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Analysis of a Cahn–Hilliard model for viscoelastoplastic
two-phase flows

Fan Cheng, Robert Lasarzik, Marita Thomas

Abstract

We study a Cahn–Hilliard two-phase model describing the flow of two viscoelastoplastic flu-
ids, which arises in geodynamics. A phase-field variable indicates the proportional distribution of
the two fluids in the mixture. The motion of the incompressible mixture is described in terms of
the volume-averaged velocity. Besides a volume-averaged Stokes-like viscous contribution, the
Cauchy stress tensor in the momentum balance contains an additional volume-averaged internal
stress tensor to model the elastoplastic behavior. This internal stress has its own evolution law
featuring the nonlinear Zaremba-Jaumann time-derivative and the subdifferential of a non-smooth
plastic potential. The well-posedness of this system is studied in two cases: Based on a regular-
ization by stress-diffusion we obtain the existence of Leray-Hopf-type weak solutions. In order to
deduce existence results also in the absence of the regularization, we introduce the concept of
dissipative solutions, which is based on an estimate for the relative energy. We discuss general
properties of dissipative solutions and show their existence for the viscoelastoplastic two-phase
model in the setting of stress-diffusion. By a limit passage in the relative energy inequality for
vanishing stress-diffusion, we conclude an existence result for the non-regularized model.

1 Introduction

The movement of tectonic plates driven by convective processes within the Earth’s mantle is a gen-
erally recognized theory which explains many geological phenomena, e.g., earthquakes, volcanoes,
formation of mountains, ocean trenches, mid-ocean ridges, and island arcs, see [41, 37, 25, 27] for
details. These tectonic plates form the Earth’s lithosphere, consisting of the Earth’s crust and the up-
permost part of its mantle. On geological time scales of millions of years, the moving and mechanically
deforming plates in the mantle are treated as non-Newtonian viscoelastoplastic fluids.

In this paper, we consider a system of equations which describes a two-phase flow of an incompress-
ible mixture of two viscoelastoplastic fluids arising from geodynamics. In a time interval (0, T ), where
T ∈ (0,∞], and a bounded C2-domain Ω ⊆ R3, the system is given as:

∂t(ρv) + div(v ⊗ (ρv + J))− div(T) = f − εdiv(∇ϕ⊗∇ϕ) in Ω× (0, T ), (1.1a)

div(v) = 0 in Ω× (0, T ), (1.1b)

T = η(ϕ)S + 2ν(ϕ)(∇v)sym − pI in Ω× (0, T ), (1.1c)
O
S + ∂P (ϕ;S)− γ∆S 3 η(ϕ)(∇v)sym in Ω× (0, T ), (1.1d)

∂tϕ+ v · ∇ϕ = ∆µ in Ω× (0, T ), (1.1e)

µ =
1

ε
W ′(ϕ)− ε∆ϕ, in Ω× (0, T ). (1.1f)
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The system is complemented by the following boundary and initial conditions

v|∂Ω = 0 on ∂Ω× (0, T ), (1.1g)

γ~n · ∇S|∂Ω = 0 on ∂Ω× (0, T ), (1.1h)

~n · ∇ϕ|∂Ω = ~n · ∇µ|∂Ω = 0 on ∂Ω× (0, T ), (1.1i)

(v, S, ϕ)|t=0 = (v0, S0, ϕ0) in Ω, (1.1j)

where ~n denotes the outward unit normal vector of Ω.

Equation (1.1a) describes the momentum balance for fluids, phrased in terms of the volume-averaged
Eulerian velocity field v : [0, T ] × Ω → R3, the mass density ρ : [0, T ] × Ω → R, the volume-
averaged mass flux J : [0, T ] × Ω → R3 given as J := −ρ2−ρ1

2
∇µ which occurs due to the

unmatched mass density, the Cauchy stress tensor T : [0, T ] × Ω → R3×3, an external loading
f : [0, T ] × Ω → R3, and the Korteweg stress representing the capillarity stress, which is modeled
as ε∇ϕ⊗∇ϕ with a parameter ε > 0. Equation (1.1b) states the incompressibility condition. Equa-
tion (1.1c) provides the Cauchy stress tensor for viscoelastoplastic fluids, consisting of two parts: a
radial part, given by the pressure p : [0, T ] × Ω → R, and a deviatoric part, which is in the form
of a symmetric matrix with zero trace including the viscous part given as 2ν(ϕ)(∇v)sym and an extra
contribution by the internal S given as η(ϕ)S where coefficients ν and η are functions of ϕ arising
from the viscosity and the elasticity of the fluids. The strain rate (∇v)sym = 1

2
(∇v +∇v>), which is

the symmetric part of the velocity gradient, describes the relative motion between the particles.

Equation (1.1d) characterizes the evolution law of the volume-averaged internal stress S : [0, T ] ×
Ω→ R3×3

sym,Tr, which takes the form of a Maxwell-type stress-strain relation. Moreover, the rate of the

internal stress is controlled by the Zaremba-Jaumann rate
O
S defined as

O
S := ∂tS + v · ∇S + S(∇v)skw − (∇v)skwS, (1.2)

which is a notion of time derivative widely used in geophysical models, c.f., [37, 25, 27]. Here, the
spin tensor (∇v)skw = 1

2
(∇v − ∇v>) denotes the skew-symmetric part of the velocity gradient. To

model plastic effects, an additional term ∂P (ϕ;S) is incorporated into equation (1.1d). An example
of the plastic potential, which is used in geodynamics for the plastic deformation in lithospheric plates,
is given as

P (ϕ;S) := G(ϕ)P1(S) + (1−G(ϕ))P2(S). (1.3)

Here,

Pi(S) :=

{
ai
2
|S|2 + bi|S| if |S| ≤ σyield,i,

∞ if |S| > σyield,i,
(1.4)

where ai > 0, bi > 0 are constants of each pure phase i and σyield,i is the yield stress of each
pure phase i, i = 1, 2, which determines the onset of plastic flow behavior see [37, 25]. Moreover,
∂P (ϕ;S) denotes the subdifferential of the convex potential P (ϕ; ·) in S. It is defined by

∂P (ϕ;S) :=
{
ξ ∈ R3×3

sym,Tr : 〈ξ, S̃ − S〉R3×3 + P (ϕ;S) ≤ P (ϕ; S̃)
}
. (1.5)

In addition, the plastic potential is given as

P(ϕ;S) :=

∫
Ω

P (ϕ;S) dx . (1.6)
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The Cahn-Hilliard type equation (1.1e)- (1.1f) describes the evolution law of the phase-field variable
ϕ : [0, T ]× Ω → R which indicates the presence of each of the two phases. Hence, in the physical
sense, we expect, for (t, x) ∈ [0, T ]× Ω

ϕ(t, x)


= −1, pure fluid 1,

∈ (−1, 1), mixture of fluid 1 and fluid 2,

= 1, pure fluid 2.

(1.7)

Moreover, in equation (1.1e)-(1.1f), µ : [0, T ] × Ω → R is the associated chemical potential, W :
R → [0,∞] is a singular potential, and ε > 0 is a small parameter related to the thickness of the
interface.

In particular, the mass density is modeled as

ρ(ϕ) :=
1− ϕ

2
ρ1 +

1 + ϕ

2
ρ2, (1.8)

where ρi > 0 is the constant mass density of each pure fluid i, i = 1, 2. Hence, equation (1.1e)
provides the additional continuity equation

∂tρ+ div(ρv + J) = 0. (1.9)

To have an understanding of this system, let us first define the total energy of the system at time
t ∈ [0, T ], i.e., the sum of the kinetic energy depending on ρ and v, the elastic energy depending on
S and the phase-field energy depending on ϕ:

E(t) := E(v(t), S(t), ϕ(t)) :=

∫
Ω

ρ(ϕ)

2
|v(x, t)|2 +

1

2
|S(x, t)|2 +

1

2
|∇ϕ|2 +W (ϕ) dx . (1.10)

Assume for now that we have a smooth solution (v, S, ϕ, µ) of system (1.1). Then we multiply (1.1a)
by v, (1.1d) by S, (1.1e) by µ and (1.1f) by ∂tϕ, integrate over space and time, and perform an
integration by parts, so that we obtain the following energy-dissipation balance:

E(t)+

∫ t

0

∫
Ω

2ν(ϕ)|(∇v)sym|2 +γ|∇S|2 +ξ : S+ |∇µ|2 dx dτ = E(0)+

∫ t

0

〈f, v〉H1 dτ (1.11)

for all t ∈ [0, T ] and where ξ ∈ ∂P (ϕ;S). From this energy-dissipation balance, we can see that
the total energy of the system is dissipated by four parts: a Newtonian viscosity, a quadratic stress
diffusion, dissipation due the plastic deformation stemming from the non-smooth potential P and a
quadratic term due to phase separation involving the chemical potential µ.

The mathematical challenges associated with analysis of this system stem from the following: First
of all, the momentum balance (1.1a) comes with all the difficulties arising from the three-dimensional
Navier–Stokes equations. Based on the large body of analytical results on Navier–Stokes equations,
cf. e.g. [17, 35, 24, 43, 22, 15, 39, 13, 38], we cannot expect a better class of solutions for the velocity
field than Leray–Hopf solutions, which were introduced in [33, 28].

Moreover, the stress evolution equation (1.1d) includes a nonlinearity in the Zaremba-Jaumann deriva-
tive (1.2) of S and a multi-valued derivative due to the non-smoothness of the dissipation potential P .
[36] studies the global existence of solutions based on the Zaremba-Jaumann derivative together with
a smooth dissipation potential such that ∂P (S) = aS. In addition, the stress diffusion −γ∆S with
γ > 0 is introduced as a regularization for analytical reasons as in [19]. However, in order to get closer
to models used in geoscientific applications, e.g. [37], we aim to avoid it in our analysis.
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Furthermore, this model contains more than one phase, which also gives us the difficulties arising
from the coupled Cahn–Hilliard–Navier–Stokes system. We refer to [20, 4] for the study of Cahn–
Hilliard equations and to [1, 16, 3, 2] for the study of the Cahn–Hilliard–Navier–Stokes system. In
contrast to the above-mentioned works, we additionally face the difficulties of the multi-valued stress
evolution (1.1d). A single-phase system of the momentum and stress equations has already been
studied in [19] and [18].

Our goal is to study the existence results for system (1.1) not only in the case γ > 0 but, more im-
portantly, also in the case γ = 0. This will be achieved with the help of an alternative concept of
solution: the dissipative solution. The idea of dissipative solutions is that the solutions do not satisfy
the equation in the distributional sense anymore, but, instead, one controls the difference between the
solutions and smooth test functions satisfying the equations in terms of the relative energy and the
relative dissipation. The concept of dissipative solutions was introduced by P.L. Lions [35, Sec. 4.4] in
the context of the incompressible Euler equations and his motivation stemmed from the consideration
of the singular limit in the Boltzmann equation and identification of its limits [34]. Since then, dissipa-
tive solutions have been applied in different contexts, for instance to singular limits in the Boltzman
equations [40], incompressible viscous electro-magneto-hydrodynamics [6], equations of viscoelastic
diffusion in polymers [44], the Ericksen–Leslie equations [30, 31], or finite-element approximation of
nematic electrolytes [7]. Moreover, it is also applied to isothermal damped Hamiltonian systems in
[32] and to a viscoelastoplastic single-phase models in [18], where this notion of solutions is called
energy-variational solution. The term dissipative solutions is also used for other solution concepts. On
the one hand, it is used in [23] in the context of the Navier-Stokes-Fourier system, where it basically
denotes a weak solution. On the other hand the term dissipative solution is also used for different
measure-valued solution frameworks, see for instance [14, 10]. These concepts are different from the
dissipative solutions in [35] and we rather refer with this term to the original definition by Lions.

2 General notations, preliminaries and assumptions

In this section, we fix the notation that will be used throughout this work and recall some useful results
that will be applied for our analysis.

2.1 General notations

By default, we use Einstein’s summation convention for vectors and tensors. Let a = (aj)
3
j=1, b =

(bj)
3
j=1 ∈ R3 be two vectors, then their inner product is written as a · b := ajbj , and their tensor

product is written as a ⊗ b = (ajbk)
3
j,k=1. Similarly, let A = (Ajk)

3
j,k=1, B = (Bjk)

3
j,k=1 ∈ R3×3

be two second-order tensors, the tensor inner product is written as A : B = AjkBjk. Besides, for
two third-order tensors C = (Cjkl)

3
j,k,l=1, D = (Djkl)

3
j,k,l=1 ∈ R3×3×3, we denote the inner product

by C :· D = CjklDjkl. The tensor product between a second-order tensor A ∈ R3×3 and a vector
a ∈ R3 gives a third-order tensor and it is defined as (A ⊗ a)jkl = (Ajkal)

3
j,k,l=1. We write the

transpose and trace of a matrix A ∈ R3×3 in the usual way that A> and TrA. Moreover, we set the
space of the symmetric and trace-free second order tensors as

R3×3
sym,Tr :=

{
A ∈ R3×3 : A = A>, TrA = 0

}
. (2.1)

The point (x, t) ∈ Ω×(0, T ) is defined by the spatial variable x ∈ Ω and the time variable t ∈ (0, T ).
Thus, we write the partial time derivative and partial spatial derivative of a (sufficiently regular) function
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u : Ω× (0, t)→ R as ∂tu and ∂xiu, where i = 1, 2, 3. Moreover,∇u and ∆u denote the gradient
and Laplace of u with respect to spatial variable. The symmetrized and skew-symmetrized part of∇v
of a vector field v : Ω→ R3 is given by

(∇v)sym :=
1

2

(
∇v +∇v>

)
and (∇v)skw :=

1

2

(
∇v −∇v>

)
. (2.2)

We also write div(v) = ∂xivi as the divergence of vector field v. Similarly, for a second-order tensor
S, the divergence is defined by div(S) = ∂xkSjk.

Function spaces. Let X be a Banach space with norm ‖·‖X and dual space X ′. The same notation
is used also for X3 and X3×3. When the dimension is clear, we simply write X instead of X3 or
X3×3. We use 〈x′, x〉X to denote the duality pairing of x′ ∈ X ′ and x ∈ X .

The space C∞(Ω) denotes the class of smooth functions in Ω and the space C∞0 (Ω) denotes the
class of smooth functions with compact support in Ω. The Lebesgue spaces and Sobolev spaces
are denoted as Lp(Ω) and W k,p(Ω) for p ∈ [1,∞] and k ∈ N, in particular, for p = 2, we write
W k,2(Ω) = Hk(Ω). Moreover, we writeH1

0 (Ω) as the space of functions inH1(Ω) whose boundary
value is zero in the trace sense and H−1(Ω) := (H1

0 (Ω))′ is the dual space.

Now let (0, T ) ⊆ R be an interval, the space C0(0, T ;X) consists of the class of continuous func-
tions in time with values in the Banach space X . For p ∈ [1,∞], the corresponding Lebesgue-
Bochner spaces are denoted by Lp(0, T ;X). Moreover, we write W 1,p(I;X):=
{u ∈ Lp(0, T ;X) : ∂tu ∈ Lp(0, T ;X)} and H1(0, T ;X) = W 1,2(0, T ;X). The local Lebesgue-
Bochner spaces Lploc(0, T ; Ω) and H1

loc(0, T ; Ω) consist of the class of functions in Lp(J ;X) and
H1(J ;X) for every compact subinterval J ⊆ (0, T ) respectively. Besides, we will simply write
u(t) := u(·, t) for u defined on Ω× I .

For any u ∈ L1(Ω)

uΩ :=
1

|Ω|

∫
Ω

u dx (2.3)

is the mean value of u in Ω.

Solenoidal vector fields and symmetric deviatoric fields. We introduce function spaces for solenoidal
(divergence-free) vector fields and symmetric, deviatoric (trace-free) fields. The corresponding classes
of smooth functions on Ω are given by

C∞0,div(Ω) :=
{
ϕ ∈ C∞0 (Ω)3 : div(ϕ) = 0 in Ω

}
, (2.4a)

C∞sym,Tr(Ω̄) :=
{
ψ ∈ C∞(Ω̄)3×3 : ψ = ψ>,Tr(ψ) = 0 in Ω

}
. (2.4b)

We further write the time-dependent solenoidal vector fields and symmetric, deviatoric fields as

C∞0,div(Ω× I) :=
{

Φ ∈ C∞0 (Ω× I)3 : div(Φ) = 0 in Ω× I
}
, (2.4c)

C∞0,sym,Tr(Ω× I) :=
{

Ψ ∈ C∞0 (Ω× I)3×3 : Ψ = Ψ>,Tr(Ψ) = 0 in Ω× I
}
, (2.4d)

where I ⊆ [0,∞) is an interval. The corresponding Lebesgue space of space-integrable functions
on Ω are defined by

L2
div(Ω) :=

{
v ∈ L2(Ω)3 : div(v) = 0 in Ω

}
, (2.4e)
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L2
sym,Tr(Ω) :=

{
S ∈ L2(Ω)3×3 : S = S>,Tr(S) = 0 in Ω

}
. (2.4f)

The Sobolev spaces obtained as the closure of C∞0,div(Ω) and C∞0,sym,Tr(Ω) with respect to the
H1(Ω)-norm are denoted by

H1
0,div(Ω) :=

{
v ∈ H1

0 (Ω)3 : div(v) = 0 in Ω
}
, (2.4g)

H1
sym,Tr(Ω) :=

{
S ∈ H1(Ω)3×3 : S = S>,Tr(S) = 0 in Ω

}
. (2.4h)

Notice that all the boundary conditions are identified in the trace sense.

2.2 General assumptions and further notations

In the following, we collect and discuss the mathematical assumptions on the domain, the given data,
and the material parameters.

Assumption 2.1 (on the domain). We assume that Ω ⊆ R3 is a bounded domain with C2-boundary
∂Ω and write ~n as the outward unit normal vector.

Also in view of (1.10), we make the following hypothesis for the non-smooth dissipation potential P
in (1.1d):

Assumption 2.2 (on the plastic potential). For the plastic potential

P : L2(Ω)× L2
sym,Tr(Ω)→ [0,∞]

(ϕ;S) 7→
∫

Ω

P (x, ϕ(x), S(x)) dx ,
(2.5)

we make the following assumptions: The density P : Ω × R × R3×3
sym,Tr → [0,∞] is proper and

measurable with P (x, ϕ, 0) = 0 for all x ∈ Ω and ϕ ∈ R. Moreover,

� for all x ∈ Ω, the mapping (y, z) 7→ P (x, y, z) is lower semicontinuous,

� for all (x, y) ∈ Ω× R, the mapping z 7→ P (x, y, z) is convex,

� for all (x, z) ∈ Ω× R3×3
sym,Tr, the mapping y 7→ P (x, y, z) is continuous.

Besides, the convex partial subdifferential of P(ϕ; ·) at point S is given by

∂P(ϕ;S) :=
{
ξ ∈ (L2

sym,Tr(Ω))′ : 〈ξ, S̃ − S〉L2(Ω) + P(ϕ;S)

≤ P(ϕ; S̃) for all S̃ ∈ L2
sym,Tr(Ω)

}
.

(2.6)

Notice that, by definition, ∂P(ϕ;S) = ∅ if P(ϕ;S) =∞.

Furthermore, we make the following hypotheses for the initial data and the external loading:

Assumption 2.3 (on the given data). Assume that v0 ∈ L2
div(Ω), S0 ∈ L2

sym,Tr(Ω) and f ∈
L2

loc([0, T );H−1(Ω)3). Moreover, assume that ϕ0 ∈ H1(Ω) with |ϕ0| ≤ 1 almost everywhere
in Ω and

1

|Ω|

∫
Ω

ϕ0 dx ∈ (−1, 1).
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In order to guarantee the existence of weak solutions, we make the following assumptions on the coef-
ficients and the singular potential. The idea of these assumptions is inspired directly by [2, Assumption
3.1] and [4, Assumption 1.1].

Assumption 2.4 (on the material parameters). The dependence of the material parameters on the
composition of the mixture, i.e., on ϕ is assumed to be as follows:
(1) The dependence of the mass density ρ on the phase-field variable ϕ is given by

ρ(ϕ) =
ρ1 + ρ2

2
+
ρ2 − ρ1

2
ϕ (2.7)

where the constant ρi > 0 is the mass density of fluid i, i = 1, 2.
(2) For the viscosity parameter ν and the elastic modulus η, we assume that ν ∈ C0(R), η ∈ C1(R)
and

0 < ν1 ≤ ν(ϕ) ≤ ν2 0 ≤ η1 ≤ η(ϕ) ≤ η2, and |η′(ϕ)| ≤ C for all ϕ ∈ R (2.8)

for some positive constants C, η1, η2, ν1, ν2. Herein, the constants ηi, νi can be viewed as the con-
stants associated with the pure fluid i, i = 1, 2.

Assumption 2.5 (on the singular potential). For the singular potential W , we assume that W ∈
C([−1, 1]) ∩ C3(−1, 1) such that

lim
ϕ→−1

W ′(ϕ) = −∞, lim
ϕ→1

W ′(ϕ) =∞, W ′′(ϕ) ≥ −κ for some κ ≥ 0. (2.9)

Moreover, we extend W (ϕ) to +∞ for ϕ ∈ R\[−1, 1]. Without loss of generality, we also assume
that W (ϕ) ≥ 0 for all ϕ ∈ [−1, 1].

Remark 2.6. (1) As an example for such a singular potential, one can consider

W (ϕ) =
1

2
((1 + ϕ) ln(1 + ϕ) + (1− ϕ) ln(1− ϕ))− λ

2
ϕ2, ϕ ∈ [−1, 1],

for fixed λ ≥ 0.
(2) Since we will show that a solution ϕ takes values in (−1, 1), we actually only need the functions
ν, η to be defined on this interval and then extend them outside of this interval in a sufficiently smooth
way by constants. So, by the assumptions of continuity and continuous differentiability, respectively,
the bounds (2.8) are natural.

Energy functionals. We define the kinetic energy, the elastic energy and the phase-field energy as
follows:

Ekin : L∞(Ω)× L2
div(Ω)→ [0,∞], (ϕ, v) 7→

∫
Ω

ρ(ϕ)
|v|2

2
dx , (2.10a)

Eel : L2
sym,Tr(Ω)→ [0,∞], S 7→

∫
Ω

|S|2

2
dx , (2.10b)

Epf : H1(Ω)→ [0,∞], ϕ 7→
∫

Ω

ε
|∇ϕ|2

2
+ ε−1W (ϕ) dx . (2.10c)

Then, the total energy of this system is given by

Etot(v, S, ϕ) := Ekin(ϕ, v) + Eel(S) + Epf(ϕ). (2.10d)
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Dissipation functionals: We define the viscous Stokes-type dissipation, the quadratic stress diffu-
sion, and the quadratic diffusion of the chemical potential according to the Cahn–Hilliard equation as
follows:

Ds : L1(Ω)×H1
0,div(Ω)→ [0,∞], (ϕ, v) 7→

∫
Ω

2ν(ϕ)|(∇v)sym|2 dx , (2.11a)

Dch : H1(Ω)→ [0,∞], µ 7→
∫

Ω

|∇µ|2 dx , (2.11b)

Dsd,γ : H1
sym,Tr(Ω)→ [0,∞], S 7→

∫
Ω

γ|∇S|2 dx . (2.11c)

Then, the sum of Stokes-type dissipation and Cahn–Hilliard dissipation and the total dissipation po-
tential are given by

Dchs(v, ϕ, µ) := Ds(ϕ, v) +Dch(µ), (2.11d)

Dtot(v, S, ϕ, µ) := Dchs(v, ϕ, µ) +Dsd,γ(S) + P(ϕ;S). (2.11e)

Note that (2.11e) also involves the plastic potential P , which is specified in more details in (2.5).

2.3 Reformulation of system (1.1)

Now, we reformulate the Korteweg stress that appears on the right-hand side of (1.1a) with the aid
of (1.1f). Formally, for a smooth solution ϕ, by substituting (1.1f) in (1.1a), we find

−εdiv(∇ϕ⊗∇ϕ) = −ε∆ϕ · ∇ϕ− ε∇

(
|∇ϕ|2

2

)

= µ∇ϕ− ε−1W ′(ϕ)∇ϕ− ε∇

(
|∇ϕ|2

2

)

= µ∇ϕ− ε−1∇(W (ϕ))− ε∇

(
|∇ϕ|2

2

)
.

(2.12)

This allows us to define a new pressure term

g = p+ ε−1W (ϕ) + ε
1

2
|∇ϕ|2 (2.13)

to rewrite (1.1a) as

∂t(ρv) + div((v ⊗ (ρv + J)))− div((η(ϕ)S + 2ν(ϕ)(∇v)sym)) +∇g = µ∇ϕ. (2.14)

Hence, when testing (2.14) with divergence-free vectors, the additional pressure term also vanish.
Notice that the singular potential is not convex. But thanks to the assumption that W ′′ is bounded
from below by −κ with κ > 0 cf. (2.9), we define

Wκ(ϕ) := W (ϕ) +
κ

2
ϕ2. (2.15)

Thanks to the bound W ′′(ϕ) ≥ −κ, we find that W ′′
κ (ϕ) = W ′′(ϕ) + κ ≥ 0, for all ϕ ∈ [−1, 1]

which ensures that Wκ is convex. In particular, it holds that W ′
κ(ϕ) = W ′(ϕ) + κϕ. Using Wκ in

(1.1f), this is equivalent to

µ+
κ

ε
ϕ = ε−1W ′

κ(ϕ)− ε∆ϕ. (2.16)
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Now, we can consider the energy Epf,κ : L2(Ω)→ R with its domain given by

dom(Epf,κ) := {ϕ ∈ H1(Ω) : −1 ≤ ϕ ≤ 1 a.e.}, (2.17a)

Epf,κ(ϕ) :=

{
1
2

∫
Ω
ε|∇ϕ|2 dx+

∫
Ω
ε−1Wκ(ϕ) dx for u ∈ dom(Epf,κ),

+∞ otherwise.
(2.17b)

According to [4, Theorem 4.3], the domain of the subdifferential is given by

dom(∂Epf,κ) =
{
ϕ ∈ H2(Ω) : W ′

κ(ϕ) ∈ L2(Ω),W ′′
κ (ϕ)|∇ϕ|2 ∈ L1(Ω), ~n · ∇ϕ|∂Ω = 0

}
(2.18)

as well as
∂Epf,κ(ϕ) =

{
−ε∆ϕ+ ε−1W ′

κ(ϕ)
}

for all ϕ ∈ dom(∂Epf,κ). (2.19)

In this case, since ∂Epf,κ is single-valued, it coincides with the Gâteaux derivative DEpf,κ(ϕ) =
−ε∆ϕ+ ε−1W ′

κ(ϕ). Additionally, we have the following estimate

‖ϕ‖2
H2 + ‖W ′

κ(ϕ)‖2
L2 +

∫
Ω

W ′′
κ (ϕ)|∇ϕ|2 dx ≤ C

(
‖DEpf,κ(ϕ)‖2

L2 + ‖ϕ‖2
L2 + 1

)
(2.20)

for all ϕ ∈ dom(DEpf,κ) as well as

µ+
κ

ε
ϕ = −ε∆ϕ+ ε−1W ′

κ(ϕ) = DEpf,κ(ϕ) (2.21)

for all ϕ ∈ dom(DEpf,κ). Thus, we have the following relation between the original phase-field energy
Epf from (2.10) and the convexified phase-field energy Epf,κ from (2.17b)

Epf(ϕ) = Epf,κ(ϕ)− κ

2ε
‖ϕ‖2

L2 . (2.22)

Therefore, after this reformulation, system (1.1) can be written in the following formally equivalent form:

∂t(ρv) + div(v ⊗ (ρv + J))− div(T) = f + µ∇ϕ in Ω× (0, T ), (2.23a)

div(v) = 0 in Ω× (0, T ), (2.23b)

T = η(ϕ) + 2ν(ϕ)(∇v)sym − gI in Ω× (0, T ), (2.23c)
O
S + ∂P (ϕ;S)− γ∆S 3 η(ϕ)(∇v)sym in Ω× (0, T ), (2.23d)

∂tϕ+ v · ∇ϕ = ∆µ in Ω× (0, T ), (2.23e)

µ+ κε−1ϕ = −ε∆ϕ+ ε−1W ′
κ(ϕ) in Ω× (0, T ), (2.23f)

v|∂Ω = 0 on ∂Ω× (0, T ), (2.23g)

γ~n · ∇S|∂Ω = 0 on ∂Ω× (0, T ), (2.23h)

~n · ∇ϕ|∂Ω = ~n · ∇µ|∂Ω = 0 on ∂Ω× (0, T ), (2.23i)

(v, S, ϕ)|t=0 = (v0, S0, ϕ0) in Ω. (2.23j)

2.4 Weak solutions of system (1.1) with respect to (2.23) for γ > 0

Observe that the partial subdifferential ∂P(ϕ;S) may be multi-valued for non-smooth potentials P .
By using the definition of the partial subdifferential, we can introduce the variational inequality

〈ξ, S̃ − S〉L2
sym,Tr(Ω) ≤ P(ϕ; S̃)− P(ϕ;S), (2.24)
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that is equivalent to all ξ ∈ ∂P(ϕ;S).

Accordingly, a weak solution of system (2.23) is defined by a weak formulation and an energy estimate
of equation (2.23a)-(2.23c), an evolutionary variational inequality of equation (2.23d), and a weak
formulation and an energy estimate of equation (2.23e)-(2.23f).

Definition 2.7 (Weak solutions for system (2.23)). Let γ > 0. Let the assumptions 2.1-2.4 hold true.
A quadruplet (v, S, ϕ, µ) is called a weak solution of the two-phase system (2.23) if the following
properties are satisfied:
1. The quadruplet (v, S, ϕ, µ) has the following regularity:

v ∈ L∞loc([0, T );L2
div(Ω)) ∩ L2

loc([0, T );H1
0,div(Ω)),

S ∈ L∞loc([0, T );L2
sym,Tr(Ω)) ∩ L2

loc([0, T );H1
sym,Tr(Ω)),

ϕ ∈ L∞loc([0, T );H1(Ω)) ∩ L2
loc([0, T );H2(Ω)),W ′(ϕ) ∈ L2

loc([0, T );L2(Ω)),

µ ∈ L2
loc([0, T );H1(Ω))

2. The quadruplet (v, S, ϕ, µ) satisfies the following weak formulations and energy estimates:
2.1. Weak formulation of the momentum balance:∫ T

0

∫
Ω

−ρv · ∂tΦ− (ρv ⊗ v) : ∇Φ + 2ν(ϕ)(∇v)sym : (∇Φ)sym + η(ϕ)S : (∇Φ)sym dx dt

−
∫ T

0

∫
Ω

(v ⊗ J) : ∇Φ + µ∇ϕ · Φ dx dt =

∫
Ω

ρ0v0 · Φ(·, 0) dx+

∫ T

0

〈f,Φ〉H1 dt

(2.25a)
for all Φ ∈ C∞0,div(Ω× [0, T )), and the partial energy inequality

Ekin(ϕ(t), v(t)) +

∫ t

0

∫
Ω

2ν(ϕ)|(∇v)sym|2 dx ds+

∫ t

0

∫
Ω

η(ϕ)S : ∇v dx ds

≤Ekin(ϕ0, v0) +

∫ t

0

〈f, v〉H1 ds+

∫ t

0

∫
Ω

µ(∇ϕ · v) dx ds ,

(2.25b)

for almost all t ∈ (0, T ).
2.2. The evolutionary variational inequality for the stress

1

2
‖S(t)− S̃(t)‖2

L2 +

∫ t

0

∫
Ω

∂tS̃ : (S − S̃)− v · ∇S : S̃ − (S(∇v)skw − (∇v)skwS) : S̃ dx ds

+

∫ t

0

P(ϕ;S)− P(ϕ; S̃) ds+

∫ t

0

∫
Ω

γ∇S :· ∇(S − S̃)− η(ϕ)(∇v)sym : (S − S̃) dx ds

≤1

2
‖S0 − S̃(0)‖2

L2 (2.25c)

for all S̃ ∈ C∞0,sym,Tr(Ω× [0, T )) ∩ dom(P(ϕ; ·)), and a.e. t ∈ (0, T ).
2.3. Weak formulation of the phase-field evolution law:∫ T

0

∫
Ω

−ϕ · ∂tζ + (v · ∇ϕ)ζ dx dt =

∫
Ω

ϕ0 · ζ(·, 0) dx−
∫ T

0

∫
Ω

∇µ : ∇ζ dx dt (2.25d)

for all ζ ∈ C∞0 ([0, T );C1(Ω̄)) as well as

µ = ε−1W ′(ϕ)− ε∆ϕ (2.25e)
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almost everywhere in Ω× (0, T ), and the partial energy inequality

Epf(ϕ(t)) +

∫ t

0

∫
Ω

|∇µ|2 dx ds+

∫ t

0

∫
Ω

µ(∇ϕ · v) dx ds ≤ Epf(ϕ0), (2.25f)

for almost all t ∈ (0, T ).

Remark 2.8. Notice that the evolutionary variational inequality (2.25c), is defined by testing (2.23d)
with S− S̃, integrating over Ω× (0, t), using (2.24) together with an integration by parts in space and
time.

Further notice that, by choosing S̃ ≡ 0 in (2.25c) and summing with (2.25b) and (2.25f), a weak
solution (v, S, ϕ, µ) satisfies the following total energy-dissipation estimate:

Etot(v(t), S(t), ϕ(t)) +

∫ t

0

Dtot(v, S, ϕ, µ) dτ ≤ Etot(v0, S0, ϕ0) +

∫ t

0

〈f, v〉H1 dτ (2.26)

for almost all t ∈ [0, T ).

3 Dissipative solutions

In this section, we introduce the notion of dissipative solutions for γ ≥ 0 and investigate their relation
to the weak solutions from Definition 2.7 in the case γ > 0.

3.1 General concept of dissipative solutions

The notion of dissipative solutions is based on a relative energy inequality. In order to better explain the
concept, we follow the general approach proposed in [5]. For this, we consider two reflexive Banach
spaces V and Y with dual spaces V′ and Y′ such that Y ⊆ V ⊆ V′ ⊆ Y′ and a general evolutionary
PDE on time interval (0, T ) of the form

∂tUUU(t) + A(UUU(t)) = 000 in Y′ with UUU(0) = UUU0 in V. (3.1a)

Here,A : V→ Y′ denotes a differential operator andUUU0 ∈ V the initial datum. Let E : V→ [0,∞]
and Ψ : Y → [0,∞] be energy functional which is assumed to be twice Gâteaux differentiable and
dissipation functional associated with (3.1a). Furthermore, we introduce a space of test functions T
such that DE(ŨUU(t)),A(ŨUU(t)) ∈ Y for a.e. t ∈ (0, T ) and all ŨUU ∈ T. For any initial value UUU0 ∈ V,
a sufficiently regular solution UUU ∈ V with the property DE(UUU(t)) ∈ Y for all t ∈ [0, T ] of (3.1a)
formally fulfills the energy-dissipation mechanism

E(UUU)
∣∣∣t
0

+

∫ t

0

Ψ(UUU) dτ ≤ 0 (3.1b)

for all t ∈ [0, T ]. This is obtained by testing (3.1a) by DE(UUU(t)) ∈ Y, and it also implies that

Ψ(UUU) := 〈A(UUU),DE(UUU)〉Y. (3.1c)

Moreover, we introduce a so-called regularity weight

K : T→ [0,∞] with K(0) = 0, (3.1d)
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which is to be chosen such that both sides of the relative energy inequality remain finite.

In addition, we define the system operatorA directly following (3.1a) as

A : T→ Y′, A(ŨUU) := ∂tŨUU + A(ŨUU). (3.1e)

We refer to [5] for the full list of assumptions. A major assumption in [5] is that the energy E is convex,
which gives the positivity of the first-order Taylor expansion of the energy functional. Following the
assertions in [5, Prop. 3.6], we define the relative energy R and the relative dissipationW(K) as the
first-order Taylor expansion of the energy E and the term Ψ(UUU) − 〈A(UUU),DE(ŨUU)〉Y + K(ŨUU)E(UUU)
given as

R(UUU |ŨUU) := E(UUU)− E(ŨUU)− 〈DE(ŨUU),UUU − ŨUU〉V (3.1f)

as well as

W(K)(UUU |ŨUU) := Ψ(UUU)− 〈A(UUU),DE(ŨUU)〉Y − 〈A(ŨUU),D2E(ŨUU)(UUU − ŨUU)〉Y
+K(ŨUU)R(UUU |ŨUU) ,

(3.1g)

where we use (3.1c). Therefore, we can formally compute

R(UUU |ŨUU)
∣∣∣t
0

+

∫ t

0

Ψ(UUU) dτ ≤ −
∫ t

0

〈∂tUUU,DE(ŨUU)〉Y + 〈UUU − ŨUU,D2E(ŨUU)∂tŨUU〉Y dτ

=

∫ t

0

〈A(UUU),DE(ŨUU)〉Y + 〈UUU − ŨUU,D2E(ŨUU)A(ŨUU)〉Y dτ

−
∫ t

0

〈D2E(ŨUU)(UUU − ŨUU),A(ŨUU)〉Y dτ

By rearranging terms on both sides and using (3.1e) and (3.1g), we infer

R(UUU |ŨUU)
∣∣∣t
0
+

∫ t

0

W(K)(UUU |ŨUU)+ 〈D2E(ŨUU)(UUU−ŨUU),A(ŨUU)〉Y dτ ≤
∫ t

0

K(ŨUU)R(UUU |ŨUU) dτ . (3.1h)

Applying Gronwall’s inequality provides the relative energy inequality in this general setting as

R(UUU(t)|ŨUU(t)) +

∫ t

0

exp

(∫ t

s

K(ŨUU) dτ

)[
W(K)(UUU |ŨUU)

+ 〈D2E(ŨUU)(UUU − ŨUU),A(ŨUU)〉Y
]

ds ≤ R(UUU0|ŨUU(0))exp

(∫ t

0

K(ŨUU) ds

) (3.1i)

for a.e. t ∈ (0, T ) and smooth test functions ŨUU ∈ T.

Definition 3.1 (Dissipative solutions for general system (3.1a)). A function UUU : (0, T )→ V is called
a dissipative solution for system (3.1a), if UUU satisfies (3.1i) for all sufficiently regular test functions
ŨUU ∈ T and for a.e. t ∈ (0, T ).

3.2 Dissipative solutions for system (2.23)

A key ingredient for the notion of dissipative solutions in [5] is the convexity of the system’s energy
E . This means for our system (2.23) that the total energy should be convex. But note that the kinetic
energy Ekin, from (2.10) as a function of (ϕ, v) is not convex. In order to overcome the non-convexity
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in the kinetic energy Ekin, we use transformation of variables. Expressing the energy in terms of the
mass density ρ and the momentum p with p = ρv instead of mass density ρ and velocity v makes the
kinetic energy convex, i.e.,

Ẽkin(ρ, p) :=

∫
Ω

Ẽkin(ρ, p)dx with Ẽkin(ρ, p) :=


p2

2ρ
if ρ > 0,

0 if ρ = 0 and p = 0,

∞ otherwise.

(3.2)

Accordingly, we also denote the the total energy that depends on the momentum as a variable by
Ẽtot,κ. Using the general definitions of the relative energy (3.1f), we find the following expression for
the relative kinetic energy

R̃kin(ρ, p|ρ̃, p̃) =
1

2

∫
Ω

p2

ρ
− p̃2

ρ̃
− 2p̃

ρ̃
(p− p̃) +

p̃2

ρ̃2
(ρ− ρ̃) dx =

1

2

∫
Ω

ρ

∣∣∣∣pρ − p̃

ρ̃

∣∣∣∣2 dx

=

∫
Ω

ρ
|v − ṽ|2

2
dx =: Rkin (ϕ; v|ṽ)

(3.3)

with p = ρv and p̃ = ρ̃ṽ. One can see that

Rkin (ϕ; v|ṽ) = Ekin(ϕ, v − ṽ).

Moreover, since the elastic energy is convex, in particular quadratic, we define the relative elastic
energy as:

Rel(S|S̃) :=

∫
Ω

|S − S̃|2

2
dx = Eel(S − S̃). (3.4)

In addition, by (2.9), the singular potential W is κ-convex, i.e., Wκ(ϕ) = W (ϕ) + κ
2
|ϕ|2 is convex.

The gradient part of the phase-field energy is convex, in particular quadratic. According to (2.19), we
define the relative phase-field energy as

Rpf,κ(ϕ|ϕ̃) := Epf,κ(ϕ)− Epf,κ(ϕ̃)−DEpf,κ(ϕ̃)(ϕ− ϕ̃)

= ε

∫
Ω

|∇ϕ−∇ϕ̃|2

2
dx+ ε−1

∫
Ω

Wκ(ϕ)−Wκ(ϕ̃)−W ′
κ(ϕ̃)(ϕ− ϕ̃) dx

(3.5)

for all ϕ̃ ∈ dom(DEpf,κ).

Altogether, we define the relative total energy as:

R
(
v, S, ϕ

∣∣ṽ, S̃, ϕ̃) := Rkin (ϕ, v|ṽ) +Rel(S|S̃) +Rpf,κ(ϕ|ϕ̃). (3.6)

We introduce the space of admissible test functions as

T := {(v, S, ϕ) : v ∈ C∞0,div(Ω× [0, T )), S ∈ C∞0,sym,Tr(Ω× [0, T )) ∩ dom(P(ϕ; ·)),
ϕ ∈ C∞0 (Ω× [0, T )), |ϕ| < 1}.

(3.7)

Notice that, in our setting, the spaces

V := L2
div(Ω)× L2

sym,Tr(Ω)× L2(Ω),

Y := H1
0,div(Ω)×H1

sym,Tr(Ω)×H1(Ω).
(3.8)

Now, the derivation of the relative energy inequality for system (2.23) mostly follows the general ap-
proach of (3.1i). However, in the definition (3.1e) of the system operator Aγ and (3.1g) of the relative
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dissipationW(K)
γ , we have to slightly deviate from the general form for the following reasons: The first

difference arises from the non-smoothness of the plastic potential P , which compels us to treat the
multi-valued subdifferential ∂P(ϕ;S) separately, instead of directly including it in the system operator

Aγ and in the relative dissipationW(K)
γ . More precisely, for this term we shall keep the variational in-

equality and add it to the relative energy inequality, see (3.16b) below. Another difference stems from
the dependence of ρ on ϕ, which requires to use the momentum p as a variable in the kinetic en-
ergy for convexity reasons, cf. (3.2), and for compensation, additional terms are created in the relative
dissipation, see (3.10).

In the following, we introduce Aγ andW(K)
γ for system (2.23) and discuss the difference to (3.1g) in

more detail in Remark 3.2.
System operator Aγ . Due to the non-smoothness of the dissipation potential P , the multi-valued
subdifferential ∂P(ϕ;S) will not be included in the system operator Aγ . For the remaining terms we
follow (3.1e) and define the system operator

Aγ =
(
A(1),A(2)

γ ,A(3)
)>

: T→ (H1
0,div(Ω))′ × (H1

sym,Tr(Ω))′ × (L2(Ω))′ (3.9a)

from (2.23) as follows:

〈A(1)(ṽ, S̃, ϕ̃),Φ〉H1
0,div

:=

∫
Ω

∂t(ρ̃ṽ) · Φ− ρ̃ṽ ⊗ ṽ : ∇Φ− ṽ ⊗ J̃ : ∇Φ + η(ϕ̃)S̃ : ∇Φ dx

+

∫
Ω

2ν(ϕ̃)(∇ṽ)sym : ∇Φ− µ̃∇ϕ̃ · Φ dx− 〈f,Φ〉H1

(3.9b)
for all Φ ∈ H1

0,div(Ω);

〈A(2)
γ (ṽ, S̃, ϕ̃),Ψ〉H1

sym,Tr
:=

∫
Ω

∂tS̃ : Ψ + ṽ · ∇S̃ : Ψ +
(
S̃(∇ṽ)skw − (∇ṽ)skwS̃

)
: Ψ dx

+

∫
Ω

γ∇S̃ :· ∇Ψ− η(ϕ̃)(∇ṽ)sym : Ψ dx

(3.9c)

for all Ψ ∈ H1
sym,Tr(Ω);

〈A(3)(ṽ, ϕ̃), ζ〉H1 :=

∫
Ω

∂tϕ̃ζ + ṽ · ∇ϕ̃ζ −∆µ̃ζ dx , (3.9d)

for all ζ ∈ H1(Ω), and where

µ̃ := −ε∆ϕ̃+ ε−1W ′(ϕ̃). (3.9e)

Relative dissipation. Due to the non-smoothness of the plastic potential, we also do not include the
multi-valued subdifferential ∂P(ϕ;S) into the relative dissipation. For the remaining terms and for
a given regularity weight K as in (3.1d), we now introduce the relative dissipation following (3.1g).
However, as already mentioned, in order to ensure the convexity of the total energy, hence the positive
definiteness of its second derivative, we have to use Ẽtot,κ, cf. (3.2) and below. To compensate this
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change of variables, two additional terms are created in the definition of the relative dissipation:

W(K)
γ

(
v, S, ϕ|ṽ, S̃, ϕ̃

)
:=Dchs(v, ϕ, µ) +Dsd,γ(S)− 〈Aγ(v, S, ϕ, µ),DẼtot,κ(p̃, S̃, ϕ̃)〉Y

−

〈
Aγ(ṽ, S̃, ϕ̃),D2Ẽtot,κ(p̃, S̃, ϕ̃)

 p− p̃
S − S̃
ϕ− ϕ̃

〉
Y

+K(ṽ, S̃, ϕ̃)R(v, S, ϕ|ṽ, S̃, ϕ̃)

+

〈
Aγ(ṽ, S̃, ϕ̃),

 ρ−ρ̃
ρ̃

(v − ṽ)

0
−ρ2−ρ1

2
ṽ ρ−ρ̃

ρ̃
(v − ṽ)

〉
Y

+

∫
Ω

(ρ− ρ̃)(v − ṽ) · ∂tṽ dx ,

(3.10)
whereAγ is defined as in (3.9) and, using (2.10), we set

〈
Aγ(v, S, ϕ),DẼtot,κ(p̃, S̃, ϕ̃)

〉
Y

:=

〈A(1)(v, S, ϕ)

A
(2)
γ (v, S, ϕ)
A(3)(v, ϕ)

 ,

 ṽ

S̃

µ̃+ κ
ε
ϕ̃− ṽ2

2
· ρ2−ρ1

2

〉
Y

.

In particular,

〈A(1)(v, S, ϕ), ṽ〉H1
0,div

:=

∫
Ω

−ρv ⊗ v : ∇ṽ − v ⊗ J : ∇ṽ + η(ϕ)S : ∇ṽ dx

+

∫
Ω

2ν(ϕ)(∇v)sym : ∇ṽ − µ∇ϕ · ṽ dx− 〈f, ṽ〉H1 ,

(3.11)

〈A(2)
γ (v, S, ϕ), S̃〉H1

sym,Tr
:=

∫
Ω

−S ⊗ v :· ∇S̃ + (S(∇v)skw − (∇v)skwS) : S̃ dx

+

∫
Ω

γ∇S :· ∇S̃ − η(ϕ)(∇v)sym : S̃ dx

=

∫
Ω

−S ⊗ v :· ∇S̃ + 2S(∇v)skw : S̃ + γ∇S :· ∇S̃ − η(ϕ)(∇v)sym : S̃ dx ,

(3.12)

where we have used the fact that S̃ is symmetric, hence

(S(∇v)skw − (∇v)skwS) : S̃ = 2S(∇v)skw : S̃,

as well as

〈A(3)(v, ϕ), µ̃+
κ

ε
ϕ̃− ρ2 − ρ1

2

ṽ2

2
〉H1 :=

∫
Ω

v · ∇ϕ(µ̃+
κ

ε
ϕ̃− ρ2 − ρ1

2

ṽ2

2
) dx

+

∫
Ω

∇µ : ∇(µ̃+
κ

ε
ϕ̃− ρ2 − ρ1

2

ṽ2

2
) dx . (3.13)

By collecting all the terms from (3.10)–(3.13), using the definition of the dissipation potentials from (2.11),
by adding and subtracting additional terms in order to create differences of the solution and the test
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function, and by applying integration by parts, we arrive at

W(K)
γ

(
v, S, ϕ|ṽ, S̃, ϕ̃

)
:=

∫
Ω

γ
∣∣∣∇S −∇S̃∣∣∣2 dx+

∫
Ω

1

2
|∇µ−∇µ̃|2 dx

+

∫
Ω

2ν(ϕ)|(∇v)sym − (∇ṽ)sym|2 + 2(ν(ϕ)− ν(ϕ̃))(∇ṽ)sym : (∇v −∇ṽ) dx

+

∫
Ω

1

2
|∇µ|2 − 1

2
|∇µ̃|2 + ∆µ̃ (−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃)) dx

+

∫
Ω

(v − ṽ)⊗ (ρv − ρ̃ṽ + J − J̃) : ∇ṽ + (ρ− ρ̃)(v − ṽ) · ∂tṽ dx

−
∫

Ω

(η(ϕ)− η(ϕ̃))(S − S̃) : ∇ṽ + (η(ϕ)− η(ϕ̃))S̃ : (∇v −∇ṽ) dx

−
∫

Ω

(S − S̃)⊗ (v − ṽ) :· ∇S̃ + 2(S − S̃)(∇v −∇ṽ)skw : S̃ dx

−
∫

Ω

µ̃(∇ϕ−∇ϕ̃) · (v − ṽ)− ε(∇ϕ−∇ϕ̃)⊗ (∇ϕ−∇ϕ̃) : ∇ṽ dx

+

∫
Ω

κ

ε
(∇µ−∇µ̃) · (∇ϕ−∇ϕ̃) +

κ

ε
(v − ṽ) · ∇ϕ̃(ϕ− ϕ̃) dx

+K(ṽ, S̃, ϕ̃)R(v, S, ϕ|ṽ, S̃, ϕ̃)

=Dsd,γ(S − S̃) +W(K)
0 (v, S, ϕ|ṽ, S̃, ϕ̃).

(3.14)

Remark 3.2. In order to see the connection of (3.10) and (3.1g), in particular, how the two additional
terms arise in (3.10), we calculate the second derivative of the adapted energy Etot,κ(p, S, ϕ) :=
Ekin(ϕ, p) + Eel(S) + Epf,κ(ϕ) such that we observe that

D2Etot,κ(p̃, S̃, ϕ̃)

 p− p̃
S − S̃
ϕ− ϕ̃

 =


1
ρ̃
I 0 −ρ2−ρ1

2ρ̃2
p̃

0 I 0

−ρ2−ρ1
2ρ̃2

p̃ 0 −∆ +W ′′(ϕ̃) + κ
ε
+ |p̃|

2

ρ̃3
ρ′(ϕ̃)2


 p− p̃
S − S̃
ϕ− ϕ̃


=

 ρ
ρ̃
(v − ṽ)

S − S̃
(−∆ +W ′′(ϕ̃) + κ

ε
)(ϕ− ϕ̃)− ρ2−ρ1

2
ρ
ρ̃
ṽ · (v − ṽ)

 .

By following the abstract approach of (3.1i) and by adding and subtracting the term〈
Aγ(ṽ, S̃, ϕ̃),

 ρ−ρ̃
ρ̃

(v − ṽ)

0
−ρ2−ρ1

2
ṽ ρ−ρ̃

ρ̃
(v − ṽ)

〉
Y

,

we arrive at the formulation〈
Aγ(ṽ, S̃, ϕ̃),

 v − ṽ
S − S̃

−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃) + κ
ε
(ϕ− ϕ̃)− ρ2−ρ1

2
(v − ṽ) · ṽ

〉
Y

. (3.15)

Notice that this substitution gives an extra term∫
Ω

∂t(ρ̃ṽ)(−ρ
ρ̃

(v − ṽ) + (v − ṽ)) + ∂tϕ̃(
ρ2 − ρ1

2

ρ

ρ̃
ṽ(v − ṽ)− ρ2 − ρ1

2
ṽ(v − ṽ)) dx
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=

∫
Ω

−(ρ− ρ̃)(v − ṽ)∂tṽ dx ,

which also contributes toW(K)
γ in (3.14) and thus, to the definition of dissipative solutions.

Following here the original definition of dissipative solutions according to Lions [35, Sec. 4.4], the
solution fulfills the relative energy inequality for all smooth enough test functions. There are other
solvability concepts that are coined dissipative in the literature. For instance certain measure-valued
solutions (e.g., [10]) or essentially weak solutions [23].

Now, we can introduce the dissipative solution for system (2.23) according to Definition 3.1.

Definition 3.3 (Dissipative solution for system (2.23)). Let the assumptions 2.1-2.4 hold true. Let K
be a regularity weight satisfying (3.1d). A quadruplet (v, S, ϕ, µ) is called a dissipative solution of type
K of the two-phase system (2.23) if the following properties are satisfied:
1. The quadruplet (v, S, ϕ, µ) has the following regularity:

v ∈ L∞loc([0, T ), L2
div(Ω)) ∩ L2

loc([0, T ), H1
0,div(Ω)),

S ∈ L∞loc([0, T ), L2
sym,Tr(Ω)),

ϕ ∈ L∞loc([0, T );H1(Ω)) ∩ L2
loc([0, T );H2(Ω)),W ′(ϕ) ∈ L2

loc([0, T );L2(Ω)),

µ ∈ L2
loc([0, T );H1(Ω)).

(3.16a)

2. With the relative energy R from (3.6), the system operator Aγ from (3.9), and the relative dissi-

pationW(K)
γ from (3.14), the quadruplet (v, S, ϕ, µ) satisfies the following relative energy-dissipation

estimate:

R(v(t), S(t), ϕ(t)|ṽ(t), S̃(t), ϕ̃(t))

+

∫ t

0

(〈
Aγ(ṽ, S̃, ϕ̃),

 v − ṽ
S − S̃

−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃) + κ
ε
(ϕ− ϕ̃)− ρ2−ρ1

2
(v − ṽ) · ṽ

〉
Y

+ P(ϕ;S)− P(ϕ; S̃) +W(K)
γ (v, S, ϕ|ṽ, S̃, ϕ̃)

)
exp

(∫ t

s

K(ṽ, S̃, ϕ̃) dτ

)
ds

≤R(v0, S0, ϕ0|ṽ(0), S̃(0), ϕ̃(0)) exp

(∫ t

0

K(ṽ, S̃, ϕ̃) ds

)
(3.16b)

for all (ṽ, S̃, ϕ̃) ∈ T and for a.e. t ∈ (0, T ).

Remark 3.4. One can still obtain an inequality for the relative energy even without the regularity weight
term, but this term turns out to be crucial when carrying out the limit passage γ → 0 for the relative
dissipation. Recall that, when we pass to the limit γ → 0, we will lose the control on the term ∇S
which is essential for the limit passage of the nonlinear terms S(∇v)skw−(∇v)skwS. However, with the

help of the chosen regularity weights,W(K)
γ can be convex and even continuous and therefore weakly

lower semicontinuous. This will allow us to perform the limit passage.

For notational simplicity, we assume without loss of generality that ε = 1.

3.3 Properties of the dissipative solutions

We first provide a lemma that will be useful for passing to the limit in energy inequalities.
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Lemma 3.5 ([18, Lemma 2.2]). Let g0 ∈ R. Let f ∈ L1(0, T ) and g ∈ L∞(0, T ). Then the following
two inequalities are equivalent:

−
∫ T

0

φ′(t)g(t) dt+

∫ T

0

φ(t)f(t) dt ≤ g0, for all φ ∈ C̃([0, T ]), (3.17)

where

C̃([0, T ]) :=
{
φ ∈ C1([0, T ]) : φ ≥ 0 on [0, T ], φ′ ≤ 0, φ(0) = 1, φ(T ) = 0

}
, (3.18)

and

g(t) +

∫ t

0

f(s) ds ≤ g0 for a.e. t ∈ (0, T ). (3.19)

Proof. See [18, Lemma 2.2]. Notice that this proof remains valid for g negative.

We now investigate how dissipative solutions from Definition 3.3 and weak solutions from Definition
2.7 are connected. The first result shows that a weak solution is also a dissipative solution for arbitrary
regularity weight K, given that γ > 0.

Proposition 3.6. For γ > 0, let (v, S, ϕ, µ) be a weak solution in the sense of Definition 2.7 and let
K satisfy (3.1d). Then (v, S, ϕ, µ) satisfies the relative energy estimate (3.16b) for a.e. t ∈ (0, T ),
any given regularity weightK and all (ṽ, S̃, ϕ̃) ∈ T. Hence, (v, S, ϕ, µ) is also a dissipative solution.

Proof. Let (ṽ, S̃, ϕ̃) ∈ T and for a.e. t ∈ (0, T ), let φ ∈ C̃([0, t]) cf. (3.18). Since (v, S, ϕ, µ) is a
weak solution in the sense of Definition 2.7, it satisfies the weak formulation (2.25a). Besides, since
ṽ ∈ C∞0,div(Ω× [0, T )) is admissible test function for (2.25a). Therefore, we choose the test functions
in the weak formulation to be −φṽ, in order to obtain that

−
∫ t

0

φ′
∫

Ω

−ρv · ṽ dx ds

+

∫ t

0

φ

∫
Ω

ρv · ∂tṽ + (ρv ⊗ v) : ∇ṽ − 2ν(ϕ)(∇v)sym : ∇ṽ dx ds

−
∫ t

0

φ

∫
Ω

η(ϕ)S : ∇ṽ − (v ⊗ J) : ∇ṽ − µ∇ϕ · ṽ dx ds+

∫ t

0

φ〈f, ṽ〉H1 ds =

∫
Ω

−ρ0v0 · ṽ(0) dx .

(3.20)
Furthermore, with the help of Lemma 3.5, the partial energy inequalities (2.25b) and (2.25f) can be
equivalently written as

−
∫ t

0

φ′
∫

Ω

ρ(t)

2
|v(t)|2 dx ds+

∫ t

0

φ

∫
Ω

2ν(ϕ)|(∇v)sym|2 + η(ϕ)S : ∇v − µ(∇ϕ · v) dx ds

≤
∫

Ω

ρ0

2
|v0|2 dx+

∫ t

0

φ〈f, v〉H1 ds ,

(3.21)
as well as

−
∫ t

0

φ′
∫

Ω

|∇ϕ(t)|2

2
+W (ϕ(t)) dx ds+

∫ t

0

φ

∫
Ω

|∇µ|2 + µ(∇ϕ · v) dx ds

≤
∫

Ω

|∇ϕ0|2

2
+W (ϕ0) dx ,

(3.22)
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Besides, by Lemma 3.5, the evolutionary variational inequality for the stress (2.25c) can be also trans-
formed into the following

−
∫ t

0

φ′
∫

Ω

1

2

∣∣∣S(t)− S̃(t)
∣∣∣2 dx ds

+

∫ t

0

φ

∫
Ω

∂tS̃ : (S − S̃)− v · ∇S : S̃ − (S(∇v)skw − (∇v)skwS) : S̃ dx ds

+

∫ t

0

φ(P(ϕ;S)− P(ϕ; S̃)) ds+

∫ t

0

φ

∫
Ω

γ∇S :· ∇(S − S̃)− η(ϕ)(∇v)sym : (S − S̃) dx ds

≤
∫

Ω

1

2

∣∣∣S0 − S̃(0)
∣∣∣2 dx

(3.23)
Moreover, by integration-by-parts in time and space, we calculate the terms in the relative phase-field
energy as follows:

−
∫ t

0

φ′
∫

Ω

−∇ϕ : ∇ϕ̃−W ′(ϕ̃)(ϕ− ϕ̃)− 2W (ϕ̃) dx ds

=

∫
Ω

−∇ϕ0 : ∇ϕ̃(0)−W ′(ϕ̃(0))(ϕ0 − ϕ̃(0))− 2W (ϕ̃(0)) dx

−
∫ t

0

φ

∫
Ω

∇∂tϕ̃ : ∇ϕ− ∂tϕ∆ϕ̃+W ′(ϕ̃)(∂tϕ− ∂tϕ̃) +W ′′(ϕ̃)∂tϕ̃(ϕ− ϕ̃) + 2W ′(ϕ̃)∂tϕ̃ dx ds ,

(3.24)
where we used that φ(0) = 1 and φ(t) = 0 for φ ∈ C̃([0, t]) and the Neumann boundary condition
(2.23i). Besides, by testing (2.25d) with φµ̃ and an integration by parts in time, we obtain∫ t

0

φ

∫
Ω

∂tϕµ̃+ v · ∇ϕµ̃+∇µ : ∇µ̃ dx ds = 0. (3.25)

By testing (2.25e) with −φ∂tϕ̃ and integrating in time and space, we derive

−
∫ t

0

φ

∫
Ω

µ∂tϕ̃−W ′(ϕ)∂tϕ̃+ ∆ϕ∂tϕ̃ dx ds = 0. (3.26)

Summing (3.25) and (3.26) implies

−
∫ t

0

φ

∫
Ω

∇µ : ∇µ̃ dx ds

=

∫ t

0

φ

∫
Ω

∂tϕµ̃+ v · ∇ϕµ̃− µ∂tϕ̃+W ′(ϕ)∂tϕ̃+∇ϕ · ∇∂tϕ̃ dx ds .

(3.27)

In addition, we can calculate the contribution of non-convexity of the singular potential, i.e.

−κ
∫ t

0

φ′
∫

Ω

|ϕ− ϕ̃|2

2
dx ds

=κ

∫
Ω

|ϕ0 − ϕ̃(0)|2

2
dx+ κ

∫ t

0

φ

∫
Ω

(ϕ− ϕ̃)(∂tϕ− ∂tϕ̃) dx ds .

(3.28)

DOI 10.20347/WIAS.PREPRINT.3247 Berlin 2025



F. Cheng, R. Lasarzik, M. Thomas 20

Notice that, with the help of (2.25d), the second term on the right-hand side of (3.28) can be written as∫
Ω

−κ(ϕ− ϕ̃)(∂tϕ− ∂tϕ̃) dx

=

∫
Ω

κ(∇µ−∇µ̃) · (∇ϕ−∇ϕ̃) dx

+

∫
Ω

κ (v · (∇ϕ−∇ϕ̃) + (v − ṽ) · ∇ϕ̃) (ϕ− ϕ̃) dx

+ 〈A(3)(ṽ, ϕ̃), κ(ϕ− ϕ̃)〉
Also, since v is a divergence-free function, thanks to integration by parts, we know∫

Ω

v · (∇ϕ−∇ϕ̃)(ϕ− ϕ̃) dx = 0.

Inserting these two equalities into (3.28) yields

−κ
∫ t

0

φ′
∫

Ω

|ϕ− ϕ̃|2

2
dx ds+

∫ t

0

φ

∫
Ω

κ(∇µ−∇µ̃) · (∇ϕ−∇ϕ̃) + κ(v − ṽ) · ∇ϕ̃(ϕ− ϕ̃) dx ds

+

∫ t

0

φ〈A(3)(ṽ, ϕ̃), κ(ϕ− ϕ̃)〉 ds = κ

∫
Ω

|ϕ0 − ϕ̃(0)|2

2
dx .

(3.29)
Now, observe that v − ṽ is an admissible test function for (3.9b), S − S̃ is admissible for (3.9c) and
−∆(ϕ − ϕ̃) + W ′′(ϕ̃)(ϕ − ϕ̃) is admissible for (3.9d). Moreover, notice that −ρ2−ρ1

2
ṽ · (v − ṽ) is

also admissible for (3.9d). Hence, choosing them as the test functions for each operator and summing
up (3.20)-(3.24), (3.27), and (3.29) yields that

−
∫ t

0

φ′R(v(t), S(t), ϕ(t)|ṽ(t), S̃(t), ϕ̃(t)) ds

+

∫ t

0

φ

〈
Aγ(ṽ, S̃, ϕ̃),

 v − ṽ
S − S̃

−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃) + κ(ϕ− ϕ̃)− ρ2−ρ1
2
ṽ · (v − ṽ)

〉
Y

ds

+

∫ t

0

φ
(
P(ϕ;S)− P(ϕ; S̃)

)
ds+

∫ t

0

φW̃(v, S, ϕ|ṽ, S̃, ϕ̃) ds

≤R(v0, S0, ϕ0|ṽ(0), S̃(0), ϕ̃(0)),
(3.30)

where W̃ is given by

W̃(v, S, ϕ|ṽ, S̃, ϕ̃) =W(K)
γ

(
v, S, ϕ|ṽ, S̃, ϕ̃

)
−K(ṽ, S̃, ϕ̃)R(v, S, ϕ|ṽ, S̃, ϕ̃). (3.31)

Finally, by choosing φ(t) = ψ(t) exp
(
−
∫ t

0
K(ṽ, S̃, ϕ̃) dτ

)
for ψ ∈ C̃([0, t]), we arrive at the

relative energy estimate (3.16b).

The next two results state that the velocity component and the phase-field variable of a dissipative
solution of type K are also a weak solution of the momentum balance (1.1a) and a weak solution of
the evolution law (1.1e), respectively, under certain assumptions on K.

Proposition 3.7. Suppose that the regularity weight K satisfies K(0, 0, ϕ̃) = 0 for all ϕ̃ ∈ C∞0 (Ω×
[0, T )) such that ϕ̃ ∈ (−1, 1). Moreover, assume that ∂tϕ ∈ L2(0, T ;H−1(Ω)). Then a dissipative
solution of type K is a weak solution of the phase-field evolutionary law, i.e. (2.25d) is satisfied for all
ζ such that ζ ∈ L2([0, T );H1(Ω)), ∂tζ ∈ L2([0, T );L2(Ω)) and ζ(T ) = 0.
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Proof. From the assumption on K, we have that exp
(∫ t

0
K(ṽ, 0, 0) dτ

)
= e0 = 1 for all ṽ ∈

C∞0,div(Ω× [0, T )). Setting ṽ ≡ 0 and S̃ ≡ 0 in (3.16b) and with the fact that P(ϕ; 0) ≡ 0, we obtain

R(v(t), S(t), ϕ(t)|0, 0, ϕ̃(t)) +

∫ t

0

P(ϕ;S) +W(K)
γ (v, S, ϕ|0, 0, ϕ̃) ds

+

∫ t

0

〈
Aγ(0, 0, ϕ̃),

 v
S

−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃) + κ(ϕ− ϕ̃)

〉
Y

ds

≤R(v0, S0, ϕ0|0, 0, ϕ̃(0))

(3.32)

for all ϕ̃ ∈ C∞0 (Ω× [0, T )) with ϕ̃ ∈ (−1, 1) and a.e. t ∈ (0, T ). In view of (3.9b)-(3.9d), we have

〈A(1)(0, 0, ϕ̃), v〉H1
0,div

= −〈f, v〉H1 −
∫

Ω

µ̃∇ϕ̃ · v dx , (3.33a)

and
〈A(2)

γ (0, 0, ϕ̃), S〉H1
sym,Tr

= 0, (3.33b)

and
〈A(3)(0, ϕ̃),−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃) + κ(ϕ− ϕ̃)〉L2

=

∫
Ω

∂tϕ̃ (−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃) + κ(ϕ− ϕ̃)) dx

−
∫

Ω

∆µ̃ (−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃) + κ(ϕ− ϕ̃)) dx ,

(3.33c)

Moreover, by (3.14), it is

W(K)
γ (v, S, ϕ|0, 0, ϕ̃) =

∫
Ω

2ν(ϕ)|(∇v)sym|2 + γ|∇S|2 + |∇µ|2 dx

−
∫

Ω

∇µ · ∇µ̃+ µ̃(∇ϕ−∇ϕ̃) · v dx

+

∫
Ω

∆µ̃(−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃)) dx

+

∫
Ω

κ(∇µ−∇µ̃) · (∇ϕ−∇ϕ̃) + κv · ∇ϕ̃(ϕ− ϕ̃) dx .

(3.34)

Inserting (3.33a)-(3.33c) and (3.34) into (3.32) and applying Lemma 3.5 results in the estimate

−
∫ T

0

φ′
∫

Ω

ρ
|v|2

2
+
|S|2

2
+
|∇ϕ−∇ϕ̃|2

2
+W (ϕ)−W (ϕ̃)−W ′(ϕ̃)(ϕ− ϕ̃) +

κ

2
|ϕ− ϕ̃|2 dx dt

+

∫ T

0

φ

∫
Ω

2ν(ϕ)|(∇v)sym|2 + γ|∇S|2 + |∇µ|2 dx dt−
∫ T

0

φ〈f, v〉H1 dt+

∫ T

0

φP(ϕ;S) dt

+

∫ T

0

φ

∫
Ω

∂tϕ̃ (−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃) + κ(ϕ− ϕ̃)) dx dt

−
∫ T

0

φ

∫
Ω

∇µ · ∇µ̃+ µ̃∇ϕ · v − κ∇µ · (∇ϕ−∇ϕ̃)− κv · ∇ϕ(ϕ− ϕ̃) dx dt

≤
∫

Ω

|∇ϕ0 −∇ϕ̃(0)|2

2
+W (ϕ0)−W (ϕ̃(0))−W ′(ϕ̃(0))(ϕ0 − ϕ̃(0)) +

κ

2
|ϕ0 − ϕ̃(0)|2 dx

+

∫
Ω

ρ0
|v0|2

2
+
|S0|2

2
dx ,

(3.35)
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for all φ ∈ C̃([0, T ]). Notice that, by integration by parts in time, rearranging the terms in the above
inequality and exploiting cancellations in terms that depend on µ̃+ κϕ̃, we then get

−
∫ T

0

φ′
∫

Ω

ρ
|v|2

2
+
|S|2

2
dx dt−

∫
Ω

ρ0
|v0|2

2
+
|S0|2

2
dx

+

∫ T

0

φ

∫
Ω

2ν(ϕ)|(∇v)sym|2 + γ|∇S|2 dx dt−
∫ T

0

φ〈f, v〉H1 dt+

∫ T

0

φP(ϕ;S) dt

+

∫ T

0

φ〈∂tϕ, µ+ κϕ〉H1 dt+

∫ T

0

φ

∫
Ω

κv · ∇ϕϕ+∇µ(∇µ+ κ∇ϕ) dx dt

−
∫ T

0

φ〈∂tϕ, µ̃+ κϕ̃〉H1 dt−
∫ T

0

φ

∫
Ω

v · ∇ϕ(µ̃+ κϕ̃) +∇µ · (∇µ̃+ κ∇ϕ̃) dx dt ≤ 0.

(3.36)
First, notice that in (3.36), the regularity of ϕ̃ can be reduced such that DEpf,κ(ϕ̃) = µ̃ + κϕ̃ ∈
L2([0, T );H1(Ω)). Hence, choose ϕ̃α such that DEpf,κ(ϕ̃α) = αDEpf,κ(ϕ̃) ∈ L2([0, T );H1(Ω))
with α > 0 (where the existence of such ϕ̃α can be guaranteed by the surjectivity of the subdifferential
of a proper, convex, lower semicontinuous and coercive functional, see [9, Chapter 2.2] for details) and
multiply both sides of (3.36) by 1

α
. This gives

− 1

α

∫ T

0

φ′
∫

Ω

ρ
|v|2

2
+
|S|2

2
dx dt−

∫
Ω

ρ0
|v0|2

2
+
|S0|2

2
dx

+
1

α

∫ T

0

φ

∫
Ω

2ν(ϕ)|(∇v)sym|2 + γ|∇S|2 dx dt−
∫ T

0

φ〈f, v〉H1 dt+

∫ T

0

φP(ϕ;S) dt

+
1

α

∫ T

0

φ〈∂tϕ, µ+ κϕ〉 dt+

∫ T

0

φ

∫
Ω

κv · ∇ϕϕ+∇µ(∇µ+ κ∇ϕ) dx

−
∫ T

0

φ〈∂tϕ, µ̃+ κϕ̃〉H1 dt−
∫ T

0

φ

∫
Ω

v · ∇ϕ(µ̃+ κϕ̃) +∇µ · (∇µ̃+ κ∇ϕ̃) dx dt ≤ 0.

(3.37)
Letting α→∞ gives

−
∫ T

0

φ〈∂tϕ, µ̃+ κϕ̃〉H1 dt−
∫ T

0

φ

∫
Ω

v · ∇ϕ(µ̃+ κϕ) +∇µ · (∇µ̃+ κ∇ϕ) dx dt ≤ 0 (3.38)

for all φ ∈ C̃([0, T ]). By Lemma 3.5, we conclude∫ T

0

〈∂tϕ, µ̃+ κϕ̃〉H1 dt+

∫ T

0

∫
Ω

v · ∇ϕ(µ̃+ κϕ) +∇µ · (∇µ̃+ κ∇ϕ) dx dt ≥ 0. (3.39)

This inequality is linear with respect to µ̃+κϕ̃. Thus, choosing ϕ̃− such that DEpf,κ(ϕ̃−) = −DEpf,κ(ϕ̃)
and integrating by parts in time yields the desired equality.

Proposition 3.8. Suppose that the regularity weightK satisfiesK(ṽ, 0, 0) = 0 for all ṽ ∈ C∞0,div(Ω×
[0, T )). Moreover, assume that ∂tϕ ∈ L2([0, T );H−1(Ω)) and that the weak formulation (2.25d)
holds true for all ζ such that ζ ∈ L2([0, T );H1(Ω)), ∂tζ ∈ L2([0, T );L2(Ω)) and ζ(T ) = 0. Then
a dissipative solution of type K is a weak solution of the momentum balance, i.e. (2.25a) is satisfied
for all Φ ∈ C∞0,div(Ω× [0, T )).

Proof. This proposition can be shown by following the idea of the proof of Proposition 3.7. See
also [18, Proposition 4.3].
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Next, we establish that dissipative solutions are transitive with respect to the regularity weights, given
that the regularity weights satisfy a certain monotonicity.

Proposition 3.9. Let (v, S, ϕ, µ) be a dissipative solution of type K. Let K, L be regularity weights
with the propertyK(ṽ, S̃, ϕ̃) ≤ L(ṽ, S̃, ϕ̃) for all (ṽ, S̃, ϕ̃) ∈ T and a.e. t ∈ (0, T ). Then (v, S, ϕ, µ)
is also a dissipative solution of type L.

Proof. This proposition can be proved by applying Lemma 3.5 to (3.16b) with the test function

Φ(t) := φ(t) exp

(
−
∫ t

0

L(ṽ, S̃, ϕ̃)−K(ṽ, S̃, ϕ̃) dτ

)
for φ ∈ C̃([0, T ]) and using Lemma 3.5 again to cancel φ. See also [18, Proposition 4.4]. Notice that
Φ is only a valid test function for K(ṽ, S̃, ϕ̃) ≤ L(ṽ, S̃, ϕ̃).

4 Global existence result for the regularized two phase system
γ > 0

4.1 Implicit time discretization

In this section, we will use an implicit time discretization to show the existence of weak solutions.

To start with, we first define another dissipation potential P̃ as

P̃ : L2(Ω)×H1
sym,Tr(Ω)→ [0,+∞]

P̃(ϕ;S) :=

{
P(ϕ;S) (ϕ, S) ∈ L2(Ω)×H1

sym,Tr(Ω) ∩ dom(P),

+∞ otherwise.

(4.1)

P̃ can be viewed as the restriction of P in L2(Ω) × H1
sym,Tr(Ω). Notice that P̃ is proper with

P̃(ϕ; 0) = 0 for all ϕ ∈ L2(Ω). Moreover, for all ϕ ∈ L2(Ω), the mapping S 7→ P̃(ϕ;S) is
convex and lower semicontinuous in H1

sym,Tr(Ω). We write dom(∂P̃(ϕ; ·)) to represent the domain
of the convex partial subdifferential.

To begin with the time discretization, let h = T
N

for N ∈ N and let t0 = 0, tk = kh, tN = T
and assume that the initial data v0, S0, ϕ0 satisfy Assumption 2.3. For all k = 0, 1, . . . , N − 1, let
vk ∈ L2

div(Ω), Sk ∈ L2
sym,Tr(Ω), ϕk ∈ H1(Ω) with W ′(ϕk) ∈ L2(Ω) and ρk = 1

2
(ρ1 + ρ2) +

1
2
(ρ2− ρ1)ϕk. Moreover, let fk+1 = h−1

∫ tk+1

tk
f dτ . We determine (vk+1, Sk+1, ϕk+1, µk+1) based

on the given data with

Jk+1 = −ρ2 − ρ1

2
∇µk+1,

i.e., we aim to find some (vk+1, Sk+1, ϕk+1, µk+1) such that

vk+1 ∈ H1
0,div(Ω), Sk+1 ∈ H1

sym,Tr(Ω) ∩ dom(∂P̃(ϕk; ·)), ϕk+1 ∈ dom(DEpf,κ), µk+1 ∈ H2
~n(Ω),
(4.2a)

where
H2
~n(Ω) := {u ∈ H2(Ω) : ~n · ∇u|∂Ω = 0}, (4.2b)
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satisfying:
1. The weak formulation of discrete momentum balance:

〈ρk+1vk+1 − ρkvk
h

+ div(ρkvk+1 ⊗ vk+1),Φ〉L2

+〈2ν(ϕk)(∇vk+1)sym, (∇Φ)sym〉L2 − 〈div(η(ϕk)Sk+1),Φ〉L2

+〈(div(Jk+1)− ρk+1 − ρk
h

− vk+1 · ∇ρk)
vk+1

2
,Φ〉L2

+〈Jk+1 · ∇vk+1 − µk+1∇ϕk,Φ〉L2 = 〈fk+1,Φ〉H1

(4.2c)

for all Φ ∈ C∞0,div(Ω).
2. The weak formulation of the discrete evolution law for the stress:

〈Sk+1 − Sk
h

+ (vk+1 · ∇Sk+1),Ψ〉L2

+〈(Sk+1(∇vk+1)skw − (∇vk+1)skwSk+1),Ψ〉L2

+〈ξkk+1,Ψ〉H1
sym,Tr

+ 〈γ∇Sk+1,∇Ψ〉L2 = 〈η(ϕk)(∇vk+1)sym,Ψ〉L2

(4.2d)

for all Ψ ∈ C∞sym,Tr(Ω̄), and here ξkk+1 ∈ ∂P̃(ϕk;Sk+1) ⊆ (H1
sym,Tr(Ω))′.

3. The discrete evolution law for the phase-field variable:

ϕk+1 − ϕk
h

+ vk+1 · ∇ϕk = ∆µk+1, (4.2e)

as well as

µk+1 + κ
ϕk+1 + ϕk

2
= −∆ϕk+1 +W ′

κ(ϕk+1), (4.2f)

almost everywhere in Ω.

Remark 4.1. (1) Integrating (4.2e) in space and performing an integration by parts gives∫
Ω

ϕk+1 dx =

∫
Ω

ϕk dx+ h

∫
Ω

−vk+1 · ∇ϕk + ∆µk+1 dx =

∫
Ω

ϕk dx , (4.3)

where we made use of the Neumann boundary condition (2.23i) and the fact that vk+1 is divergence-
free. Moreover, this equality implies that

∫
Ω
ϕk dx =

∫
Ω
ϕ0 dx is a constant, i.e., the total volume

conserved.
(2) By multiplying (4.2e) with −1

2
(ρ2 − ρ1), we obtain that

−ρk+1 − ρk
h

− vk+1∇ρk = div(Jk+1). (4.4)

Notice that div(vk+1 ⊗ Jk+1) = (div(Jk+1))vk+1 + Jk+1 · ∇vk+1. Inserting (4.4) into (4.2c) results
in

〈ρk+1vk+1 − ρkvk
h

+ div(ρkvk+1 ⊗ vk+1),Φ〉L2

+〈2ν(ϕk)(∇vk+1)sym, (∇Φ)sym〉L2 − 〈div(η(ϕk)Sk+1),Φ〉L2

+〈div(vk+1 ⊗ Jk+1),Φ〉L2 − 〈fk+1,Φ〉H1 = 〈µk+1∇ϕk,Φ〉L2 ,

(4.5)

which is the direct weak formulation of the momentum balance (2.23a) with time discretization.

Before we prove the existence of solutions for the time discrete problem (4.2), let us first deduce an
estimate for the terms in the Cahn–Hilliard part. This inequality uses a similar method as in the proof
of [2, Lemma 4.2].
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Lemma 4.2. Assume that ϕk+1 ∈ dom(DEpf,κ) and µk+1 ∈ H1(Ω) are solutions to (4.2f) for given
ϕk ∈ H2(Ω) satisfying |ϕk| ≤ 1 in Ω and

1

|Ω|

∫
Ω

ϕk+1 dx =
1

|Ω|

∫
Ω

ϕk dx ∈ (−1, 1).

Then there exists a positive constant C depending on
∫

Ω
ϕk dx, such that

‖W ′
κ(ϕk+1)‖L2 +

∣∣∣∣∫
Ω

µk+1 dx

∣∣∣∣ ≤ C
(
‖∇µk+1‖L2 + ‖∇ϕk+1‖2

L2 + ‖∇ϕk‖2
L2 + 1

)
(4.6)

‖DEpf,κ(ϕk+1)‖L2 ≤ C (‖µk+1‖L2 + 1) (4.7)

Proof. Recall from (2.3) that uΩ denotes the mean value of a function u in Ω. Hence, for ϕk+1, we
write ϕk+1,Ω for the mean value. First, we test (4.2f) with ζ = (ϕk+1 − ϕk+1,Ω) to obtain that∫

Ω

µk+1(ϕk+1 − ϕk+1,Ω) dx+

∫
Ω

κ
ϕk+1 + ϕk

2
(ϕk+1 − ϕk+1,Ω) dx

= −
∫

Ω

∆ϕk+1 · (ϕk+1 − ϕk+1,Ω) dx+

∫
Ω

W ′
κ(ϕk+1)(ϕk+1 − ϕk+1,Ω) dx . (4.8)

Writing µ0 = µk+1 − µk+1,Ω, we can see that∫
Ω

µk+1(ϕk+1 − ϕk+1,Ω) dx =

∫
Ω

µ0ϕk+1 dx . (4.9)

In view of the homogeneous Neumann boundary condition, notice that∣∣∣∣−∫
Ω

∆ϕk+1(ϕk+1 − ϕk+1,Ω) dx

∣∣∣∣ =

∣∣∣∣∫
Ω

∇ϕk+1 · ∇ϕk+1 dx

∣∣∣∣ = ‖∇ϕk+1‖2
L2 . (4.10)

Besides, by the assumption W ′
κ ∈ C1(−1, 1) and lim

s→±1
W ′
κ(s) = ±∞ in (2.9), we obtain that

W ′
κ(ϕk+1)(ϕk+1 − ϕk+1,Ω) ≥ C|W ′

κ(ϕk+1)| − C̃ (4.11)

for all ϕk+1 ∈ [−1, 1], see [2, Lemma 4.2] for details. Inserting (4.9)-(4.11) into (4.8) yields∫
Ω

|W ′
κ(ϕk+1)| dx ≤C(‖µ0‖L2‖ϕk+1‖L2 +

∫
Ω

κ
ϕk+1 + ϕk

2
(ϕk+1 − ϕk+1,Ω) dx+ ‖∇ϕk+1‖2

L2 + 1)

≤C
(
‖∇µ‖L2 + ‖∇ϕk+1‖2

L2 + ‖∇ϕk‖2
L2 + 1

)
, (4.12)

where we used the fact that |ϕk+1|, |ϕk| ≤ 1 and Poinaré’s inequality. Next, by directly integrating
(4.2f), we can see that∫

Ω

µk+1 dx+

∫
Ω

κ
ϕk+1 + ϕk

2
dx =

∫
Ω

−∆ϕk+1 dx+

∫
Ω

W ′
κ(ϕk+1) dx .

This implies ∣∣∣∣∫
Ω

µk+1 dx

∣∣∣∣ ≤ ∫
Ω

|W ′
κ(ϕk+1)| dx+

∫
Ω

κ

∣∣∣∣ϕk+1 + ϕk
2

∣∣∣∣ dx
≤ C

(
‖∇µk+1‖L2 + ‖∇ϕk+1‖2

L2 + ‖∇ϕk‖2
L2 + 1

)
, (4.13)
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where we used integration by parts, Poincaré’s inequality, and the fact that

1

|Ω|

∫
Ω

ϕk+1 dx =
1

|Ω|

∫
Ω

ϕk dx .

Finally, since DEpf,κ(ϕk+1) = −∆ϕk+1 +W ′
κ(ϕk+1) = µk+1 + κ

2
(ϕk+1 + ϕk), we obtain

‖DEpf,κ(ϕk+1)‖L2 ≤ ‖µk+1‖L2 +
κ

2
(‖ϕk+1‖L2 + ‖ϕk‖L2) ≤ C (‖µk+1‖L2 + 1) . (4.14)

Besides, using (2.20), we deduce that

‖W ′
κ(ϕk+1)‖2

L2 ≤ C
(
‖DEpf,κ(ϕk+1)‖2

L2 + ‖ϕk+1‖2
L2 + 1

)
≤ C (‖µk+1‖L2 + 1)2 ,

which implies

‖W ′
κ(ϕk+1)‖L2 ≤ C (‖µk+1‖L2 + 1) ≤ C

(
‖∇µk+1‖L2 +

∣∣∣∣∫
Ω

µk+1 dx

∣∣∣∣+ 1

)
. (4.15)

Therefore, combining (4.15) with (4.13) yields the desired inequality, that is

‖W ′
κ(ϕk+1)‖L2 +

∣∣∣∣∫
Ω

µk+1 dx

∣∣∣∣ ≤C (‖∇µk+1‖L2 + ‖∇ϕk+1‖2
L2 + ‖∇ϕk‖2

L2 + 1
)
.

Now, we show the existence of solutions to the time discrete problem (4.2). We adapt the proof of [2,
Lemma 4.3] to our case. Notice that in [2, Lemma 4.3], the extra stress tensor S is not present, while,
below the stress tensor S will be the main difficulty because of the set-valued subdifferential.

Lemma 4.3 (Existence of solutions to the time discrete problem). For k ∈ {0, 1, . . . , N − 1}, let
vk ∈ L2

div(Ω), Sk ∈ L2
sym,Tr(Ω), ϕk ∈ H2(Ω) with |ϕk| ≤ 1 and ρk = ρ2−ρ1

2
ϕk + ρ2+ρ1

2
be given,

let P̃ be as in (4.1), and set

X := H1
0,div(Ω)×H1

sym,Tr(Ω) ∩ dom(∂P̃(ϕk; ·))× dom(DEpf,κ)×H2
~n(Ω). (4.16)

Then there exists a quadruplet (vk+1, Sk+1, ϕk+1, µk+1) ∈ X solving (4.2c)-(4.2f). Moreover, this
solution satisfies the energy dissipation estimate

Etot(vk+1, Sk+1, ϕk+1) + hDchs(vk+1, ϕk, µk+1) + hDsd,γ(Sk+1) + h〈ξkk+1, Sk+1〉H1
sym,Tr

≤Etot(vk, Sk, ϕk) + h〈fk+1, vk+1〉H1 .
(4.17)

Proof. Step 1: A priori estimate (4.17). Let (vk+1, Sk+1, ϕk+1, µk+1) ∈ H1
0,div(Ω)×H1

sym,Tr(Ω)∩
dom(∂P̃(ϕk; ·))× dom(DEpf,κ)×H2

~n(Ω) be a solution to the time discrete problem (4.2). Observe
that vk+1 ∈ H1

0,div(Ω) is a suitable test function for (4.2c). With this in mind, we calculate that∫
Ω

(
(div(Jk+1))

vk+1

2
+ Jk+1 · ∇vk+1

)
vk+1 dx =

∫
Ω

div(Jk+1
|vk+1|2

2
) dx = 0, (4.18)
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as well as∫
Ω

(
div(ρkvk+1 ⊗ vk+1)− (∇ρk · vk+1)

vk+1

2

)
vk+1 dx

=

∫
Ω

(
div(ρkvk+1 ⊗ vk+1)− div(ρkvk+1)

vk+1

2

)
vk+1 dx

=

∫
Ω

(
div(ρkvk+1)|vk+1|2 + ρkvk+1 · ∇(

|vk+1|2

2
)− div(ρkvk+1)

|vk+1|2

2

)
dx

=

∫
Ω

div(ρkvk+1
|vk+1|2

2
) dx = 0,

(4.19)

where we used integration-by-parts and the homogeneous boundary condition (2.23h). Moreover,
notice that

1

h
(ρk+1vk+1 − ρkvk)vk+1

=
1

h
(ρk+1 − ρk)|vk+1|2 +

1

h
ρk(vk+1 − vk)vk+1

=
1

h
(ρk+1 − ρk)|vk+1|2 +

1

h
ρk
|vk+1|2

2
− 1

h
ρk
|vk|2

2
+

1

h
ρk
|vk+1 − vk|2

2

=
1

h

ρk+1|vk+1|2

2
− 1

h

ρk|vk|2

2
+

1

h

(ρk+1 − ρk)|vk+1|2

2
+

1

h

ρk|vk+1 − vk|2

2
.

(4.20)

Thanks to (4.18), (4.19) and (4.20), by testing (4.2c) with Φ = vk+1, we obtain∫
Ω

1

h

ρk+1|vk+1|2

2
dx+

∫
Ω

1

h

ρk|vk+1 − vk|2

2
dx

+

∫
Ω

2ν(ϕk)|(∇vk+1)sym|2 dx+

∫
Ω

η(ϕk)Sk+1 : (∇vk+1)sym dx

=

∫
Ω

µk+1(∇ϕk · vk+1) dx+

∫
Ω

1

h

ρk|vk|2

2
dx+ 〈fk+1, vk+1〉H1 .

(4.21)

Next, observe that Sk+1 ∈ H1
sym,Tr(Ω) is a suitable test function for (4.2d). For the first term in (4.2d),

we calculate that

1

h
(Sk+1 − Sk) : Sk+1 =

1

h

|Sk+1|2

2
− 1

h

|Sk|2

2
+

1

h

|Sk+1 − Sk|2

2
. (4.22)

With the help of (4.22) and due to the fact that many terms cancel out, since v is divergence-free and
S is symmetric, we also obtain∫

Ω

1

h

|Sk+1|2

2
dx+

∫
Ω

1

h

|Sk+1 − Sk|
2

dx+ 〈ξkk+1 : Sk+1〉H1
sym,Tr

+

∫
Ω

γ|∇Sk+1|2 dx

=

∫
Ω

η(ϕk)(∇vk+1)sym : Sk+1 dx+

∫
Ω

1

h

|Sk|2

2
dx .

(4.23)

Further, observe that µk+1 ∈ H2
~n(Ω) and 1

h
(ϕk+1 − ϕk) ∈ H2(Ω) are suitable test functions for

(4.2e) and (4.2f), respectively. With this test, we obtain∫
Ω

1

h
(ϕk+1 − ϕk)µk+1 dx+

∫
Ω

(vk+1 · ∇ϕk)µk+1 dx = −
∫

Ω

|∇µk+1|2 dx , (4.24)
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as well as ∫
Ω

1

h
∇ϕk+1 · (∇ϕk+1 −∇ϕk) dx+

∫
Ω

W ′
0(ϕk+1)

ϕk+1 − ϕk
h

dx

=

∫
Ω

µk+1
ϕk+1 − ϕk

h
dx+

∫
Ω

κ
ϕ2
k+1 − ϕ2

k

2h
dx .

(4.25)

Now summing up (4.21)-(4.25), we derive∫
Ω

1

h

ρk|vk|2

2
dx+

∫
Ω

1

h

|Sk|2

2
dx+ 〈fk+1, vk+1〉H1

=

∫
Ω

1

h

ρk+1|vk+1|2

2
dx+

∫
Ω

1

h

ρk|vk+1 − vk|2

2
dx+

∫
Ω

1

h

|Sk+1|2

2
dx+

∫
Ω

1

h

|Sk+1 − Sk|2

2
dx

+

∫
Ω

2ν(ϕk)|(∇vk+1)sym|2 dx+

∫
Ω

γ|∇Sk+1|2 dx+ 〈ξkk+1, Sk+1〉H1
sym,Tr

+

∫
Ω

|∇µk+1|2 dx

+

∫
Ω

W ′
κ(ϕk+1)

ϕk+1 − ϕk
h

dx−
∫

Ω

κ
ϕ2
k+1 − ϕ2

k

2h
dx+

1

h

∫
Ω

∇ϕk+1 · (∇ϕk+1 −∇ϕk) dx

≥
∫

Ω

1

h

ρk+1|vk+1|2

2
dx+

∫
Ω

1

h

ρk|vk+1 − vk|2

2
dx+

∫
Ω

1

h

|Sk+1|2

2
dx+

∫
Ω

1

h

|Sk+1 − Sk|2

2
dx

+

∫
Ω

2ν(ϕk)|(∇v)sym|2 dx+

∫
Ω

γ|∇Sk+1|2 dx+ 〈ξkk+1 : Sk+1〉H1
sym,Tr

+

∫
Ω

|∇µk+1|2 dx

+
1

h

∫
Ω

Wκ(ϕk+1)− κ
ϕ2
k+1

2
dx− 1

h

∫
Ω

Wκ(ϕk)− κ
ϕ2
k

2
dx

+
1

h

∫
Ω

|∇ϕk+1 −∇ϕk|2

2
dx+

1

h

∫
Ω

|∇ϕk+1|2

2
dx− 1

h

∫
Ω

|∇ϕk|2

2
dx ,

where we have used the convexity of Wκ, i.e.,

W ′
κ(ϕk+1)(ϕk+1 − ϕk) ≥ Wκ(ϕk+1)−Wκ(ϕk),

and

∇ϕk+1 · (∇ϕk+1 −∇ϕk) =
|∇ϕk+1|2

2
− |∇ϕk|

2

2
+
|∇ϕk+1 −∇ϕk|2

2
.

Multiplying both sides by h and rearranging terms to the left-hand side results in (4.17).

Step 2: Existence result via Schaefer’s fixed-point theorem [21, Chapter 9.2.2, Theorem 2].
Suppose that

Kk : Ỹ → Ỹ

is a continuous and compact mapping. Assume further that the set{
u ∈ Ỹ : u = λKk(u) for some 0 ≤ λ ≤ 1

}
is bounded. Then Kk has a fixed point. In order to apply Schaefer’s fixed point theorem, we will
determine Ỹ and the operator Kk based on the discrete weak formulation (4.2). For this, using X
from (4.16) and the space

Y :=
(
H1

0,div(Ω)
)′ × (H1

sym,Tr(Ω)
)′ × L2(Ω)× L2(Ω), (4.26)
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we define operators Lk,Fk : X → Y as follows:

Lk : X → Y, w := (v, S, ϕ, µ) 7→ Lk(w) :=


Lvk(v)
Lsk(S)

−∆µ+
∫

Ω
µ dx

ϕ+ DEpf,κ(ϕ)

 (4.27)

where Lvk(v) and Lsk(S) are defined in the weak sense, i.e.,

〈Lvk(v),Φ〉 = 〈2ν(ϕk)(∇v)sym, (∇Φ)sym〉L2 − 〈fk+1,Φ〉H1 (4.28)

〈Lsk(S),Ψ〉 = 〈γS,Ψ〉H1 + 〈ξk,Ψ〉H1
sym,Tr

with ξk ∈ ∂P̃(ϕk;S) (4.29)

for all test functions Φ ∈ H1
0,div(Ω) and Ψ ∈ H1

sym,Tr(Ω), while the third and forth entries in(4.27)
are identified pointwise. We further introduce Fk as follows

Fk : X → Y, w := (v, S, ϕ, µ) 7→ Fk(w), (4.30)

where

Fk(w) :=


−ρv−ρkvk

h
− div(ρkv ⊗ v) + µ∇ϕk −

(
div(J)− ρ−ρk

h
− v · ∇ρk

)
v
2
− J · ∇v − div(η(ϕk)S)

−S−Sk

h
− v · ∇S − S(∇v)skw + (∇v)skwS + η(ϕk)(∇v)sym + γS

−ϕ−ϕk

h
− v · ∇ϕk +

∫
Ω
µ dx

ϕ+ µ+ κϕ+ϕk

2

 .

(4.31)
From these two definitions, we can see that w = (vk+1, Sk+1, ϕk+1, µk+1) is a weak solution to
(4.2c)-(4.2f) if and only if

Lk(w)−Fk(w) = 0. (4.32)

Properties of Lk. Now we want to prove the invertibility of the operator Lk. For the first entry, we
can derive the invertibility and continuity of the inverse with help of the Lax-–Milgram theorem. To show
the invertibility, for all f̃ ∈ (H1

0,div(Ω))′, we want to prove the existence of a unique v ∈ H1
0,div(Ω)

such that −div(2ν(ϕk)(∇v)sym) − fk+1 = f̃ . Since fk+1 ∈ H−1(Ω) ⊆ (H1
0,div(Ω))′. There holds

f̄ := f̃ + fk+1 ∈ (H1
0,div(Ω))′. Observing that the operator −div(2ν(ϕk)·) : H1

0,div(Ω) →
(H1

0,div(Ω))′ induces a continuous, coercive bilinear form, the Lax–Milgram theorem yields the in-
vertibility and continuity of the inverse. For the second entry, notice that it can be viewed as the
sum of a maximal monotone operator and the duality map. Hence, we can conclude the invert-
ibility by Minty—Browder Theorem see [8, Theorem 2.2]. To see the continuity of the inverse, let
Fn = −γ∆Sn + ξkn + γSn, F = −γ∆S + ξk + γS and Fn → F in (H1(Ω))′. For all n ∈ N,
observe that

γ‖Sn − S‖2
H1 ≤ γ〈Sn − S, Sn − S〉H1 + 〈ξkn − ξk, Sn − S〉H1

sym,Tr

= 〈Fn − F, Sn − S〉H1
sym,Tr

≤ 1

2γ
‖Fn − F‖2

(H1
sym,Tr)

′ +
γ

2
‖Sn − S‖2

H1 .

By rearranging terms, one can see that the inverse operator is continuous. For the third entry, let us
consider the following elliptic equation{

−∆u+
∫

Ω
u dx = g in Ω,

~n · ∇u|∂Ω = 0 on ∂Ω,
(4.33)
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where g ∈ L2(Ω) is a given function. The invertibility of the operator represented by the third entry is
equivalent to the existence of a unique weak solution u ∈ H2

~n(Ω) := {u ∈ H2(Ω) : ~n ·∇u|∂Ω = 0}
for any given f ∈ L2(Ω) and this can be guaranteed by [26, Chapter 2]. Moreover, one can also
derive that

‖µ‖H2 ≤ C (‖µ‖H1 + ‖g‖L2) . (4.34)

This gives the continuity of the inverse operator. For the last component of Lk, notice that DEpf,κ is a
maximal monotone operator. Again, by Minty—Browder Theorem, we have the invertibility. Moreover,
we want to derive the continuity of the inverse operator. To do so, we interpret the inverse operator
as a mapping L2(Ω) → H2−s(Ω) for arbitrary 0 < s < 1/4. Let Fk = uk + DEpf,κ(uk) and
F = u+ DEpf,κ(u) be given. Assume Fk → F in L2(Ω), then

‖uk − u‖2
L2 + ‖∇uk −∇u‖2

L2 ≤ ‖uk − u‖2
L2 + 〈DEpf,κ(uk)−DEpf,κ(u), uk − u〉L2

≤ ‖uk + DEpf,κ(uk)− u−DEpf,κ(u)‖L2 · ‖uk − u‖L2

≤ 1

2
‖Fk − F‖2

L2 +
1

2
‖uk − u‖2

L2 .

This shows that uk → u in H1(Ω). Besides, due to (2.20), (uk)k is bounded in H2(Ω). Then, by
interpolation, we have an inequality of the form

‖uk − u‖H2−s ≤ C‖uk − u‖1−s
H2 ‖uk − u‖sH1 ,

which implies that uk → u in H2−s(Ω).

Altogether, we now have the invertibility of Lk : X → Y and write the inverse operator as L −1
k :

Y → X . But for the continuity and even compactness of the inverse operator, we need to introduce
two refined Banach spaces:

X̃ := H1
0,div(Ω)×H1

sym,Tr(Ω)×H2−s(Ω)×H2
~n(Ω), (4.35a)

Ỹ := L
3
2 (Ω)3 × L

3
2 (Ω)3×3 ×W 1, 3

2 (Ω)×H1(Ω). (4.35b)

where 0 < s < 1/4. From above arguments, we know that L −1
k : Y → X̃ is continuous. Since

Ỹ ↪→↪→ Y , the restriction L −1
k : Ỹ → X̃ is compact.

Properties of Fk. Now, let us consider the operator Fk. We want to derive that Fk : X̃ → Ỹ is
continuous and that it maps bounded sets to bounded sets. To this end, let (v, S, ϕ, µ) ∈ X̃ , and we
deduce the following estimates for the different components of Fk:
We first discuss the terms in the first line of Fk. Since v ∈ H1(Ω) ↪→ L6(Ω), we obtain

‖ρv‖
L

3
2
≤ ‖ρ‖L2‖v‖L6 ≤ C‖v‖H1 (‖ϕ‖L2 + 1) .

Notice that div(ρkv⊗v) contains terms of the form ρk(∂xlvi)vj and (∂xlρk)vivj for i, j, l = 1, . . . , 3.
Besides, we have ρk ∈ L∞(Ω) ∩H2(Ω). Hence, ∂xlρk, vi ∈ H1(Ω) ↪→ L6(Ω). Hence, we obtain

‖ρk(∂xlvi)vj‖L 3
2
≤ ‖ρk‖L∞‖∂xlvi‖L2‖vj‖L6 ,

‖(∂xlρk)vivj‖L 3
2
≤ C‖∂xlρk‖L6‖vi‖L6‖vj‖L6 ,

and thus,

‖div(ρkv ⊗ v)‖
L

3
2
≤ Ck‖v‖2

H1 .
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Since µ ∈ H2(Ω) and since ϕk ∈ H2(Ω) implies that ∂xlϕk ∈ H1(Ω) ↪→ L6(Ω), we also obtain

‖µ∇ϕk‖L 3
2
≤ ‖∇ϕk‖L6‖µ‖L2 = Ck‖µ‖L2 .

Note that div(J)v = div(ρ2−ρ1
2
∇µ)v consists of terms of the form ρ2−ρ1

2
(∂xi∂xiµ)vl. Moreover, we

have µ ∈ H2(Ω) and vl ∈ H1(Ω) ↪→ L6(Ω). Thus, we obtain

‖div(J)v‖
L

3
2
≤ C‖µ‖H2‖v‖L6 ≤ C‖µ‖H2‖v‖H1 .

Similarly, J · ∇v has terms of the form ρ2−ρ1
2
∂xiµ∂xjv. Since ∂xiµ ∈ H1(Ω) ↪→ L6(Ω) and v ∈

H1(Ω), we obtain

‖J∇v‖
L

3
2
≤ C‖∇µ‖H1‖∇v‖L2 ≤ C‖µ‖H2‖∇v‖H1 .

Observe that div(η(ϕk)S) contains terms of the form that η′(ϕk)∂xlϕkSij and η(ϕk)∂xlSij . Since
∂xlϕk ∈ H1(Ω) ↪→ L6(Ω), S ∈ H1(Ω) and |η(ϕk)|, |η′(ϕ)| are bounded by assumption (2.8), we
obtain

‖η′(ϕk)∂xlϕkSij‖L 3
2
≤ C‖∂xlϕk‖L6‖Sij‖L2 ,

‖η(ϕk)∂xlSij‖L 3
2
≤ C‖∂xlSij‖L2 ,

and therefore also

‖div(η(ϕk)S)‖
L

3
2
≤ Ck‖S‖H1 .

This finishes the estimates for the terms in the first line of Fk and we turn to the terms in the second
line. Since S ∈ H1(Ω), we directly obtain

‖S‖
L

3
2
≤ C‖S‖H1 .

Thanks to v ∈ H1(Ω) ↪→ L6(Ω), we find

‖v · ∇S‖
L

3
2
≤ C‖v‖L6‖∇S‖L2 ≤ C‖v‖H1‖S‖H1 .

Moreover, due to S ∈ H1(Ω) ↪→ L6(Ω), we have

‖S(∇v)skw − (∇v)skwS‖L 3
2
≤ C‖∇v‖L2‖S‖L6 ≤ C‖v‖H1‖S‖H1 .

Since |η| is bounded by (2.8) and v ∈ H1(Ω), we also get

‖η(ϕk)(∇v)sym‖L 3
2
≤ C‖(∇v)sym‖L2 ≤ C‖v‖H1 .

Now, we discuss the estimates for the terms in the third line of Fk. By Hölder inequality, we directly
have

‖ϕ‖
W 1, 32

≤ C‖ϕ‖H1 .

Also notice that, since∇ϕk ∈ H1(Ω) and v ∈ H1(Ω) ↪→ L6(Ω), we have

‖v · ∇ϕk‖L 3
2
≤ ‖∇ϕk‖L2‖v‖L6 ≤ Ck‖v‖H1 .
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Moreover, The derivative of v · ∇ϕk consists of terms of the form ∂xivj∂xlϕk and vj∂xi∂xlϕk. Since
∂xivj ∈ L2(Ω), ∂xlϕk ∈ H1(Ω) ↪→ L6(Ω), vj ∈ H1(Ω) ↪→ L6(Ω) and ∂xi∂xlϕk ∈ L2(Ω), we
arrive at

‖∂xivj∂xlϕk‖L 3
2
≤ ‖∂xivj‖L2‖∂xlϕk‖L6 ,

‖vj∂xi∂xlϕk‖L 3
2
≤ ‖vj‖L6‖∂xi∂xlϕk‖L2 .

Therefore, we also conclude

‖v · ∇ϕk‖W 1, 32
≤ Ck‖v‖H1 ,

where Ck is a positive constant depending on k. Since µ ∈ H2(Ω), we obtain

‖
∫

Ω

µ dx‖
W 1, 32

≤ C

∣∣∣∣∫
Ω

µ dx

∣∣∣∣ ≤ C‖µ‖L2 .

For the last line of Fk, the estimate is direct, since

‖ϕ‖H1 = ‖ϕ‖H1 and ‖µ‖H1 ≤ ‖µ‖H2 .

Altogether, from the above discussion, we can see Fk : X̃ → Ỹ is continuous. Moreover, for
w = (v, S, ϕ, µ) bounded in X̃ , also Fk(w) is bounded in Ỹ i.e. Fk maps bounded sets to bounded
sets.

Definition of the operator Kk : Ỹ → Ỹ . Recall (4.32). In order to apply Schaefer’s fixed point
theorem,see [21, Chapter 9.2.2, Theorem 2] for details, we need to introduce a new operator Kk

whose image space and preimage space coincide. To this end, using Ỹ from (4.35b), we define the
operator as follows:

Kk : Ỹ → Ỹ , u 7→ Fk ◦L −1
k (u), (4.36)

which is feasible by the invertibility of Lk. With the help of this operator, we can rewrite (4.32) as

u−Kk(u) = 0 ⇐⇒ u = Kk(u), (4.37)

where u = Lk(w) forw ∈ X̃ . Since we already showed that L −1
k is compact and Fk is continuous,

then Kk is also continuous and compact on Ỹ .

Boundedness of Kk in X̃ . In order to apply Schaefer’s fixed point theorem, it remains to show that{
u ∈ Ỹ : u = λKk(u) for some 0 ≤ λ ≤ 1

}
(4.38)

is bounded. To this end, let u ∈ Ỹ and 0 ≤ λ ≤ 1 satisfy u = λKk(u). Again by the invertibility of
Lk, we find w = L −1

k (u) satisfying

Lk(w)− λFk(w) = 0.

By the definition of the operator Lk from (4.27) and of Fk from (4.31), we arrive at the following weak
formulations∫

Ω

2ν(ϕk)(∇v)sym : (∇Φ)sym dx+ λ

∫
Ω

ρv − ρkvk
h

· Φ− (ρkv ⊗ v) : ∇Φ dx

+ λ

∫
Ω

(div(J) +
ρ− ρk
h
− v · ∇ρk)

v

2
· Φ + (J · ∇v) · Φ + η(ϕk)S : ∇Φ dx

= λ

∫
Ω

(µ∇ϕk) · Φ dx+ 〈fk+1,Φ〉H1 ,

(4.39a)
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for all Φ ∈ C∞0,div(Ω).∫
Ω

γ∇S :· ∇Ψ + γS : Ψ dx+ 〈ξk,Ψ〉H1
sym,Tr

+ λ

∫
Ω

S − Sk
h

: Ψ + (v · ∇S) : Ψ + (S(∇v)skw − (∇v)skwS) : Ψ dx

= λ

∫
Ω

η(ϕk)(∇v)sym : Ψ + γS : Ψ dx ,

(4.39b)

for all Ψ ∈ C∞sym,Tr(Ω̄).

λ
ϕ− ϕk
h

+ λv · ∇ϕk − λ
∫

Ω

µ dx = ∆µ−
∫

Ω

µ dx (4.39c)

as well as

ϕ+ DEpf,κ(ϕ) = λϕ+ λµ+ λκ
ϕ+ ϕk

2
. (4.39d)

Now due to the bounds deduced above and by using a density argument, we conclude that Φ = v
and Ψ = S are admissible test functions for (4.39a) and (4.39b). Moreover, testing (4.39c) with µ and
(4.39d) with 1

h
(ϕ− ϕk) and integrating in space gives∫

Ω

2ν(ϕk)|(∇v)sym|2 dx+
λ

h

∫
Ω

ρ
|v|2

2
− ρk

|vk|2

2
+ ρk

|v − vk|2

2
dx

= λ

∫
Ω

µ(∇ϕk · v) dx− λ
∫

Ω

η(ϕk)S : (∇v)sym dx+ 〈fk+1, v〉H1 ,

(4.40a)

and∫
Ω

γ|∇S|2 dx+ 〈ξk, S〉H1
sym,Tr

+

∫
Ω

γ|S|2 dx+
λ

h

∫
Ω

|S|2

2
− |Sk|

2

2
+
|S − Sk|2

2
dx

= λ

∫
Ω

η(ϕk)(∇v)sym : S + γ|S|2 dx ,

(4.40b)

and

λ

h

∫
Ω

(ϕ− ϕk)µ dx+ λ

∫
Ω

(v · ∇ϕ)µ dx− (λ− 1)

∣∣∣∣∫
Ω

µ dx

∣∣∣∣2 +

∫
Ω

|∇µ|2 dx = 0, (4.40c)

as well as

1

h

∫
Ω

ϕ(ϕ− ϕk) dx+
1

h

∫
Ω

∇ϕ · (∇ϕ−∇ϕk) dx+
1

h

∫
Ω

W ′
κ(ϕ)(ϕ− ϕk) dx

=
λ

h

∫
Ω

ϕ(ϕ− ϕk)−
λ

h

∫
Ω

µ(ϕ− ϕk) dx+
λκ

h

∫
Ω

ϕ2 − ϕ2
k

2
dx .

(4.40d)

Summing up (4.40a)-(4.40d), we obtain that

0 =

∫
Ω

2ν(ϕk)|(∇v)sym|2 dx− 〈fk+1, v〉H1 +

∫
Ω

γ|∇S|2 dx+ 〈ξk, S〉H1
sym,Tr

+

∫
Ω

|∇µ|2 dx

+
λ

h

∫
Ω

ρ
|v|2

2
− ρk

|vk|2

2
dx+

λ

h

∫
Ω

ρk
|v − vk|2

2
dx+

λ

h

∫
Ω

|S|2

2
− |Sk|

2

2
dx+

λ

h

∫
Ω

|S − Sk|2

2
dx

+ (1− λ)

∫
Ω

γ|S|2 dx+ (1− λ)

∣∣∣∣∫
Ω

µ dx

∣∣∣∣2 +
1− λ
h

∫
Ω

ϕ2

2
− ϕ2

k

2
dx+

1− λ
h

∫
Ω

|ϕ− ϕk|2

2
dx

+
1

h

∫
Ω

|∇ϕ|2

2
− |ϕk|

2

2
dx+

1

h

∫
Ω

|ϕ− ϕk|2

2
dx+

1

h

∫
Ω

W ′
κ(ϕ)(ϕ− ϕk) dx− λ

h

∫
Ω

κ
ϕ2 − ϕ2

k

2
dx .
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Recall that λ ∈ [0, 1] and, by convexity, there holds∫
Ω

W ′
κ(ϕ)(ϕ− ϕk) dx ≥

∫
Ω

Wκ(ϕ)−Wκ(ϕk) dx .

This leads to the estimate∫
Ω

2ν(ϕk)|(∇v)sym|2 dx− 〈fk+1, v〉H1 +

∫
Ω

γ|∇S|2 dx+ 〈ξk, S〉H1
sym,Tr

+

∫
Ω

|∇µ|2 dx

+
λ

h

∫
Ω

ρ
|v|2

2
− ρk

|vk|2

2
dx+

λ

h

∫
Ω

|S|2

2
− |Sk|

2

2
dx+ (1− λ)

∫
Ω

γ|S|2 dx+ (1− λ)

∣∣∣∣∫
Ω

µ dx

∣∣∣∣2
+

1− λ
h

∫
Ω

|ϕ|2

2
− |ϕk|

2

2
dx+

1

h

∫
Ω

|∇ϕ|2

2
− |∇ϕk|

2

2
dx+

1

h

∫
Ω

Wκ(ϕ)−Wκ(ϕk) dx

− λ

h

∫
Ω

κ
ϕ2 − ϕ2

k

2
dx ≤ 0.

Furthermore, rearranging terms results in∫
Ω

2ν(ϕk)|(∇v)sym|2 dx− 〈fk+1, v〉H1 +

∫
Ω

γ|∇S|2 dx+ 〈ξk, S〉H1
sym,Tr

+

∫
Ω

|∇µ|2 dx

+
λ

h

∫
Ω

|S|2

2
dx+ (1− λ)

∫
Ω

γ|S|2 dx+ (1− λ)

∣∣∣∣∫
Ω

µ dx

∣∣∣∣2 +
1

h

∫
Ω

|∇ϕ|2

2
dx+

1

h

∫
Ω

W (ϕ) dx

≤ λ

h

∫
Ω

ρk
|vk|2

2
dx+

λ

h

∫
Ω

|Sk|2

2
dx+

1− λ
h

∫
Ω

|ϕk|2

2
dx+

1

h

∫
Ω

|∇ϕk|
2

dx+
1

h

∫
Ω

Wκ(ϕk) dx .

This is equivalent to

h

∫
Ω

2ν(ϕk)|(∇v)sym|2 dx+ h

∫
Ω

γ|∇S|2 dx+ h〈ξk, S〉H1
sym,Tr

+ h

∫
Ω

|∇µ|2 dx+

∫
Ω

|∇ϕ|2

2
dx

+ λ

∫
Ω

|S|2

2
dx+ (1− λ)h

∫
Ω

γ|S|2 dx+ h(1− λ)

∣∣∣∣∫
Ω

µ dx

∣∣∣∣2 +

∫
Ω

W (ϕ) dx

≤ Ck + h〈fk+1, v〉H1 ,

whereCk is a positive constant depending on k. Notice that by the invertibility of Lk,w = (v, S, ϕ, µ) =
L −1
k (u) ∈ X so that ϕ ∈ dom(DEpf,κ). Hence ϕ ∈ [−1, 1]. Moreover, due to the continuity of W

on [−1, 1], W (ϕ) is bounded both from above and from below. Therefore, it can be absorbed by the
constant Ck on the right-hand side, i.e.,

h

∫
Ω

2ν(ϕk)|(∇v)sym|2 dx+ h

∫
Ω

γ|∇S|2 dx+ h〈ξk, S〉H1
sym,Tr

+ h

∫
Ω

|∇µ|2 dx+

∫
Ω

|∇ϕ|2

2
dx

+ λ

∫
Ω

|S|2

2
dx+ h(1− λ)

∫
Ω

γ|S|2 dx+ h(1− λ)

∣∣∣∣∫
Ω

µ dx

∣∣∣∣2 ≤ Ck + 〈fk+1, v〉H1 .

Notice that for λ ∈ [0, 1
2
], the term h(1− λ)

∫
Ω
γ|S|2 dx gives an estimate on

∫
Ω
|S|2 dx. Similarly,

for λ ∈ (1
2
, 1], the term λ

∫
Ω
|S|2

2
dx also gives an estimate on

∫
Ω
|S|2 dx. Moreover, since γ > 0

and ν is bounded from below by a positive constant by (2.8), we finally arrive at∫
Ω

|∇v|2 dx+

∫
Ω

|∇S|2 dx+

∫
Ω

|S|2 dx+ 〈ξk, S〉H1
sym,Tr

+

∫
Ω

|∇µ|2 dx

+

∫
Ω

|∇ϕ|2 dx+ (1− λ)

∣∣∣∣∫
Ω

µ dx

∣∣∣∣2 ≤ Ck + 〈fk+1, v〉H1 .
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Combined with ϕ ∈ [−1, 1] and Poincaré’s inequality, we obtain

‖v‖H1 + ‖S‖H1 + P̃(ϕk;S) + ‖ϕ‖H1 + ‖∇µ‖L2 +
√

1− λ
∣∣∣∣∫

Ω

µ dx

∣∣∣∣ ≤ Ck. (4.41)

It remains to find an H2−estimate for µ. By (4.34), this is equivalent to finding an H1−estimate.
Since we already have an estimate on ‖∇µ‖L2 , it remains to find an L2−estimate for µ. Again by
Poincaré’s inequality, we have

‖µ‖L2 ≤ ‖∇µ‖L2 +

∣∣∣∣∫
Ω

µ dx

∣∣∣∣.
Hence, it is sufficient to find a bound for

∣∣∫
Ω
µ dx

∣∣. To this end, first consider λ ∈ [0, 1
2
). Then we

directly have √
2

2

∣∣∣∣∫
Ω

µ dx

∣∣∣∣ ≤ √1− λ
∣∣∣∣∫

Ω

µ dx

∣∣∣∣ ≤ Ck.

For λ ∈ [1
2
, 1], 1

2

∣∣∫
Ω
µ dx

∣∣ ≤ λ
∣∣∫

Ω
µ dx

∣∣. Repeating the argument as in proving (4.6) to equation
(4.40d) and notice ‖∇µ‖L2 and ‖∇ϕ‖L2 are bounded by Ck due to (4.41), we can get∣∣∣∣∫

Ω

µ dx

∣∣∣∣ ≤ Ck.

Therefore, (4.41) can be improved to

‖v‖H1 + ‖S‖H1 + P̃(ϕk;S) + ‖ϕ‖H1 + ‖µ‖H2 ≤ Ck. (4.42)

Moreover, from (4.39d), we have the additional estimate

‖DEpf,κ(ϕ)‖L2 ≤ (λ+ 1)‖ϕ‖L2 + λ‖µ‖L2 +
λκ

2
(‖ϕ‖L2 + ‖ϕk‖L2) ≤ Ck.

Altogether, we have the following estimate for w = (v, S, ϕ, µ)

‖w‖X̃ + ‖DEpf,κ(ϕ)‖L2 ≤ Ck,

with X̃ from (4.35a).

Boundedness of Kk in Ỹ . It remains to show that u = Lk(w) is bounded in Ỹ . Recall that Fk

maps bounded sets in X̃ to bounded sets in Ỹ and that u = λFk(w). Therefore,

‖u‖Ỹ = ‖λFk(w)‖Ỹ ≤ Ck (‖w‖X̃ + 1) ≤ C̃k.

where C̃k is a positive constant depending on k.

Now, since all assumptions in Schaefer’s fixed point theorem have been satisfied, the existence of
a fixed point of the operator Kk can be guaranteed. Hence, there exists a weak solution to (4.2c)-
(4.2f).
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4.2 Existence of weak solutions

In Section 4.1, we have constructed a sequence of approximating solutions (vh, Sh, ϕh, µh)h. In order
to get a time-continuous solution, we perform the limit passage h → 0. We follow the ideas of [2,
Theorem 3.4] where the existence of weak solutions for the Cahn–Hilliard–Navier–Stokes system was
shown. In our case here, we have to deal with the extra stress tensor which will need some more
attention.

Theorem 4.4. Let γ > 0. Let v0, S0 and ϕ0 satisfy Assumption 2.3. Let Assumption 2.4 be satisfied
and let P fulfill Assumption 2.2. Then, there exists a weak solution (v, S, ϕ, µ) of (2.23) in the sense
of Definition 2.7. Moreover, the phase-field variable ϕ takes values in (−1, 1) a.e. in Ω× (0, T ).

Proof. Step 1: Existence of discrete solutions at each time step k = 0, 1 . . . , N . We would like
to apply Lemma 4.3 in order to conclude the existence of a weak solution (vk, Sk, ϕk, µk)k at each
time step. For this, notice that the initial datum ϕ0 is required to be in H2(Ω). Therefore, we have to
approximate ϕ0 by functions in H2(Ω). To this end, consider the following parabolic problem

∂tu−∆u = 0 in Ω× (0, T ),

u(0) = ϕ0 in Ω,

~n · ∇u = 0 on ∂Ω× (0, T ).

By the regularity theorem of parabolic equations e.g. [21, Chapter 7.1.3], there exists a solution u ∈
L2(0, T ;H2(Ω)), hence we can set ϕN0 := u|t= 1

N
. Moreover, the maximum principle gives that∣∣ϕN0 ∣∣ ≤ 1 and we also have that

ϕN0 → ϕ0 in H1(Ω) (4.43)

(For details, see [21, Chapter 7.1]). Set the time-step size to be h = T
N

(h = 1
N

when T = ∞)
and tk = kh for all k = 0, 1, . . . , N . Now, we can apply Lemma 4.3 with initial data (v0, S0, ϕ

N
0 ) to

deduce the existence of approximating solutions (vk, Sk, ϕk, µk) where k = 1, . . . , N .

Step 2: Interpolation in time and weak formulation for the interpolations. Define FN(t) on
[0, T ) to be the piecewise constant interpolation i.e.

FN(t) := Fk for t ∈ ((k − 1)h, kh] and F (0) = F0, (4.44a)

where k ∈ N and F ∈ {v, S, ϕ, µ, ξ}. Also set

ρN :=
1

2
(ρ2 + ρ1) +

1

2
(ρ2 − ρ1)ϕN . (4.44b)

Moreover, we define

∂+
t,hF

N(t) :=
1

h
(FN(t+ h)− FN(t)), (4.44c)

∂−t,hF
N(t) :=

1

h
(FN(t)− FN(t− h)), (4.44d)

FN
h (t) := FN(t− h). (4.44e)

Notice that the approximating problem should be tested by static test functions, but, in the limit, we
aim for a weak formulation which also involves time. For this purpose, for Φ ∈ C∞0,div(Ω × [0, T )),
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we define the interpolations Φ̃k+1 =
∫ (k+1)h

kh
Φ dt and use Φ̃k+1 as a the test function in (4.2c). Sum

over k ∈ {0, 1, . . . , N}, we obtain∫ T

0

∫
Ω

∂−t,h(ρ
NvN) · Φ dx dt−

∫ T

0

∫
Ω

(ρNh v
N ⊗ vN) : ∇Φ dx dt

+

∫ T

0

∫
Ω

2ν(ϕNh )(∇vN)sym : (∇Φ)sym dx dt+

∫ T

0

∫
Ω

η(ϕNh )SN : (∇Φ)sym dx dt

−
∫ T

0

∫
Ω

(vN ⊗ JN) : ∇Φ dx dt =

∫ T

0

∫
Ω

µN∇ϕNh · Φ dx dt+

∫ T

0

〈fN ,Φ〉H1 dt ,

(4.45a)

for all Φ ∈ C∞0,div(Ω× [0, T )). Analogously, for all ζ ∈ C∞0 ([0, T );C1(Ω̄)), we approximate ζ in the

same way as above to get ζ̃k+1. Hence, testing (4.2e) with ζ̃k+1 and summing over k ∈ {0, 1, . . . , N}
gives∫ T

0

∫
Ω

∂−t,h(ϕ
N)ζ dx dt+

∫ T

0

∫
Ω

vNϕNh · ∇ζ dx dt =

∫ T

0

∫
Ω

∇µN · ∇ζ dx dt , (4.45b)

and from (4.2f), we have

µN +
κ

2
(ϕN + ϕNh ) = −∆ϕN +W ′

0(ϕN), (4.45c)

which holds almost everywhere in Ω× (0, T ).

Step 3: Energy-dissipation estimate and uniform a priori bound. For all N ∈ N, for all t ∈
(tk, tk+1) and for all k ∈ {0, 1, . . . , N}, we define EN(t) to be the piecewise linear interpolation of
total energy Etot(vk, Sk, ϕk) i.e.

EN(t) :=
(k + 1)h− t

h
Etot(vk, Sk, ϕk) +

t− kh
h
Etot(vk+1, Sk+1, ϕk+1), (4.46)

and define DN(t) to be the piecewise constant dissipation for all t ∈ (tk, tk+1), i.e.,

DN(t) :=

∫
Ω

2ν(ϕNh )
∣∣(∇vN)sym

∣∣2+γ
∣∣∇SN ∣∣2+

∣∣∇µN ∣∣2 dx−〈fN , vN〉H1 +P(ϕNh ;SN). (4.47)

From (4.17), we can directly see for all t ∈ (tk, tk+1) that

− d

dt
EN(t) =

Etot(vk, Sk, ϕk)− Etot(vk+1, Sk+1, ϕk+1)

h
≥ DN(t). (4.48)

Integrating (4.48) in each time interval (tk, tk+1) and summing over k ∈ {0, 1, . . . , N} yields that

Etot(v0, S0, ϕ
N
0 ) ≥

∫ t

0

∫
Ω

2ν(ϕNh )
∣∣(∇vN)sym

∣∣2 + γ
∣∣∇SN ∣∣2 +

∣∣∇µN ∣∣2 dx− 〈fN , vN〉H1 dτ

+

∫ t

0

P(ϕNh ;SN) dτ + EN(t),

(4.49)
for all t ∈ [0, T ). Since Etot(v0, S0, ϕ

N
0 ) is finite and by Assumption 2.3 that f ∈ L2

loc([0, T );
H−1(Ω)3), and using (2.8), we deduce the following uniform bounds with respect to N ∈ N:

(vN)N is bounded in L2(0, T ′;H1
0,div(Ω)) and in L∞(0, T ′;L2

div(Ω)), (4.50a)
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(SN)N is bounded in L2(0, T ′;H1
sym,Tr(Ω)) and in L∞(0, T ′;L2

sym,Tr(Ω)), (4.50b)

(ϕN)N is bounded in L∞(0, T ′;H1(Ω)), (4.50c)

(∇µN)N is bounded in L2(0, T ′; (L2(Ω))3). (4.50d)

for all 0 < T ′ < T . Moreover, from the uniform bounds (4.50c) on (∇ϕN)N and (4.50d) on (∇µN)N ,
we can deduce the following estimate on (µN)N with the aid of (4.6)∫ T ′

0

∣∣∣∣∫
Ω

µN dx

∣∣∣∣ dt ≤ C · T ′ for all 0 < T ′ < T, (4.51)

where C > 0 is a constant.

Step 4: Immediate convergence results. By a classical diagonalization argument, we can extract
a not relabeled subsequence and a limit quadruplet (v, S, ϕ, µ) such that for all 0 < T ′ < T :

vN ⇀ v in L2(0, T ′;H1(Ω)), (4.52a)

vN
∗
⇀ v in L∞(0, T ′;L2

div(Ω)), (4.52b)

SN ⇀ S in L2(0, T ′;H1(Ω)), (4.52c)

SN
∗
⇀ S in L∞(0, T ′;L2

sym,Tr(Ω)), (4.52d)

ϕN
∗
⇀ ϕ in L∞(0, T ′;H1(Ω)), (4.52e)

µN ⇀ µ in L2(0, T ′;H1(Ω)). (4.52f)

Step 5: Improved convergence results. Now we derive additional strong convergence results with
the help of the Aubin-Lions lemma, see [39, Chapter 7.3] for details. This will require estimates on the
time derivatives. To this end, we define the piecewise linear interpolations, i.e.,

F̃N(t) :=
(k + 1)h− t

h
Fk +

t− kh
h

Fk+1 (4.53)

for t ∈ [tk, tk+1] and F ∈ {ρv, ϕ}; if F = ρv, then F̃N := ρ̃vN with the piecewise linear inter-
polation of ρv and Fk = ρkvk with the solutions ρk, vk at step k. By definition, ∂tF̃N = ∂−t,hF

N

and the bounds on the piecewise constant interpolations can be transferred to the piecewise linear
interpolations, i.e., we have

(ρ̃vN)N is bounded in L2(0, T ;W
1, 3

2
0 (Ω)) and in L∞(0, T ;L2(Ω)), (4.54a)

(ϕ̃N)N is bounded in L∞(0, T ;H1(Ω)). (4.54b)

Moreover, we can estimate the difference between the piecewise constant interpolation and the piece-
wise linear interpolation pointwise, i.e., we have∣∣∣F̃N(t, x)− FN(t, x)

∣∣∣ ≤ h
∣∣∣∂tF̃N(t, x)

∣∣∣ almost everywhere in Ω× (0, T ). (4.55)

We first derive a uniform bound on (∂tϕ̃
N)N from (4.45b). Since (vNϕNh )N and (∇µN)N are bounded

in L2(0, T ;L2(Ω)), the test function ζ can be chosen with ∇ζ ∈ L2(0, T ;L2(Ω)). Hence, ζ ∈
L2(0, T ;H1(Ω)) is sufficient by comparison in (4.45b). This implies that (∂tϕ̃

N)N is bounded in
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L2(0, T ;H−1(Ω)). Besides, (ϕ̃N)N is bounded in L∞(0, T ;H1(Ω)) from (4.54b). Therefore, by
Aubin-Lions Lemma, we get the strong convergence

ϕ̃N → ϕ̃ in L2(0, T ′;L2(Ω))

as N → ∞, for all 0 < T ′ < T and some ϕ̃ ∈ L∞(0, T ;L2(Ω)). The bound on (∂tϕ̃
N)N in

L2(0, T ;H−1(Ω)) and (4.55) give us that

ϕ̃N − ϕN → 0 in L2(0, T ′;H−1(Ω)).

as N →∞. Furthermore, we obtain

ϕN → ϕ̃ in L2(0, T ′;H−1(Ω))

as N → ∞, for all 0 < T ′ < T , which implies that ϕ = ϕ̃. Besides, by interpolation of Bochner
spaces, see [11, Theorem 5.1.2] for details, the strong convergence of (ϕN)N in L2(0, T ′;H−1(Ω))
and its bound in L2(0, T ′;H1(Ω)) imply the strong convergence

ϕN → ϕ in L2(0, T ′;L2(Ω)). (4.56)

Next, we want to improve the strong convergence of (ϕN)N by interpolation inequalities and find
convergence result for (DEpf,κ(ϕ

N))N . By Lemma 4.2, we obtain that (DEpf,κ(ϕ
N))N is bounded in

L2(0, T ′;L2(Ω)) for all 0 < T ′ < T . Moreover, in (4.45c), the right-hand side is actually
(DEpf,κ(ϕ

N))N , while the left-hand side weakly converges to µ + κϕ in L2(0, T ′;L2(Ω)). Hence,
we have

DEpf,κ(ϕ
N) = −∆ϕN +W ′

κ(ϕ
N) = µN +

κ

2
(ϕN + ϕNh )

⇀ µ+ κϕ in L2(0, T ′;L2(Ω)).

This also implies that
‖DEpf,κ(ϕ

N)‖L2(0,T ′;L2(Ω)) ≤ C (4.57)

for all N ∈ N. Furthermore, by (2.20), we have

‖ϕN‖2
H2 + ‖W ′

κ(ϕ
N)‖2

L2 +

∫
Ω

W ′′
κ (ϕN)

∣∣∇ϕN ∣∣2 dx ≤ C
(
‖DEpf,κ(ϕ

N)‖2
L2 + ‖ϕN‖2

L2 + 1
)
,

The boundedness of (DEpf,κ(ϕ
N))N together with the bounds on (ϕN)N inL2(0, T ′;L2(Ω)) implies

that
(ϕN)N is bounded in L2(0, T ′;H2(Ω)). (4.58)

Hence, by interpolation of Bochner spaces and the strong convergence of (ϕN)N inL2(0, T ′;L2(Ω))
from (4.56), we obtain

ϕN → ϕ in L2(0, T ′;H1(Ω)). (4.59)

Since (ρN)N depends in an affine linear way on (ϕN)N by formula (2.7), we have the same conver-
gence result for (ρN)N .

Now, we derive a uniform bound on (∂t(ρ̃v
N))N from (4.45a). For this, we argue by comparison

in (4.45a) and therefore, we now derive uniform estimates for all the other terms in (4.45a). In particu-
lar, for all 0 < T ′ < T , we have the following estimates:
Notice that ρNh v

N ⊗ vN contains terms of the form ρNh v
N
i v

N
j . Since (vN)N is bounded both in
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L∞(0, T ′;L2(Ω)) by (4.50a) and L2(0, T ′;H1(Ω)) ↪→ L2(0, T ′;L6(Ω)) and (ρNh )N is bounded
in L∞(Ω× (0, T ′)), we obtain

‖ρNh vN ⊗ vN‖L2(0,T ′;L
3
2 (Ω))

≤ C‖ρNh ‖L∞(Ω×(0,T ′))‖vN‖L∞(0,T ′;L2(Ω))‖vN‖L2(0,T ′;L6(Ω))

≤ C‖ρN‖L∞(Ω×(0,T ′))‖vN‖L∞(0,T ′;L2(Ω))‖vN‖L2(0,T ′;H1(Ω)),

where we used that ‖ρNh ‖L∞(Ω×(0,T ′)) = ‖ρN‖L∞(Ω×(0,T ′)).
Since (vN)N is bounded in L2(0, T ′;H1(Ω)) by (4.50a) and (ν(ϕNh ))N is bounded from above by a
positive constant thanks to (2.8), we obtain

‖2ν(ϕNh )(∇vN)sym‖L2(0,T ′;L2(Ω)) ≤ C‖vN‖L2(0,T ′;H1(Ω)).

Since (SN)N is bounded in L2(0, T ′;H1(Ω)) by (4.50b) and (η(ϕNh ))N is bounded from above by
a positive constant again by (2.8), we have

‖η(ϕNh )SN‖L2(0,T ′;L2(Ω)) ≤ C‖SN‖L2(0,T ′;H1(Ω)).

Notice that vN∇µN consists of terms of the form vNi ∂xjµ
N . Since (∇µN)N is bounded in

L2(0, T ′;L2(Ω)) by (4.50d) and (vN)N is bounded inL∞(0, T ′;L2(Ω)) and inL2(0, T ′;H1(Ω)) ↪→
L2(0, T ′;L6(Ω)) by (4.50a), we find

‖vNi ∂xjµN‖L2(0,T ′;L1(Ω)) ≤ C‖vNi ‖L∞(0,T ′;L2(Ω))‖∂xjµN‖L2(0,T ′;L2(Ω))

and
‖vNi ∂xjµN‖L1(0,T ′;L

3
2 (Ω))

≤ C‖vNi ‖L2(0,T ′;L6(Ω))‖∂xjµN‖L2(0,T ′;L2(Ω)),

which implies that (vNi ∂xjµ
N)N is bounded in L2(0, T ′;L1(Ω)) and in L1(0, T ′;L

3
2 (Ω)). Now, by

interpolation of Bochner spaces, we obtain here(
L2(0, T ′;L1(Ω)), L1(0, T ′;L

3
2 (Ω))

)
θ

= L
8
7 (0, T ′;L

4
3 (Ω)),

with θ = 3
4
. This implies

‖vN∇µN‖
L

8
7 (0,T ′;L

4
3 (Ω))

≤ C‖vN∇µN‖1−θ
L2(0,T ′;L1(Ω))‖v

N∇µN‖θ
L1(0,T ′;L

3
2 (Ω))

.

Since (µN)N is bounded in L2(0, T ′;H1(Ω)) ↪→ L2(0, T ′;L6(Ω)) by (4.50d) and (4.51). Moreover,
(∇ϕNh )N is bounded in L∞(0, T ′;L2(Ω)). Thus, we obtain

‖µN∇ϕNh ‖L2(0,T ′;L
3
2 (Ω))

≤ C‖µN‖L2(0,T ′;L6(Ω))‖∇ϕNh ‖L∞(0,T ′;L2(Ω))

≤ C‖µN‖L2(0,T ′;H1(Ω))‖ϕN‖L∞(0,T ′;H1(Ω)),

where we again used ‖∇ϕNh ‖L∞(0,T ′;L2(Ω)) = ‖∇ϕN‖L∞(0,T ′;L2(Ω)).

Altogether, all these terms are bounded in L
8
7 (0, T ′;L

4
3 (Ω)), so we can choose test function Φ

in (4.45a) such that

Φ,∇Φ ∈
(
L

8
7 (0, T ′;L

4
3 (Ω))

)′
= L8(0, T ′;L4(Ω)).

Hence, choosing test functions Φ ∈ L8(0, T ′;W 1,4(Ω)) is sufficient. This implies that (∂t(ρ̃v
N))N is

bounded in L
8
7 (0, T ′;W−1,4(Ω)). Besides, (ρ̃vN)N is bounded in L2(0, T ′;W 1, 3

2 (Ω)) from (4.54a).
Therefore, by the Aubin-Lions Lemma, we obtain the strong convergence

ρ̃vN → ρ̃v in L2(0, T ′;L2(Ω)),
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as N → ∞ for some ρ̃v ∈ L∞(0, T ′;L2(Ω)) ∩ L2(0, T ′;W 1, 3
2 (Ω)). Moreover, (4.55) and the

bound on (∂t(ρ̃v
N))N in L

8
7 (0, T ′;W−1,4(Ω)) obtained above imply that

ρ̃vN − ρNvN → 0 in L
8
7 (0, T ′;W−1,4(Ω)).

as N →∞. Thus, we obtain

ρNvN → ρ̃v in L
8
7 (0, T ′;W−1,4(Ω)),

asN →∞ which implies ρ̃v = ρv. Moreover, by interpolation of Bochner spaces, the strong conver-
gence of (ρNvN)N inL

8
7 (0, T ′;W−1,4(Ω)) and the bound of (ρNvN)N inL2(0, T ′;W 1, 3

2 (Ω)) imply
the strong convergence in L

16
11 (0, T ′;L

24
11 (Ω)) due to the choice of θ = 1

2
for the interpolation. By

continuous embedding L
16
11 (0, T ′;L

24
11 (Ω)) ↪→ L

16
11 (0, T ′;L2(Ω)), we get the strong convergence in

L
16
11 (0, T ′;L2(Ω)). By repeating this argument with L

16
11 (0, T ′;L2(Ω)) and L∞(0, T ′;L2(Ω)), we

arrive at the strong convergence

ρNvN → ρv in L2(0, T ′;L2(Ω)). (4.60)

Now, we want to obtain the strong convergence of (vN)N from (4.60). To this end, first notice that∣∣∣∣∣
∫ T ′

0

∫
Ω

ρN
∣∣vN ∣∣2 dx dt−

∫ T ′

0

∫
Ω

ρ|v|2 dx dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T ′

0

∫
Ω

(ρNvN − ρv)vN dx dt

∣∣∣∣∣+

∣∣∣∣∣
∫ T ′

0

∫
Ω

ρv(vN − v) dx dt

∣∣∣∣∣,
where the first term in the last line tends to 0 due to the strong convergence of (ρNvN)N in
L2(0, T ′;L2(Ω)) by (4.60) and the second term tends to 0, thanks to the weak convergence of (vN)N
inL2(0, T ′;L2(Ω)) by (4.52b). Besides, in combination with (ρN)

1
2vN ⇀ (ρ)

1
2v inL2(0, T ′;L2(Ω)),

we obtain that (ρN)
1
2vN → (ρ)

1
2v in L2(0, T ′;L2(Ω)). Since (ρN)N → ρ almost everywhere in

Ω× (0, T ) and 0 < ρ1 ≤ ρN ≤ ρ2, we obtain

vN = (ρN)−
1
2 (ρN)

1
2vN → v in L2(0, T ′;L2(Ω)). (4.61)

Step 6: Limit passage in the weak formulation (4.45a)-(4.45c). Next we want to pass (4.45a)-
(4.45c) to the limit N →∞. Notice that for all divergence-free test functions Φ, we have the following
relation ∫ T

0

∫
Ω

µN∇ϕNh · Φ dx dt =−
∫ T

0

∫
Ω

∇µNϕNh · Φ dx dt

→−
∫ T

0

∫
Ω

∇µϕ · Φ dx dt =

∫ T

0

∫
Ω

µ∇ϕ · Φ dx dt .

Then the limit passage of (4.45a)-(4.45b) follows from the convergence results (4.43), (4.52), (4.59)-
(4.61). To pass to the limit in (4.45c), we use (4.57) and the fact that DEpf,κ is a maximal monotone
operator and apply [42, Proposition IV.1.6]. Hence, we conclude (2.25e).
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Step 7: The partial energy estimates. For all N ∈ N, for all t ∈ (tk, tk+1) and for all k ∈
{0, 1, . . . , N}, define EN

k (t) to be the piecewise linear interpolation of the kinetic energy, i.e.,

EN
k (t) :=

(k + 1)h− t
h

Ek(ϕk, vk) +
t− kh
h
Ek(ϕk+1, vk+1) (4.62)

and define DN
s (t) to be the piecewise constant dissipation as

DN
s (t) :=

∫
Ω

2ν(ϕNh )
∣∣(∇vN)sym

∣∣2 dx+

∫
Ω

η(ϕNh )SN : ∇vN dx

−
∫

Ω

µN(∇ϕNh · vN) dx− 〈fN , vN〉H1 .

for all t ∈ [tk, tk+1). Then from (4.21), we have

− d

dt
EN

k (t) = −1

h
Ek(ϕk, vk) +

1

h
Ek(vk+1) ≥ DN

s (t). (4.63)

Now, we multiply both sides of (4.63) by arbitrary φ ∈ C̃([0, T ′]), integrate over time, and use inte-
gration by parts. This results in

Ek(ϕ0, v0) ≥ −
∫ T ′

0

φ′(t)EN
k (t) dt+

∫ T ′

0

φ(t)DN
s (t) dt . (4.64)

By the strong convergence of (vN)N in L2(0, T ′;L2(Ω)) from (4.61) and the strong convergence of
(ϕN)N in L2(0, T ′;H1(Ω)) from (4.59), we derive

lim
N→∞

−
∫ T ′

0

φ′(t)EN
k (t) dt→ −

∫ T ′

0

φ′(t)Ek(ϕ(t), v(t)) dt . (4.65)

Next, by the weak convergence of (vN)N in L2(0, T ′;H1(Ω)) from (4.52a), the strong convergence
of (ϕN)N in L2(0, T ′;H1(Ω)) from (4.59) and assumption (2.8), we obtain∫ T ′

0

φ

∫
Ω

2ν(ϕ)|(∇v)sym|2 dx dt ≤ lim inf
N→∞

∫ T ′

0

φ

∫
Ω

2ν(ϕNh )
∣∣(∇vN)sym

∣∣2 dx ds . (4.66)

Moreover, by the strong convergence of (vN)N in L2(0, T ′;L2(Ω)) from (4.61), the strong conver-
gence of (ϕN)N inL2(0, T ′;H1(Ω)) from (4.59), the weak convergence of (SN)N inL2(0, T ′;H1(Ω))
from (4.52c) and assumption (2.8), we derive

lim
N→∞

∫ t

0

φ

∫
Ω

η(ϕNh )SN : ∇vN dx ds

= lim
N→∞

(
−
∫ t

0

φ

∫
Ω

η′(ϕNh )vN ⊗∇ϕNh : SN dx ds−
∫ t

0

φ

∫
Ω

η(ϕNh )div(SN) · vN dx ds

)
=−

∫ t

0

φ

∫
Ω

η′(ϕ)v ⊗∇ϕ : S dx ds−
∫ t

0

φ

∫
Ω

η(ϕ)div(S) · v dx ds

=

∫ t

0

φ

∫
Ω

η(ϕ)S : ∇v dx ds

(4.67)
with the help of integration by parts and Assumption (2.8). Now, notice that we have the embedding
L2(0, T ′;H1(Ω)) ↪→ L2(0, T ′;L6(Ω)), so we have the weak convergence of (µN)N in
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L2(0, T ′;L6(Ω)) from (4.52f). Now, we use the interpolation of Bochner spaces to improve the
strong convergence of (vN)N and (∇ϕN)N . By choosing θ = 2

3
, the strong convergence of (vN)N

in L2(0, T ′;L2(Ω)) from (4.61) and bound of (vN)N in L∞(0, T ′;L2(Ω)) from (4.50a) result in
the strong convergence of (vN)N in L6(0, T ′, L2(Ω)). Then by choosing θ = 1

4
in the interpola-

tion of Bochner spaces, the strong convergence of (vN)N in L6(0, T ′, L2(Ω)) and the bound of
(vN)N in L2(0, T ′;H1(Ω)) ↪→ L2(0, T ′;L6(Ω)) from (4.50a) yields the strong convergence of
(vN)N in L4(0, T ′;L

12
5 (Ω)). A similar argument gives us the strong convergence of (∇ϕN)N in

L4(0, T ′;L
12
5 (Ω)). Therefore, by the weak-strong-strong convergence, we obtain

lim
N→∞

∫ T ′

0

φ

∫
Ω

µN(∇ϕNh · vN) dx dt =

∫ T ′

0

φ

∫
Ω

µ(∇ϕ · v) dx dt (4.68)

By the weak convergence of (vN)N in L2(0, T ′;H1(Ω)) from (4.52a), we have

lim
N→+∞

∫ t

0

φ〈fN , vN〉H1 ds =

∫ t

0

φ〈f, v〉H1 ds . (4.69)

Inserting (4.65)-(4.69) into (4.64) gives (2.25b). Similarly, we also prove (2.25f).

Step 8: The evolutionary variational inequality for the internal stress. Now, we show the evolu-
tionary variational inequality for the internal stress. To this end, we derive

Ee(S0) ≥−
∫ T ′

0

φ′Ee(SN) dt+

∫ T ′

0

φ

∫
Ω

γ
∣∣∇SN ∣∣2 dx dt

+

∫ T ′

0

φ〈ξN , SN〉H1
sym,Tr

dt−
∫ T ′

0

φ

∫
Ω

η(ϕNh )SN : (∇vN)sym dx dt

(4.70)

from (4.23) by using the same argument as for (4.64). Here, φ ∈ C̃([0, T ′]) is arbitrary. Then, for all

S̃ ∈ C∞0,sym,Tr(Ω× [0, T )), we choose S̃k+1 = −
∫ (k+1)h

kh
φS̃ dt to be the test function in (4.2d) and

sum over k ∈ {0, 1 . . . , N} to derive

−
∫ T ′

0

∫
Ω

∂−t,h(S
N) : φS̃ dx dt−

∫ T ′

0

φ

∫
Ω

(vN · ∇SN) : S̃ dx dt

−
∫ T ′

0

φ

∫
Ω

(SN(∇vN)skw − (∇vN)skwS
N) : S̃ dx dt−

∫ T ′

0

φ〈ξN : S̃〉H1
sym,Tr

dt

−
∫ T ′

0

φ

∫
Ω

γ∇SN : ∇S̃ dx dt = −
∫ T ′

0

φ

∫
Ω

η(ϕNh )(∇vN)sym : S̃ dx dt .

Notice that

〈ξN , SN − S̃〉H1
sym,Tr

≥ P̃(ϕNh ;SN)− P̃(ϕNh ; S̃) = P(ϕNh ;SN)− P(ϕNh ; S̃),

since ξN ∈ ∂P̃(ϕNh ;SN) and by (4.1). Then, by summing (4.70) and (4.71), we obtain

−
∫ T ′

0

φ′
∫

Ω

1

2

∣∣SN ∣∣2 dx dt−
∫ T ′

0

∫
Ω

∂−t,h(S
N) : φS̃ dx dt

−
∫ T ′

0

φ

∫
Ω

(vN · ∇SN) : S̃ + (SN(∇vN)skw − (∇vN)skwS
N) : S̃ dx dt

+

∫ T ′

0

φ
(
P(ϕNh ;SN)− P(ϕNh ; S̃)

)
dx dt+

∫ T ′

0

φ

∫
Ω

γ∇SN :· (∇SN −∇S̃) dx dt

−
∫ T ′

0

φ

∫
Ω

η(ϕNh )(∇vN)sym : (SN − S̃) dx dt ≤
∫

Ω

1

2
|S0|2 dx .

(4.71)
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Now, we carry out the limit passage in (4.71). Since φ′ ≤ 0, the functional

S 7→ −
∫ T ′

0

φ′
∫

Ω

1

2
|S(t)|2 dx dt (4.72)

is convex and continuous on L2(0, T ′;L2(Ω)). Therefore, this functional is weakly lower semicontin-
uous on L2(0, T ′;L2(Ω)), which implies

−
∫ T ′

0

φ′
∫

Ω

1

2
|S(t)|2 dx dt ≤ lim inf

N→∞

(
−
∫ T ′

0

φ′
∫

Ω

1

2

∣∣SN(t)
∣∣2 dx dt

)
, (4.73)

thanks to the weak* convergence of (SN)N in L∞(0, T ′;L2(Ω)) from (4.52d). Moreover, by the weak
convergence of (SN)N in L2(0, T ′;H1(Ω)) from (4.52c) and with the help of an integration by parts
for difference quotients, we deduce

−
∫ T ′

0

∫
Ω

∂−t,h(S
N) : φS̃ dx dt

=−
∫ 0

−h

∫
Ω

S0 :
1

h
φ(t+ h)S̃(t+ h) dx dt+

∫ T ′

0

∫
Ω

SN : ∂+
t,h(φS̃) dx dt

→−
∫

Ω

S0 : S̃(0) dx+

∫ T ′

0

∫
Ω

S : ∂t(φS̃) dx dt .

(4.74)

for all S̃ ∈ C∞0,sym,Tr(Ω × [0, T )). Next, by the weak convergence of (SN)N in L2(0, T ′;H1(Ω))
from (4.52c), we have∫ T ′

0

φ

∫
Ω

−∇SN :· ∇S̃ dx dt→
∫ T ′

0

φ

∫
Ω

−∇SN :· ∇S̃ dx dt , (4.75)

as well as ∫ T ′

0

φ

∫
Ω

∇S :· ∇S dx dt ≤ lim inf
N→∞

(∫ T ′

0

φ

∫
Ω

∇SN :· ∇SN dx dt

)
, (4.76)

where we have used the same argument as in proving (4.73) for the last inequality.
To see the limit passage regarding P(ϕNh ;SN), consider the functional

(ϕ, S) 7→
∫ T ′

0

φ(t)P(ϕ(t);S(t)) dt =

∫ T ′

0

∫
Ω

φ(t)P (x, ϕ(t, x), S(t, x)) dx dt .

By the weak* convergence of (SN)N in L∞(0, T ′;L2(Ω)) from (4.52c) and strong convergence of
(ϕN)N in L2(0, T ′;H1(Ω)) from (4.59) and applying [29, Theorem 3], we arrive at∫ T ′

0

φP(ϕ;S) dt ≤ lim inf
N→∞

∫ T ′

0

φP(ϕNh ;SN) dt . (4.77)

By the continuity of the mapping ϕ 7→ P (ϕ;S) for all S ∈ L2
sym,Tr(Ω) and the strong convergence

of (ϕN)N in L2(0, T ′;H1(Ω)) from (4.59), we also have

−
∫ T ′

0

φP(ϕ; S̃) dt ≤ lim inf
N→∞

(
−
∫ T ′

0

φP(ϕNh ; S̃) dt

)
, (4.78)
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with the help of Fatou’s lemma and the fact that the integrand is bounded from below. Notice that by
the weak convergence of (SN)N in L2(0, T ′;H1(Ω)) from (4.52c), the strong convergence of (vN)N
in L2(0, T ′;L2(Ω)) from (4.61), the strong convergence of (ϕN)N in L2(0, T ′;H1(Ω)) from (4.59)
and assumption (2.8), we obtain∫ T ′

0

φ

∫
Ω

(vN · ∇SN) : S̃ + (SN(∇vN)skw − (∇vN)skwS
N) : S̃ dx dt

→
∫ T ′

0

φ

∫
Ω

(v · ∇S) : S̃ + (S(∇v)skw − (∇v)skwS) : S̃ dx dt

(4.79)

as well as∫ T ′

0

φ

∫
Ω

η(ϕNh )(∇vN)sym : (SN − S̃) dx dt→
∫ T ′

0

φ

∫
Ω

η(ϕ)(∇v)sym : (S − S̃) dx dt (4.80)

with the help of an integration by parts. Inserting (4.73)-(4.80) into (4.71) and adding both sides

−
∫ T ′

0

φ′
∫

Ω

1

2

∣∣∣S̃(t)
∣∣∣2 dx dt−

∫ T ′

0

φ

∫
Ω

∂tS̃ : S̃ dx dt =

∫
Ω

1

2

∣∣∣S̃(0)
∣∣∣2 dx ,

we obtain

−
∫ T ′

0

φ′
∫

Ω

1

2

∣∣∣S(t)− S̃(t)
∣∣∣2 dx dt

+

∫ T ′

0

φ

∫
Ω

∂tS̃ : (S − S̃)− v · ∇S : S̃ − (S(∇v)skw − (∇v)skwS) : S̃ dx dt

+

∫ T ′

0

φ
(
P(ϕ;S)− P(ϕ; S̃)

)
dt

+

∫ T ′

0

φ

∫
Ω

γ∇S : ∇(S − S̃)− η(ϕ)(∇v)sym : (S − S̃) dx dt

≤1

2
‖S0 − S̃(0)‖2

L2

(4.81)

Finally, by applying Lemma 3.5 to (4.81), we arrive at (2.25c).

Step 9: ϕ takes value in (−1, 1) a.e. in Ω×(0, T ). By the total energy-dissipation estimate (2.26),
one can see that ∫

Ω

W (ϕ(t)) dx ≤ C

for a.e. t ∈ (0, T ). With the aid of (2.9), this implies that ϕ ∈ [−1, 1] a.e. in Ω × (0, T ). Now, we
show further that ϕ ∈ (−1, 1) a.e. in Ω × (0, T ). To see this, recall that by (4.50d) and (4.51), µ is
bounded in L2(0, T ′;L2(Ω)) for a.e. 0 < T ′ < T . Besides, we have

‖W ′(ϕ)‖L2(0,T ′;L2(Ω)) = ‖µ+ ∆ϕ‖L2(0,T ′;L2(Ω))

≤ ‖µ‖L2(0,T ′;L2(Ω)) + ‖∆ϕ‖L2(0,T ′;L2(Ω)).

Since ϕ is bounded in L2(0, T ′;H2(Ω)) by (4.58), W ′(ϕ) is bounded in L2(0, T ′;L2(Ω)). Thanks
to (2.9), we derive that ϕ 6= −1, 1 a.e. in Ω × (0, T ′). Since it holds true for a.e. 0 < T ′ < T , we
conclude that ϕ ∈ (−1, 1) a.e. in Ω× (0, T ). This proves the assertion.
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Remark 4.5. By testing (2.25e) with ϕ−ϕΩ and repeating the argument as in Lemma 4.2, we obtain
an estimate

‖W ′
κ(ϕ)‖L2 +

∣∣∣∣∫
Ω

µ dx

∣∣∣∣ ≤ C
(
‖∇µ‖L2 + ‖∇ϕ‖2

L2 + 1
)

‖DEpf,κ(ϕ)‖L2 ≤ C (‖µ‖L2 + 1)

Remark 4.6. By Proposition 3.6, one can see that a weak solution obtained from Theorem 4.4 is also
a dissipative solution for any regularity weight K.

5 Global existence result for the non-regularized two-phase sys-
tem γ = 0

In Section 4, we have shown that, for all γ > 0, there exists a dissipative solution (v, S, ϕ, µ). Now,
we will prove the existence of a dissipative solution for the case γ = 0 by carrying out the limit passage
γ → 0 in this notion of solution.

Theorem 5.1. Let γ = 0. Let v0, S0 and ϕ0 satisfy Assumption 2.3. Let Assumption 2.4 be satisfied,
and let P satisfy Assumption 2.2. Then there exists a dissipative solution (v, S, ϕ, µ) of typeK to the
limit system (2.23) with γ = 0 in the sense of Definition 3.3, where the regularity weight is given by

K(S̃) =
k2

Ω

ν1

‖S̃‖2
L∞ (5.1)

for all (ṽ, S̃, ϕ̃) ∈ T. Here, the constant kΩ > 0 is the constant from Korn’s inequality and ν1 is the
constant from Assumption (2.8).

Proof. For γ > 0, there exists a dissipative solution (vγ, Sγ.ϕγ, µγ) of typeK thanks to Theorem 4.4
and Remark 4.6. Now, we want to take the limit γ → 0. From Theorem 4.4, we have the energy
inequality

Etot(vγ(t), Sγ(t), ϕγ(t)) +

∫ t

0

Dtot(vγ, Sγ, ϕγ, µγ) dτ ≤ Etot(v0, S0, ϕ0) +

∫ t

0

〈f, vγ〉H1 dτ .

(5.2)

Step 1: Compactness. This estimate gives us the following γ−uniform bounds:

(vγ)γ is bounded in L2(0, T ′;H1
0,div(Ω)) and in L∞(0, T ′;L2

div(Ω)), (5.3a)

(Sγ)γ is bounded in L∞(0, T ′;L2
sym,Tr(Ω)), (5.3b)

(ϕγ)γ is bounded in L∞(0, T ′;H1(Ω)), (5.3c)

(∇µγ)γ is bounded in L2(0, T ′; (L2(Ω))3), (5.3d)

for a.e. 0 < T ′ < T . Moreover, from Remark 4.5 and the uniform bounds (5.3c) on ∇ϕγ and (5.3d)
on∇µγ , we deduce the following estimate on (µγ)γ∫ T ′

0

∣∣∣∣∫
Ω

µγ dx

∣∣∣∣ dt ≤ C · T ′ for a.e. 0 < T ′ < T, (5.4)
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where C > 0 is a constant. Then, by a classical diagonalization argument, we can extract a not
relabeled subsequence and a limit quadruplet (v, S, ϕ, µ) such that

vγ ⇀ v in L2(0, T ′;H1(Ω)), (5.5a)

vγ
∗
⇀ v in L∞(0, T ′;L2

div(Ω)), (5.5b)

Sγ
∗
⇀ S in L∞(0, T ′;L2

sym,Tr(Ω)), (5.5c)

ϕγ
∗
⇀ ϕ in L∞(0, T ′;H1(Ω)), (5.5d)

µγ ⇀ µ in L2(0, T ′;H1(Ω)), (5.5e)

for a.e. 0 < T ′ < T . Moreover, thanks to (2.20), we also know that (ϕγ)γ is bounded in
L2(0, T ′;H2(Ω)). This yields

ϕγ⇀ϕ in L2(0, T ′;H2(Ω)). (5.5f)

Besides, by repeating arguments in the proof of Theorem 4.4, we conclude the following strong con-
vergence results for a.e. 0 < T ′ < T

ϕγ → ϕ in L2(0, T ′;H1(Ω)), (5.6a)

vγ → v in L2(0, T ′;L2(Ω)). (5.6b)

Step 2: Limit passage γ → 0 in the relative energy-dissipation estimate. By Lemma 3.5, we
can transform the relative energy-dissipation estimate (3.16b) into the following weak form

−
∫ T ′

0

φ′
(
R(vγ, Sγ, ϕγ|ṽ, S̃, ϕ̃

)
ds

+

∫ T ′

0

φ
(〈
Aγ(ṽ, S̃, ϕ̃),

 vγ − ṽ
Sγ − S̃

−∆(ϕγ − ϕ̃) +W ′′(ϕ̃)(ϕγ − ϕ̃) + κ(ϕγ − ϕ̃)− ρ2−ρ1
2

(vγ − ṽ)ṽ

〉
Y

+ P(ϕγ;Sγ)− P(ϕγ; S̃) +W(K)
γ (vγ, Sγ, ϕγ|ṽ, S̃, ϕ̃)

)
exp

(∫ T ′

s

K(ṽ, S̃, ϕ̃) dτ

)
ds

≤R(v0, S0, ϕ0|ṽ(0), S̃(0), ϕ̃(0)) exp

(∫ T ′

0

K(ṽ, S̃, ϕ̃) ds

)
(5.7)

for all φ ∈ C̃([0, t]).

First notice that, for the limit passage regarding the term P(ϕγ;Sγ) − P(ϕγ; S̃) can be shown in a
similar way as deriving (4.77) and (4.78).

Now, we investigate the limit passage in the terms involving operator Aγ . To this end, from (3.9b)-
(3.9d), one can notice that the terms involving (vγ)γ , (∇vγ)γ , (Sγ)γ , (ϕγ)γ , (∇ϕγ)γ or (∆ϕγ)γ
depend on these quantities only linearly, so that we can pass to limit by weak convergence results
(5.5a)-(5.5f). The only exception is the term∫

Ω

γ∇S̃(t) :· ∇(Sγ(t)− S̃(t)) dx ,
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because we do not have any weak convergence result for (∇Sγ)γ . Instead, notice that∫ T ′

0

∫
Ω

γ∇S̃(t) :· ∇(Sγ(t)− S̃(t)) dx

≤√γ

(∫ T ′

0

‖∇S̃‖2
L2 ds

) 1
2
(
γ

∫ T ′

0

‖∇Sγ‖2
L2 ds

) 1
2

+ γ‖∇S̃‖2
L2(0,T ′;L2(Ω)),

(5.8)

where γ‖∇Sγ‖2
L2 ≤ C uniformly in γ thanks to (2.26). Thus, the right-hand side of (5.8) tends 0 as

γ → 0.

Now, we consider the limit passage of the terms inR(vγ, Sγ, ϕγ|ṽ, S̃, ϕ̃). By the strong convergence
of (vγ)γ in L2(0, T ′;L2(Ω)) from (5.6b) and the strong convergence of (ϕγ)γ in L2(0, T ′;H1(Ω))
from (5.6a), we obtain

lim
γ→0

(
−
∫ T ′

0

φ′
∫

Ω

ργ
|vγ − ṽ|2

2
dx ds

)
= −

∫ T ′

0

φ′
∫

Ω

ρ
|v − ṽ|2

2
dx ds . (5.9)

Since φ′ ≤ 0, ϕ̃ ∈ C∞0 (Ω× [0, T )) and ϕ̃ ∈ (−1, 1), the functional

(S, ϕ) 7→ −
∫ T ′

0

φ′
∫

Ω

∣∣∣S − S̃∣∣∣2
2

+
|∇ϕ−∇ϕ̃|2

2
−W ′(ϕ̃)(ϕ− ϕ̃) + κ|ϕ− ϕ̃|2 dx ds

is convex and continuous on L2(0, T ′;L2
sym,Tr(Ω))×L2(0, T ′;H1(Ω)). Therefore, it is weakly lower

semicontinuous on L2(0, T ′;L2
sym,Tr(Ω))×L2(0, T ′;H1(Ω)). Hence, by the weak*-convergence of

(Sγ)γ in L∞(0, T ′;L2
sym,Tr(Ω)) from (5.5c) and weak*-convergence of (ϕγ)γ in L∞(0, T ′;H1(Ω))

from (5.5d), we deduce

−
∫ T ′

0

φ′
∫

Ω

∣∣∣S − S̃∣∣∣2
2

+
|∇ϕ−∇ϕ̃|2

2
−W ′(ϕ̃)(ϕ− ϕ̃) + κ|ϕ− ϕ̃|2 dx ds

≤ lim inf
γ→0

−∫ T ′

0

φ′
∫

Ω

∣∣∣Sγ − S̃∣∣∣2
2

+
|∇ϕγ −∇ϕ̃|2

2
−W ′(ϕ̃)(ϕγ − ϕ̃) + κ|ϕγ − ϕ̃|2 dx ds

 .

(5.10)

Moreover, since ϕγ ∈ (−1, 1) a.e. in Ω × (0, T ′), by the continuity of W , we have |W (ϕγ)| ≤ C
a.e. in Ω × (0, T ′) for all γ > 0. Hence, with the help of the dominated convergence theorem, we
derive

lim
γ→0
−
∫ T ′

0

φ′
∫

Ω

W (ϕγ) dx ds = −
∫ T ′

0

φ′
∫

Ω

W (ϕ) dx ds . (5.11)

Summing up (5.9)-(5.11) yields

−
∫ T ′

0

φ′R(v, S, ϕ|ṽ, S̃, ϕ̃) ds ≤ lim inf
γ→0

(
−
∫ T ′

0

φ′R(vγ, Sγ, ϕγ|ṽ, S̃, ϕ̃) ds

)
. (5.12)

Now, we turn to the limit passage inW(K)
γ (vγ, Sγ, ϕγ|ṽ, S̃, ϕ̃). For this, we recall from (3.14) that

W(K)
γ (v, S, ϕ|ṽ, S̃, ϕ̃) =W(K)

0 (v, S, ϕ|ṽ, S̃, ϕ̃) +Dsd,γ(S − S̃) ,
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and we splitW(K)
0 (v, S, ϕ|ṽ, S̃, ϕ̃) into two parts as follows:

W(K)
0 (vγ, Sγ, ϕγ|ṽ, S̃, ϕ̃) = Q(vγ, Sγ, ϕγ, µγ|ṽ, S̃, ϕ̃, µ̃) + R(vγ, Sγ, ϕγ, µγ|ṽ, S̃, ϕ̃, µ̃), (5.13)

where

Q(v, S, ϕ|ṽ, S̃, ϕ̃) :=

∫
Ω

2ν1|(∇v)sym − (∇ṽ)sym|2 +
1

2
|∇µ−∇µ̃|2 +

1

2
|∇µ|2 dx

−
∫

Ω

2(S − S̃)(∇v −∇ṽ)skw : S̃ dx

+K(ṽ, S̃, ϕ̃)

∫
Ω

∣∣∣S − S̃∣∣∣2
2

+
|∇ϕ−∇ϕ̃|2

2
+ κ|ϕ− ϕ̃|2 dx ,

(5.14)

collects all the quadratic terms with respect to (v, S, ϕ, µ), and where

R(v, S, ϕ|ṽ, S̃, ϕ̃) :=

∫
Ω

2ν(ϕ)|(∇v)sym − (∇ṽ)sym|2 − 2ν1|(∇v)sym − (∇ṽ)sym|2 dx

+

∫
Ω

2(ν(ϕ)− ν(ϕ̃))(∇ṽ)sym : (∇v −∇ṽ)− 1

2
|∇µ̃|2 dx

+

∫
Ω

∆µ̃ (−∆(ϕ− ϕ̃) +W ′′(ϕ̃)(ϕ− ϕ̃)) dx

+

∫
Ω

(v − ṽ)⊗ (ρv − ρ̃ṽ + J − J̃) : ∇ṽ + (ρ− ρ̃)(v − ṽ) · ∂tṽ dx

−
∫

Ω

(η(ϕ)− η(ϕ̃))(S − S̃) : ∇ṽ + (η(ϕ)− η(ϕ̃))S̃ : (∇v −∇ṽ) dx

−
∫

Ω

(S − S̃)⊗ (v − ṽ) :· ∇S̃ dx

−
∫

Ω

µ̃(∇ϕ−∇ϕ̃) · (v − ṽ)− (∇ϕ−∇ϕ̃)⊗ (∇ϕ−∇ϕ̃) : ∇ṽ dx

+

∫
Ω

κ(∇µ−∇µ̃) · (∇ϕ−∇ϕ̃) + κ(v − ṽ) · ∇ϕ̃(ϕ− ϕ̃) dx

+K(ṽ, S̃, ϕ̃)

∫
Ω

ρ
|v − ṽ|2

2
+W (ϕ)−W (ϕ̃)−W ′(ϕ̃)(ϕ− ϕ̃) dx

(5.15)
collects all the remaining terms.

Next, we discuss the limit passage for the quadratic terms in Q. Recall that the non-negativity of a
quadratic form implies convexity, see [12, Proposition 3.71] for details. In order to show thatQ(v, S, ϕ|ṽ, S̃, ϕ̃)
is non-negative, we make the following estimates:

Q(v, S, ϕ, µ|ṽ, S̃, ϕ̃, µ̃) ≥
∫

Ω

2ν1|(∇v)sym − (∇ṽ)sym|2 +
1

2
|∇µ−∇µ̃|2 +

1

2
|∇µ|2 dx

+K(ṽ, S̃, ϕ̃)

∫
Ω

∣∣∣S − S̃∣∣∣2
2

+
|∇ϕ−∇ϕ̃|2

2
+ κ|ϕ− ϕ̃|2 + |v − ṽ|2 dx

−
∣∣∣∣∫

Ω

2(S − S̃)(∇v −∇ṽ)skw : S̃ dx

∣∣∣∣
(5.16)

DOI 10.20347/WIAS.PREPRINT.3247 Berlin 2025



F. Cheng, R. Lasarzik, M. Thomas 50

Next, we estimate the negative terms in (5.16) using Hölder’s inequality, Korn’s inequality and Young
inequality:

∫
Ω

2(S − S̃)(∇v −∇ṽ)skw : S̃ dx ≤2‖S̃‖L∞
(∫

Ω

∣∣∣S − S̃∣∣∣2 dx

) 1
2
(∫

Ω

|∇v −∇ṽ|2 dx

) 1
2

≤2kΩ‖S̃‖L∞
(∫

Ω

∣∣∣S − S̃∣∣∣2 dx

) 1
2
(∫

Ω

|(∇v)sym − (∇ṽ)sym|2 dx

) 1
2

≤k
2
Ω

ν1

‖S̃‖2
L∞

∫
Ω

∣∣∣S − S̃∣∣∣2
2

dx+ 2ν1

∫
Ω

|(∇v)sym − (∇ṽ)sym|2 dx .

(5.17)
By making use of the bounds (5.16) and (5.17), one can see that Q is non-negative and therefore
convex. Besides, notice that Q is also a continuous functional on the spaceH1

0,div(Ω)×L2
sym,Tr(Ω)×

H1(Ω) ×H1(Ω), so Q is weakly lower semicontinuous on this space. This allows us to pass to the
limit γ → 0, i.e.,

∫ T ′

0

φQ(v, S, ϕ, µ|ṽ, S̃, ϕ̃, µ̃) exp

(∫ T ′

s

K(ṽ, S̃, ϕ̃) dτ

)
ds

≤ lim inf
γ→0

∫ T ′

0

φQ(vγ, Sγ, ϕγ, µγ|ṽ, S̃, ϕ̃, µ̃) exp

(∫ T ′

s

K(ṽ, S̃, ϕ̃) dτ

)
ds .

Now, we turn to the limit passage γ → 0 in R. Since 2ν(ϕγ) − 2ν1 ≥ 0 by (2.8), then by the weak
convergence of ((∇vγ)sym)γ in L2(0, T ′;L2(Ω)) from (5.5a) and the convergence of (ϕγ)γ almost
everywhere in Ω× (0, T ′) obtained from (5.6a), we deduce

∫ T ′

0

φ

∫
Ω

(2ν(ϕ)− 2ν1)|(∇v)sym − (∇ṽ)sym|2 dx exp

(∫ T ′

s

K(ṽ, S̃, ϕ̃) dτ

)
ds

≤ lim inf
γ→0

∫ T ′

0

φ

∫
Ω

(2ν(ϕγ)− 2ν1)|(∇vγ)sym − (∇ṽ)sym|2 dx exp

(∫ T ′

s

K(ṽ, S̃, ϕ̃) dτ

)
ds .

The limit passage of the remaining part of R is a direct consequence of the convergence results
(5.5a)-(5.6b) with the aid of (2.8). We exemplarily discuss one term and note that the remaining terms
can be handled with in a similar way. We estimate∣∣∣∣∣

∫ T ′

0

∫
Ω

((vγ − ṽ)⊗ (ργvγ − ρ̃ṽ)− (v − ṽ)⊗ (ρv − ρ̃ṽ)) : ∇ṽ dx ds

∣∣∣∣∣
≤‖∇ṽ‖L∞(Ω×(0,T ′))

∫ T ′

0

∫
Ω

|(vγ − ṽ)⊗ (ργvγ − ρ̃ṽ)− (v − ṽ)⊗ (ρv − ρ̃ṽ)| dx ds ,

where we have used that ṽ ∈ C∞0,div(Ω×[0, T )). The term on the right-hand side tends to zero, thanks
to the strong convergence of (vγ)γ in L2(0, T ′;L2(Ω)) from (5.6b) and the strong convergence of
(ϕγ)γ in L2(0, T ′;H1(Ω)) from (5.6a).

In total, taking the limit γ → 0 in (5.7) implies (3.16b) with γ = 0. Therefore, (v, S, ϕ, µ) is a
dissipative solution to system (2.23) with γ = 0.
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Remark 5.2. By Proposition 3.7 and Proposition 3.8, one can see that a dissipative solution (v, S, ϕ, µ)
obtained from Theorem 5.1 satisfies weak formulation (2.25a) and (2.25d). Moreover, (v, S, ϕ, µ) also
satisfies (2.25e) by using the same argument as in the proof of Theorem 4.4. In addition, ϕ takes value
(−1, 1) a.e. in Ω× (0, T ).
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