Polosukhin. Attention is All you Need. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
raper/2017/hash/3f5ee243547dee91fbd053clcd4al845aa-Abstract.html.

Martin J. Wainwright and Michael Irwin Jordan. Graphical Models, Exponential Families, and Variational Infer-
ence. Now Publishers Inc, 2008. ISBN 978-1-60198-184-4.

Steven R. White. Density-matrix algorithms for quantum renormalization groups. Physical Review B, 48(14):
10345-10356, October 1993. doi: 10.1103/PhysRevB.48.10345. URL https://link.aps.org/
doi/10.1103/PhysRevB.48.10345!

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/sufficient-statistics-and-intrinsic-accuracy/6A3E45FB1C423F3F684308F8910D6919
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/sufficient-statistics-and-intrinsic-accuracy/6A3E45FB1C423F3F684308F8910D6919
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/sufficient-statistics-and-intrinsic-accuracy/6A3E45FB1C423F3F684308F8910D6919
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/sufficient-statistics-and-intrinsic-accuracy/6A3E45FB1C423F3F684308F8910D6919
http://link.springer.com/10.1007/s10994-006-5833-1
http://link.springer.com/10.1007/s10994-006-5833-1
http://arxiv.org/abs/2508.10096
http://arxiv.org/abs/2501.17913
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/AIC-210084
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/AIC-210084
https://www.sciencedirect.com/science/article/pii/0004370294901058
https://www.sciencedirect.com/science/article/pii/0004370294901058
https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.126/
https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.126/
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://link.aps.org/doi/10.1103/PhysRevB.48.10345
https://link.aps.org/doi/10.1103/PhysRevB.48.10345

A.Goessmann, J. Schitte, M. Fréhlich, M. Eigel 48

A Proof of the Factorization Theorems

We now provide proofs for the factorization theorems stated in Sect. [3| These proofs are classically known (see
e.g. |[Koller and Friedman| [2009] for Hammersley-Clifford and |Casella and Berger| [2001] for Fisher-Neyman).
They are here provided in our tensor networks notation and for hypergraphs for completeness.

A.1 Hammersley-Clifford

Different to the original statement (see Clifford and Hammersley|[1971]), we here proof the analogous statement
for hypergraphs, where we have to demand the property of clique-capturing defined in Def. We start with
showing the following Lemmata to be exploited in the proof.

Lemma A.1. Let 7 [Xy)] be a positive tensor. Then we have for any index yy

)(_1)IU|7\W\

T[Xy] = <(<T>[Xv\w,Xw:yw] W ClUC V>

(xv]

where the exponentiation is performed coordinatewise and positivity of T ensures the well-definedness.

Proof. 1t suffices to show, that for an arbitrary index x> we have

T[Xy =ay] = H H (<T>[XV\W:IV\W,Xw=yW])

ucvwcu

(,1)\M\—\W\

We do this by applying a logarithm on the right hand side and grouping the terms by WV as

" H H <T>[XV\W::EV\W:XW:3/W])(_l)lu_W]

cvywcu
— Z In [<T>[XV\W:xV\W,XW:yWﬂ (Z (_1)U|W>
WwWcy UCv:wcu
— Z In {<T> [XV\WZIV\WvazyW]} Z (_1)i<“}| _Z ‘W)
ey iE€[[VI=W]]

Now, by the generic binomial theorem we have that for n € N, n # 0

0=(1-1)"= Z(—l)iG) .

1€[n]

Therefore, the summands for W # V) vanish and we have

" H H (<T>[XV\W:xV\W7Xw=yW])(Ulu_lWl]

cywcu

~fr by =) | S0 ()
— Infr [Xv = o]

Applying the exponential function on both sides establishes the claim. O

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 49

Lemma A.2. Let T be a positive tensor andUd C V an arbitrary subset. When there are a,b € U such that

) (o, X0 X0 o] = <<T>[Xa|XV\{a,b}] (7) [Xb\XV\{a,b}]>[Xu] ’

then for any indices ;4 and x4

(_1)IM\—IWI

H (<T>[XV\W:xv\W7XW:yW]) =1.

wcu
Proof. We abbreviate

Zyy = <T>[XV\W:IV\W7XW:yW])

By reorganizing the sum over YW C U into W C U\{a U b} we have

(,1)IMI7\W\

Tz ™ = 1 < 2w - Zywufaby > , (A1)

o= Weitvapy \ZWulal " Ewuiey

From the independence assumption it follows that for any index x

() [Xa=2a| X\ (WU{a,b}} =TV\ (WU {a,b} 1 X W=y, Xp =1
- <T>[Xa:xa\XV\{WU{a,b}}:xV\{WU{a,b}}7Xw:yw]
- <T>[Xa:%\XV\{wu{a,b}}:IV\{WU{a,b}}7Xw:yw7Xb:yb] :
Applying this in each bracket term of we get

Zw T

Zywufal

Xazwa|XV\{WU{a,b}}:xv\{Wu{a,b}}7XW:yW7Xb:$b]

i
7) [Xa=Yal X\ (WU{a,b}} =T\ (WU{ab})XW =yw, X6 =2
i

(

K
(T

K

]
Xa=2a| X\ (WU{a,0}} =TV\ (WU{a,0} 1 X W=, Xp=1s
7) [Xa=va| Xv\ (WU a6} } =T\ (WULa0} 1 XW=yw, Xo =0
_ Zwu

" Iwifap)

Thus, each factor in is trivial, which establishes the claim. O
We are finally ready to prove the Hammersley-Clifford Thm. based on the Lemmata above.

Proof of Thm.[310 ii) = i) By Lem. we have for any indices xy and

RN
P[Xy =xy] = H H (P [Xw = 2w, Xp\w = yV\W])(Y
UCY WU

Using the clique-capturing assumption of Thm. we find for any subset &/ C V), which is not contained
in a hyperedge a,b € U such that X, is independent of X} conditioned on X\ (4} If no such nodes
a,b € U exists, U would be contained in a hyperedge since the hypergraph is assumed to be clique-capturing.
By Lem.[A.Z|we then have

T (2 [Xw = ow, Xow =mon]) TV =1

wcu

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 50

Using the function
a:{U:Fecl:UCe} =&,

we label the remaining node subsets by a hyperedge containing the subset. For each ¢ € £, we build the tensor

7 [Xe] = H H (P [Xw = zw, Xp\w = ZJV\W])(
U:all)=eWCU

_nyul—wi

and get that
PXy] = ({7°[Xc] e € €}y
= ({7°[Xe] 1 e € EDxy e -

We have thus constructed a Markov network with trivial partition function, whose contraction coincides with the
probability distribution.

i) = i1): To show the converse statement, assume that there is a Markov network representing the distribution
P[Xy] and choose subsets A, B,C' C V such that C' separates A from B. Denote by V, the nodes with
paths to A, which do not contain a node in C' and by V; the nodes with paths to B, which do not contain a node
in C. Furthermore, we denote by &) the hyperedges which contain a node in V) and by &7 the hyperedges
which contain a node in V;. By assumption of separability, both sets £y and &; are disjoint and no node in A is
in a hyperedge in £ and respectively no node in B is in a hyperedge in &. We then have

({m°[X] : e€ g}>[XA7XB‘XC:Ic} ={m°[Xe] : e€ &} U {exc}>[XA7XB|®]
({7° : e€ &} U{ec Hix o
® {7 ee &y U{ecix,e -

By Def. this is the independence of X 4 and X g conditioned on X . O

A.2 Fisher-Neyman

Since sufficient statistics are sometimes introduced based on the data processing inequality (see e.g. |Cover
and Thomas|[2006]), we also show that also that definition is equivalent to the factorization of the family. Here,
I (X;Y) denotes the mutual information of two random variables X, Y.

Theorem A.3 (Fisher-Neyman factorization theorem). Let P [X, Z] be a joint distribution of variables X, Z
with values val (X) , val (Z) and lett be a statistic, which maps val (X) to val (Y;) . We introduce a variable
Y; and define a joint distribution by

P [X7 Yz, Z] = <]P> [Xa Z] 7/8t [EyX]>[X7yt,Z} :
The following are equivalent:
i) The Data Processing Inequality holds straight, that is
1(2;X) =1(Z:1)
i) Z — Yy — X is a Markov Chain, that is

(ZLX)|Y;

iii) There are tensors € [Yz, Z| and v [X| such that for any x € val (X) and z € val (Z)

PZ=zX=z]=¢(Yi=t(x),Z=2]-v[X=21].

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

A tensor network formalism for neuro-symbolic Al 51

Proof. i) <> ii): We always have
I(Z;X) =1(Z;(X,Y)) =1 (Z;Yy) + 1 (Z; X|YY)
and thus 7) is equivalent to
I1(Z;X|Y;) =0.
Using the KL-divergence characterization of the mutual information, this is equivalent to
P2, X|¥i] = ([2]%). BIX %)) vy -

This is equivalent to the conditional independence statement iz).

i1) = 4i1): Let us assume i7). For all z € val (Z) and z € val (X) we then have

PlZ=z2X=2|=P[Z=z/X=2Y,=t(z)]
=P[Z =2V, =t(z)]

Here we used that Y; has a deterministic dependence on X. Therefore, there is a tensor £ such that for all
z € val(Z)andz € val (X)

§[Yt:t(m),Z:z]:P[Z:z‘X:a:].
We further define a tensor v [X| = P [X] and get

PZ=2zX=z]=PX=2a] P[Z=z2X=u

i11) = 4i): When assuming 7i7) we have for all (x, z) € val (Z) x val (X)
PIZ = =X =] = (€. 20,5 I X]v (XD
= <§[Y;57Z]7Bt [Y;,X:.ﬁ],l/[X

— <§ [Y:, Z]) €t () [Y;f]>[zzz|®]
:P[Z:z}ytzt(fx)}'

= x]>[Z:z\®]

We further have for almost all y; € val (Y;), z € val (Z) and x € val (X) thaty; = ¢ (x) and
P[Z = z}X =x,Y; = yt] =]P’[Z = z‘X = x]

and with the above at thus at almost all such pairs
IP’[Z = z‘X =x,Y; :yt] :IP’[Z = z‘Y} = yt] .

This is equivalent to ii). O

Thm. follows from Thm.|A.3|by the equivalence of i7) and 7).

B Implementation of the algorithms and examples

The implementations of the algorithms and concepts are available at https://github.com/
tnreason/nesy-demonstrations/|and implemented with tnreason in the version 2.0.0.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

https://github.com/tnreason/nesy-demonstrations/
https://github.com/tnreason/nesy-demonstrations/
https://github.com/tnreason/nesy-demonstrations/
https://github.com/tnreason/nesy-demonstrations/

IS ST VSR SR

22
23
24
25
26
27
28
29
30
31

32
33

34
35
36
37
38

39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel

52

B.1 Algorithm(i} [2and 3| (Tree, Directed Belief and Constraint Propagation)

The three message passing algorithms are implemented as functions in one class ContractionPropagation,

since they share common structure.

from tnreason.engine import contract
from tnreason.engine import create_from_slice_iterator as create

class ContractionPropagation:

mon

Summary Class for the Tree Belief, Directed Belief and Constraint Propagation

— Algorithms
mimwn
def _ init_ (self, cores):
self.cores = cores
self.directions = {send: [receive for receive in cores if
set (cores[send] .colors) & set (

cores|[receive] .colors) and receive

for send in cores}
self.messages = {receive: {} for receive in self.cores}

def trivial message(self, send, receive):
mmwmn

Prepares trivial message from the send to the receive hyperedge

mon

commonColors = list (set(self.cores[send].colors) &
<« set (self.cores[receive] .colors))
shape = [self.cores[send].shapeli]

= send]

for i, ¢ in enumerate(self.cores[send].colors) if ¢ in commonColors]
return create (shape=shape, colors=commonColors, slicelIterator=[(1, {})])

def calculate_message (self, send, receive):

mon

Contract received messages with hypercore to send new
mmwmn

return contract ({send: self.cores[send],

x+x{preSend: self.messages[send] [preSend] for preSend in

— self.messages[send]
if preSend != receive}},

openColors=1list (set (self.cores[send].colors) &

— set(self.cores[receive].colors)))

def tree_propagation(self):

mon

Implementation of the Directed Belief Propagation Algorithm:
Messages are sent starting at the leafs and scheduled if all others received at a

— core
mon

schedule = [(send, receive) for send in self.cores for receive in
self.directions[send] if len(self.directions[send])

while len (schedule) > 0:
send, receive = schedule.pop ()

self.messages|[receive] [send] = self.calculate_message (send,

for next in self.directions[receive]:
if (not receive in self.messages[next] and
all ([(otherSendKey in self .messages[receive
— next or

== 1]

receive)

] or otherSendKey ==

receive not in self.directions[otherSendKey]) for

otherSendKey in self.directions])):
schedule.append((receive, next))

def directed_propagation(self, edgeDirections):

mon

Implementation of the Directed Belief Propagation Algorithm:

Messages are sent in direction of the hypergraph
mmwmn

filteredDirections = {
send: [
receive for receive in self.directions[send]
if (common := set (self.cores[send].colors) &

< set (self.cores[receive].colors))
and common.issubset (set (edgeDirections([send] [1])
and common.issubset (set (edgeDirections|[receive] [
]

for send in self.directions

DOI 10.20347/WIAS.PREPRINT.3257

)
01))

Berlin 2026

66
67
68

69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98
99
100

101

© % N R W N —

=3

A tensor network formalism for neuro-symbolic Al 53

schedule = [(send, receive) for send in filteredDirections
for receive in filteredDirections[send] if
— len(edgeDirections[send] [0]) == 0]

while len (schedule) > 0:

send, receive = schedule.pop ()

self.messages[receive] [send] = self.calculate_message (send, receive)

for x in set (edgeDirections[send][1]) & set (edgeDirections|[receive] [0]):
edgeDirections|[receive] [0].remove (x)

if len(edgeDirections[receive] [0]) == O:
schedule = schedule + [(receive, next) for next in

— filteredDirections[receive]
if (receive, next) not in schedule]

def constraint_propagation(self, startSendKeys):
mmmn
Implementation of the Constraint Propagation Algorithm:
Messages are resent, when the support of a received message has changed
mmwn
schedule = [(send, receive) for send in startSendKeys for receive in
self.directions[send]]
while len (schedule) > 0:
send, receive = schedule.pop ()
message = (self.messages|[receive] [send].clone() if send in
— self.messages|[receive]
else self.trivial_message (send, receive))
cont = self.calculate_message (send, receive)

messageChanged = False
for val, pos in message:

if message[pos] != 0 and cont[pos] == 0:
message[pos] = - message[pos]
messageChanged = True

self.messages[receive] [send] = message

for next in self.directions[receive]:
if messageChanged and next != receive and (receive, next) not in
«— schedule:
schedule.append((receive, next))

B.1.1 Example 4.4 and [4.6|(Integer Summation in m-adic Representation)

Following the decomposition of m-adic summations into local summations, the function get_sum_tn produces
a corresponding tensor network of basis encodings. We test by coordinate retrieval operations, whether the
summation is performed correctly.

from tnreason import engine
import math

from copy import deepcopy

def get_sum_tn(m, d):
return {"b_0": engine.create_from_slice_iterator
shape=[m, 2, m, m],
colors=[f"Y_{0}", £"Z_{0O}", £"X_{O}", £"TX_{O0}"1,

slicelterator=[(1, {f"Y_{0}": (x + tx) % m, f£"Z_{0}": math.floor((x + tx) / m),
f"X_{0}": x, f£"TX_{0}": tx}) for x in range(m) for tx in
— range(m)]),

x*x{f"middleBlock{k}": engine.create_from_slice_iterator(

shape=[m, 2, m, m, 2],
colors=[£f"Y {k}", £"Z_{k}", £"X_{k}", £"TX_{k}", £"2Z {k - 1}"],
slicelterator=|
(1, {f"Y_{k}": (x + tx + z0) % m,
£f"7z_{k}": math.floor((x + tx + z0) / m),
F'X_{k}": x, E£"TX_{k}": tx, £"fz {k - 1}": z0}) for x
in range(m) for tx in range(m) for z0 in range(2)]
) for k in range(l, d - 1)},
x**x{f"b_{d - 1}": engine.create_from_slice_iterator
shape=[m, 2, m, m, 2],
colors=[f"Y_{d - 1}", £"Y_{d}", £"X_{d - 1}", £"TX_{d - 1}", £"Z_{d - 2}"],
slicelterator=|
(L, {f"Y_{d - 1}": (x + tx + z0) $ m, £"Y_{d}": math.floor((x + tx + z0)
— / m),

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

27
28
29
30
31
32
33

34

35
36

37
38
39
40
41
42
43
44
45
46
47
48

49
50
51

52
53
54
55
56

57
58
59

60
61
62
63
64
65
66
67
68
69
70

71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel

54

f"X_{d —
in range (m)

1r": x,

)1}

def encode_digits (num0, numl, m):
return {**{f"X_{len(num0) - 1 - 1i}_eC":
— colors=]|
f"X_{len(num0) - 1 - 1i}"], slicelterator=[(1,
— int(digit)})]) for

fU"TX_{d - 1}":
for tx in range (m)

tx, f"7Z2_{d - 2}":
for z0 in range(2)]

z0}) for x

engine.create_from_slice_iterator (shape=[m],

{f"X_{len(num0) - 1 — i}":

i, digit in enumerate (num0) },
**x{f"TX_{len(numl) - 1 - 1} _eC": engine.create_from_slice_iterator (shape=[m],
— colors=][
f"TX_{len(numl) - 1 - 1}"], slicelterator=[
(1, {f"TX_{len(num0) - 1 - i}": int(digit)})]) for i, digit in

enumerate (numl) }}

assert 1 == encode_digits("0001", "0000"™, 10)["X_0_eC"][{"X_0": 1}1]
assert 0 == encode_digits("0001", "0000"™, 10)["X_0_eC"][{"X_0": 0}1]
Example: 08+12=020 in basis 10
m = 10
catorder = 2
assert 1 == int (engine.contract (coreDict={**get_sum_tn(m, catorder),
— xxencode_digits("08", "12", m)},

openColors=[f"Y_{k}" for k in range(catorder + 1)1]) [

{"Yizn: O, "Yil"i 2, nYiou: O}])

assert 1 == int (engine.contract (coreDict={++get_sum_tn(m, catorder),
«— *xencode_digits("00", "00", m)},

openColors=[])[:])
Example: 10+11=101 in basis 2
m= 2
catorder = 2
assert 1 == int (engine.contract (coreDict={*+get_sum_tn(m, catorder),
— **xencode_digits("10", "11", m)},

openColors=[£f"Y {k}" for k in range(catorder + 1)]) [

{"Y_Z": l, lly_l": O, IIY_O": 1}1)

assert 1 == int (engine.contract (coreDict={**get_sum_tn(m, catorder),
— xxencode_digits("10", "11", m)},

openColors=[])[:1])

from demonstrations.comp_act_nets.algorithms import propagation as cp

edgeDirections = {
A {E"X_{i}_eC": [[], [£"X_{i}"]] for i in range(catorder)},
Ax {E"TX_{i}_eC": [[]1, [f"TX_{i}"]1] for i in range (catorder)},
llb_oll: [["X_O ll, II’I‘X_OII] , ["Y_O", IIZ_O ll]] ,
**{flle{i}": [[fllxi{i}", f"TXi{i}", f"Zi{i — 1}"], [f"Yi{i}", f"Zi{i}HJ]
for i in range(l, catorder - 1)},
f"b_{catorder - 1}": [[f"X_{catorder - 1}", f"TX_ {catorder - 1}", f"Z_{catorder -

21",

—

[f"Y_{catorder - 1}",

}

propagator = cp.ContractionPropagation ({**get_sum_tn (m,

o llOlll, m)})

f"Y_{catorder}"]l],

catorder), »xencode_digits("01",

propagator.directed_propagation (edgeDirections=deepcopy (edgeDirections))

Check whether the message arrived at b_1

states that the carry bit is 1

assert propagator.messages["b_1"]1["b_0"][{"Z_0": 0}] ==
assert propagator.messages["b_1"]["b_0"][{"Z_0": 1}] == 1
propagator = cp.ContractionPropagation ({*+get_sum_tn(m, catorder),

x*xencode_digits("10",)}
propagator.directed_propagation (edgeDirections=deepcopy (edgeDirections))

Check whether the message arrived at b_1

assert propagator.messages|["b_1"]1["b_O0"][{"Z_0":
assert propagator.messages["b_1"]1["b_O0"][{"Z_0":

"10", m)

states that the carry bit is 1
0}]
1}]

=0

B.1.2 Example3.12]and [3.23](Student Markov network)

We here implement the Markov network on the hypergraph of Example [3:12] with tensors having independent
random coordinates drawn from the uniform distribution on [0, 1]. We test in a final assert statement, whether

DOI 10.20347/WIAS.PREPRINT.3257

Berlin 2026

© % N R W —

o - KV S SO U R

=3

A tensor network formalism for neuro-symbolic Al 55

the messages resulting from Algorithm([{]in a tree implementation contract to the marginal distribution, which we
directly compute for comparison.

from tnreason.engine import create_random_core, contract

studentTensorNetwork = {
"t0": create_random_core (name="t0", colors=["G", "D", "I"], shape=[6, 3, 21),
"t1l": create_random_core (name="t1l", colors=["L", "G"], shape=I[2, 61]),
"t2": create_random_core (name="t2", colors=["I", "S"], shape=[2, 101]),

}

Execute the contraction propagation algorithm in the tree-based implementation
from demonstrations.comp_act_nets.algorithms import propagation as cp

propagator = cp.ContractionPropagation (studentTensorNetwork)
propagator.tree_propagation ()

Test on the marginals of the variables "L","G" (core "t1")

testContraction = contract (studentTensorNetwork, openColors=["L", "G"])
propContraction = contract ({"mes_tO_tl": propagator.messages["t1"]["tO"],
"tl": studentTensorNetwork["t1"]}, openColors=["L",
[N IIGII])
tolerance = le—6
for posDict in [{"L": O, "G": 1}, {"L": 1, "G": 5}]1:
assert abs (testContraction[posDict] - propContraction[posDict]) < tolerance

B.1.3 Example[5.8,/5.12/and (Sudoku Game)

We implement the n? x n? Sudoku with the start assignment given in Example and apply the Constraint
Propagation Algorithm [3] to deduce the full assignment. We then test whether the correct board assignment
(given in Example [5.76) has been found.

from tnreason.engine import contract
from tnreason.engine import create_from_slice_iterator as create
import numpy as np

def create_sudoku_rule_tensor_network (n) :

mwon

Creates a tensor network of n"2 \tau’k matrices to each Sudoku constraint

mon

rulesSpecDict = {
Column Constraints
kk{E"T_:_:_ {cO}_{cl}_{i}": [£"X_{r0}_{rl}_{cO}_{cl}_{i}" for r0O in range(n) for

— rl in
range (n)] for c0 in range(n) for cl in range (n)
for i in range(n *x 2)},
Row Constraints
wx {E"T_{x0}_{rl}_: : {i}": [£"X_{rO0}_{rl} {cO0}_{cl}_{i}" for cO in range(n) for
— ¢l in
range (n)] for r0 in range(n) for rl in range (n)
for i in range(n *x 2)1},
Squares Constraints
k4 {f"T_{r0}_: {cO}_:_{i}": [£"X_{r0}_{rl}_{cO}_{cl}_{i}" for rl in range(n) for
— ¢l in

range(n)] for r0 in range(n) for c0 in range (n)
for i in range(n *x 2)},
Position Constraints
sx{Ef"T_{r0}_{rl}_{cO}_{cl}_:": [£"X_{r0}_{rl}_{cO}_{cl} _{i}" for i in range(n *=*

— 2)]
for r0 in range(n) for rl in range(n) for cO0 in range(n) for cl in range(n)}
}
cores = {}
for decomKey in rulesSpecDict:
cores.update ({

decomKey + "_" + atomVar: create(
shape=[2, len(rulesSpecDict[decomKey])],
colors=[atomVar, decomKey],
slicelterator=[(1, {atomvar: 0}),

(-1, {atomvar: 0, decomKey: 1i}),

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88
89

R - I S S E

1S

A.Goessmann, J. Schiitte, M. Fréhlich, M. Eigel 56

(1, {atomvar: 1, decomKey: i})1)
for i, atomVar in enumerate (rulesSpecDict [decomKey])
H)

return cores

def encode_trivial_extended_evidence (E, n):

won

Prepares e_1 basis vectors for known variables and trivial vectors for others
return {*+{f"{r0}_{rl}_{cO}_{cl}_{i}_eC":
create (shape=[2], colors=[f"X_{r0}_{rl} {cO}_{cl}_{i}"1,
slicelterator=[(1, {f"X_{xr0}_{rl}_ {cO}_{cl}_{i}r": 11 1)
for r0, rl, cO0, cl, i in E},
*x {f£"{r0}_{rl}_{cO}_{cl}_{i}_eC":
create (shape=[2], colors=[f"X {r0}_{rl} {cO}_{cl}_{i}"]1,
slicelterator=[(1, {})1)
for r0 in range(n) for rl in range(n) for cO0 in range (n)
for ¢l in range(n) for i in range(n *»x 2) if (r0, rl, cO0, cl, i) not in
— E}}

def extract_resulting_evidence (propagator, n):

mon

Returns the evidence given a ContractionPropagation instance

return [(rO, rl, cO0, cl, i) for r0 in range(n) for rl in range (n)
for c0 in range(n) for cl in range(n) for i in range(n xx 2)
if contract ({
"eC": propagator.cores[f"{r0}_{rl}_{cO}_{cl}_{i}_eC"],
xxpropagator.messages [£"{r0}_{rl}_ {cO0}_{cl}_{i}_eC"]},
openColors=[f"X_{r0}_{rl}_{cO}_ {cl} {i}"]1)[{£f"X_{xr0}_ {rl} {cO}_{cl} {i}": 01}]
— == 0]

def tuples_to_array(evidence, n=2):

mon

Arranges the variables in an array
mmwn

array = np.zeros (shape=(n ** 2, n xx 2))
for (r0, rl, cO0, cl, i) in evidence:
array[r0 » n + rl, cO » n + cl] =1 + 1

return array

from demonstrations.comp_act_nets.algorithms import propagation as cp

n = 2
evidence = [(0O, O, O, O, 0O), (0, O, 1, 0, 2), ,
(0, 1, o, 1, 1), (1, 0, 1, 0O, 3), (1, 1, O, O, 3),
(L, 1, 0, 1, 2)]
propagator = cp.ContractionPropagation (
cores={*xcreate_sudoku_rule_tensor_network (n=n),
+*+xencode_trivial_ extended_evidence (evidence, n=n)})
propagator.constraint_propagation([f"{r0}_{rl} {cO0}_{cl}_{i}_eC" for (rO, rl, cO, cl, 1)
<« in evidence])
solutionArray = tuples_to_array (extract_resulting_evidence (propagator, n=2))
assert np.all(solutionArray == np.array([[1l, 4, 3, 21, [3, 2, 1, 41, [2, 1, 4, 31, [4, 3,
- 2, 111))

B.2 Algorithm 4 (Alternating Moment Matching)

We implement the Alternating Moment Matching algorithm, which estimates the parameters of Hybrid Logic
Networks, as a class MomentMatcher.

from tnreason.engine import contract
from tnreason.engine import create_from_slice_iterator as create
import math

class MomentMatcher:
def _ init_ (self, cores, hCols, satRates):
self.cores = cores
self.hCols = hCols
self.satRates = satRates

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

20
21
22
23

24
25
26
27
28
29
30
31
32

o I - RV R U VU R

A tensor network formalism for neuro-symbolic Al 57

self.hardParams = {hCol: int (satRates[hCol]) for hCol in self.hCols if
satRates[hCol] in [0, 1]}
self.softParams = {hCol: 0 for hCol in self.hCols if hCol not in self.hardParams}

def update_canonical_parameter (self, uCol):
con = contract ({*+xself.cores,
x*+x{hCol: create(shape=[2], colors=[hCol],
slicelterator=[(1, {hCol:
— self.hardParams[hCol]})])
for hCol in self.hardParams},
x*+x{hCol: create(shape=[2], colors=[hCol],
slicelterator=[(1, {hCol: 0}),
(math.exp(self.softParams[hCol]),
— {hCol: 1})1)

for hCol in self.softParams if hCol != uCol}
}, openColors=[uCol])
self.softParams[uCol] = math.log(self.satRates[uCol] % con[{uCol: 0}] / (

(1 - self.satRates[uCol]) * con[{uCol: 1}]))

def alternate(self, iterations=1):
for _ in range(iterations):
for hCol in self.softParams:
self.update_canonical_parameter (hCol)

Let us now show the usage of the algorithm on the toy accounting model presented in Example To this
end we train the parameters based on a the dataset described in Example [6.3] and assert that the learned
parameters are close to the true parameters. Note that a single iterations suffices for convergence in this simple
example.

import pandas as pd

samples = pd.DataFrame ({
*a1":. [0, o, o, 0, o, 0, 0,0 0,0 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11,
"a2". (1, 1, 1, 1, 1, 1, 1, 1, 1, 0O, O, O, O, O, O, O, O, O, O, O,
"g". [0, O, O, O, 0O, O, O, 1, 1, O, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11,

1)

formulaExpressions = {
" (xor_Al_AZ)": ["XOI", llAl", IIAZH, O},
n (imp7F7A1> ": [" imp", "F", "Al ", O] ,

}

from tnreason.engine import normalize

from tnreason.application import data_to_cores as dtc

from tnreason.application import create_cores_to_expressionsDict as cte
from demonstrations.comp_act_nets.algorithms import moment_matching as mm

satRates = {
formulaKey + "_cV'":
normalize ({*+dtc.create_data_cores (samples),
x+xcte ({formulaKey: formulaExpressions|[formulaKey]})},
outColors=[formulaKey + "_cV"], inColors=[]) [{formulaKey + "_cV": 1}]
for formulaKey in formulaExpressions

}

matcher = mm.MomentMatcher (cores=cte (formulaExpressions),

satRates=satRates, hCols=[" (xor_ Al _A2)_cV", " (imp_F_Al)_cV"])
matcher.alternate (iterations=1)
assert abs (matcher.softParams|[" (imp_F_Al)_cV"] - 1.09861228866811) < le-8

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026

	Introduction
	Related works
	Structure of the paper

	Foundations
	Tensors
	Tensor networks and contractions
	Generic contractions
	Normalizations
	Function encoding and Computation-Activation Networks

	The probabilistic paradigm
	Basic concepts
	Factorization into graphical models
	Factorization based on sufficient statistics
	Exponential families
	Efficient contractions by message passing

	The neural paradigm
	Function decomposition
	Function evaluation by message passing

	The logical paradigm
	Propositional semantics by boolean tensors
	Syntactic decomposition of propositional formulas
	Entailment decision by contractions
	Efficient representation of knowledge bases
	Entailment decision by message passing

	Hybrid Logic Networks
	Parametrization
	Parameter estimation in Hybrid Logic Networks
	Entailment by Hybrid Logic Networks

	Implementation in the python library tnreason
	Architecture
	Basic usage

	Conclusion & outlook
	Proof of the Factorization Theorems
	Hammersley-Clifford
	Fisher-Neyman

	Implementation of the algorithms and examples
	Algorithm 1, 2 and 3 (Tree, Directed Belief and Constraint Propagation)
	Example 4.4 and 4.6 (Integer Summation in m-adic Representation)
	Example 3.12 and 3.23 (Student Markov network)
	Example 5.8, 5.12 and 5.16 (Sudoku Game)

	Algorithm 4 (Alternating Moment Matching)

