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Computational framework for modeling, simulation, and optimization of
geothermal energy production from naturally fractured reservoirs

Ondřej Pártl, Ernesto Meneses Rioseco

Abstract

We describe an open-source computational framework for the automated search for deviated multi-well lay-
outs in hot fracture-controlled reservoirs that sustainably optimize geothermal energy production. This search
is performed via 3D simulations of groundwater flow and heat transfer. We model the reservoirs as geologi-
cally consistent, randomly generated discrete fracture networks (DFNs) in which the fractures are 2D manifolds
with polygonal boundaries embedded in a 3D porous medium. The wells are modeled as line sources and
sinks. The flow and heat transport in the DFN-matrix system are modeled by solving the balance equations
for mass and energy, while expressing the momentum balance by the Darcy law. The spatial discretization is
based on the finite element method stabilized via the algebraic flux correction. For the time discretization, we
use a semi-implicit approach to enhance the solver efficiency. The optimization is performed via a gradient-free
global optimization algorithm. By employing the immersed boundary method and a non-matching discretization
strategy, the need for computationally expensive remeshing when altering well configurations within the reser-
voir is effectively eliminated, thereby enhancing the robustness of the proposed framework and enabling fully
automated optimization. We present the results of our optimization tests for randomly generated DFNs consist-
ing of thousands of fractures, considering realistic values of physical parameters. To demonstrate the analytical
capabilities of our open-source framework, we use it to analyze and visualize the above optimization results and
the structure of the above DFNs. The developed framework was verified and validated using a set of simpli-
fied yet purpose-specific fracture configurations relevant to geothermal energy extraction in naturally fractured
reservoirs.
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1 Introduction

Geothermal energy is increasingly important for sustainable heat and power generation, especially in deep,
naturally fractured reservoirs (NFRs) such as the Upper Jurassic aquifer in the Greater Munich Region (GMR)
and the fault damage zones of the Upper Rhine Graben in Germany [16, 33, 8]. These regions, central to
Europe’s decarbonization efforts, face complex subsurface conditions that challenge reliable modeling and well
planning [3, 57, 37, 49].

NFRs contain highly heterogeneous fracture networks that control fluid flow and heat transport but complicate
predictive modeling and well placement [43, 10, 36]. There are several well-established approaches to modeling
NFRs.

Equivalent porous medium (EPM) approaches, widely used in early geothermal studies, fail to capture fracture-
dominated flow, and their usage proved inadequate for accurately predicting premature thermal breakthroughs
[13, 14, 30].

Discrete fracture network (DFN) modeling overcomes these limitations by explicitly representing fracture geom-
etry and connectivity, enabling more accurate predictions and optimization of well configurations [7, 26].

Embedded Discrete Fracture Modeling (EDFM) provides computational savings by embedding fractures in struc-
tured grids [41, 52] but often underrepresents dense fracture connectivity and matrix–fracture heat exchange
[51, 17].

High-fidelity 3D DFN modeling remains essential for geothermal reservoirs with complex, interconnected frac-
tures like those in some sectors of the Upper Jurassic carbonates of the GMR. However, current DFN workflows
face major bottlenecks: costly remeshing for each new well configuration, limited integration of fracture net-
work metrics (e.g., intensity, connectivity, or percolation), and reliance on proprietary software that restricts
customization [21, 34]. These limitations hinder efficient optimization of well placement, a critical step to avoid
short-circuiting and thermal depletion.

Several DFN-based tools exist (e.g., COMSOL Multiphysics®, FEFLOW, FracMan, DuMux, OpenGeoSys, or
PorePy ) but often lack dynamic optimization capabilities and robust metric-driven validation [8, 28, 29, 27]. Com-
mercial solutions remain closed-source and computationally expensive for iterative design, while open-source
frameworks rarely link geological DFN metrics to optimization or facilitate the combined, detailed visualization
of 3D fracture network metrics alongside physical processes.

This work introduces an open-source, computationally efficient framework for 3D modeling, simulation, and opti-
mization of geothermal production from NFRs. Key contributions include: (1) mesh-independent well placement
using the immersed boundary and non-matching approaches, eliminating remeshing during the optimization;
(2) integration of DFN metrics (e.g., connectivity, percolation, or intensity) to evaluate simulation plausibility and
constrain fracture models; (3) an optimization engine for exploring well configurations directly within static DFN
geometries.

The framework also offers advanced visualization for interpreting fracture–flow and thermal dynamics, uses
open-source solvers for transparency, and is validated against synthetic DFNs and realistic geothermal scenar-
ios. Its scalability directly supports geothermal projects in complex reservoirs, such as optimizing doublets in
the Upper Jurassic carbonates of the GMR and fault zones of the Upper Rhine Graben [14, 58]. By reducing
computational cost and integrating geologically informed metrics, this tool advances sustainable geothermal
development and can be adapted to a wide range of geological settings [22].

This paper is the second part of a two-stage research effort. The first part [47] introduced the underlying numer-
ical methods; here, we present the complete computational framework, extended validation, and application to
realistic reservoir scenarios. The paper is structured as follows: Section 2 explains the methodology; Section 3
summarizes the governing models and optimization procedure; Section 4 outlines the numerical background;
Sections 5–7 describe the scenarios, DFN metrics, and results; and Section 8 concludes with insights into the
optimization. The interested reader can also find additional verification and validation tests in the appendix.
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Figure 1: A DFN divided into the following sections labeled with numbers 1–5 illustrating the tasks that constitute
the geothermal well placement optimization: Fracture populations (1) and clusters of interconnected fractures
(2) marked with different colors. A Delaunay triangulation of the DFN (3). The fluid temperature and velocity
fields resulting from a simulated operation of 4) a geothermal doublet — not displayed — and 5) two different
geothermal doublets within the well-placement optimization with the wells represented by yellow cylinders.

2 Methodology

Our workflow addresses the inherently multidisciplinary nature of optimizing geothermal well placement in NFRs.
It integrates geological data acquisition, DFN generation and analysis, mesh construction, coupled thermo-
hydraulic simulation, optimization, visualization, and model validation (Figure 1). Below, we summarize each
step and the computational tools employed.

1 Estimation of Realistic DFN Properties. Fracture network characteristics are derived from structural
geology, hydrogeology, sedimentology, and related expertise. Generally, input data include outcrop ana-
logues, core and log analysis, field-scale geophysical surveys, and hydraulic tests. Literature review and
expert consultation ensure that physically plausible DFN parameter ranges are balanced against compu-
tational tractability.

2 DFN Generation. Discrete fracture networks are stochastically generated using the C++ framework
Frackit [19], enabling specification of fracture size, orientation, and distribution.

3 DFN Analysis and Verification. Generated networks are analyzed with our C++ package DFN parser ,
which computes fracture statistics (e.g., size, orientation, connectivity, or percolation) and checks mesh
consistency. This step ensures that the networks reflect the intended geological properties and provides
reference metrics for the subsequent optimization.

10.20347/WIAS.PREPRINT.3239 Berlin 2025
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4 Mesh Generation and Parsing. We construct triangular and tetrahedral spatial meshes using Gmsh
and TetGen [18, 53]. DFN parser analyzes the structures of these meshes, which is essential for efficient
assembly of the linear systems during the numerical solution of the balance equations.

5 Coupled Fluid Flow and Heat Transport Simulation.

5.1 Mathematical Model. We extend the 2D thermo-hydraulic model by Blank et al. [8] to 3D, capturing
fracture-matrix exchange while allowing wells to be treated independently of the mesh.

5.2 Numerical Scheme. A finite-element formulation implemented with the deal.II library [1] solves
mass and energy balance equations efficiently. Decoupling wells from the mesh avoids remeshing
during optimization, which is crucial because each cost functional evaluation requires a full reservoir
simulation over the facility’s lifespan.

5.3 Simulation Management. We adopt a modular scenario-definition strategy, similar to the ParMooN
framework [61], to organize parameter sets and facilitate multiple simulation runs.

6 Well Placement Optimization.

6.1 Problem Formulation. Optimization uses the cost functional proposed Blank et al. [8], minimizing
thermal breakthrough risk and pressure variation.

6.2 Optimization Algorithms. We employ global gradient-free methods from the NLopt library [25],
selecting algorithms compatible with our parameter constraints.

6.3 Execution and Scenario Setup. Well placement constraints (e.g., orientation relative to fractures in
the DFN) are informed by the DFN analysis (Item 3). Our framework enables comparison of multiple
algorithms by keeping scenarios free of nonlinear constraints when possible. The full optimization
loop is summarized in Figure 2.

7 Visualization. Simulation and optimization results — including fractures, matrix properties, wells, and
convergence diagnostics — are exported for 3D rendering in VisIt and ParaView [11, 4]. Output files for
advanced visualization are generated with routines from DFN parser to ensure direct visual inspection of
complex networks.

8 Verification and Validation. We validate the modeling and optimization workflow through systematic unit
testing and scenario-based checks. Simplified synthetic DFNs enable plausibility verification of pressure
and temperature fields, while progressively complex cases test scalability. Initial verification results were
reported [47, 46], with additional tests provided in the appendix.

3 Mathematical model

This section briefly summarizes our mathematical model for the above system. The model follows from those by
Zinsalo et al. [64] and Blank et al. [8], and it was already published by Pártl and Meneses Rioseco [47], where
it is described in more detail.

We model the reservoir as a domain Ω ∈ R3 consisting of 3D porous layers, Ωla, porous fractures, Ωf r (with
Ωf r ⊂ )Ωla), and wells. The fractures are approximated as 2D manifolds with polygonal boundary, and the
wells are modeled as thin cylinders.

Henceforth, we use the subscripts la and fr to distinguish between the objects associated with the layers and
fractures, respectively. Similarly, the properties of the fractured rock are marked with the subscript r if necessary.
The fluid properties do not have any subscripts. The components of vectors are denoted by the subscripts x, y,
and z.
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Figure 2: Schema of the optimization process. First, we set up the optimization scenario by creating the domain
representing the reservoir and meshing this domain, setting the material properties, and describing what well
layouts are allowed. During the optimization itself, the optimization algorithm repeats a cycle in which it selects
a new well layout based on the previous results and computes the power generated by the corresponding
geothermal facility. To compute the power, we simulate the operation of the geothermal facility by solving the
corresponding balance equations over the operation time.

Since a well radius is at least four orders of magnitude smaller than the size of Ω, we model the wells via the
immersed boundary method [48, 8]. That is, we assume that the wells are physically not present in the reservoir,
and we compensate for their absence by including appropriate line mass and energy sink/source terms in the
respective locations.

We consider the fractured rock non-deformable and fully saturated with a single-phase incompressible Newto-
nian fluid, the substances being in local thermal equilibrium. The incompressibility assumption is justified by the
negligible pressure dependence of water density under typical low-enthalpy geothermal conditions.

In accordance with these assumptions, we model the fluid flow and heat transport in the reservoir by solving the
corresponding balance equations for mass and energy while expressing the momentum balance by the Darcy
law. All of these equations are well-established in the literature [12, 9, 55, 44, 15, 64].

3.1 Balance equations

In Ωla, the equations read

"r
)�
)t
+ ∇ ⋅ (�v) = SMW, (1)

v = −1
�
k(∇p − �g), (2)

(�cp)eff
)T
)t
+ �cpv ⋅ ∇T − ∇ ⋅

(

�eff∇T
)

= SEW. (3)

In (1), "r [−] denotes the porosity, � [kg ⋅ m−3] is the density, t [s] represents the time, v [m ⋅ s−1] stands for
the fluid velocity, and SMW [kg ⋅ m−3 ⋅ s−1] is the sum of the sources/sinks of mass due to wells.

In (2), � [Pa ⋅ s] denotes the dynamic viscosity of the fluid, and k [m2] is the permeability tensor of the rock,
which we assume to be isotropic and heterogeneous, i.e, k = kI , where the permeability coefficient k is a
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scalar function, and I stands for the identity tensor. The function p [Pa] is the fluid pressure, and g [m ⋅ s−2]
denotes the gravitational acceleration vector.

In (3), cp [J ⋅ kg−1 ⋅ K−1] represents the specific heat at constant pressure of the fluid, T [K] is the common
thermodynamic temperature of the fluid and the rock, cr [J ⋅ kg−1 ⋅ K−1] is the specific heat of the rock, �
[W ⋅ m−1 ⋅ K−1] denotes the thermal conductivity coefficient, and SEW [J ⋅ m−3 ⋅ s−1] is the source of energy
due to wells.

The subscript eff indicates the following combination of the properties of the fluid and rock:

�eff = (1 − "r)�r + "r�, and (�cp)eff = (1 − "r)�rcr + "r�cp. (4)

The terms SMW and SEW are defined below.

In Ωf r , our equations read

df r"r
)�
)t
+ df r∇t ⋅ (�v) = SMW + (�v)la ⋅ n+ + (�v)la ⋅ n−, (5)

v = −1
�
k(∇tp − �gt), (6)

df r(�cp)eff
)T
)t
+ df r�cpv ⋅ ∇tT − df r∇t ⋅

(

�eff∇tT
)

= SEW + qla ⋅ n+ + qla ⋅ n−, (7)

where

q = −
(

�eff∇T
)

, (8)

and n± stands for the unit outward normal to the fracture (n+ + n− = 0). The terms �v ⋅ n± and q ⋅ n± on the
right-hand side of (5) and (7) are the fluxes entering/leaving Ωf r through )Ωla.

The symbol df r [m] denotes the (piecewise constant) fracture aperture, and the subscript t indicates the direction
of the unit vector tangential to the fracture. We have gt = g −

(

g ⋅ n+
)

n+ and, for a scalar-valued function f
and a vector-valued function F ,

∇tf = ∇f −
(

∇f ⋅ n+
)

n+ and ∇t ⋅ F =
(

I − n+ ⊗ n+
)

∶ ∇F .

The wells are cylindrical. Each well w is characterized by its type (injection or production), position, orientation,
heightHw [m], radius rw [m], efficiency of its pump "w [-], and the flow rateQw [m3 ⋅ s−1] of the fluid inside (for
an injection well,Qw > 0; for a production well,Qw < 0). This fluid has the density �w [kg ⋅m−3], temperature
Tw [K], and specific heat capacity at constant pressure cp,w [J ⋅ kg−1 ⋅ K−1]. The properties of each well are
constant.

For any given sets of injection and production wells denoted by inj and pro, respectively, the sink/source

terms SMW [kg ⋅m−3 ⋅ s−1] and SEW [J ⋅m−3 ⋅ s−1] (inΩla) and SMW [kg ⋅m−2 ⋅ s−1] and SEW [J ⋅m−2 ⋅ s−1]
(in Ωf r ) are approximated as

SMW =
∑

w∈inj∪pro

�wCw�w and SEW = Cpen
∑

w∈inj

Cw(�cp)w
(

Tw − T
)

�w, (9)

where �w [m−2] stands for the Dirac delta function, and the quantities Cw [m2∕s] (in Ωla) and Cw [m3∕s]
(in Ωf r ) depend on the shape of the well w, on Qw, and on the structure of the underlying fractured porous
medium.

Note that the definition of SEW originates from prescribing T ∶= Tw in the well location via a penalty method,
Cpen [-] being a positive penalty parameter.

The information transfer between Ωla and Ωf r is ensured by the terms (�v)la ⋅ n and qla ⋅ n in (5) and (7) and
by an additional assumption that p and T are continuous at the interface between the layers and fractures.

10.20347/WIAS.PREPRINT.3239 Berlin 2025
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On the boundaries )Ωla and )Ωf r , we prescribe the flux boundary conditions

�v ⋅ n = qM and q ⋅ n = qE (10)

and the Dirichlet boundary condition for p and T . We consider qM = qE = 0 on the whole )Ωf r .

As for the intersections between the fractures, every common intersection of N fractures !1,… , !N is as-
sumed to be a line segment. Let ns)i be the unit outward normal corresponding to the side s ∈ {+,−} of this
intersection inside the fracture !i. We prescribe

∑

i∈{1,2,…,N}

∑

s∈{+,−}
df r,i(�v)f r ⋅ ns)i = 0 and

∑

i∈{1,2,…,N}

∑

s∈{+,−}
df r,iqf r ⋅ ns)i = 0. (11)

The fluid properties �, �, cp, and � are generally considered T -dependent, as in the simulations by Pártl and
Meneses Rioseco [47, 46]. Nevertheless, for simplicity, we will consider them constant in this article.

We solve the balance equations on the time interval [tini, tf in]. The primary variables are p and T , and the
corresponding initial conditions are pini and Tini.

3.2 Optimization

We optimize the well placement by changing only the position, orientation, and length of the wells. We consider
the optimal placement to be the one that maximizes the power  [W] of the geothermal facility. For given sets
of injection and production wells inj and pro, we have

(inj,pro) =
1

tf in − tini ∫
tf in

tini

(

Eprod(t,inj,pro) − Epump(t,inj,pro)
)

dt, (12)

where Eprod [J/s] is the flux of energy through the wells,

Eprod(t,inj,pro) =
∑

w∈pro

(�cpT )|w(t) |Qw| −
∑

w∈inj

�wcp,wTwQw, (13)

and Epump [J/s] represents the energy needed for the operation of the water pumps,

Epump(t,inj,pro) =
∑

w∈inj∪pro

Qw

"w
⏐⏐⏐⏐⏐Δp|w(t)

⏐⏐⏐⏐⏐ . (14)

In (14), Δp|w [Pa] is the average of p − pini over the cylindrical well.

4 Numerical solution

This section briefly summarizes the approaches we employ to solve our balance equations and the optimization
problem numerically. These approaches are the same as those by Pártl and Meneses Rioseco [47], where
they are described in detail. Our choice of numerical techniques for the solution of the balance equations was
motivated primarily by the requirement of short computing time because one solution over [tini, tf in] represents
one evaluation of the power  during the optimization.

We perform the time discretization via a semi-implicit scheme, which is derived by applying the implicit Euler
method modified by evaluating some terms at the old time level instead of the new one to get a linear system of
equations for p and T .

For the spatial discretization, we employ the continuous finite element method with P1 elements and solve the
balance equations only for p and T , using the Darcy equations (2) and (6) as explicit formulas for the velocity.

10.20347/WIAS.PREPRINT.3239 Berlin 2025
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DFN population nr. strike angle [◦] dip angle [◦] size [m] "r [-] k [m2] df r [m]

DFN▫
1 −45 ± 3 60 ± 3

70 ± 3 0.03 2.083333e-9 2.0e-42 45 ± 3 −60 ± 3
3 0 ± 3 50 ± 3

DFN↭
1 −45 ± 3 60 ± 3 40 ± 3 0.035 1.302083e-10 5.0e-5
2 45 ± 3 −60 ± 3 70 ± 3 0.05 5.208333e-10 1.0e-4
3 0 ± 3 50 ± 3 90 ± 3 0.02 2.083333e-11 2.0e-5

Table 1: Strike and dip angles (see Figure 3), size (the largest distance between two points in the fracture),
porosity "r, permeability coefficient k, and aperture df r of individual populations in DFNs. The notation ±3
means the addition of a random number from [−3, 3]. The values were inspired by realistic DFN properties
[42, 35, 50, 56]. The values of k were computed from df r via the cubic law.

The energy balance equations are stabilized using the algebraic flux correction [6, 23]. To avoid remeshing the
domain when changing the positions of the wells, we decouple the wells from the spatial mesh via the non-
matching approach [48, 8]. The resulting system of linear algebraic equations is solved by the BiCGSTAB with
the Jacobi preconditioner.

The optimization problem is solved via the deterministic, gradient-free global optimization algorithm DIRECT
from the library NLopt [25], where the integral in (12) is approximated using the trapezoidal rule.

The resulting numerical solver was implemented in C++ using Deal.II [1] and NLopt [25]. We carried out the
simulations on the computer HPE Synergy 480 Gen10 Plus with 2 Xeon eighteen-core processors, 3000 MHz,
768 GB RAM. The systems of linear algebraic equations were solved in parallel, and the rest of the computa-
tions were performed sequentially. On average, one step of the optimization tests ▫2, ↭

2 , and ↭
6 described

in Section 5.5 took 10.2 min, 13.3 min, and 11.9 min, respectively. Roughly 93% of each time was spent (se-
quentially) assembling the linear systems, which leaves room for improvement via further parallelization.

5 Definitions of scenarios and model setups

The following sections present setups of several optimization tests of our framework. Their results are discussed
in Section 7.

5.1 Reservoirs

We considered 2 reservoirs (▫ and ↭) withΩ▫la = Ω
↭
la = [0, 5]× [0, 5]× [−4.3, −3.8] (in km) and DFNs

(DFN▫ and DFN↭) based on 2 versions of Ωf r (Ω↭
f r ≠ Ω▫f r ) randomly generated using Frackit [19]. Each

reservoir contained 6000 fractures of 3 populations (2000 fractures of each population) uniformly distributed in
Ω# = [2, 3]× [2, 3]× [−4.28, −3.82] (in km) under the following constraints: The minimum distance between
two fractures of the same populations was 1m. For fracture intersections, the minimum intersection angle and
length were 10◦ and 1m, and the distance of the intersection from the boundaries of the fractures was at least
1m. The properties of the fracture populations are listed in Tables 1 and 2. The networks DFN▫ and DFN↭

are depicted in Figures 4 and 5.

We consider the fluid density in all reservoirs to be constant, making the pressure field time-independent. The
invariant fluid properties are listed in Table 2.
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Figure 3: Left: Definitions of the oriented strike (�s) and dip (�d ) angles for a given fracture ! with the normal
vector n (where we assume nz ≥ 0). The strike direction, ds, is the direction of the intersection of ! with
the plane x-y, where we choose ds,y ≥ 0. For given n and ds, the dip direction, dd , is determined so that
dd × ds = n. The vector d̃d is the projection of dd onto the plane x-y. The strike angle is the angle between
ds and the y-axis, and the dip angle is the angle between dd and d̃d . The signs of the angles are indicated
in the figure. Right: The ellipse given by system (16) and the corresponding wells for the scenario 6 viewed
from above. The center (xo, yo, zo) can be moved inside the gray square. The injection wells are blue, and the
production wells are red.

Parameters in (1)–(8)
Parameter Value Unit
"r,la 0.1 −
� 954.2 kg ⋅ m−3

� 2.23 ⋅ 10−4 Pa ⋅ s
k▫la 3.0 ⋅ 10−16 m2

k↭la 3.0 ⋅ 10−17 m2

g (0, 0, −9.81) m ⋅ s−2

�r 2730.0 kg ⋅ m−3

cr 2230.0 J ⋅ kg−1 ⋅ K−1

cp 4169.7 J ⋅ kg−1 ⋅ K−1

�r 4.07 W ⋅ m−1 ⋅ K−1

� 0.71 W ⋅ m−1 ⋅ K−1

Parameters in (9) and parameters of a well w
Cpen 103 −
Hw 200.0 m
rw 0.07 m
�w 983.75 kg ⋅ m−3

Tw 333.16 K
cp,w 4169.7 J ⋅ kg−1 ⋅ K−1

r",w 7.0 m
"w 0.6 −

Table 2: Values of invariant physical properties used in this study. Rock parameter values are derived from
published data and reflect realistic DFN physical properties [56, 33, 13, 20, 39]. The fluid properties correspond
to water at 130◦C [32], and �w is the density at the temperature Tw given by the approximation by Zinsalo et al.
[64].
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5.2 Initial and boundary conditions

The initial conditions are always

pini(x, y, z) = ptop − �gz ⋅ (z − 300.0), Tini(x, y, z) = Ttop − Tgrad ⋅ z (15)

for ptop = 101325.0Pa (the normal pressure) and hydrostatic conditions characterized by a water table located
300 m below the surface, comparable to the hydrogeological setting of the naturally fractured Upper Jurassic
carbonates in the GMR, Germany [13, 31]. Further, we set Ttop = 283.16K (commonly assumed as the average
annual surface temperature in temperate climates [45, 62] and Tgrad = 0.03K/m (average geothermal gradient
in low-enthalpy, non-magmatic geothermal play types [2, 40, 38].

On )Ωf r and on the faces of )Ωla ⧵Ωf r that are parallel to the plane x-y, we always prescribed homogeneous

Neumann boundary conditions. In the remainder of )Ωla ⧵Ωf r , we considered the Dirichlet boundary conditions
identical to the initial conditions.

5.3 Optimization scenarios 2N

We considered the following optimization scenarios 2N with tini = 0 and tf in = 60 ⋅ 60 ⋅ 24 ⋅ 365 ⋅ 50 s
≈ 50 years, N injection wells and N production wells, and 5 optimization parameters describing the well
positions.

The orientation of the wells was invariable: For each well, the axis of symmetry going through its bases had
the direction (sin!z cos!xz, sin!z sin!xz,−cos!z) for !z = �∕3 = 60◦ and !xz = 11�∕18 = 110◦,
where !z is the angle between the well and the z-axis. The angles !z and !xz had been determined based
on the requirement that the well should not intersect the fractures in our DFNs at an angle smaller than 30◦.
Determination of such directions for a given DFN is one of the features implemented in our DFN parser . The
well flow rates Q were scenario-dependent constants defined in Section 5.5. The invariable well properties are
listed in Table 2.

For each 2N , the optimization parameters were xo ∈ [2.429620, 2.629620], yo ∈ [2.318620, 2.518620],
zo ∈ [−4.13, −3.87], ro ∈ [0.4, 1] (all in km), and 'o ∈ [0, 2�∕N]. We ordered the wells so that the i-th
well, wi, was a production well for an even i and an injection well for an odd i, where i = 0, 1,… , N − 1. For
every (xo, yo, zo, ro, 'o), the center of the upper base of wi was

(

xo + lxro cos
(

'o + 2i�∕N
)

, yo + lyro sin
(

'o + 2i�∕N
)

, zo
)

,

where lx = 0.35038 and ly = 0.29862. That is, for every (xo, yo, zo), the centers of the upper bases of the
wells were uniformly spaced on the ellipse

x = xo + lxro cos'o,
y = yo + lyro sin'o,
z = zo.

(16)

We shifted the ellipse in space and moved the wells along the ellipse, keeping the uniform spacing. The minimum
distance between the wells and the lateral boundaries of Ω# was 20m. The situation is depicted in Figure 3.

5.4 Parameters of numerical solver

We always solved the balance equations with the time step Δt = (tf in − tini)∕50 s ≈ 1 year. The domains Ω▫f r
and Ω↭

f r were covered by boundary conforming Delaunay meshes of 416128 and 462872 triangles with edge

lengths in [3.3 ⋅ 10−3, 56.7] and [3.7 ⋅ 10−3, 27.1] (in m), respectively. The corresponding Ω▫la and Ω↭
la were

covered with boundary and fracture conforming Delaunay meshes of 2174538 and 2883612 tetrahedra with
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edge lengths in the intervals [3.3 ⋅ 10−3, 375.0] and [3.0 ⋅ 10−4, 371.9] (in m), respectively, where each triangle
was a face of two tetrahedra. The wells were approximated using the artificial radius r" = 7m (defined in the
paper by Pártl and Meneses Rioseco [47]).

5.5 Optimization tests

This paper presents the following 3 optimization tests. Their results are discussed in Section 7.

▫2 : Optimization scenario 2 with well flow rates Q▫2 = ±60 l∕s and reservoir ▫.

↭
2 : Optimization scenario 2 with well flow rates Q↭

2 = ±20 l∕s and reservoir ↭.

↭
6 : Optimization scenario 6 with well flow rates Q↭

6 = ±10 l∕s and reservoir ↭.

We also measured the time for the injected cold water to reach the production well, which we call the time of
thermal breakthrough occurrence, tbreak [year]. There is no universal definition of tbreak . We define it as the time
at which the temperature at the production well drops by more than 1K [5].

6 Evaluation of reservoir characteristics

In naturally fractured geothermal reservoirs, the fracture network strongly governs fluid flow and heat transport,
directly impacting production performance [60, 63, 59]. For the well placement optimization, an understanding
of how fracture geometry shapes pressure and temperature fields is crucial.

In this study, we integrate the DFN analysis into reservoir modeling to support simulation interpretation and
decision-making. This analysis is performed by a set of computational routines in our DFN parser that quantify
and visualize key DFN metrics for a given volume enclosed by a prism. These routines mimic the analytical
computations. For example, when determining a prism-fracture intersection, we find all intersections of the
fracture with the faces of the prism and order these intersections to get the boundary of the desired prism-
fracture intersection.

Key Fracture Network Attributes

The following DFN characteristics critically influence geothermal productivity and guide well targeting:

■ Fracture Density: High density enhances effective permeability by connecting matrix blocks and short-
ening flow paths. DFN parser determines the number and total area of fractures intersecting selected
volumes (Figure 6, Tables 3 and A.2).

■ Connectivity: Well-connected fractures establish continuous pathways, reducing hydraulic resistance
and supporting efficient circulation. DFN parser identifies clusters of interconnected fractures and counts
intersections within (Figure 5).

■ Percolation and Flow Paths: Beyond density, network extent and percolation determine whether frac-
tures link injection and production wells. For each cluster of interconnected fractures, DFN parser esti-
mates cluster size (the largest distance between two points in the cluster) and length (the length of the
longest of the shortest paths between two points in the cluster) and determines the cost of the best path, [1/m]:

 =∑

e∈
we le for we =

1
k
,
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Figure 5: Triangulations covering DFN▫ (left) and DFN↭ (right). The colors indicate the numbers of intercon-
nected fractures forming the respective clusters.

where  is the set of mesh edges forming the path, le andwe are the length and weight of edge e, and k
denotes the average permeability of the adjacent cells (considering only 2D cells if e lies on a fracture).
Lower  values indicate more favorable connections.

The computations of  and the cluster length are based on Dijkstra’s algorithm applied to the spatial mesh
covering Ωla (Figures 9 and A.1, Table A.1). Therefore, both characteristics are estimates that improve
when refining the mesh.

■ Aperture, Porosity, and Permeability: Larger aperture and higher porosity/permeability increase flow
capacity and reduce injection–production pressure differences. DFN parser computes averages of these
properties.

■ Fracture Geometry and Orientation: Fracture size and alignment with the pressure gradient control
connectivity and thermal recovery. DFN parser calculates fracture size (the largest distance between two
points inside) and suggests a suitable orientation of the wells based on the orientation of the fractures.
These features were used when checking whether Ω▫f r and Ω↭

f r were generated correctly and when
determining !z and !xz in Section 5.3.

■ Fracture–Well Intersections: The number of fractures intersecting a well directly measures drainage
efficiency and injectivity/productivity. DFN parser detects and visualizes these intersections (Figures 10
and 14).

By evaluating these metrics, DFN parser enables robust well placement strategies in highly heterogeneous
fractured reservoirs. Integrating connectivity, percolation pathways, and local flow properties with simulated
pressure and temperature fields informs optimization, mitigates thermal short-circuiting, and sustains long-term
geothermal production.

7 Simulation results

This section presents the results of the optimization tests described in Section 5.5. To assess the plausibility of
the outcomes, we visualize and compare key DFN characteristics for selected configurations evaluated during
the optimization process. Unless otherwise specified, injection and production wells are shown in blue and red,
respectively, in all figures.
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Figure 6: Top left: Uniform partitioning of Ω# into boxes together with fractures in those boxes that contain at
least 20 fracture intersections. The numbers of intersections in the boxes are expressed by colors. Top right:
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Figure 7: Power  and its maximum during the optimization test ▫2. The colors indicate tbreak , with the olive
color corresponding to no thermal breakthrough.

7.1 Test ▫
2

The optimization progress is depicted in Figure 7. It shows that the algorithm spent a considerable amount of its
runtime moving the wells in the immediate vicinity of the optimum instead of searching new parts of the reservoir,
which we consider undesirable. This indicates there is room for improvement in the optimization algorithm. As
expected, the best well placements are those for which the thermal breakthrough did not occur.

Figure 8 shows T and p − pini in the fractures for the optimum well placement defined by xo = 2.5275,
yo = 2.5067, zo = −4.0839, ro = 0.5184, and'o = 3.1156, where the optimum power was  = 16.654MW.
The above values of zo and ro lie near the lower bounds of the parameter ranges. This was expected because
lower z0 corresponds to higher production temperature, and the proximity of the wells facilitates the water
injection, resulting in smaller

⏐⏐⏐⏐⏐Δp|w(t)
⏐⏐⏐⏐⏐ in (14). However, too small values of ro lead to a premature thermal

breakthrough.

A detailed view of the fractures intersecting the wells (not presented here) reveals that these fractures intersect
the injection well mainly in its farther part, which is the reason why the injected cold water spread farther around
this area. However, the cold water still remains far away from the production well. Additionally, the fracture clus-
ters intersecting the production well are several times larger than those intersecting the injection well, resulting
in a much greater area of a large difference in p − pini (cf. the red and deep blue parts of the right figure in
Figure 8).

To demonstrate the usage of our tools for the evaluation of the reservoir characteristics, we will describe two
well layouts that are comparable in terms of zo, the distance between the wells, the numbers of well-fracture
intersections, etc. in more detail. We selected the layouts corresponding to the optimization steps 672 (where
xo = 2.5296, yo = 2.3742, zo = −4.0867, ro = 0.9, 'o = 1.7453, and  = 16.124MW) and 45 (where
xo = 2.4630, yo = 2.3520, zo = −4.0867, ro = 0.7, 'o = 3.1416, and  = 13.529MW). More quantities
describing these layouts are listed in Table 3 and Figure 10.

In both layouts, the wells were placed at the same depth and intersected the same number of fractures. Although
in the latter layout, the wells were placed closer to each other, the vicinity of the wells had less favorable structure,
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Figure 8: T and Δp = p − pini in fractures for the optimal arrangement of the wells in test ▫2. The color scale
for Δp is bounded from below to enhance the readability. The real minimum of Δp is −8.18MPa. The reservoir
is displayed upside down to make the wells visible. The distance unit is km.

step nr. dist. N inj
× Npro

× Δp �× �⏐⏐⏐⏐#⏐⏐⏐⏐  # corr▫
2: 672 540.56 7 7 10.28 3.40 ⋅ 10−5 0.0322 29.9661 ⋅ 1018 29.9660 ⋅ 1018 106.57 ⋅ 1018

▫
2: 45 490.53 7 7 37.93 2.88 ⋅ 10−5 0.0311 32.4423 ⋅ 1018 32.4421 ⋅ 1018 134.66 ⋅ 1018

↭
2 : 1331 312.37 11 11 117.98 1.50 ⋅ 10−5 0.0306 49.2307 ⋅ 1015 91.6220 ⋅ 1015 0.58 ⋅ 1018

↭
2 : 1557 347.82 10 9 73.88 1.54 ⋅ 10−5 0.0331 0.01 ⋅ 1015 0.0 1.19 ⋅ 1018

Table 3: Quantities describing the selected layouts. They are (in this order) the step number, distance between
the wells [m], number of fractures intersecting the injection and production wells denoted by N inj

× [-] and Npro
×

[-], Δp =
∑

w∈inj∪pro

⏐⏐⏐⏐⏐Δp|w(t)
⏐⏐⏐⏐⏐ [MPa], density of fracture intersections in the corridor represented by �×

[1/m3], area of fractures in the corridor per unit volume �⏐⏐⏐⏐#⏐⏐⏐⏐ [1/m], cost of the best path between the wells and
between the clusters of fractures intersected by the wells denoted by  [1/m] and # [1/m], and average of the
costs of all best paths between the wells starting from a selected mesh node in a well and leading within the
corridor, which is labeled corr [1/m].

resulting in larger pressure difference in (14). We assessed this structure by computing various characteristics
of the part of the reservoir enclosed by a corridor between the wells, see Table 3. This corridor, see Figure 9, is
the smallest 4-sided prism enclosing both wells that extends by r" +50m from above and from below the plane
defined by the centers of the bases of the wells.

For the former layout, all characteristics in Table 3 are better. The reason for the large difference in corr is
probably the large difference in �× and the alignment of the fractures: The blue fracture population in Figure 9
is approximately aligned in the direction from one well to the other well.

Additionally, Figure 10 shows that the total area of the clusters intersected by the wells in the first layout is
significantly larger, which also decreases the above pressure difference.

7.2 Test ↭
2

The comparison between the optimization progresses shown in Figures 7 and 11 underlines the complexity of
the reservoir ↭ and indicates that it is significantly more difficult to find suitable well layouts in ↭ than
in ▫. The reason for the lower local maxima of  and the lower number of well layouts where the thermal
breakthrough occurred is the lower well flow rate and lower permeability, and aperture.

Figure 12 shows T and p − pini for the optimum well placement defined by xo = 2.5948, yo = 2.4632,
zo = −4.1144, ro = 0.6418, and 'o = 5.2360. The corresponding optimum power was  = 5.574MW, and
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Figure 9: Corridors corresponding to the steps 672 (top) and 45 (bottom) in Figure 10. The blue fracture pop-
ulation in the top picture is approximately aligned in the direction from one well to the other well. The green
polygonal chains represent the best paths between the wells.
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Figure 10: The clusters of fractures intersected by wells in the steps 672 (green) and 45 (ocher) in test ▫2
(left) and in the steps 1331 (ocher) and 1557 (green and gray) in test ↭

2 (right). The figures show the exact
arrangements of the fractures and wells. In the right picture, the gray cluster is intersected by both wells in
step 1557. The total areas and lengths of the clusters intersected by wells are 0.50 km2 and 2.57 km (step 45),
0.70 km2 and 3.29 km (step 672), 1.01 km2 and 4.21 km (step 1331), and 0.76 km2 and 4.02 km (step 1557).
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Figure 12: T and Δp = p − pini in fractures for the optimal arrangement of the wells in test ↭
2 . The reservoir

is displayed upside down to make the wells visible. The distance unit is km.

the clusters of fractures intersected by the wells (not displayed here) were only 3.5m away from each other.
Compared to Figure 8, the extrema of p−pini in Figure 12 are larger due to the lower permeability and aperture.
Similarly, the cold water penetrated smaller area than in Figure 8 because of the lower well flow rate.

As in Section 7.1, we will compare the well layouts in two selected optimization steps: step 1331 (where xo =
2.4630, yo = 2.3520, zo = −4.0867, ro = 0.5, 'o = 1.0472, and  = 1.959MW) and 1557 (where
xo = 2.5518, yo = 2.4853, zo = −4.0867, ro = 0.5, 'o = 2.909, and  = 3.414MW). More quantities
characterizing these layouts are listed in Table 3 and Figure 10, where the corridors are defined in the same
way as in Section 7.1.

Comparing both layouts, we can see that in the former one, the wells were positioned closer to each other,
and they intersected more fractures, and these fractures belonged to clusters of larger total area and length.
Additionally, all wells were placed at the same depth. The former layout, nevertheless, yielded higher power
because there was a cluster intersected by both wells, which resulted in smaller

⏐⏐⏐⏐⏐Δp|w(t)
⏐⏐⏐⏐⏐ in (14), see Figure

10. However, a significant part of this cluster lay outside of the corridor between the wells, resulting in highercorr .
7.3 Test ↭

6

The resulting power  in the optimization progress depicted in Figure 13 is generally much higher than in
Figure 11. The reasons are that the volume of water injected into the system is distributed between several
wells, decreasing

⏐⏐⏐⏐⏐Δp|w(t)
⏐⏐⏐⏐⏐ in (14), and the wells are placed closer to each other, which generally decreases

⏐⏐⏐⏐⏐Δp|w(t)
⏐⏐⏐⏐⏐ as well and increases the chance of more wells intersecting the same cluster of fractures. However,

the latter also resulted in a significantly larger number of steps where the thermal breakthrough occurred.

Figure 14 shows T and the clusters of fractures intersected by the wells for the optimum well layout defined
by xo = 2.6204, yo = 2.4853, zo = −4.0867, ro = 0.6987, and 'o = 1.0501, where the optimum power
was  = 8.207MW. We can see that (as in Figure 12) the cold water also penetrated only small areas around
the injection wells due to the low flow rates. The existence of 3 clusters intersecting 2 wells makes this layout
particularly favorable.

8 Discussion and conclusions

We introduced two tools intended for optimization of geothermal energy production from naturally fractured
reservoirs, and we presented the results obtained by applying our open-source software based on these tools
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Figure 14: Optimization test ↭
6 . Temperature T and clusters intersected by wells in the optimal configuration.

The injection wells are white and blue, and the production wells are green and red. In the left picture, the
reservoir is displayed upside down to make the wells visible, and the distance unit is km. In the right picture, the
orange, olive, and green clusters intersect two wells. The gray, blue, and red clusters intersect only one well.
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to structurally complex reservoirs targeted by deviated geothermal doublets or multi-well layouts.

The first tool was a mathematical model and corresponding numerical scheme for a) 3D numerical simulation of
groundwater flow and heat transport in hot fracture-controlled reservoirs and b) fully automated optimization of
the placements of the injection and production wells.

The second tool was the package DFN parser for a) the analysis of DFNs and b) the postprocessing and visu-
alization of DFNs and triangulations covering fracture-controlled reservoirs. For the analysis, we also proposed
several metrics for the DFN characterization and implemented tools that measure them.

We showed the capability of the whole framework to find favorable well placements in complex reservoirs con-
taining thousands of fractures of various fracture populations. But our frameworks can also be easily applied to
other reservoir types, such as those dominated by dual porosity and/or dual permeability characteristic behav-
iors, or to heterogeneous porous media.

Our optimization framework has some limitations that open up possibilities for improvements, particularly the
following:

■ Fractures under in-situ subsurface conditions may deform, especially in deep DFNs under operational
conditions. However, a straightforward model for poroelasticity effects can be easily included in our frame-
work [54, 24].

■ We arranged the wells in rather fixed geometrical patterns (e.g., 2 wells lying in one plane, 6 wells lying on
an ellipse, etc.) to keep the dimension of the space of optimization parameters (SOP) and the complexity
of the constraints on these parameters low, possibly ruling out many well layouts that are better than those
that can be described in the same way as in Section 5. We consider this kind of simplification inevitable,
at least in the case of several wells.

■ Due to the runtimes listed in Section 4, our optimizations are limited to mere thousands of steps, possibly
leaving many parts of the SOP unexplored. Moreover, Figure 7 shows that the optimization algorithm may
start to concentrate on a very small part of the SOP, leading to the same effect.

The former can be mitigated to some extent by parallelizing the assembly of the linear systems during the
numerical solution of the balance equations. The latter may be remedied by employing other optimization
algorithms.

Ultimately, verification and validation were performed using simplified yet fit-for-purpose fracture configurations
to demonstrate that the computational framework reliably performs the intended modeling, simulation, and op-
timization tasks for geothermal energy production in naturally fractured reservoirs. The proposed open-source
computational framework advances sustainable geothermal development by enabling scalable, efficient opti-
mization of well placement in complex fractured reservoirs, removing meshing bottlenecks, and providing a
robust tool adaptable to diverse geological settings worldwide.

Computer code availability

The optimizations presented in this paper were carried out employing the C++ package Reservoir simulator
developed by one of the authors, Ondřej Pártl. This package, its description, and the input data used to pro-
duce the presented results are available in the repository https://lab.wias-berlin.de/partl/reservoir-simulator. For
citation purposes, refer to the Zenodo entry https://doi.org/10.5281/zenodo.17433719.

The supporting C++ package DFN parser for analysis, postprocessing, and visualization of DFNs is also devel-
oped by Ondřej Pártl. This package, along with its description, examples of input data, and generated files, is
available in the repository https://lab.wias-berlin.de/partl/dfn-parser. For citation purposes, refer to the Zenodo
entry https://doi.org/10.5281/zenodo.17434104.

10.20347/WIAS.PREPRINT.3239 Berlin 2025

https://lab.wias-berlin.de/partl/reservoir-simulator
https://doi.org/10.5281/zenodo.17433719
https://lab.wias-berlin.de/partl/dfn-parser
https://doi.org/10.5281/zenodo.17434104


O. Pártl, E. Meneses Rioseco 22

-0.95 -0.35 -0.15 0.15 0.55 1.15
-0.85

-0.25
-0.15

0.15

0.45

1.05

x

y

1.

2.

3.

4.

5.

333.2
340.0
350.0
360.0
370.0
380.0
390.0
403.3

T (K)

-2.85 -0.95
1.15 2.85

-2.85

-0.85

1.05

2.85
2.851.15-0.95-2.85

2.85

1.05

-0.85

-2.85

x

y

Figure A.1: Left: DFN consisting of 5 fractures (labeled 1.–5.), wells in four different configurations (indicated
by numbers 1.–4. that coincide with the fracture labels), and the corresponding best paths between the wells.
The colors of the fractures indicate the temperature T in configuration 4. The triangulation covering 3. fracture
is part of the one used for the numerical solution. The fractures lie in the xy-plane, and their z-coordinates are,
respectively, -3.999, -4.001, -3.9995, -4.0005, and -4.0 (in km). Right: Position of DFN inside Ωla indicated by

the black prism. The blue lines stand for the triangulation of the bottom face of Ωla. All spatial coordinates are
in km.
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A Verification and validation tests

This appendix presents 2 verification and validation tests (Paths and Shelves) based on DFNs of a very simpli-
fied structure.

A.1 Paths

The purpose of this test is to check that our framework satisfies the natural requirement that the energy Epump

given by (14) decreases if the distance between the clusters of interconnected fractures crossed by the wells
shortens. Generally, we require Epump to decrease if the area between the wells is more fractured.

A.1.1 Reservoir setup

We consideredΩla = [−2.85, 2.85]×[−2.85, 2.85]×[−4.1, −3.9] (in km) andΩf r consisting of 5 rectangular
fractures, as depicted in Figure A.1. All material properties (except for the fracture size and orientation) and initial
and boundary conditions were the same as those for reservoir ▫, see Section 5 and Tables 1 and 2.

A.1.2 Artificial optimization setup

We performed an artificial optimization with tini = 0 and tf in = 60 ⋅ 60 ⋅ 24 ⋅ 365 ⋅ 50 s ≈ 50 years and 4 well
configurations indicated in Figure A.1. That is, the optimization consisted of only 4 optimization steps defined
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configuration nr. Δp  tbreak  ana
1. 63.63 5.083 - 1.41 ⋅ 1018 1.33 ⋅ 1018

2. 59.96 5.261 - 1.06 ⋅ 1018 1.00 ⋅ 1018

3. 55.58 5.454 35 0.70 ⋅ 1018 0.67 ⋅ 1018

4. 51.33 5.304 14 0.35 ⋅ 1018 0.33 ⋅ 1018

Table A.1: Quantities describing the artificial optimization results. They are (in this order) the configuration num-
ber, Δp =

∑

w∈inj∪pro

⏐⏐⏐⏐⏐Δp|w(t)
⏐⏐⏐⏐⏐ [MPa], resulting power  [MW], time of thermal breakthrough occurrence

tbreak [year], and cost of the best path between the wells denoted by  [1/m], and the theoretical minimum of 
over all spatial meshes labeled ana [1/m], which can be computed analytically. In the first two configurations,
the thermal breakthrough did not occur.

below.

All wells were 100m long and parallel to the z-axis. Their flow rates were Q = ±30 l∕s. The production well
was fixed, and its barycenter coincided with the barycenter of 5. fracture, which is (in km) the point (0.0, 0.0,
-4.0). The injection well in the i-th configuration (i ∈ {1, 2, 3, 4}) intersected the i-th fracture. The coordinates
of the well barycenters (in km) were, in this order, (0.7, 0.0, -4.0), (0.0, 0.7, -4.0), (-0.7, 0.0, -4.0), and (0.0, -0.7,
-4.0). The rest of the well properties equaled those listed in Table 2.

A.1.3 Parameters of numerical solver

The balance equations were solved with the time step Δt = (tf in − tini)∕50 s ≈ 1 year. The domain Ωf r was
covered with a boundary conforming Delaunay mesh of 15225 triangles with edge lengths in [6.2, 19.5] (in m).
The domain Ωla was covered with a boundary and fracture conforming Delaunay mesh of 4045788 tetrahedra
with edge lengths in [6.2, 103.3] (in m), where each triangle was a face of two tetrahedra. Parts of these meshes
are shown in Figure A.1. All wells had the artificial radius r" = 7m.

A.1.4 Results

The results are summarized in Table A.1. We can see that Δp decreased when narrowing the gap between
the fractures intersecting the wells. The resulting power  would probably have monotonically increased with
decreasing Δp if the narrowest gap between the fractures intersected by the wells had not caused a very early
thermal breakthrough.

Additionally, when narrowing the above gap between the fractures, the cost of the best path, , decreases,
fulfilling the requirements. This cost also seems to approach its theoretical minimum in the process. The probable
reason is that the tetrahedral mesh between the fractures is coarser than the triangular meshes. Therefore, a
shorter path through the 3D mesh implies a smaller deviation from the theoretical minimum cost.

We consider the results of this verification and validation test satisfactory.

A.2 Shelves

Using this test, we checked whether our framework satisfies the natural requirement that the energy Epump

given by (14) decreases if the area of the clusters of interconnected fractures crossed by the wells increases.
Additionally, this test enabled us to check whether the reservoir characteristics are evaluated correctly.
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Figure A.2: Left: DFN consisting of 31 fractures, where 30 of them are aligned in columns labeled 1.–4., and
wells in four different configurations indicated by numbers 1.–4. that coincide with the column labels. The tri-
angulation of the DFN depicted in the figure was employed in the test. Right: Position of the DFN inside Ωla
indicated by the black prism. The blue lines stand for the triangulation of the bottom face of Ωla. All spatial
coordinates are in km.

A.2.1 Reservoir setup

We considered Ωla = [−1.0, 7.0] × [−1.0, 7.0] × [−4.2, −3.8] (in km) and Ωf r consisting of 25 horizontal
square fractures with a side length of 100m and 6 vertical rectangular fractures with side lengths of 100m and
300m. All of the fractures were aligned with the coordinate axes. The situation is depicted in Figure A.2.

In what follows, all spatial coordinates are in km. The first horizontal fracture had its barycenter at (4.0, 4.0,
-4.0), the barycenter of Ωla. The remaining 24 fractures were aligned in 4 vertical columns (labeled 1.–4.) of 6
fractures. The barycenters of the fractures in these columns were, in this order, (4.5, 4.0, -4.125 + 0.05i), (3.5,
4.0, -4.125 + 0.05i), (4.0, 3.5, -4.125 + 0.05i), and (4.0, 4.5, -4.125 + 0.05i), where i = 0, 1, … , 5.

The i-th column of fractures was intersected by i − 1 of the above vertical fractures. These vertical fractures
had the barycenters at (3.47, 4.0, -4.0) (2. column), (4.0, 3.47, -4.0) and (3.97, 3.5, -4.0) (3. column), and (4.0,
4.53, -4.0), (3.97, 4.5, -4.0), and (4.03, 4.5, -4.0) (4. column).

All material properties (except for the fracture size and orientation) were the same as those for reservoir ▫,
see Section 5 and Tables 1 and 2.

The initial conditions were

pini(x, y, z) = 101325.0Pa, Tini(x, y, z) = 404.66K. (A.1)

We employed these initial conditions to make the results less dependent on the vertical positions of the fractures
inside the domain.

As for the boundary conditions, we prescribed the homogeneous Neumann boundary conditions on )Ωf r and

on the faces of )Ωla ⧵Ωf r that lie in the planes z = −4.2 and z = −3.8 (in km). In the remainder of )Ωla ⧵Ωf r ,
we considered the Dirichlet boundary conditions identical to the initial conditions.

A.2.2 Artificial optimization setup

We performed an artificial optimization with tini = 0 and tf in = 60 ⋅ 60 ⋅ 24 ⋅ 365 ⋅ 50 s ≈ 50 years and 4 well
configurations indicated in Figure A.2. That is, the optimization consisted of only 4 optimization steps defined
below.
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column nr. Δp  |#| �×,# l# d#
1. 121.85 4.875 1.0 ⋅ 104 0.0 147.62 141.42
2. 121.08 4.951 9.0 ⋅ 104 6.67 ⋅ 10−5 439.99 316.23
3. 120.47 5.012 12.0 ⋅ 104 10.83 ⋅ 10−5 381.52 320.62
4. 120.10 5.048 15.0 ⋅ 104 13.33 ⋅ 10−5 367.27 321.87

Table A.2: Quantities describing the artificial optimization results and characteristics of the column of frac-
tures intersected by the production well. They are (in this order) the column/configuration number, Δp =
∑

w∈inj∪pro

⏐⏐⏐⏐⏐Δp|w(t)
⏐⏐⏐⏐⏐ [MPa], resulting power  [MW], area of the largest cluster of interconnected frac-

tures within the column |#| [m2], number of fracture intersections per total area of fractures within the column
�×,# [1/m2], and length l# [m] and size d# [m] of the largest cluster of interconnected fractures within the column.

All wells were 260m long and parallel to the z-axis. Their flow rates were Q = ±60 l∕s. The production well
was fixed, and its barycenter coincided with the barycenter ofΩla, which is (in km) the point (4.0, 4.0, -4.0). The
injection well in the i-th configuration (i ∈ {1, 2, 3, 4}) intersected the i-th column of fractures. The coordinates
of the well barycenters (in km) were, in this order, (4.5, 4.0, -4.0), (3.5, 4.0, -4.0), (4.0, 3.5, -4.0), and (4.0, 4.5,
-4.0). Hence, the wells intersected all horizontal fractures in the given column. The rest of the well properties
equaled those listed in Table 2.

A.2.3 Parameters of numerical solver

The balance equations were solved with the time step Δt = (tf in − tini)∕50 s ≈ 1 year. The domain Ωf r was
covered with a boundary conforming Delaunay mesh of 10744 triangles with edge lengths in [5.0, 20.0] (in m).
The domain Ωla was covered with a boundary and fracture conforming Delaunay mesh of 213332 tetrahedra
with edge lengths in [5.0, 413.5] (in m), where each triangle was a face of two tetrahedra. Parts of these meshes
are shown in Figure A.2. All wells had the artificial radius r" = 7m.

A.2.4 Results

The results are summarized in Table A.2. We can see that Δp decreased when increasing the area of fractures
within the column intersected by the production well, and the power  increased accordingly because, unlike in
the test in Section A.1, the thermal breakthrough did not occur in any configuration.

Comparing the values of l# and d# for columns 2–4, we can see that when adding the vertical fractures to the
cluster of the interconnected fractures, d# increased because the cluster extended, but l# decreased because
the fractures became better connected. In the case of column 1, the difference between d# (the length of a
square diagonal) and l# illustrates the dependence of l# on the spatial mesh. The theoretical minimum of l#
equals d# in this case.

We consider the results of this verification and validation test satisfactory.
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