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A tensor network formalism for neuro-symbolic AI

Alex Goessmann, Janina Schütte, Maximilian Fröhlich, Martin Eigel

Abstract

The unification of neural and symbolic approaches to artificial intelligence remains a central open chal-
lenge. In this work, we introduce a tensor network formalism, which captures sparsity principles originating
in the different approaches in tensor decompositions. In particular, we describe a basis encoding scheme
for functions and model neural decompositions as tensor decompositions. The proposed formalism can be
applied to represent logical formulas and probability distributions as structured tensor decompositions. This
unified treatment identifies tensor network contractions as a fundamental inference class and formulates
efficiently scaling reasoning algorithms, originating from probability theory and propositional logic, as con-
traction message passing schemes. The framework enables the definition and training of hybrid logical and
probabilistic models, which we call Hybrid Logic Networks. The theoretical concepts are accompanied by
the python library tnreason, which enables the implementation and practical use of the proposed archi-
tectures.

1 Introduction

Modern artificial intelligence is dominated by large-scale neural models that excel at various tasks but mostly
remain black-boxes. While these models offer adaptability, the two main concerns when integrating these ar-
chitectures into safety-critical processes are reliability and explainability. To match these demands, artificial
intelligence has followed symbolic paradigms, including probabilistic and logical approaches. However, these
paradigms have been mostly neglected due to the success of black-box neural models. The logical tradition
of artificial intelligence, historically motivated by the resemblance of human thought to formal logics McCarthy
[1959], offers explicit structures and human-readable inference. However, the main problem hindering the suc-

cess of this classical approach is the inability of classical first-order logic to handle uncertainty or scale to com-
plex real-world data. Probabilistic graphical models Pearl [1988], Koller and Friedman [2009] provide insights
based on encoded variable independences and causality Pearl [2009]. While probabilistic models and Statistical
Relational AI Nickel et al. [2016], Getoor and Taskar [2019] have improved uncertainty handling, bridging these
paradigms remains the central goal of Neuro-Symbolic AI Hochreiter [2022], Sarker et al. [2022], Colelough
and Regli [2024]. The field seeks a single, mathematically coherent framework combining structural clarity with
neural adaptability. Although progress has been made, for example with Markov Logic Networks Richardson
and Domingos [2006], a fully unified substrate that treats logical and probabilistic inference as instances of the
same operation is still missing.

In this work, we propose to fill the gap between the probabilistic, neural, and logical paradigms with tensor
networks in a framework called tnreason. Tensor spaces capture both the semantics of logical formulas (by
boolean tensors) and probability distributions (by normalized non-negative tensors). This abstraction eliminates
the traditional divide between symbolic and neural representations: logical inference, probabilistic computations,
and neural inference become different instances of the same underlying operation. As naive tensors are prone
to the curse of dimensionality, we turn to distributed representation schemes by tensor networks. We show that
fundamental sparsity principles of neural and symbolic AI, such as conditional independence, the existence of
sufficient statistics, and neural model decomposition, are equivalent to tensor network decompositions. More-
over, we identify tensor network contraction as the fundamental operation underlying inference tasks, such as
computing marginal distributions and deciding entailment. While these contractions are in general computation-
ally hard, efficient schemes to perform inference are known as message passing schemes. These algorithms
have appeared in different communities under names such as belief propagation Pearl [1988], Mézard [2009]
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and constraint propagation Mackworth [1977]. We review these schemes based on our tensor network formal-
ism.

To capture both logical and probabilistic models, and exploit their neural decompositions, we introduce
Computation-Activation Networks (CompActNets), an expressive tensor network architecture. The architec-
ture consists of two complementary subarchitectures that serve the purpose of computation and activation,
respectively. The computation network prepares auxiliary hidden variables with deterministic dependence on
the main variables. We interpret the network as a distributed computation scheme of functions describing
this dependence, whose decomposition is related to sparsity concepts of the corresponding functions. These
auxiliary variables represent logical formulas or more generic statistics in different contexts. The activation
network then assigns numerical values to the states of those auxiliary variables, and in this way activates the
variables to represent factors of a model. Logical models emerge when the activation network is a boolean
tensor, probabilistic exponential families when they are elementary positive-valued tensors, and hybrid models
in the most general cases.

1.1 Related works

Historically rooted in quantum many-body physics White [1993], tensor networks found their first major success
with Matrix Product States (MPS), originally developed to efficiently capture the quantum dynamics and ground
states of one-dimensional spin chains Affleck et al. [1987]. This format remains a standard tool in the field, with
recent contributions refining it for tasks such as large-scale stochastic simulations and variational circuit opera-
tions Sander et al. [2025b,a]. To address the topological constraints of MPS, the landscape of architectures was
subsequently expanded to include Projected Entangled Pair States (PEPS) for two-dimensional lattices and the
Multi-scale Entanglement Renormalization Ansatz (MERA), which utilizes a hierarchical geometry to represent
scale-invariant critical systems and has recently been adapted for simulating quantum systems Orús [2019],
Berezutskii et al. [2025].

Beyond the quantum realm, these formats have been successfully adapted to applied mathematics, particularly
for solving high-dimensional parametric PDEs Eigel et al. [2019, 2020], Dolgov and Scheichl [2019], Dolgov
et al. [2015], Trunschke et al. [2025], sampling problems and approximation of the Hamilton-Jacobi-Belman
equation Gruhlke et al. [2026], Eigel et al. [2023], Dolgov et al. [2023], Cui and Dolgov [2022], modeling complex
continuous fields and learning dynamical laws Hagemann et al. [2025], Eigel et al. [2017], Goessmann et al.
[2020], Lubich et al. [2013]. Furthermore, they exhibit properties helpful for handling these high-dimensional

spaces, such as restricted isometry properties Goessmann [2021]. Recent advancements have demonstrated
the efficacy of these methods in capturing multiscale phenomena in fluid dynamics and turbulence, proving that
the tensor network formalism offers a robust alternative to classical numerical schemes Gourianov et al. [2025].

The unification of neural, symbolic, and probabilistic approaches to interpretable model architectures has been
a long-standing aim of Neuro-Symbolic AI. A central goal is to achieve intrinsic explainability, which, unlike post-
hoc interpretations analysing input influence after training Lipton [2018], Barredo Arrieta et al. [2020], aims at
explainability of the architecture itself. Early connectionist approaches Towell and Shavlik [1994], Avila Garcez
and Zaverucha [1999] towards Neuro-Symbolic AI focus on embedding logical rules into neural connectivity.
Further, fruitful relations with statistical relational learning have been identified Marra et al. [2024].

Tensor networks have recently gained interest as a unifying language for AI, framed by Logical Tensor Net-
works Badreddine et al. [2022] and Tensor Logic Domingos [2025]. Furthermore, the MeLoCoToN approach
Ali [2025] applies tensor network architectures similar to CompActNets in combinatorial optimization problems.
Specifically, tensor networks have emerged as a highly efficient mathematical framework for handling data in
high-dimensional spaces, effectively circumventing the "curse of dimensionality"that typically plagues grid-based
methods Hackbusch [2012]. By decomposing high-order tensors into networks of low-rank components, these
structures reduce the storage and computational complexity from exponential to polynomial with respect to the
dimension Oseledets [2011], Hackbusch and Kühn [2009], Hitchcock [1927].
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Neural paradigm

Decomposition of functions into neurons (Def. 4.2, Thm. 4.3)

Probabilistic paradigm

Independence and related concepts

(Def. 3.4, Def. 3.5, Def. 3.13)

Marginal and conditional distributions

(Def. 3.3)

Logical paradigm

Semantics by boolean tensors

(Def. 5.1)

Entailment (Def. 5.7)

Graphical models

(Def. 3.7)

Syntactical

decompositions

(Def. 5.5)

CompActNets

(Def. 2.11)

Hybrid Logic Networks

(Def. 6.1)

Figure 1: Sketch of the concepts in the neural, probabilistic and logical paradigms, which we define based on
tensor network decompositions and contractions.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we introduce the basic concepts and notation for categorical
variables, tensors, and tensor networks, which are applied in the following sections. Sections 3, 4, and 5 anchor
the tensor network formalism in the basic paradigms of artificial intelligence (see Figure 1). The probabilistic
paradigm is discussed in Section 3, where we in particular show that concepts of independence, graphical
models, and sufficient statistics correspond to specific tensor network decompositions. Section 4 is dedicated
to the neural paradigm, where we show that generic function decompositions have analogous tensor network
representations. Section 5 turns to the logical paradigm, where we study tensor equivalents of propositional
formulas, knowledge bases, and entailment. In Section 6 we present Hybrid Logic Networks as an application
of the unified tensor network formalism, combining logical and probabilistic models. We briefly discuss the im-
plementation of these concepts in our open source python package tnreason in Section 7, before concluding
the paper in Section 8.

2 Foundations

In this section, we introduce the hypergraph-based tensor network formalism and define the most general tensor
network architecture of CompActNets based on this formalism.

2.1 Tensors

Tensors are multiway arrays and a generalization of vectors and matrices to higher orders. We first provide a
formal definition as real maps from index sets enumerating the coordinates of vectors, matrices, and higher-
order tensors. To ease the notation, we abbreviate sets as [d] = {0, . . . , d − 1}, tuples of state indices by
x[d] = (x0, . . . , xd−1) and tuples of variables by X[d] = (X0, . . . , Xd−1).

Definition 2.1 (Tensor). For k ∈ [d], let mk ∈ N and let Xk be categorical variables taking values in [mk]. A
tensor τ [X0, . . . , Xd−1] of order d and leg dimensions m0, . . . ,md−1 is defined through its coordinates

τ
[
X[d] = x[d]

]
= τ [X0 = x0, . . . , Xd−1 = xd−1] ∈ R

for index tuples

x[d] = (x0, . . . , xd−1) ∈ ×
k∈[d]

[mk] .
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Tensors τ
[
X[d]

]
are elements of the tensor space⊗

k∈[d]

Rmk ,

which is a linear space, enriched with the operations of coordinate-wise summation and scalar multiplication.
We call a tensor τ

[
X[d]

]
boolean, when all coordinates are in {0, 1}, and positive, when all coordinates are

greater than 0.

We introduced tensors here in a non-canonical way based on categorical variables assigned to their axes. While
this may look like syntactic sugar at this point, it allows us to define contractions without further specification of
axes, based on comparisons of shared variables. We occasionally also allow for variables X taking values in
infinite sets such as R, in which case we denote the set of values to a variable by val (X).

Example 2.2 (Delta tensor). Given a tuple of variables X[d] = (X0, . . . , Xd−1) with identical dimension m,
where d ≥ 1, the delta tensor is the element

δ[d],m
[
X[d]

]
∈
⊗
k∈[d]

Rm

with coordinates

δ[d],m
[
X[d] = x[d]

]
=

{
1 if x0 = . . . = xd−1

0 else
.

We depict this tensor by black dots, which sometimes appears as auxiliary elements in tensor network diagrams
(see e.g. Figure 4). For d = 1, the delta tensor is the trivial vector, whose coordinates are constantly 1, which
we denote by I [X].

2.2 Tensor networks and contractions

We use a standard visualization of tensors (dating back to Penrose [1987]) by blocks with lines depicting the
axes of the tensor. Additionally, we assign to each axis of the tensor the corresponding variable Xk:

τ

X0 X1 · · · Xd−1

We now associate categorical variables with nodes of a hypergraph and tensors with hyperedges, which are
arbitrary subsets of nodes. Based on this association we continue with the definition of tensor networks.

Definition 2.3 (Tensor network). Let G = (V, E) be a hypergraph, let Xv for v ∈ V be categorical variables
with dimensions mv ∈ N, and let

τ e [Xe] ∈
⊗
v∈e

Rmv

be tensors for e ∈ E , where we denote by Xe the set of categorical variables Xv with v ∈ e. Then, we call the
set

τG [XV ] = {τ e [Xe] : e ∈ E}

the tensor network of the decorated hypergraph G. The set of tensor networks on G such that all tensors have
non-negative coordinates is denoted by T G .

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026



A tensor network formalism for neuro-symbolic AI 5

a)

X0 X1
. . . Xd−1

I
e0

e1

ed−1

b)

τ0

X0

τ1

X1

. . . τd−1
Xd−1

I

Figure 2: Hypergraph to a CP format (see Example 2.4). a) Node-centric design. b) Corresponding tensor
network on the edges of the hypergraph.

a)

X0 X1

. . .

. . .

I0 I1

e0
e1 e2 ed−2

ed−1

Id−2

Xd−1

b)

τ0

X0

I0

τ1

X1

I1 . . .
Id−2

τd−1

Xd−1

Figure 3: Hypergraph to a TT format (see Example 2.5). a) Node-centric design. b) Corresponding tensor
network on the edges of the hypergraph.

As examples we now present the CP and the TT formats in our hypergraph notation.

Example 2.4 (The CP format). The Candecomp-Parafac (CP) tensor format (see Hitchcock [1927]) corre-
sponds in our notation to a hypergraph (see Figure 2) defined by

■ nodes X[d] and a single hidden variable I , decorated by dimensions m[d] and the CP-rank n, respectively

■ edges
{
ek = {Xk, I} : k ∈ [d]

}
each decorated by a matrix τ ek [Xk, I] ∈ Rmk×n.

Example 2.5 (The TT format). The Tensor-Train (TT) format (see Oseledets [2011]) corresponds in our nota-
tion to a hypergraph (see Figure 3) defined by

■ nodes X[d] and hidden variables I[d−1], each decorated by a dimension m[d] and n[d−1],

■ edges{
e0 = {X0, I0}

}
∪
{
ek = {Ik−1, Xk, Ik} : k ∈ {1, . . . , d− 2}

}
∪
{
ed−1 = {Id−2, Xd−1}

}
each decorated by a tensor of order 3 (respectively 2 for k ∈ {0, d− 1}).

2.3 Generic contractions

Let us now exploit our graphical approach to tensor networks in the definition of contractions.

Definition 2.6. Let τG be a tensor network on a decorated hypergraph G = (V, E). For any subset U ⊂ V we
define the contraction of τG with open variables XU to be the tensor (for an example see Figure 4)〈

τG
〉
[XU ]

∈
⊗
v∈U

Rmv

with coordinates at indices xU ∈×v∈U [mv] by

〈
τG
〉
[XU=xU ]

=
∑

xV\U∈×v∈V\U [mv ]

(∏
e∈E

τ e [Xe = xe]

)
.
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⟨τe0 , τe1 , τe2⟩[X1,X3]

X1 X3

= τe0

X0
X1 X2

τe2

X2 X3

τe1X1

Figure 4: Graphical depiction of a tensor network contraction with the open variables X1, X3. Open variables
are depicted by those without a dot at the end of the line.

When an open variable X does not appear in any tensor in a contraction, we define the contraction as a tensor
product with the trivial tensor I [X] (see Example 2.2). To ease notation, we often omit the set notation by
brackets {·}.

Example 2.7 (Tensor product). The simplest contraction is the tensor product, which maps a pair of two ten-
sors with distinct variables onto a third tensor and has an interpretation by coordinate-wise products. Such a
contraction corresponds with a tensor network of two tensors with disjoint variables. Let there be two tensors

τ
[
X[d]

]
∈
⊗
k∈[d]

Rmk and τ̃
[
Y[p]
]
∈
⊗
ℓ∈[p]

Rnℓ

with disjoint tuples of categorical variables assigned to their axes. Then their tensor product is the tensor

〈
τ
[
X[d]

]
, τ̃
[
Y[p]
]〉
[X[d],Y[p]]

∈

⊗
k∈[d]

Rmk

⊗

⊗
ℓ∈[p]

Rnℓ


with coordinates to tuples of x[d] ∈×k∈[d][mk] and y[p] ∈×ℓ∈[p][nℓ] as〈

τ
[
X[d]

]
, τ̃
[
Y[p]
]〉
[X[d]=x[d],Y[p]=y[p]]

:= τ
[
X[d] = x[d]

]
· τ̃
[
Y[p] = y[p]

]
.

2.4 Normalizations

Based on generic contractions, we now introduce the normalization of tensors, which introduces certain con-
traints on tensors to be depicted by directed hyperedges.

Definition 2.8. The normalization of a tensor τ [XV ] on incoming nodes V in ⊂ V and outgoing nodes Vout ⊂
V\V in is the tensor ⟨τ [XV ]⟩[XVout |XVin ] defined for xV in as

⟨τ [XV ]⟩[XVout |XVin=xVin ] =


⟨τ⟩[XVout ,XVin=xVin ]

⟨τ⟩[XVin=xVin ]
if ⟨τ⟩[XVin=xVin ] ̸= 0

1∏
v∈Vout mv

I [XVout ] else
.

We say that τ [XV ] is normalized with incoming nodes V in ⊂ V , if

τ [XV ] = ⟨τ [XV ]⟩[XV\Vin |XVin

] .

In our graphical tensor notation, we depict normalized tensors by directed hyperedges (a), which are decorated
by directed tensors (b), for example when XV in = (X2, X3) and XV\V in = (X0, X1):
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a)

X0 X1 X2 X3X3

e b)

τe [X0, X1, X2, X3]

X0 X1 X2 X3

2.5 Function encoding and Computation-Activation Networks

Towards presenting the function encoding schemes, we define one-hot encodings mapping the states of vari-
ables to basis tensors.

Definition 2.9 (One-hot encoding). To any variable X taking values in [m], the one-hot encoding of any state
x ∈ [m] is the vector with coordinates

ϵx [X = x̃] :=

{
1 if x = x̃

0 else .

To any tuple X[d] of variables taking values in×k∈[d][mk], the one-hot encoding of a state tuple x[d] is the
tensor product

ϵx[d]

[
X[d]

]
:=
⊗
k∈[d]

ϵxk
[Xk] .

We now use one-hot encodings to encode functions between state sets.

Definition 2.10 (Basis encoding of maps between state sets). Let there be two sets of variables X[d] and Y[p],
and let there be a map

q : ×
k∈[d]

[mk] → ×
ℓ∈[p]

[nℓ]

between their state sets. Then, the basis encoding of q is a tensor

βq
[
Y[p], X[d]

]
∈

⊗
ℓ∈[p]

Rnℓ

⊗

⊗
k∈[d]

Rmk


defined by

βq
[
Y[p], X[d]

]
=

∑
x[d]∈×k∈[d][mk]

ϵq(x[d])
[
Y[p]
]
⊗ ϵx[d]

[
X[d]

]
.

Basis encodings are normalized tensors and are thus depicted as decorations of directed edges in hypergraphs:

Y0 Y1 · · · Yp−1

βq

X0 X1 · · · Xd−1

We further generalize basis encodings to arbitrary functions between finite sets by the use of bijective image
enumeration maps. Given an arbitrary set U , we say a map

I : ×
k∈[d]

[mk] → U

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026
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is an enumeration map of U by d variables Xk, taking values in mk. Given a function q : U in → Uout between
arbitrary sets and enumerating maps Iin and Iout for both sets, we define the basis encoding of q as

βq
[
Y[p], X[d]

]
=
∑
u∈U in

ϵI−1
out(q(u))

[
Y[p]
]
⊗ ϵI−1

in (u)

[
X[d]

]
,

where X[d], Y[p] are variables taking values in [
∣∣U in

∣∣] and [
∣∣Uout

∣∣]. In Example 4.4 we present index enumer-
ation maps for summations in m-adic integer representations. Based on these concepts, we define the most
general tensor network architecture to be applied in the rest of this work.

Definition 2.11 (Computation-Activation Network (CompActNets)). Let there be a function t : ×k∈[d][mk]

→ Rp with basis encoding βt
[
Y[p], X[d]

]
, where Y[p] is a tuple of variables to an enumeration map of the

image of t. Let there further be a hypergraph G = (V, E) with nodes V containing [p]. We define the by t
computable and by G activated family of distributions by

Λt,G =

{〈
βt
[
Y[p], X[d]

]
, ⟨ξ⟩[Y[p]]

〉
[X[d]|∅]

: ξ [YV ] ∈ T G
}

.

We refer to any member P
[
X[d]

]
∈ Λt,G as a Computation-Activation Network (or shorter as a CompActNet).

We call βt
[
Y[p], X[d]

]
(and any decomposition of it) the computation network and ξ [YV ] the activation network.

The elementary activated networks are representable by an elementary activation tensor with respect to the
graph

EL =
(
V, {{v} : v ∈ V}

)
and we denote such networks by Λt,EL. Any CompActNet is representable with respect to the maximal hyper-
graph

MAX =
(
V, {V}

)
.

We therefore have for any graph that Λt,G ⊂ Λt,MAX.

3 The probabilistic paradigm

In the following we investigate tensor network decomposition mechanisms of probability distributions. After in-
troducing probability distributions as tensors and independencies as decomposition schemes, we derive tensor
network decompositions based on conditional independencies (applying a classical theorem of Hammersley-
Clifford, see Clifford and Hammersley [1971]) to motivate graphical models. Furthermore, we present the Fisher-
Neyman Factorization Theorem as providing decompositions in the presence of sufficient statistics.

3.1 Basic concepts

As defined next, distributions P over a discrete state space can be represented by tensors, where each entry
corresponds to the probability of a corresponding state.

Definition 3.1 (Joint probability distribution). Let there be for each k ∈ [d] a categorical variable Xk taking
values in [mk]. A joint probability distribution of these categorical variables is a tensor

P
[
X[d]

]
∈
⊗
k∈[d]

Rmk
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which coordinates are non-negative, that is for any x[d] ∈×k∈[d][mk] it holds

P
[
X[d] = x[d]

]
≥ 0 ,

and which is normalized with no incoming variables, that is〈
P
[
X[d]

]〉
[∅]

= 1 .

Let Z be another variable taking values in a possibly infinite set val (Z). Then, a tensor P
[
X[d]

∣∣Z] is a family
of joint probability distributions if, for any z ∈ val (Z), the slice P

[
X[d]

∣∣Z = z
]

is a joint probability distribution.

Example 3.2 (Family of independent coin tosses). Consider tossing a coin with head probability z ∈ [0, 1] and
repeating the experiment independently d ∈ N times. We define a variable Z taking values in val(Z) = [0, 1]
and denote by X[d] d boolean variables. Then, the family of coin toss distributions is the tensor P

[
X[d]

∣∣Z] with
coordinates x[d] ∈×k∈[d][2] and z ∈ [0, 1] defined by

P
[
X[d] = x[d]

∣∣Z = z
]
=
∏
k∈[d]

zxk(1− z)1−xk = z
∑

k∈[d] xk(1− z)d−
∑

k∈[d] xk .

Note that by the binomial theorem we have
〈
P
[
X[d], Z = z

]〉
[∅]

= 1 for each slice with respect to z ∈ [0, 1].

Therefore, P
[
X[d], Z

]
is indeed a family of probability distributions. For d = 2 we have more explicitly for any

z ∈ [0, 1] that

P
[
X[2]

∣∣Z = z
]
=

[
(1− z)2 z · (1− z)
z · (1− z) z2

]
1

X0

0

0

X1

1

·

A basic inference operation on probability distributions is the computation of marginal and conditional distribu-
tions.

Definition 3.3. For any distribution P [X0, X1] the marginal distribution is the contraction (see Def. 2.6)

P [X0] := ⟨P [X0, X1]⟩[X0]
,

which is depicted by the diagram

P [X0]

X0

= P [X0, X1]

X0 X1

The conditional distribution of X0 on X1 is the normalization (see Def. 2.8)

P
[
X0

∣∣X1

]
:= ⟨P [X0, X1]⟩[X0|X1]

.

For x1 ∈ [m1] with ⟨P [X0, X1 = x1]⟩[∅] we depict the normalization by

P
[
X0

∣∣X1 = x1

]
X0

:=

P [X0, X1]

X0 X1

ϵx1

P [X0, X1]

X0 X1

ϵx1

=: P
[
X0|X1

∣∣]
X0 X1

ϵx1
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3.2 Factorization into graphical models

The number of coordinates in a tensor representation of probability distributions is the product∏
k∈[d]

mk .

It therefore scales exponentially in the number of coordinates. To find efficient representation schemes of proba-
bility distributions by tensor networks, we need to exploit additional properties of the distribution. Independence
leads to severe sparsifications of conditional probabilities and is hence the key assumption to gain sparse de-
compositions of probability distributions.

Definition 3.4 (Independence). We say that X0 is independent of X1 with respect to a distribution P [X0, X1]
if the distribution is the tensor product of the marginal distributions, that is

P [X0, X1] = P [X0]⊗ P [X1] .

In this case we write (X0 ⊥ X1).

Thus, independence appears directly as a tensor–product decomposition of probability distribution. Using tensor
network diagrams, we depict this property by

P [X0, X1]

X0 X1

= P [X0, X1]

X0 X1

⊗ P [X0, X1]

X0 X1

= P [X0]

X0

⊗ P [X1]

X1

Note that the assumption of independence reduces the degrees of freedom from (m0 ·m1)− 1 to (m0− 1)+
(m1−1). The decomposition into marginal distributions furthermore exploits this reduced freedom and provides
an efficient storage. Having a joint distribution of multiple variables whose disjoint subsets are independent, we
can iteratively apply the decomposition scheme. As a result, we can reduce the scaling of the degrees of freedom
from exponential to linear by the assumption of independence.

As we observed, independence is a strong assumption, which is often too restrictive. Less demanding is con-
ditional independence, which still implies efficient tensor network decomposition schemes. We introduce condi-
tional independence as independence of variables with respect to conditional distributions.

Definition 3.5 (Conditional independence). Assume a joint distribution of variables X0, X1 and X2. We say
that X0 is independent of X1 conditioned on X2 if

P
[
X0, X1

∣∣X2

]
=
〈
P
[
X0

∣∣X2

]
,P
[
X1

∣∣X2

]〉
[X0,X1,X2]

.

In this case we write (X0 ⊥ X1) | X2.

Conditional independence stated in Def. 3.5 has a close connection with independence stated in Def. 3.4. To be
more precise, X0 is independent of X1 conditioned on X2 if and only if X0 is independent of X1 with respect
to any slice P

[
X0, X1

∣∣X2 = x2
]

of the conditional distribution P
[
X0, X1

∣∣X2

]
.

We can further exploit conditional independence to find tensor network decompositions of probabilities as we
show in the next corollary.

Corollary 3.6. Let P [X0, X1, X2] be a joint distribution. If and only if X0 is independent of X1 conditioned on
X2, the distribution satisfies

P [X0, X1, X2] =
〈
P
[
X0

∣∣X2

]
,P
[
X1

∣∣X2

]
,P [X2]

〉
[X0,X1,X2]

.

In a diagrammatic notation, this is depicted by
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P [X0, X1, X2]

X0 X1 X2

= P
[
X0

∣∣X2

]
X0 X2

P [X2]

X2

X2

P
[
X1

∣∣X2

]
X2 X1

This conditional independence pattern is the basic local building block that is generalized in Markov networks,
which we define in the following.

Definition 3.7 (Markov network). Let τG be a tensor network of non-negative tensors decorating a hypergraph
G. Then the Markov network PG to τG is the probability distribution of XV defined by the tensor

PG [XV ] =
⟨{τ e : e ∈ E}⟩[XV ]

⟨{τ e : e ∈ E}⟩[∅]

=
〈
τG
〉
[XV |∅]

.

We call the denominator

Z
(
τG
)
= ⟨{τ e : e ∈ E}⟩[∅]

the partition function of the tensor network τG .

We define graphical models based on hypergraphs to establish a direct connection with tensor networks deco-
rating the hypergraph. In a more canonical way, Markov networks are instead defined by graphs, where instead
of the edges the cliques are decorated by factor tensors (see for example Koller and Friedman [2009]). Following
this alternative description, the graphs of the tensor networks are dual to the graphs of the graphical models
Robeva and Seigal [2019], Glasser et al. [2019].

We can interpret the factors τ
[
X[d]

]
as activation cores placed on the hyperedges e of the graph. The global

activation tensor (and hence the joint distribution) is obtained by contracting this activation network and normal-
izing by its partition function.

While so far we have defined Markov networks as decomposed probability distributions, we now want to derive
assumptions on a distribution, assuring that such decompositions exist. The sets of conditional independencies
encoded by a hypergraph are captured by its separation properties, as we define next.

Definition 3.8 (Separation of hypergraph). A path in a hypergraph is a sequence of nodes vk for k ∈ [d], such
that for any k ∈ [d− 1] we find a hyperedge e ∈ E such that (vk, vk+1) ⊂ e. Given disjoint subsets A, B, C
of nodes in a hypergraph G, we say that C separates A and B with respect to G when any path starting at a
node in A and ending in a node in B contains a node in C .

To characterize Markov networks in terms of conditional independencies, we need to further define the property
of clique-capturing. This property establishes a correspondence of hyperedges with maximal cliques in the more
canonical graph-based definition of Markov networks Koller and Friedman [2009].

Definition 3.9 (Clique-capturing hypergraph). We call a hypergraph G clique-capturing, if the following holds:
Each subset U ⊂ V , which fulfills that for any a, b ∈ U with a ̸= b, there is a hyperedge e ∈ E with a, b ∈ e,
is contained in a hyperedge.

We are now ready to state the Hammersley-Clifford theorem characterizing the sets of Markov networks on a
hypergraph by conditional independence.

Theorem 3.10 (Hammersley-Clifford factorization theorem). Let there be a positive probability distribution
P [XV ] and a clique-capturing hypergraph G = (V, E). Then the following are equivalent:
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a)

X0

e0

X1

e1

. . . Xd−1

ed−1 b)

P
Xd−1· · ·X1X0

= P0

X0

P1

X1

. . . Pd−1

Xd−1

Figure 5: Decomposition of a probability distribution with independent variables (see Example 3.11). The inde-
pendencies are captured by the elementary hypergraph a), whose edges contain single nodes. The correspond-
ing tensor P

[
X[d]

]
is then represented by a Markov network on the elementary hypergraph, where each factor

is the marginal distribution of the corresponding variable as visualized in b).

i The distribution P [XV ] is representable by a Markov network on G, that is for each edge e ∈ E there is
a tensor τ e [Xe] such that

P [XV ] = ⟨{τ e [Xe] : e ∈ E}⟩[XV |∅] .

ii For any subsets A,B,C ⊂ V such that C separates A from B, we have

(XA ⊥ XB) | XC .

Proof. This is shown in Appendix Sect. A.

By Thm. 3.10 the conditional independence structure of P [XV ] determines a global tensor network decom-
position of P [XV ]. Note that the assumption of a positive distribution is required (i.e. for all x[d] we have
P
[
X[d] = x[d]

]
> 0). The assumption of positivity is however not required in our characterization of indepen-

dencies and conditional independencies by the existence of corresponding tensor decompositions (see Def. 3.4
and Def. 3.5).

Example 3.11 (Independent boolean variables). Let there be d boolean variables X[d], which are i.i.d. drawn
from a positive distribution P [X]. From the pairwise independencies of Xk it follows with the Hammersley-
Clifford Factorization Thm. 3.10 that the distribution is representable by an elementary tensor network, that
is

P
[
X[d]

]
=
⊗
k∈[d]

Pk [Xk] .

The corresponding hypergraph is the elementary graph, with respect to which any two disjoint subsets of nodes
are separated (see Figure 5).

Example 3.12. We consider a classical example of a graphical model (see [Koller and Friedman, 2009, Ex-
ample 4.3]): A student of intelligence (XI ) and SAT score (XS ) is assigned a test of difficulty (XD), for which
he gets a grade (XG) depending on which he gets a recommendation letter (XL) by its teacher. We make the
following modelling assumptions:

■ "The SAT score depends only on the students intelligence:
(
XS ⊥ X{D,G,L}

) ∣∣ XI .

■ "The recommendation letter depends only on the grade:
(
XL ⊥ X{D,I,S}

) ∣∣ XG.

The associated hypergraph capturing these conditional independencies is drawn in Figure 6 a).
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a)

e0

e1

e2

XD XI

XG XSXL
b)

XD XI

XG XSXL

Figure 6: Hypergraph a) capturing the conditional independencies of the student example. The cliques of the
node adjacency graph are highlighted in b) and coincide with hyperedges of the hypergraph. The hypergraph is
therefore clique-capturing (see Def. 3.9).

3.3 Factorization based on sufficient statistics

Let us now introduce sufficient statistics towards studying further tensor network decompositions of probability
distributions.

Definition 3.13. Let P [X,Z] be a joint distribution of the m-dimensional variable X and the n-dimensional
variable Z and let

t : [m] → [n]

be a statistic. We are interested in the distribution P [X,Z, Yt] =
〈
P [X,Z] , βt [Yt, X]

〉
[X,Z,Yt]

. We say that

t is a sufficient statistic for Z if X is independent of Z conditioned on Yt.

Example 3.14 (Sufficient statistics for the probability). Let Z be the value P
[
X[d] = x[d]

]
when drawing X[d]

from P
[
X[d]

]
. Then t is a sufficient statistic for Z = P

[
X[d]

]
if for all y in the image of t we have

P
[
X[d] = x[d]

∣∣Yt = y
]
=


1

|{x[d] : t(x[d])=y}| if t(x[d]) = y

0 else
.

When knowing the value t
(
x[d]
)

of the sufficient statistic at a given index x[d], we then also know the probability
P
[
X[d] = x[d]

]
. The function t is thus a sufficient statistic for Z = P

[
X[d]

]
if and only if there is a tensor

ξ
[
Y[p]
]

with

P
[
X[d]

]
=
〈
βt
[
Y[p], X[d]

]
, ξ
[
Y[p]
]〉
[X[d]]

.

Example 3.14 hints at a connection between sufficient statistics and decompositions into CompActNets. More
generally, such decompositions are provided by the Fisher-Neyman Factorization Theorem.

Theorem 3.15 (Fisher-Neyman Factorization Theorem). Let P be a joint distribution of variables X,Z with
values val (X) , val (Z). Let there further be a finite set val (Yt), which is enumerated with a variable Yt.
Then t : val (X) → val (Yt) is a sufficient statistic for Z if and only if there are tensors ν [X] and ξ [Yt, Z]
such that

P [X,Z] =
〈
ξ [Yt, Z] , βt [Yt, X] , ν [X]

〉
[X,Z]

.

We depict this equation diagrammatically by

P

X Z

=

ν

X

βt
Yt

ξ

Z
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Proof. Shown in the appendix, see Thm. A.3.

Note that the definition of sufficient statistic does not make use of the marginal distribution P [Z]. We therefore
can define sufficient statistics also for families of distributions P

[
X
∣∣Z] with respect to arbitrary non-degenerate

marginal distributions P [Z]. We then use Thm. 3.15 to embed such families in CompActNets.

Corollary 3.16. Let P
[
X[d]

∣∣Z] be an arbitrary family of distributions of X[d] and t a sufficient statistic for Z .
Then, there is a tensor ν

[
X[d]

]
and an activation tensor ξ

[
Y[p], Z

]
such that for any z ∈ val (Z) we have

P
[
X[d]

∣∣Z = z
]
∈ Λt,MAX,ξ .

The Factorization Theorem of Fisher-Neyman provides the fundamental motivation for the CompActNets ar-
chitecture. Any decomposition of βt

[
Y[p], X[d]

]
is called a computation network and common to all members

of a family with sufficient statistic t. The activation tensor ξ
[
Y[p], Z = z

]
, whose decomposition is called the

activation network, is specific to each member of the family. We now show in two examples how families of
distributions can be represented in CompActNets by sufficient statistics.

Example 3.17 (Order statistic for boolean variables). Let there be d boolean variables X[d] and a family
P
[
X[d]

∣∣Z] of distributions. The order statistic assigns the ordered tuple to each tuple x[d]. The ordered tu-
ple effectively counts the number of 1 coordinates in the tuple x[d], that is the statistic

t+ : ×
k∈[d]

[mk] → [p] , t+(x[d]) = |{k : xk = 1}| .

When the order statistic is sufficient for Z , the detailed order of the outcomes is uninformative about the member
z from which the random variables have been drawn. By the Fisher-Neyman Factorization Thm. 3.15, t+ is a
sufficient statistic if and only if there are tensors ν

[
X[d]

]
and ξ [Y+,Θ] such that for each θ ∈ Θ

P
[
X[d]

∣∣Z = z
]
=
〈
ξ [Y+, Z = z] , βt+

[
Y+, X[d]

]
, ν
[
X[d]

]〉
[X[d]]

.

For each member z of the family, the probability of each sequence x[d] is thus the product of a base measure
factor ν

[
X[d] = x[d]

]
and a factor ξ

[
Y+ = +(x[d]), Z = z

]
depending only on the count +(x[d]) of 1 coor-

dinates in x[d]. We later continue this example in Example 3.20, where further interpretations to the case of i.i.d.
variables are provided.

Example 3.18 (Graphical models as a special case of CompActNets). For graphical models we take the identity
statistic

δ
(
x[d]
)
= x[d]

so that the image coordinates coincide with the variables and there are no non-trivial computation cores. The
associated basis encoding is just the identity tensor

βδ
[
Y[d], X[d]

]
= δ

[
X[d], Y[d]

]
.

Therefore, for any activation tensor ξ
[
Y[p]
]

we obtain

P
[
X[d]

]
=
〈
ξ
[
Y[p]
]
, βδ

[
Y[d], X[d]

]〉
[X[d]|∅]

=
〈
ξ
[
X[d]

]〉
[X[d]|∅]

.

Put differently, in the graphical–model case the activation tensor coincides with the joint distribution tensor. In
this setting, structural properties of the distribution such as (conditional) independences can be read off as
algebraic factorization patterns of the activation (and hence joint) tensor.
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3.4 Exponential families

We now show that exponential families are specific instances of CompActNets, whose activation tensors have
elementary decompositions. The importance of exponential families in statistics stems from their universal prop-
erties. A classical theorem by Pitman, Koopman and Darmois (see Pitman [1936]) states, that whenever a family
exhibits constant support and a finite sufficient statistic for arbitrary large data sets, then it is in an exponential
family. For a discussion of further universal properties of exponential families such as the existence of priors and
entropy maximizers, see Murphy [2022].

Definition 3.19 (Exponential family). Given a base measure ν and a statistic

t : ×
k∈[d]

[mk] → Rp

we enumerate for each coordinate ℓ ∈ [p] the image im (tℓ) by an interpretation map

Iℓ : [|im (tℓ)|] → im (tℓ) .

For any canonical parameter vector θ [L] ∈ Rp, we build the activation cores αℓ,θ [Yℓ] for each coordinate
yℓ ∈ [|im (tℓ)|] by

αℓ,θ [Yℓ = yℓ] = exp [θ [L = ℓ] · Iℓ(yℓ)]

and define the distribution

P(t,θ,ν)
[
X[d]

]
=
〈
{ν
[
X[d]

]
} ∪ {βtℓ

[
Yℓ, X[d]

]
: ℓ ∈ [p]} ∪ {αℓ,θ [Yℓ] : ℓ ∈ [p]}

〉
[X[d]|∅]

.

We then call the tensor Pt,ν
[
X[d]|Θ

]
with val (Θ) = Rp and slices for θ ∈ Rp given by

Pt,ν
[
X[d]|Θ = θ

]
= P(t,θ,ν)

[
X[d]

]
the exponential family to the statistic t and the base measure ν.

To see that Def. 3.19 is consistent with the typical definition of exponential families (see Brown [1987]), note that
for each θ ∈ Rp the normalization amounts to the division by

Z (θ) =
〈
{ν
[
X[d]

]
} ∪ {βtℓ

[
Yℓ, X[d]

]
: ℓ ∈ [p]} ∪ {αℓ,θ [Yℓ] : ℓ ∈ [p]}

〉
[∅]

,

a quantity which is referred to as the partition function. Then, we have for each coordinate x[d] ∈×k∈[d][mk]
that

P(t,θ,ν)
[
X[d] = x[d]

]
=

1

Z (θ)

〈
{ν
[
X[d]

]
} ∪ {βtℓ

[
Yℓ, X[d]

]
: ℓ ∈ [p]} ∪ {αℓ,θ [Yℓ] : ℓ ∈ [p]}

〉
[X[d]=x[d]]

=
1

Z (θ)
· ν
[
X[d] = x[d]

]
· exp

∑
ℓ∈[p]

θ [L = ℓ] · tℓ
[
X[d] = x[d]

] .

Note that by construction each member of an exponential family is an element in a CompActNet with elementary
activation cores, that is

Pt,ν
[
X[d]|Θ = θ

]
∈ Λt,EL,ν .
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P(t,θ,ν)

X0 X1 · · · Xd−1

= 1
Z(θ) ·

α0,θ αp−1,θ

Y0 · · · Yp−1

βt

X0 X1 · · · Xd−1

X0 X1

· · ·

· · ·
Xd−1

...
ν

.

Figure 7: Tensor Network diagram of a member of an exponential family Pt,ν
[
X[d]|Θ = θ

]
before normaliza-

tion as an CompActNet with elementary activation, that is an element in Λt,EL,ν .

Example 3.20 (Exponential family of coin tosses). Recall the family of distributions of boolean X[d] from Exam-
ple 3.17, which has the order statistic t+ as a sufficient statistic. We now in addition assume that the variables
X[d] are i.i.d. with respect to any member of the family (see Example 3.17). For the variables to be i.i.d., we
need ν

[
X[d]

]
= I

[
X[d]

]
and can thus choose a representation such that for z ∈ val (Z)

P
[
X[d]

∣∣Z = z
]
=
〈
βt+

[
Y+, X[d]

]
, ξ [Y+, Z = z]

〉
[X[d]]

where for each k ∈ [d+ 1]

ξ [Y+ = k, Z = z] = (1− z)d−k · zk .

The marginal distribution P
[
Y+
∣∣Z = z

]
is then the binominal distribution B(d, z). When excluding the case of

z ∈ {0, 1}, the family is a subset of the exponential family with the head count statistic, where each member is
reparametrized by

θ := ln

[
z

1− z

]
.

To see that this is true, we observe that the coordinate y+ ∈ [d+ 1] of the activation tensor of P(t+,θ,I) is

αθ [Y+ = y+] = exp [y+ · θ] = zy+

(1− z)y+
.

Now, with Z (θ) = 1
(1−z)d

we have for any x[d] with
∑

k∈[d] xk = y+ that

1

Z (θ)
·
〈
βt+

[
Y+, X[d] = x[d]

]
, αθ [Y+]

〉
[∅]

= (1− z)d · zy+

(1− z)y+
= zy+ · (1− z)d−y+ .

Comparing with the activation tensor ξ [Y+] above, we note that Z (θ) is the partition function of the exponen-
tial family and P(t+,θ,I)[X[d]] coincides with the member P

[
X[d]

∣∣Z = z
]
. We further observe that since the

statistic t+ decomposes as a sum of terms depending on single variables only, we have a decomposition of the
corresponding CompActNet by[

1 exp [θ] · · · exp [d · θ]
]

Y+

βt+

Xd−1· · ·X1X0

=
[
1 exp [θ]

]
X0

[
1 exp [θ]

]
X1

· · ·
[
1 exp [θ]

]
Xd−1

This reproduces the fact that distributions of independent variables are representable by elementary tensors
(see Example 3.11).
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3.5 Efficient contractions by message passing

Contractions of tensor networks are generally hard to solve. Here, we investigate message passing algorithms,
which decompose global contractions into a sequence of local contractions, whose results are passed as mes-
sages through the tensor network. The resulting algorithm is called the Tree Belief Propagation (see Algo-
rithm 1). While various scheduling strategies for the message passing exist, we focus on the case of tree hyper-
graphs, for which exactness and efficiency can be shown. We denote E→ to be all tuples (e0, e1) of hyperedges
e0, e1 ∈ E such that e0 ̸= e1 and e0 ∩ e1 ̸= ∅. For our purposes we call a hypergraph G a tree when the
graph with nodes by the hyperedges E and edges by E→ is a tree (for an example see Figure 8).

Algorithm 1 Tree Belief Propagation

Require: Tensor network τG on a hypergraph G
Ensure: Messages {χe0→e1 [Xe0∩e1 ] : (e0, e1) ∈ E→}

Initialize a message scheduler S = {(e0, e1) ∈ E→ : e0 a leaf in the tree (E , E→)}]
while S not empty do

Pop a (e0, e1) pair from S
Compute the message

χe0→e1 [Xe0∩e1 ] = ⟨{τ e0 [Xe0 ]} ∪ {χe2→e0 [Xe2∩e0 ] : (e2, e0) ∈ E→, e2 ̸= e1}⟩[Xe0∩e1 ]

Update S by all messages (e1, e3) which have not yet been sent, if all messages (e2, e1) with e2 ̸= e3
have been sent.
end while
return Messages {χe0→e1 [Xe0∩e1 ] : (e0, e1) ∈ E→}

For an implementation of Algorithm 1 in the python package tnreason, see Sect. B.1.

The following theorem states that the contraction of a whole tensor network can be replaced by local contractions
with messages. Since contracting the whole network can be infeasible, this shows that calculating the messages
with the Algorithm 1 can be advantageous.

Theorem 3.21. Let τG be a tensor network on a tree hypergraph G (i.e. the graph (E , E→) is a tree). The
messages in the tree belief propagation Algorithm 1 are contracted to local marginals, meaning that for each
e0 ∈ E we have 〈

τG
〉
[Xe0 ]

= ⟨{τ e0 [Xe0 ]} ∪ {χe2→e0 [Xe2∩e0 ] : (e2, e0) ∈ E→}⟩[Xe0 ]
.

We show Thm. 3.21 based on the following lemma. We denote for each pair (e0, e1) the subset E→(e0,e1) ⊂ E
as the subset of edges e ∈ E , for which each path in (E , E→) to e1 passes through e0. The tree hypergraph
property makes this definition equivalent to an existing path through e0, which is used in the proof of the following
lemma. Note that by construction e0 ∈ E→(e0,e1).

Lemma 3.22. For any tensor network on a tree hypergraph, Algorithm 1 terminates in the tree-based imple-
mentation and returns final messages

χe0→e1 [Xe0∩e1 ] =
〈
{τ e [Xe] : e ∈ E→(e0,e1)}

〉
[Xe0∩e1 ]

.

Proof. We show this property by induction over the size of the edge sets E→(e0,e1) for pairs (e0, e1) ∈ E→,
such that

∣∣E→(e0,e1)
∣∣ ≤ n. Note that since always e0 ∈ E→(e0,e1) we have that n ≥ 1.

n = 1: In this case we have E→(e0,e1) = {e0} and e0 is a leaf of the tree-hypergraph G. The claimed message
property holds thus by definition.
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n → n+1: Assume that the message obeys the claimed property for edge sets with cardinality up to n. If there
is no edge set with cardinality n+1, the property holds also for those with cardinality up to n+1. If there is an
edge set E→(e0,e1) with size n+ 1, we have

E→(e0,e1) = {e0} ∪

 ⋃
e2∈E→

E→(e2,e0)

 .

The message χe0→e1 is sent once all messages χe2→e0 to (e2, e0) ∈ E→(e0,e1) arrived. By definition we have
that

χe0→e1 [Xe0∩e1 ] = ⟨{τ e0 [Xe0 ]} ∪ {χe2→e0 [Xe2∩e0 ] : (e2, e0) ∈ E→, e2 ̸= e1}⟩[Xe0∩e1 ]
.

Now we use the induction assumption on E→(e2,e0) (since its cardinality is at most n) and get

χe0→e1 [Xe0∩e1 ] =

〈
{τ e0 [Xe0 ]} ∪

 ⋃
(e2,e0)∈E→, e2 ̸=e1

〈
{τ e3 [Xe3 ] : e3 ∈ E→(e2,e0)}

〉
[Xe2∩e0 ]

〉
[Xe0∩e1 ]

=

〈
{τ e0 [Xe0 ]} ∪

 ⋃
(e2,e0)∈E→, e2 ̸=e1

{τ e3 [Xe3 ] : e3 ∈ E→(e2,e0)}

〉
[Xe0∩e1 ]

=
〈
{τ e [Xe] : e ∈ E→(e0,e1)}

〉
[Xe0∩e1 ]

.

Here, we used the commutation of contraction property in the second equation, which is justified by the assumed
tree property of the hypergraph. Thus, the message property holds also for any edge sets of size n+ 1.

By induction, the claimed message property therefore holds for all final messages.

Proof of Thm. 3.21. Since the hypergraph is by assumption a tree, we can partition E into disjoint subsets {e0}
and E→(e2,e0) for (e2, e0) ∈ E→. We then have

〈
τG
〉
[Xe0 ]

=

〈
{τ e0 [Xe0 ]} ∪

{〈
τ e [Xe] : e ∈ E→(e2,e0)

〉
[Xe∩e2 ]

: (e2, e0) ∈ E→
}〉

[Xe0 ]

= ⟨{τ e0 [Xe0 ]} ∪ {χe2→e0 [Xe2∩e0 ] : (e2, e0) ∈ E→}⟩[Xe0 ]
,

where we used Lem. 3.22 in the second equation.

We illustrate the usage of Algorithm 1 on the Markov network of Example 3.12.

Example 3.23 (Continuation of Example 3.12). We exemplify the Belief Propagation Algorithm 1 on the Markov
network in the student example (see Example 3.12). The directions of the messages result from the hyper-
edge overlaps (see Figure 8 a) and the resulting directions E→ are sketched in Figure 8 b). The messages to
{(e2, e0), (e0, e2)} are vectors of XG and the messages {(e0, e1), (e1, e0)} are vectors of XI .

Since the hyperedges are minimally connected, we can implement Algorithm 1 by a tree scheduler S:

■ The scheduler is initialized with messages from leafs, in our example {(e2, e0), (e1, e0)}.

■ Each message is placed exactly once on S, when at a hyperedge all but the reverse message have
been received. In our example, after execution of (e2, e0) the message (e0, e1) is placed on S and after
execution of (e1, e0) the message (e0, e2).
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a)

XL XG XD XI XSe2 e1

e0

b)

e2 e0 e1

(e2, e0)

(e2, e0)

(e0, e1)

(e1, e0)

Figure 8: a) Sketch of the overlap of the edges, resulting in the message directions b) E→ =
{(e2, e0), (e0, e2), (e0, e1), (e1, e0)}.

In this implementation, Algorithm 1 terminates after |E→| = 4 iterations of the while loop. The exact marginals
of the edge variables are then

P [XL, XG] = ⟨τ e2 [XL, XG] , χe0→e2 [XG]⟩[XL,XG|∅] ,

P [XG, XD, XI ] = ⟨τ e0 [XG, XD, XI ] , χe2→e0 [XG] , χe1→e0 [XI ]⟩[XG,XD,XI |∅] ,

P [XI , XS ] = ⟨τ e1 [XI , XS ] , χe0→e1 [XI ]⟩[XI ,XS |∅] .

4 The neural paradigm

The neural paradigm of artificial intelligence exploits the decomposition of functions into neurons, which are
aligned in a directed acyclic graph. We show in this section how functions decomposable into neurons can be
represented by tensor networks. To this end, we formalize discrete neural models by decomposition graphs and
formally prove the corresponding decomposition of their basis encodings.

4.1 Function decomposition

As a main principle of tensor decompositions, we now show that basis encodings of composition functions are
contractions of the basis encodings of their components.

Lemma 4.1. Let f
[
X[d]

]
be a composition of a p-ary connective function h and functions fℓ

[
X[d]

]
, where

ℓ ∈ [p], that is for x[d] ∈×k∈[d][2] we have

f(x[d]) = h
(
f0
[
x[d]
]
, . . . , fp−1

[
x[d]
])

.

Then, we have (see Figure 9)

βf
[
Yf , X[d]

]
=
〈
{βh

[
Yf , Y[p]

]
} ∪ {βfℓ

[
Yℓ, X[d]

]
: ℓ ∈ [p]}

〉
[Yf ,X[d]]

.

Proof. For any x[d] ∈×k∈[d][mk] we have〈
{βh

[
Yf , Y[p]

]
} ∪ {βfℓ

[
Yℓ, X[d]

]
: ℓ ∈ [p]}

〉
[Yf ,X[d]=x[d]]

=
〈
{βh

[
Yf , Y[p]

]
} ∪ {βfℓ

[
Yℓ, X[d] = x[d]

]
: ℓ ∈ [p]}

〉
[Yf ]

=
〈
{βh

[
Yf , Y[p]

]
} ∪ {ϵfℓ(x[d]) [Yℓ] : ℓ ∈ [p]}

〉
[Yf ]

= ϵf(x[d]) [Yf ]

= βf
[
Yf , X[d] = x[d]

]
.
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Yf

βf

X0 X1 · · · Xd−1

=

Yf

βh

Y0 · · ·

βf0

X0 X1 · · · Xd−1

Yp−1

βfp−1

X0 X1 · · · Xd−1

X0 X1 · · · Xd−1

Figure 9: Tensor network decomposition of the basis encoding of a function f , which is the composition of the
functions f0, . . . , fp−1 with a function h.

Thus, the tensors on both sides of the equation coincide in all slices to X[d] and are thus equal.

We now define a more generic decomposition of discrete functions.

Definition 4.2. A decomposition hypergraph is a directed acyclic hypergraph G = (V, E) such that the following
holds.

■ Each node v ∈ V is decorated by a set Uv of finite cardinality mv , a variable Xv , and an index interpre-
tation function

Iv : [mv] → Uv .

■ Each directed hyperedge (ein, eout) has at least one outgoing node, that is eout ̸= ∅, and is decorated
by an activation function

ge : ×
v∈ein

Uv → ×
v∈eout

Uv .

■ Each node v ∈ V appears at most once as an outgoing node.

■ The nodes not appearing as an outgoing node are enumerated by vin[d]. We abbreviate the corresponding
variables by Xvin

[d]
= X[d].

■ The nodes not appearing as an incoming node are enumerated by vout[p] . We abbreviate the variables by
Xvout

[ℓ]
= Y[p].

We assign for each k ∈ [d] restriction functions

qvink
: ×̃
k∈[d]

Uvin
k̃ → Uvink , x[d]|k = xk

to the nodes vin[d] and recursively assign to each further node v a node function

qv : ×
k∈[d]

Uvink → Uv , qv(x[d]) = gev

(
×
ṽ∈ein

qṽ(x[d])

)
|v ,
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where ev is to each v ∈ ein the unique hyperedge with outgoing nodes {v}. We then call the function

qG : ×
k∈[d]

Uvink → ×
ℓ∈[p]

Uvoutℓ , qG = ×
ℓ∈[p]

qvoutℓ

the composition function to the decomposition hypergraph G.

The neural paradigm in AI can be modeled by the existence of decomposition hypergraphs for functions on large
sets. We now show how decomposition hypergraphs enable the sparse representation of composition functions
by tensor networks.

Theorem 4.3. For any decomposition hypergraph G with composition formula qG , we have

βqG
[
Y[p], X[d]

]
=
〈{

βge [Xeout , Xein ] : e = (ein, eout) ∈ E
}〉

[Y[p],X[d]]
.

Proof. We show by induction over the number of edges in G that, for any x[d] ∈×k∈[d][mk] and v ∈ V , we
have 〈{

βge [Xeout , Xein ] : e = (ein, eout) ∈ E
}〉[

XV\vin
[d]

,X[d]=x[d]

] =
⊗

v∈V\vin
[d]

ϵqv(x[d]) [Xv] . (4.1)

|E| = 1: If there is a single edge e = (ein, eout) in E , we have X[d] = Xein and V\vin[d] = eout. In this case
(4.1) holds since

βge [Xeout , Xein = xein ] =
⊗

v∈V\vin
[d]

ϵqv(x[d]) [Xv] .

(|E| = n) ⇒ (|E| = n + 1): Let us now assume that (4.1) holds for all graphs with |E| ≤ n and let G be
a graph with |E| = n + 1. We find an edge ẽ = (ein, eout) such that all nodes in ein are only appearing as
outgoing nodes in other edges.〈{

βge [Xe] : e ∈ E
}〉[

XV\vin
[d]

,X[d]=x[d]

]

=

〈
βẽ [Xeout , Xein ] ,

〈{
βge [Xe] : e ∈ E\{ẽ}

}〉[
XV\{vin

[d]
∪eout},X[d]=x[d]

]
〉

[
XV\vin

[d]
,X[d]=x[d]

]

=

〈
βẽ [Xeout , Xein ] ,

⊗
v∈V\{vin

[d]
∪eout}

ϵqv(x[d]) [Xv]

〉
[
XV\vin

[d]
,X[d]=x[d]

]
=

⊗
v∈V\vin

[d]

ϵqv(x[d]) [Xv] .

Here, in the second equation we used the induction hypothesis on the subgraph (V, E\{ẽ}) with |E\{ẽ}| = n
and a generic contraction property of basis encodings in the third equation.

Thus, (4.1) holds always and we have for any x[d] ∈×k∈[d][mk] that

〈{
βge [Xeout , Xein ] : e = (ein, eout) ∈ E

}〉
[Y[p],X[d]=x[d]]

=

〈 ⊗
v∈V\vin

[d]

ϵqv(x[d]) [Xv]

〉
[Y[p],X[d]]

=
⊗

v∈vout
[p]

ϵqv(x[d]) [Xv]

= ϵqG
[
Y[p]
]

= βqG
[
Y[p], X[d] = x[d]

]
.
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Keeping X[d] open, the claim is established.

When neurons have tunable parameters, we can discretize those by sets Uk and understand them as additional
input variables.

Example 4.4 (Sum of integers in m-adic representation). We develop a tensor network representation of integer
summations on the set [md] = {0, . . . ,md − 1}, where m, d ∈ N,

+ : [md]× [md] → [md+1] , +(i, ĩ) = i+ ĩ ,

which have a m-adic representation of length d. We define an index interpretation map

I : ×
k∈[d]

[m] → [md] , I(x[d]) =
∑
k∈[d]

xk ·mk ,

which enables the parameterization of [md] as the states of d categorical variables X[d] of dimension m. We

analogously represent a second set [md] by variables X̃[d] and the set [md+1] of possible sums by Y[d+1]. The
basis encoding of the sum is then

β+
[
Y[d+1], X[d], Y[d]

]
=

∑
x[d],x̃[d]

ϵI−1(I(x[d])+I(x̃[d]))

[
Y[d+1]

]
⊗ ϵx[d]

[
X[d]

]
⊗ ϵx̃[d]

[
X̃[d]

]
.

Note that the tensor space of β+ is of dimension m3·d+1 increasing exponentially in d. Feasible representation
of this tensor for large d therefore requires tensor network decompositions, which we now provide based on a
decomposition hypergraph. The targeted function to be decomposed is the representation of the integer sum by

+m :

(
×
k∈[d]

[m]

)
×

(
×
k∈[d]

[m]

)
→ ×

k∈[d+1]

[m] , +m(x[d], x̃[d]) = I−1(I(x[d]) + I(x̃[d])) .

We build a decomposition hypergraph G = (V, E) (see Def. 4.2) consisting of 4 · d nodes (see Figure 10a)
. The nodes carry the (3 · d + 1) variables X[d], Y[d], Y[d+1] of dimension m constructed above and d − 1
auxiliary variables Z[d−1] of dimension 2 representing carry bits. The directed hyperedges of G are

E =
{
({X0, X̃0}, {Y0, Z0})

}
∪
{
({Zk−1, Xk, X̃k}, {Yk, Zk}) : k ∈ {1, . . . , d− 2}

}
∪
{
({Zd−2, Xd−1, X̃d−1}, {Yd−1, Yd})

}
and are decorated by local summation functions

+̃ : [2]× [m]× [m] → [m]× [2] , +̃(z, x, x̃) =

(
(z + x+ x̃) mod m,

⌊
z + x+ x̃

m

⌋)
.

Since to the first hyperedge we do not have a carry bit, the decorating function is the restriction of the first
argument to 0.

It is known that the composition of the local summations +̃ is the global summation +m of integers in m-adic
representation. Thus, the composition function qG is +m. By Thm. 4.3 we have a decomposition of the basis
encoding to qG (see Figure 10b) as

β+m
[
Y[d+1], X[d], X̃[d]

]
=
〈
{β+̃,0

[
Y0, Z0, X0, X̃0

]
}∪

{β+̃,k
[
Yk, Zk, Xk, X̃k, Zk−1

]
: k ∈ {1, . . . , d− 2}}∪

{β+̃,d−2
[
Yd−1, Yd, Xd−1, X̃d−1, Zd−2

]
}
〉[

Y[d+1],X[d],X̃[d]

] .
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a)
vout

vin

Y0

X0 X̃0

Z0e0

Y1

X1 X̃1

Z1

e1 · · · Zd−2

Yd−1

Xd−1 X̃d−1

Yd

ed−1

b)

Y0 Yd−1
· · ·

βqG

X0 X̃0
Xd−1 X̃d−1· · ·

= β+̃,0

Y0

X0 X̃0

Z0

β+̃,1

Y1

X1 X̃1

Z1 · · ·
Zd−2

β+̃,d−1

Yd−1

Xd−1 X̃d−1

Yd

Figure 10: Example of a decomposition hypergraph to the sum of integers (see Example 4.4). a) Hypergraph of
directed edges ek for k ∈ [d], each decorated by an integer summation + preparing an index Yk of the resulting
sum. b) Corresponding tensor network decomposition of the basis encoded composition function, which is the
sum of integers in m-adic representation.

4.2 Function evaluation by message passing

We are now concerned with an efficient inference algorithm based on tensor network contractions. To evaluate a
function given as a tensor network decomposition of its basis encoding, the whole network has to be contracted.
As this can be infeasible for large networks, a message passing algorithm based on local contractions can be
applied, compare Algorithm 1 for a message passing algorithm for tensor networks on a on tree hypergraph.

Algorithm 2 Directed Belief Propagation

Require: Tensor network τG on a directed hypergraph G
Ensure: Messages {χe0→e1 [Xe0∩e1 ] : (e0, e1) ∈ E→}

Prepare directed message directions

E→ =
{(

(ein0 , e
out
0 ), (ein1 , e

out
1 )
)
: ein0 ∩ (ein1 , e

out
1 ) = ∅, eout1 ∩ (ein0 , e

out
0 ) = ∅, eout0 ∩ ein1 ̸= ∅

}
Initialize a message queue S = {(e2, e0) : e2 has empty incoming nodes}
while S not empty do

Pop a (e0, e1) pair from S
Update the message

χe0→e1 [Xe0∩e1 ] = ⟨{τ e0 [Xe0 ]} ∪ {χe2→e0 [Xe2∩e0 ] : (e2, e0) ∈ E→, e2 ̸= e1}⟩[Xe0∩e1 ]

Update S by all messages (e1, e3) which have not yet been sent, if all messages (e2, e1) have been sent.
end while
return Messages {χe0→e1 [Xe0∩e1 ] : (e2, e0) ∈ E→}

We apply the Directed Belief Propagation, Algorithm Algorithm 2, on a decomposition hypergraph, where we add
hyperedges to each leaf node and assign one-hot encodings of input states. We then show that the messages
are the one-hot encodings to the evaluations of the node functions.

Theorem 4.5. Let G be a decomposition graph and let us add hyperedges containing single input nodes, which
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are decorated by one-hot encodings. Then the messages computed in Algorithm 2 are characterized by

χe0→e1 [Xe0∩e1 ] =
⊗

v∈e0∩e1

ϵqv(x[d]) [Xv] .

Proof. We show the theorem inductively over the messages computed in Algorithm 2. The first message is sent
from an input edge {[k]} to an edge e of the decomposition graph and is by assumption the one-hot encoding
of an input state ϵxk

[Xk].

We now assume that all previous messages satisfy the claimed equation at an arbitrary stage of the algorithm.
The message computed in the while loop is then a contraction of one-hot encodings with basis encodings and

χe0→e1 [Xe0∩e1 ] =
〈
{βge0 [Xeout , Xein ]} ∪ {χe2→e0 [Xe2∩e0 ] : (e2, e0) ∈ E→}

〉
[Xe0∩e1 ]

=
〈
{βge0 [Xeout , Xein ]} ∪ {ϵqv(x[d]) [Xv] : v ∈ ein}

〉
[Xe0∩e1 ]

=
⊗

v∈e0∩e1

ϵqv(x[d]) [Xv] .

Thus, the new message is also the tensor product of the one-hot encodings of the evaluated node functions. By
induction, the property is therefore true for all messages.

We notice that we can interpret any directed acyclic hypergraph for which each node appears exactly once as
an outgoing node and which is decorated by boolean and directed tensors τG . Edges with empty incoming sets
are carrying one-hot encodings of input states and all further edges carry functions.

Example 4.6 (Continuation of Example 4.4). We now show how Algorithm 2 can be exploited to compute an ef-
ficient message passing algorithm for the digits of the m-adic sum. Given two numbers in m-adic representation
by the tuples x[d] and x̃[d], we add the hyperedges with empty incoming nodes and single outgoing node⋃

k∈[d]

{
(∅, {Xk}), (∅, {X̃k})

}
to the hypergraph of Example 4.4 and decorate them by the digit one-hot encodings ϵxk

[Xk] and ϵx̃k

[
X̃k

]
(see Figure 11). We then apply the Directed Belief Propagation Algorithm 2. The initial messages queue then
consists of the messages from the digit encoding. As sketched in Figure 11, to each digit there are three
messages (with the exception of the first being two), which can be scheduled in consecutive epochs χ(k,[3]).
We then have by Thm. 4.5 for k ∈ [d− 1] that〈

β+̃,k
[
Yk, Zk, Xk, X̃k, Zk−1

]
, χ(k−1,2)[Zk−1], χ

(k,0)[Xk], χ
(k,1)[X̃k]

〉
[Zk]

= ϵzk [Zk] ,

where zk is the value of the k-th carry bit. The k-th digit of the sum yk can further be obtained by the contraction〈
β+̃,k

[
Yk, Zk, Xk, X̃k, Zk−1

]
, χ(k−1,2)[Zk−1], χ

(k,0)[Xk], χ
(k,1)[X̃k]

〉
[Yk]

= ϵyk [Yk] .

Note that the hypergraph representing this instance is a tree and by Thm. 3.21 also the message passing
scheme of Algorithm 1 is guaranteed to produce the exact contractions. We can exploit this fact for example in
the efficient computation of averages of the summation digits, when we have an elementary distribution of input
digits. We emphasize that the directed belief propagation Algorithm 1 is exact even if the hypergraph fails to be
a tree, provided that we have directed and boolean tensors..

5 The logical paradigm

A tensor-based representation of propositional logic is developed by defining formulas as boolean valued ten-
sors, and showing how logical connectives and normal forms can be expressed as tensor contractions.
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β+̃,0

Y0

X0

ϵx0
χ(0,0)

X̃0

ϵx̃0
χ(0,1)

Z0

χ(0,2)

β+̃,1

Y1

X1

ϵx1
χ(1,0)

X̃1

ϵx̃1
χ(1,1)

Z1

χ(1,2)

· · ·

χ(d−2,2)

Zd−2
β+̃,d−1

Yd−1

Xd−1

ϵx
d−1

χ(d−1,0)

X̃d−1

χ(d−1,1)
ϵx̃

d−1

Yd

Figure 11: Computation of the integer sum in m-adic representation by the Directed Belief Propagation Algo-
rithm 2 (see Example 4.6). The summands are represented by one-hot encodings of the digits x[d] and x̃[d],
from which the messages start. The k-th digit (for k ∈ {0, . . . , d − 1}) of the sum is computed based on the
first messages of the epoch labeled by χ(k,[2]), The third message χ(k,2) in each epoch communicates the
carry bit to the next digit summation core. In the last message epoch the digit d− 1 and d are computed based.

5.1 Propositional semantics by boolean tensors

Starting with the introduction of propositional formulas as boolean tensors their decomposition is discussed with
respect to a basis encoding.

Definition 5.1. A propositional formula f
[
X[d]

]
depending on d boolean variables Xk is a tensor

f
[
X[d]

]
∈
⊗
k∈[d]

R2

with coordinates in {0, 1}. We call a state x[d] ∈×k∈[d][2] a model of a propositional formula f , if

f
[
X[d] = x[d]

]
= 1 ,

where we understand 1 as a representation of True and 0 of False. If there is a model of a propositional
formula, we say the formula is satisfiable.

Example 5.2. Let there be d = 3 boolean variables X[3] and a propositional formula

f
[
X[3]

]
= (X0 ∨X1) ∧ ¬X2 .

In a graphical depiction and in the coordinatewise representation this formula can be represented as

f
[
X[3]

]
=

f

X0 X1 X2

=

[
0 1
1 1

] [0 0
0 0

]
1

X0

0

0

X1

1

0
X2

1

In the state set×k∈[d][2] = {0, 1} × {0, 1} × {0, 1} we have three models of the formula by the positions of

the non-zero entries in the tensor, that is f
[
X[3] = x[3]

]
= 1 if and only if

x[3] ∈ {(1, 0, 0), (0, 1, 0), (1, 1, 0)} .

The formula f is therefore satisfiable.
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Model counts by contraction Each coordinate of a propositional formula is either 1 or 0, indicating whether
the indexed state is a model of the formula or not. In this way, the contraction ⟨f⟩[∅] counts the number of
models of the propositional formula f . One can therefore decide the satisfiability of a formula by testing for
⟨f⟩[∅] > 0.

CP decomposition We can decompose a formula into the sum of the one-hot encodings of its models:

f

X0 X1 · · · Xd−1

=
∑

x[d]∈×k∈[d][mk]

f
[
X[d] = x[d]

]
= 1

ϵx0

X0

· · · ϵx
d−1
Xd−1

=
τ0

X0

τ1

X1

. . . τd−1

Xd−1

I

As already depicted, one can exploit this summation to find a CP decomposition of the formula. To this end, we
enumerate the models xi[d] of f by a decomposition variable I with values i ∈ [⟨f⟩[∅]] and define, for k ∈ [d],
cores with slices

τk [Xk, I = i] = ϵxi
k
[Xk] .

Example 5.3. For the formula described in Example 5.2, we have

f
[
X[3]

]
= (ϵ1 [X0]⊗ ϵ0 [X1]⊗ ϵ0 [X2]) + (ϵ0 [X0]⊗ ϵ1 [X1]⊗ ϵ0 [X2])

+ (ϵ1 [X0]⊗ ϵ1 [X1]⊗ ϵ0 [X2]) .

Note that we have
〈
f
[
X[d]

]〉
[∅]

= 3 and we can interpret this sum as a CP decomposition of f with rank 3.

We use the decomposition to evaluate the formula f at x[3] = (1, 1, 0) and get

f
[
X[3] = x[3]

]
= (ϵ1 [X0 = 1]⊗ ϵ0 [X1 = 1]⊗ ϵ0 [X2 = 0])

+ (ϵ0 [X0 = 1]⊗ ϵ1 [X1 = 1]⊗ ϵ0 [X2 = 0])

+ (ϵ1 [X0 = 1]⊗ ϵ1 [X1 = 1]⊗ ϵ0 [X2 = 0])

= 1 · 0 · 1 + 0 · 1 · 1 + 1 · 1 · 1 = 1 ,

which verifies that x[3] = (1, 1, 0) is a model of the formula f .

Basis encoding Representing booleans by elements in {0, 1} leads to the problem that the negation is an
affine transformation and cannot be represented by multilinear tensors. To be able to express different kinds of
connectives by contractions, booleans are encoded by one-hot encodings as defined in Def. 2.9. Propositional
formulas f can then be expressed by their basis encodings

βf
[
Yf = yf , X[d] = x[d]

]
=

{
1 if f

[
X[d] = x[d]

]
= yf

0 else
.

This basis encoding βf
[
Yf , X[d]

]
∈ {0, 1}2×2d encodes the formula itself and its negation in its slices, since

βf
[
Yf , X[d]

]
= ϵ1 [Yf ]⊗ f

[
X[d]

]
+ ϵ0 [Yf ]⊗ ¬f

[
X[d]

]
.

In our graphical notation this property is visualized by
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Yf

βf

X0 X1 · · · Xd−1

=
∑

x[d]∈×k∈[d][2]

ϵf[X[d]=x[d]]

Yf

ϵx[d]

X0 X1 · · · Xd−1

=

ϵ0

Yf

¬f
X0 X1 · · · Xd−1

+

ϵ1

Yf

f

X0 X1 · · · Xd−1

We further provide a more detailed example in coordinate sensitive notation in the following.

Example 5.4 (Logical negation and conjunction). The basis encodings of the negation ¬ : [2] → [2] is the
matrix

β¬ [Y¬, X]=

[
0 1
1 0

]
1

X0

0

0

Y¬

1

The 2-ary conjunctions ∧ : [2]× [2] → [2] is encoded by the order-3 tensor

β∧ [Y∧, X0, X1]=

[
1
0

]
1

Y∧
0

⊗
[
1 1
1 0

]
1

X0

0

0

X1

1

+

[
0
1

]
1

Y∧
0

⊗
[
0 0
0 1

]
1

X0

0

0

X1

1

=

[
1 1
1 0

] [0 0
0 1

]
1

X0

0

0

X1

1

0
Y∧

1

Furthermore, the 2-ary disjunction ∨ : [2]× [2] → [2] is encoded by the order-3 tensor

β∨ [Y∨, X0, X1]=

[
1 0
0 0

] [0 1
1 1

]
1

X0

0

0

X1

1

0
Y∨

1

Interpretation as CompActNets The propositional formula and its negation can be represented by this tensor
via

f
[
X[d]

]
=
〈
ϵ1 [Yf ] , β

f
[
Yf , X[d]

]〉
[X[d]]

and ¬f
[
X[d]

]
=
〈
ϵ0 [Yf ] , β

f
[
Yf , X[d]

]〉
[X[d]]

.

Both f and ¬f are thus Computation-Activation Networks to the statistic {f} and the hard activation tensor
ϵ1 [Yf ], respectively ϵ0 [Yf ].

5.2 Syntactic decomposition of propositional formulas

Propositional formulas of concern often have a syntactic specification as composed functions. We can therefore
apply the neural paradigm to find efficient representations of them.

Definition 5.5 (Syntactic decompositions). A syntactic decomposition of a propositional formula f is a decom-
position hypergraph (see Def. 4.2) such that all nodes are decorated with the dimension mv = 2 and the
composition function f .
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We thus have a tensor network representation of any propositional formula based on its syntactic decomposition,
where the hypergraph of the syntactic decomposition equals the hypergraph of the representing tensor network.

Example 5.6. For the formula f
[
X[3]

]
= (X0 ∨ X1) ∧ ¬X2 from Example 5.2, we have the following

syntactical decomposition of its basis encoding:

X0 X1 X2

βf

Yf

=

X0 X1 X2

β∨

Y0∨1

β¬

Y¬2

β∧

Y(0∨1)∧¬2

ϵ1

5.3 Entailment decision by contractions

We have already seen that the contraction of a propositional formula counts its models. This allows to define
entailment between two propositional formulas as defined in the following. To generalize the treatment, we no
longer demand that the variables of a formula are of dimension 2. We further use ¬f

[
X[d]

]
= I

[
X[d]

]
−

f
[
X[d]

]
.

Definition 5.7 (Entailment of propositional formulas). Given two propositional formulas KB and f , we say that
KB entails f , denoted by KB |= f , if any model of KB is also a model of f , that is〈

KB
[
X[d]

]
,¬f

[
X[d]

]〉
[∅]

= 0 .

If KB |= ¬f holds (i.e.
〈
KB

[
X[d]

]
, f
[
X[d]

]〉
[∅]

=0), we say that KB contradicts f .

Classically (see e.g. Russell and Norvig [2021]) entailment in propositional logics is defined as the unsatisfiability
of KB ∧ ¬f . This is equivalent to Def. 5.7 due to the equivalence of

〈
KB

[
X[d]

]
,¬f

[
X[d]

]〉
[∅]

= 0 and〈
(KB ∧ (¬f))[X[d]]

〉
[∅]

= 0, which is the unsatisfiability of KB ∧ ¬f .

Example 5.8 (n2 × n2 Sudoku). We index the rows and the columns by tuples (r0, r1) and (co, c1), where
r0, r1, c0, c1 ∈ [n]. The first index indicates the block and the second counts the row or column inside that
block. For each r0, r1, c0, c1 ∈ [n] and i ∈ [n2] we then define an atomic variable Xr0,r1,c0,c1,i ∈ {0, 1}
indicating whether in the row (r0, r1) and column (co, c1) the number i is written. The Sudoku rules then
amount to the formula

KBn :=

 ∧
r0,r1,c0,c1∈[n]

 (1)⊕
i∈[n2]

Xr0,r1,c0,c1,i

 ∧

 ∧
r0,r1∈[n],i∈[n2]

 (1)⊕
c0,c1∈[n]

Xr0,r1,c0,c1,i

∧

 ∧
c0,c1∈[n],i∈[n2]

 (1)⊕
c0,c1∈[n]

Xr0,r1,c0,c1,i

 ∧

 ∧
r0,c0∈[n],i∈[n2]

 (1)⊕
r1,c1∈[n]

Xr0,r1,c0,c1,i

 ,

where
⊕(1) is the n2-ary exclusive or connective (that is 1 if and only if exactly one of the arguments is 1). The

four outer brackets in KB mark the constraints that at each position exactly one number is assigned, further that
in each row each number is assigned once, and similar for the columns and the squares of the board. When
solving a specific Sudoku instance, one typically knows from an initial board assignment Estart a collection of
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atomic variables, which hold, and needs to find further atomic variables, which are entailed. This means, we
need to decide for each (r0, r1, c0, c1, i) /∈ Estart whether the Sudoku rules and the initial board imply that
the atomic variable Xr0,r1,c0,c1,i (i.e. assignment to the board) is true

KBn ∧

 ∧
(r0,r1,c0,c1,i)∈Estart

Xr0,r1,c0,c1,i

 |= Xr0,r1,c0,c1,i

or false

KB ∧

 ∧
(r0,r1,c0,c1,i)∈Estart

Xr0,r1,c0,c1,i

 |= ¬Xr0,r1,c0,c1,i .

If and only if the Sudoku has a unique solution given the initial board assignment Estart, exactly one of these
entailment statements holds for each (r0, r1, c0, c1, i) /∈ Estart. Deciding which is equivalent to solving the
Sudoku.

For a more concrete example, let n = 2 and

Estart = {(0, 0, 0, 0, 0), (0, 0, 1, 0, 2), (0, 0, 1, 1, 1), (0, 1, 0, 1, 1),
(1, 0, 1, 0, 3), (1, 1, 0, 0, 3), (1, 1, 0, 1, 2)} .

We visualize this evidence by writing i + 1 in a grid cell (r0, r1, c0, c1) to indicate that (r0, r1, c0, c1, i) ∈
Estart:

1 3 2

2

4

4 3

After deriving a sparse tensor network representations in Example 5.12, we demonstrate a solution algorithm to
solve this instance in Example 5.8.

5.4 Efficient representation of knowledge bases

We now investigate the representation of propositional knowledge bases KB = {fℓ : ℓ ∈ [p]}, which are sets
of propositional formulas fℓ. The conjunction of these formulas is the knowledge base formula

KB
[
X[d]

]
=
∧
ℓ∈[p]

fℓ
[
X[d]

]
.

To show efficient representations, we use the following identities.

Lemma 5.9 (Computation Network Symmetries). For the d-ary ∧-connective (where d ∈ N) and the unary
¬-connective it holds that〈

ϵ1 [Y ] , β∧ [Y,X[d]

]〉
[X[d]]

=
⊗
k∈[d]

ϵ1 [Xk] and ⟨ϵ1 [Y ] , β¬ [Y,X]⟩[X] = ϵ0 [X] .

Proof. Follows directly from the definitions of the basis encodings and the connectives.
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Example 5.10. For the propositional formula from Example 5.2

f
[
X[3]

]
= (X0 ∨X1) ∧ ¬X2 ,

we can write the formula in terms of a Computation-Activation Network with activation tensor ϵ1 and computation
network decomposed by the basis encodings as depicted below. First, it is written with one activation vector.
Second, we see that it can also be interpreted with multiple features.

X0 X1 X2

(X0 ∨X1) ∧ ¬X2 =

X0 X1 X2

β∨

Y0∨1

β¬

Y¬2

β∧

Y(0∨1)∧¬2

ϵ1

=

X0 X1 X2

β∨

Y0∨1

ϵ1

⊗ ϵ0

We use this to decompose knowledge bases into their individual formulas as follows.

Theorem 5.11. For any knowledge base KB
[
X[d]

]
=
∧

ℓ∈[p] fℓ
[
X[d]

]
it holds that

KB
[
X[d]

]
=
〈
{fℓ
[
X[d]

]
: ℓ ∈ [p]}

〉
[X[d]]

.

Proof. With Lem. 5.9 we have

KB
[
X[d]

]
=
〈
{ϵ1 [Y∧] , β∧ [Y∧, Y[p]]} ∪ {βfℓ

[
Yℓ, X[d]

]
: ℓ ∈ [p]}

〉
[X[d]]

=

〈⋃
ℓ∈[p]

{ϵ1 [Yℓ] , βfℓ
[
Yℓ, X[d]

]
: ℓ ∈ [p]}

〉
[X[d]]

=
〈
{fℓ
[
X[d]

]
: ℓ ∈ [p]}

〉
[X[d]]

.

Example 5.12 (Sparse representation of Sudoku rule knowledge base). We now exploit Thm. 5.11 to find
efficient tensor network representation of the Sudoku knowledge base from Example 5.8. We directly get, that
the knowledge base KBn of Sudoku rules is a tensor network of the 4 · n4 constraint formulas using the
n2-ary connective

⊕(1), and the evidence Estart can be encoded by vectors ϵ1
[
X(r0,r1,c0,c1,i)

]
. To get a

representation by matrices instead of tensors of order n2, we introduce a hidden variable I taking values in [n2]
for each of the constraints. With the usage of matrices

τk [Xk, I] = ϵ0 [Xk]⊗ I [I] + (ϵ1 [Xk]− ϵ0 [Xk])⊗ ϵk [I]

we have the decomposition

(1)⊕
[X[n2]] =

〈
{τk [Xk, I] : k ∈ [n2]}

〉[
X[n2]

] ,

which is a CP decomposition (see Example 2.4) depicted in Figure 12 a).
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⊕(1)

X0,0,0,0,0 X0,0,0,0,1

· · ·
X

0,0,0,0,n2−1

a)
= τ0

X0,0,0,0,0

τ1

X0,0,0,0,1

. . . τn
2−1
X

0,0,0,0,n2−1

I0,0,0,0,:

b)
= τ̃0

X0,0,0,0,0

Ĩ00,0,0,0,:

τ̃1

X0,0,0,0,1

Ĩ10,0,0,0,:
. . .

Ĩn
2−2

0,0,0,0,:

τ̃n
2−1
X

0,0,0,0,n2−1

Figure 12: Decomposition of the position constraint
⊕(1) at position (r0, r1, c0, c1) = (0, 0, 0, 0) into a)

a CP decomposition with hidden variable I0,0,0,0,: and b) a TT decomposition with d − 1 hidden variables
Ik0,0,0,0,:, k ∈ [d− 1].

Alternatively there is a TT decomposition (see Example 2.5) of the constraint
⊕(1), which we depict in Fig-

ure 12 b). We introduce for k ∈ [d − 1] hidden variables Ik of dimension 2, which are interpreted as the
indicator, whether one of the variables X[k] is true. Following this interpretation we introduce TT cores

τ̃0
[
X0, Ĩ

0
]
= ϵ1 [X0]⊗ ϵ1

[
Ĩ0
]
+ ϵ0 [X0]⊗ ϵ0

[
Ĩ0
]

τ̃d−1
[
Ĩd−2, Xd−1

]
= ϵ0

[
Ĩd−2

]
⊗ ϵ1 [Xd−1] + ϵ1

[
Ĩd−2

]
⊗ ϵ0 [Xd−1]

and for k ∈ {1, . . . , d− 2}

τ̃k
[
Ĩk−1, Xk, Ĩ

k
]
= δ

[
Ĩk−1, Ĩk

]
⊗ ϵ0 [Xk] + ϵ0

[
Ĩk−1

]
⊗ ϵ1 [Xk]⊗ ϵ1

[
Ĩk−1

]
.

We notice, that the TT decomposition of the constraint
⊕(1) introduces d − 1 many hidden variables of

dimension 2, whereas the CP decomposition introduces a single hidden variable of dimension d. However, in
the following we will further apply the CP decomposition.

Given evidence Estart we denote the Sudoku knowledge base KBn,Estart
. We model the Sudoku knowledge

base KBn,Estart
as a tensor network on a hypergraph GSudoku,n consistent in

■ n6 + 4 · n4 nodes by n6 categorical variables X(r0,r1,c0,c1,i) and by 4 · n4 decomposition variables to
the constraints

■ 5 · n6 edges

E =
⋃

r0,r1,c0,c1∈[n]

{
{X(r0,r1,c0,c1,i)}, {X(r0,r1,c0,c1,i), Ir0,r1,c0,c1,:}, {X(r0,r1,c0,c1,i), Ir0,r1,:,:,i},

{X(r0,r1,c0,c1,i), I:,:,c0,c1,i}, {X(r0,r1,c0,c1,i), Ir0,:,c0,:,i}
}

We denote the decomposition variables to the position, row, column and square constraints by
Ir0,r1,c0,c1,:, Ir0,r1,:,:,i, I:,:,c0,c1,i and Ir0,:,c0,:,i.

Each edge containing a decomposition variable is decorated by a matrix τk [X, I] corresponding to a core in
the CP decomposition of a constraint. Here k is determined by the tuple (r0, r1, c0, c1, i) and the type of the
constraint (for example, for the variable X(0,1,1,2,1) and the row constraint I(0,1,:,:,1) we have k = 1 ·n+2. We
further assign to each edge containing a single variable {X(r0,r1,c0,c1,i)} either the vector ϵ1

[
X(r0,r1,c0,c1,i)

]
if (r0, r1, c0, c1, i) ∈ Estart or the trivial vector I

[
X(r0,r1,c0,c1,i)

]
.
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5.5 Entailment decision by message passing

Since contracting the whole tensor network is often infeasible, local contractions can be considered to decide
entailment in some cases. Here, a local contraction describes the calculation of contractions along few closely
connected tensors in the network. Before presenting the resulting Constraint Propagation algorithm, we first
show two important properties of local entailment motivating the procedure.

Theorem 5.13 (Monotonicity of propositional logics). If K̃B ⊂ KB and K̃B |= f then also KB |= f .

Proof. Since K̃B |= f it holds that
〈
K̃B[X[d]],¬f [X[d]]

〉
[∅]

= 0 and thus

〈
K̃B[X[d]],¬f [X[d]]

〉
[X[d]]

= 0
[
X[d]

]
.

Denoting by KB/K̃B the conjunctions of formulas in KB not in K̃B, we have〈
KB

[
X[d]

]
,¬f

[
X[d]

]〉
[∅]

=
〈
(KB/K̃B)[X[d]], K̃B[X[d]],¬f

[
X[d]

]〉
[∅]

=

〈
(KB/K̃B)[X[d]],

〈
K̃B[X[d]],¬f

[
X[d]

]〉
[X[d]]

〉
[∅]

=
〈
(KB/K̃B)[X[d]], 0

[
X[d]

]〉
[∅]

= 0 .

To decide entailment, we can therefore investigate entailment on smaller parts of the knowledge base. This is
sound by the above theorem but not complete since it can happen that no smaller part of the knowledge base
entails the formula while the whole knowledge base does. We can furthermore add entailed formulas to the
knowledge base without changing it as is shown next.

Theorem 5.14 (Invariance of adding entailed formulas). If and only if KB |= f we have that

KB
[
X[d]

]
=
〈
KB

[
X[d]

]
, f
[
X[d]

]〉
[X[d]]

.

Proof. We use that f
[
X[d]

]
+ ¬f

[
X[d]

]
= I

[
X[d]

]
and thus

KB
[
X[d]

]
=
〈
KB

[
X[d]

]
, (f

[
X[d]

]
+ ¬f

[
X[d]

]
)
〉
[X[d]]

=
〈
KB

[
X[d]

]
, f
[
X[d]

]〉
[X[d]]

+
〈
KB

[
X[d]

]
,¬f

[
X[d]

]〉
[X[d]]

.

Since
〈
KB

[
X[d]

]
,¬f

[
X[d]

]〉
[X[d]]

is boolean, we have that

KB
[
X[d]

]
=
〈
KB

[
X[d]

]
, f
[
X[d]

]〉
[X[d]]

if and only if
〈
KB

[
X[d]

]
,¬f

[
X[d]

]〉
[∅]

= 0, that is KB |= f .

The mechanism of Thm. 5.14 provides us with a means to store entailment information in small-order auxil-
iary tensors. One way to exploit this accessibility of local entailment information are message passing schemes
similar to Algorithm 1 propagating the information. This approach decides local entailment by iteratively adding
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entailed formulas to the knowledge base and checking further entailment on neighboring tensors of the knowl-
edge base. Since for entailment decisions the support of the contractions is sufficient, we can apply non-zero
indicators before sending contraction messages. We then schedule new messages in the direction (e0, e1)
once the support of a message received at e0 has been changed. Note that such a scheduling system is guar-
anteed to converge since there can only be a finite number of message changes. We further directly reduce the
computation of messages to their support and call the resulting Constraint Propagation (Algorithm 3).

Algorithm 3 Constraint Propagation

Require: Tensor network τG on a hypergraph G
Ensure: Messages {χe0→e1 [Xe0∩e1 ] : (e0, e1) ∈ E→} containing entailment statements

Initialize a queue S = E→ of message directions
Initialize messages χe0→e1 [Xe0∩e1 ] = I [Xe0∩e1 ] for (e0, e1) ∈ E→

while S not empty do
Pop a (e0, e1) pair from S
Update the message

χe0→e1 [Xe0∩e1 ] = I ̸=0

(
⟨{τ e0 [Xe0 ]} ∪ {χe2→e0 [Xe2∩e0 ] : (e2, e0) ∈ E→, e2 ̸= e1}⟩[Xe0∩e1 ]

)
if τ [Xe0∩e1 ] ̸= χe0→e1 [Xe0∩e1 ] then

Update the message: χe0→e1 [Xe0∩e1 ] := τ [Xe0∩e1 ]
Add S = S ∪ {(e1, e2) : (e1, e2) ∈ E→}

end if
end while
return Messages {χe0→e1 [Xe0∩e1 ] : (e0, e1) ∈ E→}

Theorem 5.15. All messages during constraint propagation are sound, meaning that for all (e0, e1) ∈ E→ it
holds that

I ̸=0

(〈
τG
〉
[Xe0∩e1 ]

)
≺ χe0→e1 [Xe0∩e1 ] .

Proof. We show this theorem by induction over the while loop of Algorithm 3. At the first iteration, we have for
all messages χe0→e1 [Xe0∩e1 ] = I [Xe0∩e1 ] and thus

τG =
〈
{τG} ∪ {χe0→e1 [Xe0∩e1 ] : (e0, e1) ∈ E→}

〉
[XV ]

. (5.1)

By Thm. 5.13 we then have for the first message send along the pair (e0, e1) that

I ̸=0

(〈
τG
〉
[Xe0∩e1 ]

)
≺I̸=0

(
⟨{τ e0 [Xe0 ]} ∪ {χe2→e0 [Xe2∩e0 ] : (e2, e0) ∈ E→, e2 ̸= e1}⟩[Xe0∩e1 ]

)
= χe0→e1 [Xe0∩e1 ] .

We now assume that at an arbitrary state of the algorithm the inequality holds for all previously sent messages.
By Thm. 5.14 we can contract the messages with the tensor network without changing it and (5.1) thus still
holds. We then conclude with Thm. 5.13 that the claimed property also holds for the new message.

Example 5.16 (Message passing for the Sudoku instance of Example 5.8). We iteratively solve a Sudoku puzzle
by determining a possible value based on neighboring cells, rows and squares (using Thm. 5.13) and adding
to our knowledge (using Thm. 5.14). For example, consider the following n = 2 Sudoku puzzle, where a first
entailment step uses only the knowledge of the rules and the blue cells to determine the value 3 in the first
square:

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026



A.Goessmann, J. Schütte, M. Fröhlich, M. Eigel 34

1 3 2

2

4

4 3

=

1 3 2

3 2

4

4 3

= . . . =

1 4 3 2

3 2 1 4

2 1 4 3

4 3 2 1

To illustrate the first reasoning step of assigning X0,1,0,0,2 we make the following entailment steps applying
Thm. 5.13. We also depict in Figure 13 the corresponding messages in the Constraint Propagation Algorithm
on the hypergraph GSudoku,n.

■ From X0,1,0,1,1 (i.e. the 2 in the cell (0, 1, 0, 1)) and the Sudoku rule that at the cell (0, 1, 0, 1) exactly
one number is assigned, we get (1)⊕

i∈[n2]

X0,1,0,1,i

 ∧X0,1,0,1,1 |= ¬X0,1,0,1,2 ,

That is, that the number 3 is not in the cell (0, 1, 0, 1). This entailment step is performed by three con-
secutive messages (see χ(0,[3]) in Figure 13) along the directions

(e0, e1) ∈
[
({X0,1,0,1,1}, {X0,1,0,1,1, I0,1,0,1,:}), ({X0,1,0,1,1, I0,1,0,1,:}, {X0,1,0,1,2, I0,1,0,1,:}),
({X0,1,0,1,2, I0,1,0,1,:}, {X0,1,0,1,2, I0,:,0,:,2})

]
.

Intuitively, the messages commmunicate to the square constraint I0,:,0,:,2, that by the position constraint
I0,1,0,1,: the variable 3 cannot be assigned at (0, 1, 0, 1).

■ From X0,0,1,0,2 (i.e. the 3 in the cell (0, 0, 1, 0)) and the Sudoku rule that at the row (0, 0) exactly one
number is assigned, we get (1)⊕

c0,c1∈[n]

X0,0,c0,c1,2

 ∧X0,0,1,0,2 |= ¬X0,0,0,0,2 ∧ ¬X0,0,0,1,2 ,

That is, that the number 3 is neither in the cell (0, 0, 0, 0) nor in (0, 0, 0, 1). This entailment step is
performed by five consecutive messages (see χ(1,[5]) in Figure 13) along the directions

(e0, e1) ∈
[
({X0,0,1,0,2}, {X0,0,1,0,2, I0,0,:,:,2}), ({X0,0,1,0,2, I0,0,:,:,2}, {X0,0,0,0,2, I0,0,:,:,2}),
({X0,0,1,0,2, I0,0,:,:,2}, {X0,0,0,1,2, I0,0,:,:,2}), ({X0,0,0,0,2, I0,0,:,:,2}, {X0,0,0,0,2, I0,:,0,:,2})
({X0,0,0,1,2, I0,0,:,:,2}, {X0,0,0,1,2, I0,:,0,:,2})

]
.

The messages communicate that based on the decomposition cores of the constraint to the number i = 3
in the first row (r0, r1) = (0, 0), that the number 3 cannot be assigned at (0, 0, 0, 0) and (0, 0, 0, 1).

We add these formulas to our knowledge base (justified by Thm. 5.14) and use the rule, that 3 appears exactly
once in the first square (1)⊕

r1,c1∈[n]

X0,r1,0,c1,2

 ∧ (¬X0,1,0,1,2) ∧ (¬X0,0,0,0,2 ∧ ¬X0,0,0,1,2) |= X0,1,0,0,2 .

That is, we conclude that the number 3 must be in the cell (0, 1, 0, 0), which information is also included in the
updated knowledge base for further reasoning steps. This last entailment step is performed by four consecutive
messages (see χ(2,[4]) in Figure 13) along the directions

(e0, e1) ∈
[
({X0,1,0,1,2, I0,:,0,:,2}, {X0,1,0,0,2, I0,:,0,:,2}), ({X0,0,0,1,2, I0,:,0,:,2}, {X0,1,0,0,2, I0,:,0,:,2}),
({X0,0,1,0,2, I0,:,0,:,2}, {X0,1,0,0,2, I0,:,0,:,2}), ({X0,1,0,0,2, I0,:,0,:,2}, {X0,1,0,0,2})

]
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τ0

X0,0,0,0,2

τ1

X0,0,0,1,2

τ2

ϵ1

X0,1,0,0,2χ(2,3)

χ(2,0)

χ(2,1)

χ(2,2)

τ3

X0,1,0,1,2

I0,:,0,:,2

τ1τ0τ2

ϵ1

X0,0,1,0,2χ(1,0)

χ(1,1)

χ(1,2)

χ(1,3) χ(1,4)

τ3

X0,0,1,1,2

I0,0,:,:,2

τ2 τ0

X0,1,0,1,0

τ1
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χ(0,1)

χ(0,2)

τ3

X0,1,0,1,3

I0,1,0,1,:

Figure 13: The tensor network decomposition of 3 out of 4·22 = 64 rules in the 22×22 Sudoku knowledge base
(see Example 5.12), namely to the number 3 appearing once in the (0, 0)-square (top), the number 3 appearing
once in the (0, 0)-row (bottom left) and a unique number appearing at the (0, 1, 0, 1)-position (bottom right).
The evidence of the number 3 already being assigned at the position (0, 0, 1, 0) is sketched by a basis vector
ϵ1 on the left side, and the number 2 assigned at position (0, 1, 0, 1) analogously on the right side. During
Constraint Propagation Algorithm 3 on the hypergraph of Sudoku rules and evidence (see Example 5.16), this
evidence is in three epochs of messages propagated to the constraints by partial entailment steps and imply
that X0,1,0,0,2 is true, that is that at the position (0, 1, 0, 0) the number 3 needs to be assigned. We depict
the messages between the cores by dashed lines labeled by χ(0,[3]), χ(1,[5]) and χ(2,[4]) and provide further
interpretation in Example 5.16.

The first three messages communicate, that the 3 is not possible the positions (0, 1, 0, 1), (0, 0, 0, 1) and
(0, 0, 1, 0) and the fourth message concludes that the 3 then has to be at position (0, 1, 0, 0).

We now iteratively apply similar reasoning steps and store the entailed variables in Eentailed, until we arrive at
the right side of the above sketch. We conclude that

KB2 ∧

 ∧
(r0,r1,c0,c1,i)∈Estart

Xr0,r1,c0,c1,i

 |=

 ∧
(r0,r1,c0,c1,i)∈Eentailed

Xr0,r1,c0,c1,i

 .

Since all Sudoku rules are satisfied in the final assignment and to each cell (r0, r1, c0, c1) we found exactly
one i ∈ [n2] such that (r0, r1, c0, c1, i) ∈ Estart ∪ Eentailed, there is a unique solution of the puzzle and we
conclude

KB2 ∧

 ∧
(r0,r1,c0,c1,i)∈Estart

Xr0,r1,c0,c1,i


=

 ∧
(r0,r1,c0,c1,i)∈Estart

Xr0,r1,c0,c1,i

 ∧

 ∧
(r0,r1,c0,c1,i)∈Eentailed

Xr0,r1,c0,c1,i

 .

6 Hybrid Logic Networks

Let us now exploit the common formulation of logical formulas and probabilistic models in CompActNets to
define hybrid models that combine both aspects. We call CompActNets Hybrid Logic Networks in the special
case of Boolean statistics t and elementary activations.
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6.1 Parametrization

We first introduce Hybrid Logic Networks, which can be regarded as a unification of logical and probabilistic
models.

Definition 6.1 (Hybrid Logic Network (HLN)). Given a Boolean statistic t, we call any element of Λt,EL a Hybrid
Logic Network. The extended canonical parameter set for t is the set

Pp := {(A, yA) : A ⊂ [p], yA ∈×
ℓ∈A

[2]} × Rp .

For each Hybrid Logic Network Pt,(A,yA,θ)
[
X[d]

]
, we can associate a tuple (A, yA, θ) consisting of a subset

A ⊂ [p], a tuple yA ∈×ℓ∈A[2], and θ [L] ∈ Rp such that

Pt,(A,yA,θ)
[
X[d]

]
=
〈
βt
[
Y[p], X[d]

]
, ξ(A,yA,θ)

[
Y[p]
]〉

[X[d]|∅]

where the activation core is

ξ(A,yA,θ)
[
Y[p]
]
=
〈
αθ
[
Y[p]
]
, κ(A,yA)

[
Y[p]
]〉

[Y[p]]
.

We notice that the parametrization by Pp is one-to-one for any non-vanishing elementary activation tensor
up to a scalar factor. Given an arbitrary elementary activation tensor

⊗
ℓ∈[p] ξ

ℓ [Yℓ], we can always find a

corresponding tuple in Pp by choosing1

A = {ℓ : I ̸=0

(
ξℓ [Yℓ]

)
̸= I [Yℓ]} ,

further for all ℓ ∈ A

yℓ =

{
0 if I̸=0

(
ξℓ [Yℓ]

)
= ϵ0 [Yℓ]

1 if I̸=0

(
ξℓ [Yℓ]

)
= ϵ1 [Yℓ]

and a parameter vector θ [L] ∈ Rp defined for all ℓ ∈ [p] as

θ [L = ℓ] =

{
0 if ℓ ∈ A

ln
[
ξℓ[Yℓ=1]
ξℓ[Yℓ=0]

]
if ℓ /∈ A .

Then we have by construction that there is λ > 0 with⊗
ℓ∈[p]

ξℓ [Yℓ] = λ · ξ(A,yA,θ)
[
Y[p]
]
.

Let us demonstrate the utility of Hybrid Logic Networks with an example from accounting.

Example 6.2 (Hybrid Logic Network for a toy accounting model). We consider a system of three variables A1
Account 1 is booked, A2 Account 2 is booked, F a feature on an invoice. Assume the following two rules have
to be respected:

■ Exactly one account must be booked.

■ If feature F is present on the invoice, the account A1 is typically booked.

1Here I ̸=0 (·) is the indicator of non-zero entries acting coordinatewise and I [Yℓ] is the vector [1, 1]T .
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We formalize this with the statistic

t = (XA1 ⊕XA2, XF ⇒ XA1) .

While the first formula is a hard feature, the second is soft since prone to exceptions. We parameterize the
first output of the statistic with the hard parameters by setting the set of indices to be initialized with hard logic
A = {0} and the corresponding initialization y0 = 1, meaning that the first output of the statistic has to be true
for the input to have positive probability. The “hard logic activation tensor” should be indifferent to the second
part of the statistic and only impose rules on the first part, leading to

κ(A,yA)[Y0, Y1] = ϵy0 [Y0]⊗ I [Y1] =
[
0
1

]
⊗
[
1
1

]
.

Since the first feature is hard, the “soft logic activation tensor” should be invariant under the first coordinate of
the canonical parameter and we set θ [L = 0] = 0. The soft parameters are chosen as θ[L] = [0, θ[L = 1]]⊺

to achieve

αθ[Y0, Y1] = α0,0 [Y0]⊗ α1,θ[L=1] [Y1] =

[
1
1

]
⊗
[

1
exp [θ [L = 1]]

]
.

The activation tensor of the hybrid network then has the form

ξ(A,yA,θ)[Y0, Y1] =

[
0
1

]
⊗
[

1
exp [θ [L = 1]]

]
.

We get the following tensor network representation of the Hybrid Logic Network representing the toy accounting
example before normalization to a distribution

P(XA1⊕XA2,XF⇒XA1),({0},(1),(0,θ))

XA1XA2XF

= 1
Z(θ) ·

XA2

XA1

XF

β⇒

YF⇒A1

[
1

exp [θ [L = 1]]

]
β⊕

YA1⊕A2

[
0
1

]

The resulting Hybrid Logic Network is a tensor Pt,(A,yA,θ) [XA1, XA2, XF ] of order 3. With YF⇒A1 = 1 for
F = 0 and any A1 it has the coordinates

P(XA1⊕XA2,XF⇒XA1),
(
{0},(1),(0,θ)

)
[XA1, XA2, XF ] = 1

1+3·exp[θ] ·
[

0 exp[θ]
exp[θ] 0

][ 0 1
exp[θ] 0

]
0

XA2

1

1

XA1

0

0
XF

1

6.2 Parameter estimation in Hybrid Logic Networks

Let us now briefly discuss how Hybrid Logic Networks can be trained on data based on likelihood maximization.

Given a dataset
(
(xj0, . . . , x

j
d−1) : j ∈ [m]

)
consisting of m independent and identically distributed samples

from an unknown distribution, we want to find a Hybrid Logic Network Pt,(A,yA,θ)
[
X[d]

]
with a statistic t =

(f0, . . . , fp−1) that minimizes the negative log likelihood

LD ((A, yA, θ)) := − 1

m

∑
j∈[m]

ln
[
Pt,(A,yA,θ)

[
X[d] = xj[d]

]]
.

DOI 10.20347/WIAS.PREPRINT.3257 Berlin 2026



A.Goessmann, J. Schütte, M. Fröhlich, M. Eigel 38

We can rewrite the loss using the empirical mean vector µD [L] ∈ Rp, which is defined for ℓ ∈ [p] as

µD [L = ℓ] =
1

m

∑
j∈[m]

fℓ

[
X[d] = xj[d]

]
,

by

LD ((A, yA, θ)) = ⟨µD [L] , θ [L]⟩[∅] − ln

[〈
ξ(A,yA,θ)

[
Y[p]
]
, βt
[
Y[p], X[d]

]〉
[∅]

]
.

Since (A, yA) influences only the second term, the best hard parameters can be found by

A = {ℓ : µD [L = ℓ] ∈ {0, 1}} and yℓ = µD [L = ℓ] for ℓ ∈ A .

We further optimize the coordinates ℓ ∈ [p]\A of θ [L] ∈ Rp alternately by the coordinate descent steps

∂LD ((A, yA, θ))

∂θ [L = ℓ]
= 0 ⇔ θ [L = ℓ] = ln

[
µ [L = ℓ]

(1− µ [L = ℓ])
· τ [Yℓ = 0]

τ [Yℓ = 1]

]
.

where

τ [Yℓ] =
〈
{βfℓ̃ : ℓ̃ ∈ [p]} ∪ {αℓ̃,θ : ℓ̃ ∈ [p], ℓ̃ ̸= ℓ} ∪ {ν}

〉
[Yℓ]

.

Based on an interpretation of the coordinate descent steps as matching steps for the mean parameters or
moments to fℓ, we call this method alternating moment matching for Hybrid Logic Networks and provide pseu-
docode for it it in Algorithm 4. We notice that, during the coordinate descent steps, computing the marginal
probability of the variable Yℓ with respect to the current network parameters is required. This is the compu-
tational bottleneck of the algorithm and can be approached by various approximate inference methods, e.g.,
variational inference (see for example the CAMEL method Ganapathi et al. [2008]).

Algorithm 4 Alternating Moment Matching for Hybrid Logic Networks

Require: Mean parameter µD [L]
Ensure: Parameters (A, yA, θ) for the approximating HLN P(t,θ,ν)

Set

A =
{
ℓ : ℓ ∈ [p], µ [L = ℓ] ∈ {0, 1}

}
and a tuple yA with yℓ = µ [L = ℓ] for ℓ ∈ A.
Set θ [L] = 0 [L]
while Convergence criterion is not met do

for all ℓ ∈ [p]\A do
Compute

τ [Yℓ] =
〈
{βfℓ̃ : ℓ̃ ∈ [p]} ∪ {αℓ̃,θ : ℓ̃ ∈ [p], ℓ̃ ̸= ℓ} ∪ {ν}

〉
[Yℓ]

Set

θ [L = ℓ] = ln

[
µ [L = ℓ]

(1− µ [L = ℓ])
· τ [Yℓ = 0]

τ [Yℓ = 1]

]
end for

end while
return (A, yA, θ [L])

It can be shown that the algorithm converges if and only if there is a Hybrid Logic Network matching the empirical
moments of the data. For more details we refer to [Goessmann, 2025, Chapter 9].
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Example 6.3 (Continuation of Example 6.2). Recall the statistic of Example 6.2 and consider a dataset of
m = 20 states summarized in the frequency table:

Frequency in Dataset xA1 xA2 xF
0 0 0 0
0 0 0 1
7 0 1 0
2 0 1 1
1 1 0 0

10 1 0 1
0 1 1 0
0 1 1 1

We then have for the satisfaction rates of f0 = XA1 ⊕XA2 and f1 = XF ⇒ XA1 that

µD [L = 0] =
20

20
= 1 and µD [L = 1] =

7 + 1 + 10

20
= 0.9 .

Algorithm 4 yields a reasonable convergence criterion choice (such as finite iterations or convergence of θ [L])

A = {0} , yA = 1 and θ [L] =

[
0

ln
[
(0.90.1) · (

1
3)
]] = [ 0

ln [3]

]
≈
[

0
1.098612

]
.

To derive this, we notice that Algorithm 4 treats formula f0 as a hard constraint and assigns A = {0} and
yA = 1. In the while loop we then have for the formula f1

τ [Y1] =
〈
ϵ1 [Y0] , β

f0 [Y0, XF , XA1, XA2] , β
f1 [Y1, XF , XA1, XA2]

〉
[Y1]

=

[
1
3

]
since f0 has 4 models, of which 3 are also models of f1 and 1 is instead a model of ¬f1. Notice, that the
tensor τ [Y1] will not change in any further iteration of the while and the parameter θ [L = 1] will therefore stay
constant until the termination of the algorithm.

6.3 Entailment by Hybrid Logic Networks

Let us now demonstrate a further use of our unified treatment of probabilistic and logical models by investigating
a generalized concept of entailment. Entailment can be generalized to probabilistic models by deciding whether
a propositional formula is always satisfied given a probabilistic model.

Theorem 6.4. Let Pt,(A,yA,θ)
[
X[d]

]
be a Hybrid Logic Network and h

[
X[d]

]
a propositional formula. Then

Pt,(A,yA,θ) probabilistically entails h, that is,〈
Pt,(A,yA,θ)

[
X[d]

]
, h
[
X[d]

]〉
[∅]

= 1 ,

if and only if

f t,(A,yA) |= h ,

where

f t,(A,yA)
[
X[d]

]
=

 ∧
ℓ∈A : yℓ=1

fℓ
[
X[d]

] ∧

 ∧
ℓ∈A : yℓ=0

¬fℓ
[
X[d]

] .
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Proof. We have 〈
Pt,(A,yA,θ)

[
X[d]

]
, h
[
X[d]

]〉
[∅]

= 1

if and only if 〈
Pt,(A,yA,θ)

[
X[d]

]
, h
[
X[d]

]
− I
[
X[d]

]〉
[∅]

= 0

which is equal to 〈
Pt,(A,yA,θ)

[
X[d]

]
,¬h

[
X[d]

]〉
[∅]

= 0 .

Since Pt,(A,yA,θ)
[
X[d]

]
is non-negative this is equivalent to〈

I̸=0

(
Pt,(A,yA,θ)

[
X[d]

])
,¬h

[
X[d]

]〉
[∅]

= 0 .

We use that

I ̸=0

(
Pt,(A,yA,θ)

[
X[d]

])
= f t,(A,yA)

[
X[d]

]
and get that this is further equivalent to〈

f t,(A,yA)
[
X[d]

]
,¬h

[
X[d]

]〉
[∅]

= 0 ,

which is by Def. 5.7 f t,(A,yA) |= h.

Example 6.5 (Continuation of Example 6.3). Consider again the Hybrid Logic Network

P(XA1⊕XA2,XF⇒XA1),
(
{0},(1),(0,ln[3])

)
[XA1, XA2, XF ]

from Example 6.3 and assume we want to decide the probabilistic entailment of the formula

h [XA1, XA2, XF ] = ¬XA1 ∨ ¬XA2 ∨ ¬XF ,

which has all states but (1, 1, 1) as a model (and is therefore refered to as a maxterm). Using Thm. 6.4 we have
that 〈

P(XA1⊕XA2,XF⇒XA1),
(
{0},(1),(0,ln[3])

)
[XA1, XA2, XF ] , h [XA1, XA2, XF ]

〉
[∅]

= 1

if and only if XA1⊕XA2 |= ¬XA1∨¬XA2∨¬XF . By Def. 5.7, this entailment holds since by the De-Morgan
rule

⟨XA1 ⊕XA2,¬ (¬XA1 ∨ ¬XA2 ∨ ¬XF )⟩[∅] = ⟨XA1 ⊕XA2, XA1, XA2, XF ⟩[∅]

= ⟨XF ⟩[∅] · ⟨XA1 ⊕XA2, XA1, XA2⟩[∅]

= 0 .

We thus conclude, that h is probabilistically entailed by P(XA1⊕XA2,XF⇒XA1),
(
{0},(1),(0,ln[3])

)
.
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7 Implementation in the python library tnreason

The concepts presented in this paper have been implemented in the open source python library tnreason2.
In this section, we explain the basic design and functionality of this library and draw close connections to the
theoretical exposition in the previous sections. In particular, Appendix B provides detailed implementations of
the algorithms and examples in this work.

7.1 Architecture

The package consists of four subpackages and three layers of abstraction:

applicationLayer 3: Applications in reasoning

Layer 2: Specification of workload reasoningrepresentation

Layer 1: Storage and manipulations engine

In the subpackage tnreason.engine we implement tensors, tensor networks, contractions, and normalizations.
In the subpackage tnreason.representation the basic tensor encoding schemes such as basis encodings are
available. In the subpackage tnreason.reasoning we implement reasoning algorithms, such as generalizations
of the message passing algorithms presented in Algorithm 1, Algorithm 3, and Algorithm 4. In the subpackage
tnreason.application one can construct tensor network encodings of propositional formulas and datasets.

7.2 Basic usage

We demonstrate the basic usage of the tnreason package with the implementation of Example 5.2. We first
install the package (e.g. by pip install tnreason == 2.0.0) and import it by

from tnreason import engine, application

Keeping Def. 2.1 in mind, the tensor instances in shape and colors arguments are list instances specifying
the int dimension mk and a str identifier for Xk. The formula in Example 5.2 is a sum of the one-hot
encodings of its three models (see Example 5.3) and is created by

formula = engine.create_from_slice_iterator(shape=[2,2,2],
colors=["X_0","X_1","X_2"],
sliceIterator=[(1,{"X_0":0,"X_1":1,"X2":0}),
(1,{"X_0":1,"X_1":0,"X2":0}), (1,{"X_0":1,"X_1":1,"X2":0})])

↪→

↪→

↪→

The slice iterator is an iterator over tuples (val,posDict), which specifies elementary tensors to be
summed. The posDict are dict instances, where the keys are the str tensor colors and the values are

2tnreason is available in version 2.0.0 at pypi.org/tnreason and maintained at github.com/tnreason/
tnreason-py.
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Figure 14: Factor graph highlighting a tensor network decomposition of the syntactic decomposition of the
propositional formula of Example 5.10. Blue blocks highlight hyperedges carrying tensors and red blocks high-
light variables. The tensor label suffices "_cC" and "_aC" indicate whether the tensor is part of the compu-
tation network or the activation network. The variable label suffices "_dV" and "_cV" indicate whether the
variable is distributed or computed and therefore auxiliary. This graph has been generated with the method
tnreason.engine.draw_factor_graph of tnreason.

int. Each posDict collects leg vectors of the corresponding elementary tensor that are not trivial. These leg
vectors are the basis vectors enumerated by the corresponding int value.

Single tensor coordinates can be retrieved by indexing with a posDict. We can, for example, check whether
{"X_0":0,"X_1":1,"X_2":0} is a model:

assert formula[{"X_0":0,"X_1":1,"X_2"}] == 1

By default the tensor is created as a engine.NumpyCore instance, where coordinates are stored as instances
of numpy.array. Further core types exploiting different sparsity principles can be chosen by the argument
coreType, see [Goessmann, 2025, Appendix A].

Following Def. 2.3, tensor networks are implemented as tensor valued dict instances with str keys. For
example a tensor network is created from the propositional syntax of the above formula (see Example 5.10):

fDecomp = application.create_cores_to_expressionsDict({"f0":
["and",["or","X_0","X_1"],["not","X_2"]]})↪→

Here we apply a nested-list description of decomposition hypergraphs (see Def. 4.2) with a specification of the
logical connectives in the first position of the list (by "and","or","not" we refer to the connectives ∧,∨,¬).
Equivalently, we can exploit the ∧ symmetry and create it by multiple formulas:

fDecomp = application.create_cores_to_expressionsDict({"f0":
["or","X_0","X_1"], "f1": ["not","X_2"]})↪→

A depiction of the underlying hypergraph as a factor graph, which highlights edges as blue blocks and nodes as
red blocks, can be created with engine.draw_factor_graph(fDecomp) (see Figure 14). Single tensors
can be obtained by contracting a tensor network while specifying the open variables (for an explanation of the
suffixes, see Figure 14), for example:

contracted = engine.contract(fDecomp,
openColors=["X_0_dV","X_1_dV","X_2_dV"])↪→

By default the contractions are performed using numpy.einsum and further execution schemes can be se-
lected with the argument contractionMethod, see [Goessmann, 2025, Appendix A].
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8 Conclusion & outlook

This work developed a tensor network formalism to capture in a unifying way the main concepts of AI, which build
the core of the probabilistic, neural and logical approaches. We introduced Computation-Activation Networks
(CompActNets) as a generic architecture to represent classes of propositional knowledge bases, graphical
models and more generic exponential families. Moreover, we demonstrate the representation and training of
hybrid models combining logical and probabilistic aspects, illustrating that CompActNets represent a powerful,
versatile and mathematically grounded framework for Neuro-Symbolic AI.

We have shown that model inference such as the calculating marginal distributions and deciding entailment
correspond with tensor network contractions. To efficiently perform these inferences, we presented message
passing schemes, which have been shown to be exact in specific cases. In general, however, the efficient
computation of contractions is not possible, since they are related to the NP-hardness of probabilistic inferences
in graphical models (see Koller and Friedman [2009]) and of logical reasoning (see Russell and Norvig [2021]).
In cases where exact inference is not feasible, the derivation of error bounds for approximate inference schemes
on CompActNets is an interesting direction for future research.

Further approximation schemes to overcome this bottleneck are summarized under the umbrella of variational
inference (see Wainwright and Jordan [2008]), such as generic expectation-propagation methods or mean field
methods. While these schemes are developed either for graphical models or more general exponential families,
we plan to derive similar methods for more general CompActNets, such as Hybrid Logic Networks. Further
frequently applied schemes are particle-based inference schemes such as Gibbs sampling.

The integration of symbolic and neural methods is an active research area (see Colelough and Regli [2024] for
a systematic review). The CompActNets framework enables both, symbolic logical as well as probabilistic mod-
els, but enables also the representation of generic functions. CompActNets based on architectures combining
symbolically verbalizable and more generic neural parts are thus a promising direction for Neuro-Symbolic AI.

The CompActNets framework offers an immediate practical application as a verifiable reasoning engine for AI
agents in high-stakes domains such as regulatory compliance, clinical decision support, accounting, process
planning and security. By leveraging the framework’s inherent flexibility, Large Language Models (see Vaswani
et al. [2017]) can be adapted to function as semantic translators that dynamically construct problem-specific ten-
sor networks in the form of CompActNets from natural language descriptions, effectively treating the reasoning
engine as an external tool. This approach mitigates the hallucination risks of probabilistic models by delegating
complex logical execution to the exact linear algebra of the tensor network, ensuring that the inference process is
both rigorous and reproducible. Consequently, this synergy enables the deployment of reliable AI systems where
the intuitive power of the Large Language Model is grounded by the explainable, instance-adaptive topology of
the CompActNets.
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A Proof of the Factorization Theorems

We now provide proofs for the factorization theorems stated in Sect. 3. These proofs are classically known (see
e.g. Koller and Friedman [2009] for Hammersley-Clifford and Casella and Berger [2001] for Fisher-Neyman).
They are here provided in our tensor networks notation and for hypergraphs for completeness.

A.1 Hammersley-Clifford

Different to the original statement (see Clifford and Hammersley [1971]), we here proof the analogous statement
for hypergraphs, where we have to demand the property of clique-capturing defined in Def. 3.9. We start with
showing the following Lemmata to be exploited in the proof.

Lemma A.1. Let τ [XV ] be a positive tensor. Then we have for any index yV

τ [XV ] =
〈(

⟨τ⟩[XV\W ,XW=yW ]
)(−1)|U|−|W|

: W ⊂ U ⊂ V
〉
[XV ]

,

where the exponentiation is performed coordinatewise and positivity of τ ensures the well-definedness.

Proof. It suffices to show, that for an arbitrary index xV we have

τ [XV = xV ] =
∏
U⊂V

∏
W⊂U

(
⟨τ⟩[XV\W=xV\W ,XW=yW ]

)(−1)|U|−|W|
.

We do this by applying a logarithm on the right hand side and grouping the terms by W as

ln

[∏
U⊂V

∏
W⊂U

⟨τ⟩[XV\W=xV\W ,XW=yW ]
)(−1)|U|−|W|

]

=
∑
W⊂V

ln
[
⟨τ⟩[XV\W=xV\W ,XW=yW ]

]( ∑
U⊂V :W⊂U

(−1)|U|−|W|

)

=
∑
W⊂V

ln
[
⟨τ⟩[XV\W=xV\W ,XW=yW ]

] ∑
i∈[|V|−|W|]

(−1)i
(
|V| − |W|

i

)
Now, by the generic binomial theorem we have that for n ∈ N, n ̸= 0

0 = (1− 1)n =
∑
i∈[n]

(−1)i
(
n

i

)
.

Therefore, the summands for W ̸= V vanish and we have

ln

[∏
U⊂V

∏
W⊂U

(
⟨τ⟩[XV\W=xV\W ,XW=yW ]

)(−1)|U|−|W|
]

= ln [τ [XV = xV ]]

∑
i∈[0]

(−1)i
(
0

i

)
= ln [τ [XV = xV ]] .

Applying the exponential function on both sides establishes the claim.
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Lemma A.2. Let τ be a positive tensor and U ⊂ V an arbitrary subset. When there are a, b ∈ U such that

⟨τ⟩[Xa,Xb|XV\{a,b}] =
〈
⟨τ⟩[Xa|XV\{a,b}] , ⟨τ⟩[Xb|XV\{a,b}]

〉
[XU ]

,

then for any indices yU and xU∏
W⊂U

(
⟨τ⟩[XV\W=xV\W ,XW=yW ]

)(−1)|U|−|W|

= 1 .

Proof. We abbreviate

ZW = ⟨τ⟩[XV\W=xV\W ,XW=yW ] .

By reorganizing the sum over W ⊂ U into W ⊂ U\{a ∪ b} we have

∏
W⊂U

(ZW)(−1)|U|−|W|
=

∏
W⊂U\{a,b}

(
ZW · ZW∪{a,b}

ZW∪{a} · ZW∪{b}

)(−1)|U|−|W|

. (A.1)

From the independence assumption it follows that for any index x

⟨τ⟩[Xa=xa|XV\{W∪{a,b}}=xV\{W∪{a,b}},XW=yW ,Xb=xb]

= ⟨τ⟩[Xa=xa|XV\{W∪{a,b}}=xV\{W∪{a,b}},XW=yW ]

= ⟨τ⟩[Xa=xa|XV\{W∪{a,b}}=xV\{W∪{a,b}},XW=yW ,Xb=yb] .

Applying this in each bracket term of (A.1) we get

ZW
ZW∪{a}

=
⟨τ⟩[Xa=xa|XV\{W∪{a,b}}=xV\{W∪{a,b}},XW=yW ,Xb=xb]

⟨τ⟩[Xa=ya|XV\{W∪{a,b}}=xV\{W∪{a,b}},XW=yW ,Xb=xb]

=
⟨τ⟩[Xa=xa|XV\{W∪{a,b}}=xV\{W∪{a,b}},XW=yW ,Xb=yb]

⟨τ⟩[Xa=ya|XV\{W∪{a,b}}=xV\{W∪{a,b}},XW=yW ,Xb=yb]

=
ZW∪{b}

ZW∪{a,b}
.

Thus, each factor in (A.1) is trivial, which establishes the claim.

We are finally ready to prove the Hammersley-Clifford Thm. 3.10 based on the Lemmata above.

Proof of Thm. 3.10. ii) ⇒ i) By Lem. A.1 we have for any indices xV and yV

P [XV = xV ] =
∏
U⊂V

∏
W⊂U

(
P
[
XW = xW , XV\W = yV\W

])(−1)|U|−|W|
.

Using the clique-capturing assumption of Thm. 3.10, we find for any subset U ⊂ V , which is not contained
in a hyperedge a, b ∈ U such that Xa is independent of Xb conditioned on XU\{a,b}. If no such nodes
a, b ∈ U exists, U would be contained in a hyperedge since the hypergraph is assumed to be clique-capturing.
By Lem. A.2 we then have∏

W⊂U

(
P
[
XW = xW , XV\W = yV\W

])(−1)|U|−|W|
= 1 .
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Using the function

α : {U : ∃e ∈ E : U ⊂ e} → E ,

we label the remaining node subsets by a hyperedge containing the subset. For each e ∈ E , we build the tensor

τ e [Xe] =
∏

U :α(U)=e

∏
W⊂U

(
P
[
XW = xW , XV\W = yV\W

])(−1)|U|−|W|
.

and get that

P [XV ] = ⟨{τ e [Xe] : e ∈ E}⟩[XV ]

= ⟨{τ e [Xe] : e ∈ E}⟩[XV |∅] .

We have thus constructed a Markov network with trivial partition function, whose contraction coincides with the
probability distribution.

i) ⇒ ii): To show the converse statement, assume that there is a Markov network representing the distribution
P [XV ] and choose subsets A,B,C ⊂ V such that C separates A from B. Denote by V0 the nodes with
paths to A, which do not contain a node in C and by V1 the nodes with paths to B, which do not contain a node
in C . Furthermore, we denote by E0 the hyperedges which contain a node in V0 and by E1 the hyperedges
which contain a node in V1. By assumption of separability, both sets E0 and E1 are disjoint and no node in A is
in a hyperedge in E1 and respectively no node in B is in a hyperedge in E0. We then have

⟨{τ e [Xe] : e ∈ E}⟩[XA,XB |XC=xC ] = ⟨{τ e [Xe] : e ∈ E} ∪ {ϵxC}⟩[XA,XB |∅]

= ⟨{τ e : e ∈ E0} ∪ {ϵxC}⟩[XA|∅]

⊗ ⟨{τ e : e ∈ E1} ∪ {ϵxC}⟩[XB |∅] .

By Def. 3.5, this is the independence of XA and XB conditioned on XC .

A.2 Fisher-Neyman

Since sufficient statistics are sometimes introduced based on the data processing inequality (see e.g. Cover
and Thomas [2006]), we also show that also that definition is equivalent to the factorization of the family. Here,
I (X;Y ) denotes the mutual information of two random variables X,Y .

Theorem A.3 (Fisher-Neyman factorization theorem). Let P [X,Z] be a joint distribution of variables X, Z
with values val (X) , val (Z) and let t be a statistic, which maps val (X) to val (Yt) . We introduce a variable
Yt and define a joint distribution by

P [X,Yt, Z] =
〈
P [X,Z] , βt [Yt, X]

〉
[X,Yt,Z]

.

The following are equivalent:

i) The Data Processing Inequality holds straight, that is

I (Z;X) = I (Z;Yt)

ii) Z → Yt → X is a Markov Chain, that is

(Z ⊥ X) | Yt

iii) There are tensors ξ [Yt, Z] and ν [X] such that for any x ∈ val (X) and z ∈ val (Z)

P [Z = z,X = x] = ξ [Yt = t (x) , Z = z] · ν [X = x] .
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Proof. i) ⇔ ii): We always have

I (Z;X) = I (Z; (X,Yt)) = I (Z;Yt) + I (Z;X|Yt)

and thus i) is equivalent to

I (Z;X|Yt) = 0 .

Using the KL-divergence characterization of the mutual information, this is equivalent to

P
[
Z,X

∣∣Yt] = 〈P[Z∣∣Yt],P[X∣∣Yt]〉[Z,X,Yt]
.

This is equivalent to the conditional independence statement ii).

ii) ⇒ iii): Let us assume ii). For all z ∈ val (Z) and x ∈ val (X) we then have

P
[
Z = z

∣∣X = x
]
= P

[
Z = z

∣∣X = x, Yt = t (x)
]

= P
[
Z = z

∣∣Yt = t (x)
]

Here we used that Yt has a deterministic dependence on X . Therefore, there is a tensor ξ such that for all
z ∈ val (Z) and x ∈ val (X)

ξ [Yt = t (x) , Z = z] = P
[
Z = z

∣∣X = x
]
.

We further define a tensor ν [X] = P [X] and get

P [Z = z,X = x] = P [X = x] · P
[
Z = z

∣∣X = x
]

= ξ [Yt = t (x) , Z = z] · ν [X = x] .

iii) ⇒ ii): When assuming iii) we have for all (x, z) ∈ val (Z)× val (X)

P
[
Z = z

∣∣X = x
]
=
〈
ξ [Yt, Z] , βt [Yt, X] , ν [X]

〉
[Z=z|X=x]

=
〈
ξ [Yt, Z] , βt [Yt, X = x] , ν [X = x]

〉
[Z=z|∅]

=
〈
ξ [Yt, Z] , ϵt(x) [Yt]

〉
[Z=z|∅]

= P
[
Z = z

∣∣Yt = t (x)
]
.

We further have for almost all yt ∈ val (Yt), z ∈ val (Z) and x ∈ val (X) that yt = t (x) and

P
[
Z = z

∣∣X = x, Yt = yt
]
= P

[
Z = z

∣∣X = x
]

and with the above at thus at almost all such pairs

P
[
Z = z

∣∣X = x, Yt = yt
]
= P

[
Z = z

∣∣Yt = yt
]
.

This is equivalent to ii).

Thm. 3.15 follows from Thm. A.3 by the equivalence of ii) and iii).

B Implementation of the algorithms and examples

The implementations of the algorithms and concepts are available at https://github.com/
tnreason/nesy-demonstrations/ and implemented with tnreason in the version 2.0.0.
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B.1 Algorithm 1, 2 and 3 (Tree, Directed Belief and Constraint Propagation)

The three message passing algorithms are implemented as functions in one class ContractionPropagation,
since they share common structure.

1 from tnreason.engine import contract
2 from tnreason.engine import create_from_slice_iterator as create
3

4

5 class ContractionPropagation:
6 """
7 Summary Class for the Tree Belief, Directed Belief and Constraint Propagation

Algorithms↪→
8 """
9 def __init__(self, cores):

10 self.cores = cores
11 self.directions = {send: [receive for receive in cores if
12 set(cores[send].colors) & set(
13 cores[receive].colors) and receive != send]
14 for send in cores}
15 self.messages = {receive: {} for receive in self.cores}
16

17 def trivial_message(self, send, receive):
18 """
19 Prepares trivial message from the send to the receive hyperedge
20 """
21 commonColors = list(set(self.cores[send].colors) &

set(self.cores[receive].colors))↪→
22 shape = [self.cores[send].shape[i]
23 for i, c in enumerate(self.cores[send].colors) if c in commonColors]
24 return create(shape=shape, colors=commonColors, sliceIterator=[(1, {})])
25

26 def calculate_message(self, send, receive):
27 """
28 Contract received messages with hypercore to send new
29 """
30 return contract({send: self.cores[send],
31 **{preSend: self.messages[send][preSend] for preSend in

self.messages[send]↪→
32 if preSend != receive}},
33 openColors=list(set(self.cores[send].colors) &

set(self.cores[receive].colors)))↪→
34

35 def tree_propagation(self):
36 """
37 Implementation of the Directed Belief Propagation Algorithm:
38 Messages are sent starting at the leafs and scheduled if all others received at a

core↪→
39 """
40 schedule = [(send, receive) for send in self.cores for receive in
41 self.directions[send] if len(self.directions[send]) == 1]
42 while len(schedule) > 0:
43 send, receive = schedule.pop()
44 self.messages[receive][send] = self.calculate_message(send, receive)
45 for next in self.directions[receive]:
46 if (not receive in self.messages[next] and
47 all([(otherSendKey in self.messages[receive] or otherSendKey ==

next or↪→
48 receive not in self.directions[otherSendKey]) for
49 otherSendKey in self.directions])):
50 schedule.append((receive, next))
51

52 def directed_propagation(self, edgeDirections):
53 """
54 Implementation of the Directed Belief Propagation Algorithm:
55 Messages are sent in direction of the hypergraph
56 """
57 filteredDirections = {
58 send: [
59 receive for receive in self.directions[send]
60 if (common := set(self.cores[send].colors) &

set(self.cores[receive].colors))↪→
61 and common.issubset(set(edgeDirections[send][1]))
62 and common.issubset(set(edgeDirections[receive][0]))
63 ]
64 for send in self.directions
65 }
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66

67 schedule = [(send, receive) for send in filteredDirections
68 for receive in filteredDirections[send] if

len(edgeDirections[send][0]) == 0]↪→
69

70 while len(schedule) > 0:
71 send, receive = schedule.pop()
72 self.messages[receive][send] = self.calculate_message(send, receive)
73 for x in set(edgeDirections[send][1]) & set(edgeDirections[receive][0]):
74 edgeDirections[receive][0].remove(x)
75 if len(edgeDirections[receive][0]) == 0:
76 schedule = schedule + [(receive, next) for next in

filteredDirections[receive]↪→
77 if (receive, next) not in schedule]
78

79 def constraint_propagation(self, startSendKeys):
80 """
81 Implementation of the Constraint Propagation Algorithm:
82 Messages are resent, when the support of a received message has changed
83 """
84 schedule = [(send, receive) for send in startSendKeys for receive in
85 self.directions[send]]
86 while len(schedule) > 0:
87 send, receive = schedule.pop()
88 message = (self.messages[receive][send].clone() if send in

self.messages[receive]↪→
89 else self.trivial_message(send, receive))
90 cont = self.calculate_message(send, receive)
91

92 messageChanged = False
93 for val, pos in message:
94 if message[pos] != 0 and cont[pos] == 0:
95 message[pos] = - message[pos]
96 messageChanged = True
97 self.messages[receive][send] = message
98

99 for next in self.directions[receive]:
100 if messageChanged and next != receive and (receive, next) not in

schedule:↪→
101 schedule.append((receive, next))

B.1.1 Example 4.4 and 4.6 (Integer Summation in m-adic Representation)

Following the decomposition of m-adic summations into local summations, the function get_sum_tn produces
a corresponding tensor network of basis encodings. We test by coordinate retrieval operations, whether the
summation is performed correctly.

1 from tnreason import engine
2 import math
3

4 from copy import deepcopy
5

6

7 def get_sum_tn(m, d):
8 return {"b_0": engine.create_from_slice_iterator(
9 shape=[m, 2, m, m],

10 colors=[f"Y_{0}", f"Z_{0}", f"X_{0}", f"TX_{0}"],
11 sliceIterator=[(1, {f"Y_{0}": (x + tx) % m, f"Z_{0}": math.floor((x + tx) / m),
12 f"X_{0}": x, f"TX_{0}": tx}) for x in range(m) for tx in

range(m)]),↪→
13 **{f"middleBlock{k}": engine.create_from_slice_iterator(
14 shape=[m, 2, m, m, 2],
15 colors=[f"Y_{k}", f"Z_{k}", f"X_{k}", f"TX_{k}", f"Z_{k - 1}"],
16 sliceIterator=[
17 (1, {f"Y_{k}": (x + tx + z0) % m,
18 f"Z_{k}": math.floor((x + tx + z0) / m),
19 f"X_{k}": x, f"TX_{k}": tx, f"fZ_{k - 1}": z0}) for x
20 in range(m) for tx in range(m) for z0 in range(2)]
21 ) for k in range(1, d - 1)},
22 **{f"b_{d - 1}": engine.create_from_slice_iterator(
23 shape=[m, 2, m, m, 2],
24 colors=[f"Y_{d - 1}", f"Y_{d}", f"X_{d - 1}", f"TX_{d - 1}", f"Z_{d - 2}"],
25 sliceIterator=[
26 (1, {f"Y_{d - 1}": (x + tx + z0) % m, f"Y_{d}": math.floor((x + tx + z0)

/ m),↪→
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27 f"X_{d - 1}": x, f"TX_{d - 1}": tx, f"Z_{d - 2}": z0}) for x
28 in range(m) for tx in range(m) for z0 in range(2)]
29 )}}
30

31

32 def encode_digits(num0, num1, m):
33 return {**{f"X_{len(num0) - 1 - i}_eC": engine.create_from_slice_iterator(shape=[m],

colors=[↪→
34 f"X_{len(num0) - 1 - i}"], sliceIterator=[(1, {f"X_{len(num0) - 1 - i}":

int(digit)})]) for↪→
35 i, digit in enumerate(num0)},
36 **{f"TX_{len(num1) - 1 - i}_eC": engine.create_from_slice_iterator(shape=[m],

colors=[↪→
37 f"TX_{len(num1) - 1 - i}"], sliceIterator=[
38 (1, {f"TX_{len(num0) - 1 - i}": int(digit)})]) for i, digit in
39 enumerate(num1)}}
40

41

42 assert 1 == encode_digits("0001", "0000", 10)["X_0_eC"][{"X_0": 1}]
43 assert 0 == encode_digits("0001", "0000", 10)["X_0_eC"][{"X_0": 0}]
44

45 ## Example: 08+12=020 in basis 10
46 m = 10
47 catorder = 2
48 assert 1 == int(engine.contract(coreDict={**get_sum_tn(m, catorder),

**encode_digits("08", "12", m)},↪→
49 openColors=[f"Y_{k}" for k in range(catorder + 1)])[
50 {"Y_2": 0, "Y_1": 2, "Y_0": 0}])
51 assert 1 == int(engine.contract(coreDict={**get_sum_tn(m, catorder),

**encode_digits("00", "00", m)},↪→
52 openColors=[])[:])
53 ## Example: 10+11=101 in basis 2
54 m = 2
55 catorder = 2
56 assert 1 == int(engine.contract(coreDict={**get_sum_tn(m, catorder),

**encode_digits("10", "11", m)},↪→
57 openColors=[f"Y_{k}" for k in range(catorder + 1)])[
58 {"Y_2": 1, "Y_1": 0, "Y_0": 1}])
59 assert 1 == int(engine.contract(coreDict={**get_sum_tn(m, catorder),

**encode_digits("10", "11", m)},↪→
60 openColors=[])[:])
61

62 from demonstrations.comp_act_nets.algorithms import propagation as cp
63

64 edgeDirections = {
65 **{f"X_{i}_eC": [[], [f"X_{i}"]] for i in range(catorder)},
66 **{f"TX_{i}_eC": [[], [f"TX_{i}"]] for i in range(catorder)},
67 "b_0": [["X_0", "TX_0"], ["Y_0", "Z_0"]],
68 **{f"b__{i}": [[f"X_{i}", f"TX_{i}", f"Z_{i - 1}"], [f"Y_{i}", f"Z_{i}"]]
69 for i in range(1, catorder - 1)},
70 f"b_{catorder - 1}": [[f"X_{catorder - 1}", f"TX_{catorder - 1}", f"Z_{catorder -

2}"],↪→
71 [f"Y_{catorder - 1}", f"Y_{catorder}"]],
72 }
73

74 propagator = cp.ContractionPropagation({**get_sum_tn(m, catorder), **encode_digits("01",
"01", m)})↪→

75 propagator.directed_propagation(edgeDirections=deepcopy(edgeDirections))
76

77 ## Check whether the message arrived at b_1 states that the carry bit is 1
78 assert propagator.messages["b_1"]["b_0"][{"Z_0": 0}] == 0
79 assert propagator.messages["b_1"]["b_0"][{"Z_0": 1}] == 1
80

81 propagator = cp.ContractionPropagation({**get_sum_tn(m, catorder),
82 **encode_digits("10", "10", m)})
83 propagator.directed_propagation(edgeDirections=deepcopy(edgeDirections))
84

85 ## Check whether the message arrived at b_1 states that the carry bit is 1
86 assert propagator.messages["b_1"]["b_0"][{"Z_0": 0}] == 1
87 assert propagator.messages["b_1"]["b_0"][{"Z_0": 1}] == 0

B.1.2 Example 3.12 and 3.23 (Student Markov network)

We here implement the Markov network on the hypergraph of Example 3.12, with tensors having independent
random coordinates drawn from the uniform distribution on [0, 1]. We test in a final assert statement, whether
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the messages resulting from Algorithm 1 in a tree implementation contract to the marginal distribution, which we
directly compute for comparison.

1 from tnreason.engine import create_random_core, contract
2

3 studentTensorNetwork = {
4 "t0": create_random_core(name="t0", colors=["G", "D", "I"], shape=[6, 3, 2]),
5 "t1": create_random_core(name="t1", colors=["L", "G"], shape=[2, 6]),
6 "t2": create_random_core(name="t2", colors=["I", "S"], shape=[2, 10]),
7 }
8

9 ## Execute the contraction propagation algorithm in the tree-based implementation
10

11 from demonstrations.comp_act_nets.algorithms import propagation as cp
12

13 propagator = cp.ContractionPropagation(studentTensorNetwork)
14 propagator.tree_propagation()
15

16 ## Test on the marginals of the variables "L","G" (core "t1")
17

18 testContraction = contract(studentTensorNetwork, openColors=["L", "G"])
19 propContraction = contract({"mes_t0_t1": propagator.messages["t1"]["t0"],
20 "t1": studentTensorNetwork["t1"]}, openColors=["L",

"G"])↪→
21

22 tolerance = 1e-6
23 for posDict in [{"L": 0, "G": 1}, {"L": 1, "G": 5}]:
24 assert abs(testContraction[posDict] - propContraction[posDict]) < tolerance

B.1.3 Example 5.8, 5.12 and 5.16 (Sudoku Game)

We implement the n2 × n2 Sudoku with the start assignment given in Example 5.8 and apply the Constraint
Propagation Algorithm 3 to deduce the full assignment. We then test whether the correct board assignment
(given in Example 5.16) has been found.

1 from tnreason.engine import contract
2 from tnreason.engine import create_from_slice_iterator as create
3 import numpy as np
4

5

6 def create_sudoku_rule_tensor_network(n):
7 """
8 Creates a tensor network of n^2 \tau^k matrices to each Sudoku constraint
9 """

10 rulesSpecDict = {
11 ## Column Constraints
12 **{f"I_:_:_{c0}_{c1}_{i}": [f"X_{r0}_{r1}_{c0}_{c1}_{i}" for r0 in range(n) for

r1 in↪→
13 range(n)] for c0 in range(n) for c1 in range(n)
14 for i in range(n ** 2)},
15 ## Row Constraints
16 **{f"I_{r0}_{r1}_:_:_{i}": [f"X_{r0}_{r1}_{c0}_{c1}_{i}" for c0 in range(n) for

c1 in↪→
17 range(n)] for r0 in range(n) for r1 in range(n)
18 for i in range(n ** 2)},
19 ## Squares Constraints
20 **{f"I_{r0}_:_{c0}_:_{i}": [f"X_{r0}_{r1}_{c0}_{c1}_{i}" for r1 in range(n) for

c1 in↪→
21 range(n)] for r0 in range(n) for c0 in range(n)
22 for i in range(n ** 2)},
23 ## Position Constraints
24 **{f"I_{r0}_{r1}_{c0}_{c1}_:": [f"X_{r0}_{r1}_{c0}_{c1}_{i}" for i in range(n **

2)]↪→
25 for r0 in range(n) for r1 in range(n) for c0 in range(n) for c1 in range(n)}
26 }
27 cores = {}
28 for decomKey in rulesSpecDict:
29 cores.update({
30 decomKey + "_" + atomVar: create(
31 shape=[2, len(rulesSpecDict[decomKey])],
32 colors=[atomVar, decomKey],
33 sliceIterator=[(1, {atomVar: 0}),
34 (-1, {atomVar: 0, decomKey: i}),
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35 (1, {atomVar: 1, decomKey: i})])
36 for i, atomVar in enumerate(rulesSpecDict[decomKey])
37 })
38 return cores
39

40

41 def encode_trivial_extended_evidence(E, n):
42 """
43 Prepares e_1 basis vectors for known variables and trivial vectors for others
44 """
45 return {**{f"{r0}_{r1}_{c0}_{c1}_{i}_eC":
46 create(shape=[2], colors=[f"X_{r0}_{r1}_{c0}_{c1}_{i}"],
47 sliceIterator=[(1, {f"X_{r0}_{r1}_{c0}_{c1}_{i}": 1})])
48 for r0, r1, c0, c1, i in E},
49 **{f"{r0}_{r1}_{c0}_{c1}_{i}_eC":
50 create(shape=[2], colors=[f"X_{r0}_{r1}_{c0}_{c1}_{i}"],
51 sliceIterator=[(1, {})])
52 for r0 in range(n) for r1 in range(n) for c0 in range(n)
53 for c1 in range(n) for i in range(n ** 2) if (r0, r1, c0, c1, i) not in

E}}↪→
54

55

56 def extract_resulting_evidence(propagator, n):
57 """
58 Returns the evidence given a ContractionPropagation instance
59 """
60 return [(r0, r1, c0, c1, i) for r0 in range(n) for r1 in range(n)
61 for c0 in range(n) for c1 in range(n) for i in range(n ** 2)
62 if contract({
63 "eC": propagator.cores[f"{r0}_{r1}_{c0}_{c1}_{i}_eC"],
64 **propagator.messages[f"{r0}_{r1}_{c0}_{c1}_{i}_eC"]},
65 openColors=[f"X_{r0}_{r1}_{c0}_{c1}_{i}"])[{f"X_{r0}_{r1}_{c0}_{c1}_{i}": 0}]

== 0]↪→
66

67

68 def tuples_to_array(evidence, n=2):
69 """
70 Arranges the variables in an array
71 """
72 array = np.zeros(shape=(n ** 2, n ** 2))
73 for (r0, r1, c0, c1, i) in evidence:
74 array[r0 * n + r1, c0 * n + c1] = i + 1
75 return array
76

77

78 from demonstrations.comp_act_nets.algorithms import propagation as cp
79

80 n = 2
81 evidence = [(0, 0, 0, 0, 0), (0, 0, 1, 0, 2), (0, 0, 1, 1, 1),
82 (0, 1, 0, 1, 1), (1, 0, 1, 0, 3), (1, 1, 0, 0, 3),
83 (1, 1, 0, 1, 2)]
84 propagator = cp.ContractionPropagation(
85 cores={**create_sudoku_rule_tensor_network(n=n),
86 **encode_trivial_extended_evidence(evidence, n=n)})
87 propagator.constraint_propagation([f"{r0}_{r1}_{c0}_{c1}_{i}_eC" for (r0, r1, c0, c1, i)

in evidence])↪→
88 solutionArray = tuples_to_array(extract_resulting_evidence(propagator, n=2))
89 assert np.all(solutionArray == np.array([[1, 4, 3, 2], [3, 2, 1, 4], [2, 1, 4, 3], [4, 3,

2, 1]]))↪→

B.2 Algorithm 4 (Alternating Moment Matching)

We implement the Alternating Moment Matching algorithm, which estimates the parameters of Hybrid Logic
Networks, as a class MomentMatcher.

1 from tnreason.engine import contract
2 from tnreason.engine import create_from_slice_iterator as create
3 import math
4

5

6 class MomentMatcher:
7 def __init__(self, cores, hCols, satRates):
8 self.cores = cores
9 self.hCols = hCols

10 self.satRates = satRates
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11

12 self.hardParams = {hCol: int(satRates[hCol]) for hCol in self.hCols if
13 satRates[hCol] in [0, 1]}
14 self.softParams = {hCol: 0 for hCol in self.hCols if hCol not in self.hardParams}
15

16 def update_canonical_parameter(self, uCol):
17 con = contract({**self.cores,
18 **{hCol: create(shape=[2], colors=[hCol],
19 sliceIterator=[(1, {hCol:

self.hardParams[hCol]})])↪→
20 for hCol in self.hardParams},
21 **{hCol: create(shape=[2], colors=[hCol],
22 sliceIterator=[(1, {hCol: 0}),
23 (math.exp(self.softParams[hCol]),

{hCol: 1})])↪→
24 for hCol in self.softParams if hCol != uCol}
25 }, openColors=[uCol])
26 self.softParams[uCol] = math.log(self.satRates[uCol] * con[{uCol: 0}] / (
27 (1 - self.satRates[uCol]) * con[{uCol: 1}]))
28

29 def alternate(self, iterations=1):
30 for _ in range(iterations):
31 for hCol in self.softParams:
32 self.update_canonical_parameter(hCol)

Let us now show the usage of the algorithm on the toy accounting model presented in Example 6.2. To this
end we train the parameters based on a the dataset described in Example 6.3, and assert that the learned
parameters are close to the true parameters. Note that a single iterations suffices for convergence in this simple
example.

1 import pandas as pd
2

3 samples = pd.DataFrame({
4 "A1": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
5 "A2": [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
6 "F": [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
7 })
8

9 formulaExpressions = {
10 "(xor_A1_A2)": ["xor", "A1", "A2", 0],
11 "(imp_F_A1)": ["imp", "F", "A1", 0],
12 }
13

14 from tnreason.engine import normalize
15 from tnreason.application import data_to_cores as dtc
16 from tnreason.application import create_cores_to_expressionsDict as cte
17 from demonstrations.comp_act_nets.algorithms import moment_matching as mm
18

19 satRates = {
20 formulaKey + "_cV":
21 normalize({**dtc.create_data_cores(samples),
22 **cte({formulaKey: formulaExpressions[formulaKey]})},
23 outColors=[formulaKey + "_cV"], inColors=[])[{formulaKey + "_cV": 1}]
24 for formulaKey in formulaExpressions
25 }
26

27 matcher = mm.MomentMatcher(cores=cte(formulaExpressions),
28 satRates=satRates, hCols=["(xor_A1_A2)_cV", "(imp_F_A1)_cV"])
29 matcher.alternate(iterations=1)
30 assert abs(matcher.softParams["(imp_F_A1)_cV"] - 1.09861228866811) < 1e-8
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