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On the hyperbolic relaxation of the chemical potential in a phase
field tumor growth model

Pierluigi Colli, Elisabetta Rocca, Jürgen Sprekels

Abstract

In this paper, we study a phase field model for a tumor growth model of Cahn–Hilliard type in
which the often assumed parabolic relaxation of the chemical potential is replaced by a hyperbolic
one. We show that the resulting initial-boundary value problem is well posed and that its solutions
depend continuously on two given functions: one appearing in the mass balance equation and
one in the nutrient equation, representing, respectively, sources of drugs (e.g. chemotherapy)
and antiangiogenic therapy. We also discuss regularity properties of the solutions. Moreover, in
the case of a constant proliferation function, we rigorously analyze the asymptotic behavior as
the coefficient of the inertial term tends to zero, establishing convergence to the corresponding
viscous Cahn–Hilliard tumor growth model. Our results apply to a broad class of double-well
potentials, including nonsmooth ones.

1 Introduction

Let α > 0, τ > 0, and let Ω ⊂ R3 denote some open and bounded domain having a smooth
boundary Γ = ∂Ω with outward normal n and corresponding outward normal derivative ∂n. More-
over, we fix some final time T > 0 and introduce for every t ∈ (0, T ] the sets Qt := Ω× (0, t) and
Σt := Γ × (0, t), where we put, for the sake of brevity, Q := QT and Σ := ΣT . We then consider
the following initial-boundary vaue problem:

α∂ttµ+ ∂tϕ−∆µ = P (ϕ)(σ + χ(1− ϕ)− µ)− h(ϕ)u1 in Q , (1.1)

τ∂tϕ−∆ϕ+ F ′(ϕ) = µ+ χσ in Q , (1.2)

∂tσ −∆σ = −χ∆ϕ− P (ϕ)(σ + χ(1− ϕ)− µ) + u2 in Q , (1.3)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ , (1.4)

µ(0) = µ0, ∂tµ(0) = µ′0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω . (1.5)

The system (1.1)–(1.5) constitutes a simplified and relaxed version of the four-species thermodynam-
ically consistent model for tumor growth originally proposed by Hawkins-Daruud et al. in [34] that
additionally includes chemotactic terms. Let us briefly review the role of the occurring symbols. The
primary variables ϕ, µ, σ denote the phase field, the associated chemical potential, and the nutrient
concentration, respectively. Furthermore, we stress that the additional term α∂ttµ is a hyperbolic reg-
ularization of equation (1.1), whereas the term τ∂tϕ is the viscosity contribution to the Cahn–Hilliard
equation. The key idea behind these regularizations originates from the fact that their presence al-
lows us to take into account more general potentials F whose derivatives F ′, which play the role of a
thermodynamic driving force in the model, may be singular and possibly nonregular.
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P. Colli, E. Rocca, J. Sprekels 2

The nonlinearity P denotes a proliferation function, whereas the positive constant χ represents the
chemotactic sensitivity. The terms containing P (ϕ) in the system (1.1)–(1.5) model tumor cell prolif-
eration. In (1.1), the factor P (ϕ) modulates the source of the chemical potential according to the local
tumor density, coupling proliferation with nutrient availability (σ) and chemotaxis (χ(1 − ϕ)). In the
third equation (1.3), the same term with minus sign accounts for nutrient consumption by proliferating
cells. Thus, P (ϕ) provides a natural coupling between the evolution of the phase field and the nutrient,
reflecting the interplay between growth and resource uptake.

About equation (1.2), as is common in phase-field models, the functionF is assumed to have a double-
well structure. Typical examples include the regular, logarithmic, and double-obstacle potentials, which
are respectively defined by

Freg(r) =
1

4

(
1− r2

)2
, r ∈ R, (1.6)

Flog(r) =


(1 + r) ln(1 + r) + (1− r) ln(1− r)− k1r

2, r ∈ (−1, 1),

2 ln(2)− k1, r ∈ {−1, 1},
+∞, r /∈ [−1, 1],

(1.7)

Fobs(r) =

{
k2(1− r2), r ∈ [−1, 1],

+∞, r /∈ [−1, 1],
(1.8)

where k1 > 1 and k2 > 0, so that both Flog and Fobs are nonconvex. All these potentials can be
written as the sum of a convex, lower-semicontinuous function (the main part) and a concave quadratic
perturbation. Note that Flog is particularly relevant in applications, since F ′log(r) becomes unbounded
as r → ±1. Moreover, in the case of Fobs, the second equation (1.2) must be interpreted as a
differential inclusion, where the derivative of the convex part of Fobs(ϕ) is understood in the sense of
subdifferentials.

In the above model equations, there are two functions that may serve as distributed controls acting in
the phase and nutrient equations, respectively. The control variable u1, which is nonlinearly coupled
to the state variable ϕ in the phase equation (1.1), models the application of a cytotoxic drug into the
system; it is multiplied by a truncation function h(·) in order to have the action only in the spatial region
where the tumor cells are located. For instance, it can be assumed that h(−1) = 0,h(1) = 1,h(ϕ)
is in between if −1 < ϕ < 1; see [29, 32, 35, 36] for some insights on possible choices of h. On the
other hand, the control u2 can model the supply of antiangiogenic therapies aiming at reducing the
tumor vascularization (cf. [12] and [7,8] for similar control terms in models of prostate tumor growth).

Let us briefly recall the results already present in the literature on this class of models, which has
been first introduced in [34] in case α = τ = 0. As far as well-posedness is concerned, the above
model has already been deeply investigated in the case α = τ = χ = 0 (cf. [5,9–11,25]). Moreover,
many variants of this model were considered and similar results were proven, see, for instance, [16,
22, 29, 30, 32]. In fact, a large body of literature is devoted to diffuse-interface and Cahn–Hilliard-
type models for tumor growth. Foundational modelling contributions are due to Cristini, Lowengrub,
Wise and collaborators [19,20,47], of course enlightening the numerical and asymptotic investigations
in [34, 35]. Rigorous analytical studies began with [25], later extended to multi-species mixtures and
interactions in [21, 26, 27], to Brinkman-type or Darcy-type couplings in [1, 22], and to nonlocal and
degenerate settings in [28]. Several works addressed chemotaxis, active transport, mechanical effects,
or additional biological mechanisms, establishing well-posedness and qualitative properties for a range
of tumour-growth systems [9,29–33,38]. Fractional and viscous variants of Cahn–Hilliard tumor-growth
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On the hyperbolic relaxation of the chemical potential in a phase field tumor growth model 3

models, together with asymptotics, vanishing viscosities and vanishing relaxation limits, have been
examined in [10,11,14,15]. Additional results on long-time behaviour and stability can be found in [5,
48]. Many of these analyses rely on convexity and compactness tools.

The optimal control of tumor-growth phase-field systems constitutes another important research di-
rection. Early works on boundary and distributed control appeared in [12,31]. Control strategies incor-
porating chemotaxis, active transport, variable mobilities, and Keller–Segel dynamics were developed
in [2,13,22,36,46]. Further contributions included the optimal control theory and advanced optimality
conditions in [23, 24], as well as refined analyses of treatment-time optimization and related asymp-
totics in [41–43, 49]. Singular logarithmic and double-obstacle potentials were addressed in [39, 40],
whereas sparse controls and second-order conditions were studied in [6, 45]. Well-posedness, reg-
ularity, and asymptotic behavior for models relevant to control applications and including chemotaxis
were developed in [16]. These results collectively provide a rigorous framework for the design and op-
timization of therapeutic strategies governed by diffuse–interface tumor-growth models. The authors
of this paper intend to undertake a detailed analysis of the distributed control problems associated
with the two controls u1 and u2 in a subsequent work.

Concerning the hyperbolic relaxation of the chemical potential in the viscous Cahn–Hilliard equation
(uncoupled from the nutrient and without mass sources), we refer to the recent contributions [17,
18], which inspired the present work. In [17], well-posedness, continuous dependence, and regularity
results were established, along with an analysis of the asymptotic behavior as the relaxation parameter
α tends to 0. A related optimal control problem was studied in [18].

We now briefly outline the contents of the present paper. In Section 2, we first prove the existence
of a (weak) solution to the system (1.1)–(1.5), together with a continuous dependence result of the
solutions on the controls u1 and u2: all this is precisely stated in Theorem 2.2. Section 3 is devoted
to establishing regularity results, see Theorem 3.1, which lead to the existence of a strong solution
to (1.1)–(1.5) in a very general framework for the potentials, covering all the cases in (1.6)–(1.8).
Finally, Section 4 addresses the asymptotic limit as α ↘ 0 in the particular — but still relevant —
case when the proliferation function P (ϕ) is constant, providing a detailed proof of convergence to
the corresponding system with α = 0 (see Theorem 4.1). Moreover, we are able to prove an estimate
of the difference of solutions in suitable norms with a precise rate of convergence (cf. Theorem 4.3).

2 General setting and well-posedness

In this section, we introduce the general setting of our problem and state well-posedness results for
the state system (1.1)–(1.5). To begin with, for a Banach space X we denote by ‖·‖X the norm in the
space X or in a power thereof, and by X∗ its dual space. The only exception from this rule applies
to the norms of the Lp spaces and of their powers, which we often denote by ‖ · ‖p, for 1 ≤ p ≤ ∞.
As usual, for Banach spaces X and Y that are contained in the same topological vector space, we
introduce the linear space X ∩ Y which becomes a Banach space when endowed with its natural
norm ‖u‖X∩Y := ‖u‖X + ‖u‖Y , for u ∈ X ∩ Y . Moreover, we introduce the spaces

H := L2(Ω) , V := H1(Ω) , W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}. (2.1)

Furthermore, by ( · , · ), ‖ · ‖ , and 〈·, ·〉, we denote the standard inner product and related norm
in H , as well as the dual product between V and its dual V ∗. We then have the dense and compact
embeddings V ⊂ H ⊂ V ∗, with the standard identification 〈v, w〉 = (v, w) for v ∈ H and
w ∈ V .
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P. Colli, E. Rocca, J. Sprekels 4

Throughout the paper, we make repeated use of Hölder’s inequality, of the elementary Young’s in-
equality

ab ≤ δ|a|2 +
1

4δ
|b|2 ∀ a, b ∈ R, ∀ δ > 0, (2.2)

as well as of the continuity of the embeddingsH1(Ω) ⊂ Lp(Ω) for 1 ≤ p ≤ 6 andH2(Ω) ⊂ C0(Ω).
Notice that the latter embedding is also compact, while this holds true for the former embeddings only
if p < 6. We also introduce for s ∈ (0, T ] and elements w ∈ L1(0, T ;L1(Ω)) the notation

(1 ∗ w)(s) :=

∫ s

0

w(·, s′) ds′ , (2.3)

that is, (1∗w)(s) ∈ L1(Ω) is the function that assigns to x ∈ Ω the value
∫ s

0
w(x, s′) ds′. Obviously,

it holds that

|(1 ∗ w)(s)| ≤ (1 ∗ |w|)(s)] for a.e. s ∈ (0, T ) . (2.4)

Moreover, for 1 ≤ p, p′ ≤ ∞ conjugate exponents and functions v ∈ L1(0, T ;Lp(Ω)) and w ∈
L1(0, T ;Lp

′
(Ω)) we have that∣∣∣∣ ∫

Ω

v(s)(1 ∗ w)(s)

∣∣∣∣ ≤ ‖v(s)‖p ‖w‖L1(0,s:Lp′ (Ω)) for a.e. s ∈ (0, T ) . (2.5)

Finally, let us introduce a convention that will be tacitly employed throughout the paper: the symbol
C is used to indicate every constant that depends only on the structural data of the problem (such
as T , Ω, α or τ , the shape of the nonlinearities, and the norms of the involved functions), so that its
meaning may change from line to line. If a parameter δ enters the computation, then the symbol Cδ
denotes constants that additionally depend on δ. On the contrary, precise constants that we refer to
are denoted in a different way.

We now provide assumptions on the data of the problem.

(A1) α, τ and χ are positive constants.

(A2) F = F1 +F2 satisfies: F1 : R→ [0,+∞] is convex and lower semicontinuous with F1(0) =
0, while F2 ∈ C2(R) has a Lipschitz continuous derivative F ′2 .

(A3) P ∈ C0(R) is nonnegative, bounded, and Lipschitz continuous.

(A4) h ∈ C0(R) is nonnegative, bounded, and Lipschitz continuous.

Let us note that all of the potentials (1.6)–(1.8) are admitted. In fact, the assumption (A2) implies
that the subdifferential ∂F1 of F1 is a maximal monotone graph in R × R with effective domain
D(∂F1) ⊂ D(F1), and, since F1 attains its minimum value 0 at 0, it turns out that 0 ∈ D(∂F1) and
0 ∈ ∂F1(0). We also observe that the assumptions on F2 imply that F2 grows at most quadratically,
that is, there are constants ĉ1, ĉ2 such that

|F2(r)| ≤ ĉ1 + ĉ2r
2 ∀ r ∈ R. (2.6)

Moreover, we introduce the following notation: for r ∈ D(∂F1), we denote by (∂F1)◦(r) the minimal
section of ∂F1(r), that is, the element of ∂F1(r) having minimal modulus. Finally, we extend the
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notations F1, ∂F1, D(∂F1), and (∂F1)◦ to the corresponding functionals and operators induced on
L2 spaces.

Now, in the general setting of (A1)–(A4), we are able to provide a well-posedness result for the sys-
tem (1.1)–(1.5). First, we introduce our notion of a solution to (1.1)–(1.5).

Definition 2.1. A quadruple (µ, ϕ, ξ, σ) is called a solution to the initial-boundary value problem
(1.1)–(1.5) if

µ ∈ H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (2.7)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ C0(Q), (2.8)

σ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ), (2.9)

ξ ∈ L∞(0, T ;H), (2.10)

and if (µ, ϕ, ξ, σ) satisfies

〈α∂ttµ, v〉+

∫
Ω

∂tϕv +

∫
Ω

∇µ · ∇v =

∫
Ω

P (ϕ)(σ + χ(1− ϕ)− µ)v −
∫

Ω

h(ϕ)u1v

for every v ∈ V and a.e. in (0, T ), (2.11)

τ∂tϕ−∆ϕ+ ξ + F ′2 (ϕ) = µ+ χσ, ξ ∈ ∂F1(ϕ), a.e. in Q, (2.12)

∂tσ −∆σ = −χ∆ϕ− P (ϕ)(σ + χ(1− ϕ)− µ) + u2 a.e. in Q, (2.13)

as well as

µ(0) = µ0, ∂tµ(0) = µ′0, ϕ(0) = ϕ0, σ(0) = σ0, a.e. in Ω. (2.14)

It is worth noting that the homogeneous Neumann boundary conditions (1.4) are considered in the
conditions (2.8) and (2.9) for ϕ and σ (cf. the definition of the space W ) and incorporated in the varia-
tional equality (2.11) for µ, when using the form

∫
Ω
∇µ·∇v. Notice also that the initial conditions (2.14)

make sense, since (2.8) and (2.9) imply that ϕ, σ ∈ C0([0, T ];V ), while, owing to (2.7), it turns out
that µ ∈ C1([0, T ];V ∗) ∩ C0([0, T ];H), and, consequently, ∂tµ is at least weakly continuous from
[0, T ] to H .

We have the following result.

Theorem 2.2 (Well-posedness). Assume that (A1)–(A4) hold and let the initial data satisfy

µ0 ∈ V, µ′0 ∈ H, σ0 ∈ V, ϕ0 ∈ W ∩D(∂F1)◦

with F1(ϕ0) ∈ L1(Ω), (∂F1)◦(ϕ0) ∈ H. (2.15)

Moreover, suppose that

(u1, u2) ∈ L2(Q)× L2(Q). (2.16)

Then there exists at least one solution (µ, ϕ, ξ, σ) in the sense of Definition 2.1. Moreover, if

(u1, u2) ∈ L2(0, T ;L3(Ω))× L2(Q) (2.17)
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in addition to (2.16), then the solution is unique. Furthermore, let (µi, ϕi, ξi, σi), i = 1, 2, be two
solutions to (1.1)–(1.5) associated with the data (ui1, u

i
2) ∈ L2(0, T ;L3(Ω)) × L2(Q), i = 1, 2.

Then there exists a constant K1 > 0, which depends only on the data of the system, such that

‖µ1 − µ2‖L∞(0,T ;H) + ‖1 ∗ (µ1 − µ2)‖L∞(0,T ;V )

+ ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖σ1 − σ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ K1

(
‖u1

1 − u2
1‖L2(0,T ;H) + ‖u1

2 − u2
2‖L2(0,T ;H)

)
. (2.18)

Before entering the proof, let us remark that the above result is very general and includes also the
cases of singular and nonsmooth potentials such as the double obstacle potential defined in (1.8). We
also note that the assumption F1(ϕ0) ∈ L1(Ω) stated in (2.15) actually follows from other require-
ments on ϕ0 thanks to the subdifferential property∫

Ω

F1(ϕ0) ≤
∫

Ω

F1(v) + ((∂F1)◦(ϕ0), ϕ0 − v) for every v ∈ H.

About the explicit dependencies of the constant K1 in (2.18), we invite the reader to follow the proof
of the estimate given below.

Proof. The existence proof is rather standard, since similar arguments have already been used in
previous contributions. Hence, for that part, we proceed rather formally, just employing the Yosida ap-
proximation of ∂F1 for our estimates without recurring to finite-dimensional approximation techniques
like the Faedo–Galerkin scheme. Hence, we introduce the Yosida regularization of ∂F1. For ε > 0, let
F1,ε denote the Moreau–Yosida approximation of F1 at the level ε. It is well known (see, e.g., [4]) that
the following conditions are satisfied:

0 ≤ F1,ε(r) ≤ F1(r) for all r ∈ R ; (2.19)

F ′1,ε is Lipschitz continuous on R
with Lipschitz constant 1/ε, and F ′1,ε(0) = 0 ; (2.20)

|F ′1,ε(r)| ≤ |(∂F1)◦(r)| and lim
ε↘0

F ′1,ε(r) = (∂F1)◦(r) for all r ∈ D(∂F1) . (2.21)

We now study the ε−approximating problem that results from the system (2.11)–(2.14) if (∂F1)(r) is
replaced by F ′1,ε and the inclusion in (2.12) reduces to an equality. Namely, we argue on

τ∂tϕ−∆ϕ+ F ′1,ε(ϕ) + F ′2 (ϕ) = µ+ χσ a.e. in Q. (2.22)

The existence of a solution to the ε−approximating problem thus obtained can be shown by means of
a Faedo–Galerkin approximation using the eigenvalues {λj}j∈N and eigenfunctions {ej}j∈N of the
eigenvalue problem −∆ej = λjej in Ω, ∂nej = 0 on Γ. In order not to overload the exposition,
we avoid here to write the Faedo–Galerkin system explicitly. Instead, we just provide the relevant a
priori estimates by performing the estimations directly on the solution to the ε-approximating system.
Notice that the following estimates, while being only formal for the ε-approximating system, are fully
justified on the level of the Faedo–Galerkin approximations. For the sake of simplicity, we still denote by
(µ, ϕ, ξ, σ), with ξ = F ′1,ε(ϕ), the solution to the ε−approximating system in place of (µε, ϕε, ξε, σε);
the correct notation will be reintroduced at the end of each estimate. Before entering the estimates,
we note that it follows from (2.15) that ϕ0 ∈ C0(Ω), and we conclude from the assumption (A2) that
F2(ϕ0) ∈ L1(Ω) and F ′2 (ϕ0) ∈ H .

DOI 10.20347/WIAS.PREPRINT.3234 Berlin 2025
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FIRST ESTIMATE: Let t ∈ (0, T ] be arbitrary. First, we test (2.11) by ∂tµ and integrate over [0, t].
Using (A3), (A4), (2.15) and Young’s inequality, we then obtain that

α

2
‖∂tµ(t)‖2 +

∫
Qt

∂tϕ∂tµ+
1

2

∫
Ω

|∇µ(t)|2

=
α

2
‖µ′0‖2 +

1

2

∫
Ω

|∇µ0|2 +

∫
Qt

[
P (ϕ)(σ + (1− χ)ϕ− µ)− h(ϕ)u1

]
∂tµ , (2.23)

where the last integral can be estimated as follows:∫
Qt

[
P (ϕ)(σ + (1− χ)ϕ− µ)− h(ϕ)u1

]
∂tµ

≤ C

∫
Qt

(
|σ|2 + |ϕ|2 + |µ|2 + |u1|2 + |∂tµ|2

)
. (2.24)

Next, we differentiate (2.22) with respect to t, test by ∂tϕ, and integrate over Qt. We then find the
identity

τ

2
‖∂tϕ(t)‖2 +

∫
Qt

|∇∂tϕ|2 +

∫
Qt

F ′′1,ε(ϕ)|∂tϕ|2

=
τ

2
‖∂tϕ(0)‖2 −

∫
Qt

F ′′2 (ϕ)|∂tϕ|2 +

∫
Qt

∂tµ∂tϕ+ χ
∫
Qt

∂tσ∂tϕ . (2.25)

Now, writing (2.22) at t = 0, we see that

∂tϕ(0) = τ−1
(
∆ϕ0 − F ′1,ε(ϕ0)− F ′2 (ϕ0) + µ0 + χσ0

)
,

and we infer from (2.15), (2.21) and (A2) that ‖∂tϕ(0)‖ is uniformly bounded. Moreover, we have
F ′′1,ε(ϕ) ≥ 0 so that the last term on the left-hand side is nonnegative, while F ′′2 (ϕ) is bounded.
Hence, applying Young’s inequality to the fourth term on the right-hand side and then adding the
inequalities (2.23) and (2.25), thus cancelling the terms involving ∂tϕ∂tµ, we arrive at

α

2
‖∂tµ(t)‖2 +

1

2

∫
Ω

|∇µ(t)|2 +
τ

2
‖∂tϕ(t)‖2 +

∫
Qt

|∇∂tϕ|2

≤ C + C

∫
Qt

(
|µ|2 + |ϕ|2 + |σ|2 + |∂tµ|2 + |∂tϕ|2

)
+

1

16

∫
Qt

|∂tσ|2 . (2.26)

Next, we test (2.13) by ∂tσ, integrate over (0, t), and add to both sides the expression 1
2
‖σ(t)‖2 −

1
2
‖σ0‖2 =

∫
Qt
σ∂tσ. We then find that∫

Qt

|∂tσ|2 +
1

2
‖σ(t)‖2

V =
1

2
‖σ0‖2

V + χ
∫
Qt

∇ϕ · ∇∂tσ

+

∫
Qt

[
−P (ϕ)(σ + (1− χ)ϕ− µ) + σ + u2

]
∂tσ .

Now observe that, integrating by parts in time and applying Young’s inequality,

χ
∫
Qt

∇ϕ · ∇∂tσ = χ
∫

Ω

∇ϕ(t) · ∇σ(t)− χ
∫

Ω

∇ϕ0 · ∇σ0 − χ
∫
Qt

∇∂tϕ · ∇σ

≤ C +
1

4

∫
Ω

|∇σ(t)|2 + χ2

∫
Ω

|∇ϕ(t)|2 +
1

2

∫
Qt

|∇∂tϕ|2 +
χ2

2

∫
Qt

|∇σ|2 .

DOI 10.20347/WIAS.PREPRINT.3234 Berlin 2025



P. Colli, E. Rocca, J. Sprekels 8

Hence, also applying Young’s inequality to the last term on the right-hand side of the penultimate
identity, we can infer that

1

2

∫
Qt

|∂tσ|2 +
1

4
‖σ(t)‖2

V ≤ C + χ2

∫
Ω

|∇ϕ(t)|2

+
1

2

∫
Qt

|∇∂tϕ|2 + C

∫
Qt

(
|∇σ|2 + |σ|2 + |ϕ|2 + |µ|2 + |u2|2

)
. (2.27)

Finally, we test (2.22) by ∂tϕ, integrate over Qt, and add to both sides the expression 1
2
‖ϕ(t)‖2 −

1
2
‖ϕ0‖2 =

∫
Qt
ϕ∂tϕ. In view of (A2) and (2.19), and taking the quadratic growth of F2 into account,

we obtain that

τ

∫
Qt

|∂tϕ|2 +
1

2
‖ϕ(t)‖2

V +

∫
Ω

F1,ε(ϕ(t))

=
1

2
‖ϕ0‖2

V +

∫
Ω

(
F1,ε(ϕ0) + F2(ϕ0)

)
−
∫

Ω

F2(ϕ(t)) +

∫
Qt

(µ+ χσ + ϕ)∂tϕ

≤ C +

∫
Ω

F (ϕ0) + C

(
1 + ‖ϕ0‖2 +

∫
Qt

ϕ∂tϕ

)
+

∫
Qt

(µ+ χσ + ϕ)∂tϕ

≤ C + C

∫
Qt

(
|µ|2 + |ϕ|2 + |σ|2 + |∂tϕ|2

)
, (2.28)

where we have used Young’s inequality and (2.15) as well. Note moreover that the third term on first
line of (2.28) is nonnegative (cf. (2.19)).

At this point, we multiply (2.28) by 4χ2 and add the resulting inequality to the sum of the inequalities
(2.26) and (2.27). We infer that

α

2
‖∂tµ(t)‖2 +

1

2

∫
Ω

|∇µ(t)|2 +
τ

2
‖∂tϕ(t)‖2 +

χ2

2
‖ϕ(t)‖2

V

+ 4τχ2

∫
Qt

|∂tϕ|2 +
1

2

∫
Qt

|∇∂tϕ|2 +
1

4

∫
Qt

|∂tσ|2 +
1

4
‖σ(t)‖2

V

≤ C + C

∫
Qt

(
|µ|2 + |ϕ|2 + |σ|2 + |∇σ|2 + |∂tµ|2 + |∂tϕ|2

)
. (2.29)

Now, note that the term C
∫
Qt
|µ|2 on the right-hand side can be estimated using the identity µ(s) =

µ0 +
∫ s

0
∂tµ, s ∈ (0, t), so that C

∫
Qt
|µ|2 ≤ C + C

∫
Qt
|∂tµ|2. It is then easily seen that the

inequality thus obtained from (2.29) admits the application of Gronwall’s lemma, and we finally can
deduce that

‖µε‖W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖ϕε‖W 1,∞(0,T ;H)∩H1(0,T ;V )

+ ‖σε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C . (2.30)

SECOND ESTIMATE: Next, we multiply (2.22), written for a fixed t ∈ (0, T ], by −∆ϕ(t) and integrate
over Ω. This yields the identity

‖∆ϕ(t)‖2 +

∫
Ω

F ′′1,ε(ϕ(t))|∇ϕ(t)|2 =

∫
Ω

(τ∂tϕ+ F ′2 (ϕ)− χσ − µ)(t)∆ϕ(t)
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and, using Young’s inequality, the monotonicity of F ′1,ε, the bound in (2.30) which implies an
L∞(0, T ;H)-bound for (τ∂tϕ + F ′2 (ϕ) − χσ − µ), and the elliptic regularity theory, we plainly
deduce that

‖ϕε‖L∞(0,T ;W ) ≤ C . (2.31)

But then, by comparison in equation (2.22), we also realize that

‖F ′1,ε(ϕε)‖L∞(0,T ;H) ≤ C , (2.32)

while comparison in (2.13), along with (2.30) and elliptic regularity again, yields that

‖σε‖L2(0,T ;W ) ≤ C . (2.33)

Finally, it follows from a comparison of terms in (2.11) that

‖µε‖H2(0,T ;V ∗) ≤ C . (2.34)

PASSAGE TO THE LIMIT AS ε ↘ 0: Now, let for every ε > 0 the triple (µε, ϕε, σε) be a solution to
the problem (2.11), (2.22), (2.13), (2.14) with the regularity (2.7)–(2.9). Observe that the constants C
occurring in the proof of the estimates (2.30)–(2.34) are all independent of ε. Hence it follows from
standard weak and weak-star compactness results that there are functions µ, ϕ, σ, ξ such that

µε → µ weakly star in H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (2.35)

ϕε → ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.36)

σε → σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (2.37)

F ′1,ε(ϕε)→ ξ weakly star in L∞(0, T ;H), (2.38)

as ε↘ 0, possibly along a subsequence. By virtue of (2.36) and the Aubin–Lions–Simon lemma (see,
e.g., [44, Sect. 8, Cor. 4]), as W is compactly embedded into C0(Ω), we deduce that

ϕε → ϕ strongly in C0(Q),

whence, by Lipschitz continuity, also

P (ϕε)→ P (ϕ), h(ϕε)→ h(ϕ), F ′2 (ϕε)→ F ′2 (ϕ), all strongly in C(Q).

On the other hand, by the same tool, we have that

µε → µ strongly in C1([0, T ];V ∗) ∩ C0([0, T ];H),

σε → σ strongly in C0([0, T ];H) ∩ L2(0, T ;V ),

as consequences of (2.35) and (2.37).

We then can pass to the limit in the respective variational equality (2.11) and equation (2.13), in
particular, for the product term P (ϕε)(σε + χ(1− ϕε)− µε). This is also possible in (2.22) in order
to obtain (2.12) in the limit: indeed, the inclusion in (2.12) results as a consequence of (2.38) and
the maximal monotonicity of ∂F1, since we can apply, e.g., [3, Prop. 2.2, p. 38]. Finally, the initial
conditions (2.14) can be readily obtained by observing that we have at least strong convergence in
C0([0, T ];V ∗) for all of the variables µε, ∂tµε, ϕε, σε. With this, the existence part of the proof is
complete.
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UNIQUENESS AND CONTINUOUS DEPENDENCE: We now show the continuous dependence estimate
(2.18), which implies the uniqueness of the solution, in particular. To this end, let (ui1, u

i
2) ∈ L∞(Q)×

L2(Q), i = 1, 2, be given, and let (µi, ϕi, ξi, σi), i = 1, 2, be associated solutions in the sense of
Definition 2.1. We then introduce the abbreviating notation

µ := µ1 − µ2, ϕ := ϕ1 − ϕ2, ξ := ξ1 − ξ2, σ := σ1 − σ2,

u1 := u1
1 − u2

1, u2 := u1
2 − u2

2.

We then see that the differences (µ, ϕ, ξ, σ) satisfy the identities

〈α∂ttµ, v〉+

∫
Ω

∂tϕv +

∫
Ω

∇µ · ∇v =

∫
Ω

(P (ϕ1)− P (ϕ2))(σ1 + (1− χ)ϕ1 − µ1)v

+

∫
Ω

P (ϕ2)(σ + (1− χ)ϕ+ µ)v −
∫

Ω

(h(ϕ1)− h(ϕ2))u1
1v −

∫
Ω

h(ϕ2)u1v

for every v ∈ V and a.e. in (0, T ), (2.39)

τ∂tϕ− ϕ+ ξ + F ′2 (ϕ1)− F ′2 (ϕ2) = µ+ χσ,

ξi ∈ ∂F1(ϕi), i = 1, 2, a.e. in Q, (2.40)

∂tσ −∆σ = −χ∆ϕ− (P (ϕ1)− P (ϕ2))(σ1 + (1− χ)ϕ1 − µ1)

− P (ϕ2)(σ + (1− χ)ϕ− µ) + u2 a.e. in Q, (2.41)

µ(0) = 0, ∂tµ(0) = 0, ϕ(0) = 0, σ(0) = 0, a.e. in Ω. (2.42)

Now recall that ϕi ∈ C0(Q), i = 1, 2. Hence, there is some constant L > 0, which only depends on
R := max {‖ϕ1‖C0(Q) , ‖ϕ2‖C0(Q)}, such that

|P (ϕ1)− P (ϕ2)|+ |h(ϕ1)− h(ϕ2)|+ |F ′2 (ϕ1)− F ′2 (ϕ2)| ≤ L|ϕ| a.e. in Q. (2.43)

Let t ∈ (0, T ] be arbitrary. We multiply (2.40) by ϕ and integrate over Qt to obtain from (2.43) and
Young’s inequality that

τ

2
‖ϕ(t)‖2 +

∫
Qt

|∇ϕ|2 +

∫
Qt

ξϕ

=

∫
Qt

(
χσ − (F ′2 (ϕ1)− F ′2 (ϕ2))

)
ϕ+

∫
Qt

µϕ

≤ C

∫
Qt

(|σ|2 + |ϕ|2) +

∫
Qt

µϕ . (2.44)

We observe that the last term on the left-hand side of (2.44) is nonnegative on account of the mono-
tonicity of ∂F1.

Next, letM > 0 denote a constant that will be specified later. We multiply (2.41) byMσ and integrate
over Qt. Owing to the boundedness of P , and invoking (2.43), we then obtain the estimate

M

2
‖σ(t)‖2 +M

∫
Qt

|∇σ|2

≤ Mχ
∫
Qt

∇ϕ · ∇σ + ML

∫
Qt

|ϕ|
(
|µ1|+ |ϕ1|+ |σ1|

)
|σ|

+MC

∫
Qt

(
|µ|2 + |ϕ|2 + |σ|2

)
+M

∫
Qt

|u2|2 , (2.45)
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where we have applied Young’s inequality to the last two terms on the right-hand side. Besides, we
observe that

Mχ
∫
Qt

∇ϕ · ∇σ ≤ M

2

∫
Qt

|∇σ|2 +
Mχ2

2

∫
Qt

|∇ϕ|2 . (2.46)

Finally, we recall that, thanks to the continuity of the embedding V ⊂ L4(Ω) and the regularity
properties (2.7)–(2.9), the functions µ1, ϕ1, σ1 are all bounded in L∞(0, T ;L4(Ω)). Therefore, we
can infer that the second term on the right-hand side of (2.45), which we denote by I , can be estimated
as follows:

|I| ≤ MC

∫ t

0

‖ϕ(s)‖4

(
‖µ1(s)‖4 + ‖ϕ1(s)‖4 + ‖σ1(s)‖4

)
‖σ(s)‖ ds

≤ MC

∫ t

0

‖ϕ(s)‖V ‖σ(s)‖ ds

≤ MC

∫
Qt

|ϕ|2 +
Mχ2

2

∫
Qt

|∇ϕ|2 +MC

∫
Qt

|σ|2 . (2.47)

Hence, combining (2.45)–(2.47), we have shown the estimate

M

2
‖σ(t)‖2 +

M

2

∫
Qt

|∇σ|2

≤ Mχ2

∫
Qt

|∇ϕ|2 +MC

∫
Qt

(
|µ|2 + |ϕ|2 + |σ|2 + |u2|2

)
. (2.48)

It remains to treat the identity (2.39) which we integrate with respect to time over [0, s] for s ∈ (0, t].
Then we insert v = µ(s) and integrate over [0, t], arriving at the identity

α

2
‖µ(t)‖2 +

1

2

∫
Ω

|∇(1 ∗ µ)(t)|2 +

∫
Qt

µϕ

=

∫
Qt

[
1 ∗
(
(P (ϕ1)− P (ϕ2))(σ1 + (1− χ)ϕ1 − µ1)

)]
µ

+

∫
Qt

[
1 ∗
(
P (ϕ2)(σ + (1− χ)ϕ− µ)

)]
µ−

∫
Qt

[
1 ∗
(
(h(ϕ1)− h(ϕ2))u1

1

)]
µ

−
∫
Qt

[
1 ∗
(
h(ϕ2)u1

)]
µ =: I1 + I2 + I3 + I4 , (2.49)

with obvious meaning, where we have used the notation introduced in (2.3). We estimate the terms
on the right-hand side of (2.49) individually, where we make repeated use of the Hölder and Young
inequalities, the estimates (2.4) and (2.5) with p = 2, and the continuous embedding V ⊂ Lq(Ω) for
1 ≤ q ≤ 6. At first, by the Hölder and Young inequalites, as u1

1 ∈ L2(0, T ;L3(Ω)) it is readily seen
that

I3 ≤ L

∫ t

0

‖µ(s)‖ ‖ |ϕ| |u1
1| ‖L1(0,s;H) ds

≤ L

∫ t

0

‖µ(s)‖
∫ s

0

‖u1
1(s′)‖3‖ϕ(s′)‖6 ds

′ ds

≤ C‖u1
1‖L2(0,T ;L3(Ω))

∫ t

0

‖µ(s)‖ ‖ϕ‖L2(0,s;V ) ds

≤ 1

4

∫
Qt

|∇ϕ|2 +
1

4

∫
Qt

|ϕ|2 + C

∫ t

0

‖µ(s)‖2 ds . (2.50)
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Similar reasoning, using the boundedness of both P and h, yields

I2 + I4 ≤ C

∫ t

0

‖µ(s)‖ ‖ |σ|+ |ϕ|+ |µ|+ |u1| ‖L1(0,s;H) ds

≤ C

∫ t

0

‖µ(s)‖ ‖ |σ|+ |ϕ|+ |µ|+ |u1| ‖L2(0,t;H) ds

≤ C

∫
Qt

(
|µ|2 + |σ|2 + |ϕ|2 + |u1|2

)
. (2.51)

Finally, using (2.5), (2.43), as well as Hölder’s and Young’s inequalities, and invoking the fact that
σ1, ϕ1, µ1 ∈ L∞(0, T ;L4(Ω)), we find the chain of inequalities

I1 ≤ C

∫ t

0

‖µ(s)‖ ‖ |ϕ|(|σ1|+ |ϕ1|+ |µ1|)‖L1(0,s;H) ds

≤ C

∫ t

0

‖µ(s)‖
∫ s

0

‖(|σ1|+ |ϕ1|+ |µ1|)(s′)‖4‖ϕ(s′)‖4 ds
′ ds

≤ C ‖ |µ1|+ |ϕ1|+ |σ1| ‖L∞(0,T ;L4(Ω))

∫ t

0

‖µ(s)‖ ‖ϕ‖L2(0,s;V ) ds

≤ 1

4

∫
Qt

|∇ϕ|2 +
1

4

∫
Qt

|ϕ|2 + C

∫ t

0

‖µ(s)‖2 ds . (2.52)

Combining the estimates (2.49)–(2.52), we thus have shown the estimate

α

2
‖µ(t)‖2 +

1

2

∫
Ω

|∇(1 ∗ µ)(t)|2 +

∫
Qt

µϕ

≤ 1

2

∫
Qt

|∇ϕ|2 + C

∫
Qt

(
|µ|2 + |σ|2 + |ϕ|2 + |u1|2

)
. (2.53)

At this point, we add the inequalities (2.44), (2.48) and (2.53), obtaining the estimate

τ

2
‖ϕ(t)‖2 +

M

2
‖σ(t)‖2 +

α

2
‖µ(t)‖2 +

1

2

∫
Ω

|∇(1 ∗ µ)(t)|2

+
1

2

(
1− 2Mχ2

) ∫
Qt

|∇ϕ|2 +
M

2

∫
Qt

|∇σ|2

≤ CM

∫
Qt

(
|µ|2 + |σ|2 + |ϕ|2 + |u1|2 + |u2|2

)
. (2.54)

Now, we make the choice M := 1/
(
4χ2
)
. Then the inequality (2.18) follows from an application

of Gronwall’s lemma. As a consequence, if u1
1 = u1

2 and u2
1 = u2

2, then µ1 = µ2, ϕ1 = ϕ2 and
σ1 = σ2. But then, by (2.40), also ξ1 = ξ2. That is, the solution is unique. The assertion is thus
completely proved.

3 Regularity properties

The next theorem provides a regularity result in the case of a general potential F satisfying (A2),
but under more regular initial data and sources (u1, u2) with respect to the well-posedness result in
Theorem 2.2.
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Theorem 3.1 (Regularity). Assume that (A1)–(A4) hold, and let the initial data satisfy (2.15) as well
as the additional assumptions

µ0 ∈ W, µ′0 ∈ V, σ0 ∈ L∞(Ω), (∂F1)◦(ϕ0) ∈ L∞(Ω) . (3.1)

Moreover, suppose that

(u1, u2) ∈ L2(0, T ;V )× L∞(0, T ;H). (3.2)

Then the solution (µ, ϕ, ξ, σ) to (1.1)–(1.5) in the sense of Definition 2.1 enjoys the further regularity
properties

σ ∈ L∞(Q), µ ∈ H1(0, T ;V ) ∩ L∞(0, T ;W ), ξ ∈ L∞(Q) . (3.3)

Proof. First, observe that condition (3.2) implies (2.17) by Sobolev embeddings. Therefore, Theo-
rem 2.2 already ensures the existence of a unique solution. Consequently, as in the proof of the
existence result, we proceed in a formal manner, employing the Yosida approximation of ∂F1 in our
estimates, without resorting to finite-dimensional approximation techniques.

As in the previous proof, and for ease of notation, we continue to denote by (µ, ϕ, ξ, σ) the solution of
the ε–approximating system, where ξ = F ′1,ε(ϕ), throughout the computations below. We will revert
to the notation (µε, ϕε, ξε, σε) at the end of each estimate.

FIRST ESTIMATE. From the boundedness properties in (2.30) and (2.31), along with (3.2), we infer that
the right-hand side of (2.13) is uniformly bounded in L∞(0, T ;H). Since the initial datum σ0 belongs
to L∞(Ω) (cf. (3.1)), maximal parabolic regularity (see, e.g., [37, Chapter III, Theorem 7.1, p. 181])
yields

‖σε‖L∞(Q) ≤ C. (3.4)

SECOND ESTIMATE. We test (2.11) by −∆µt and integrate over (0, t). Integrating by parts in space,
and using the assumptions (A3), (A4), (3.1), (3.2) along with the estimates (2.30), (2.31), we obtain
from the Hölder and Young inequalities that

α

2
‖∇∂tµ(t)‖2 +

1

2
‖∆µ(t)‖2

=
α

2
‖µ′0‖2

V +
1

2
‖∆µ0‖2 −

∫
Qt

∇∂tϕ · ∇∂tµ

+

∫
Qt

[
P ′(ϕ)(σ + χ(1− ϕ) + µ)− u1h

′(ϕ)
]
∇ϕ · ∇∂tµ

+

∫
Qt

P (ϕ)∇(σ − χϕ+ µ) · ∇∂tµ−
∫
Qt

h(ϕ)∇u1 · ∇∂tµ

≤ C + C

∫
Qt

|∇∂tϕ|2

+ C

∫ t

0

‖
(
|σ|+ 1 + |ϕ|+ |µ|+ |u1|

)
(s)‖2

3‖∇ϕ(s)‖2
6 ds

+ C

∫
Qt

|∇(σ − χϕ+ µ)|2 + C

∫
Qt

|∇u1|2 +

∫ t

0

‖∇∂tµ‖2 .

Note that all terms on the right-hand side except the last are already bounded due to (2.30), (2.31),
(3.2) and Sobolev embeddings. Then, applying now a standard Gronwall lemma, we derive the regu-
larity estimate

‖µε‖H1(0,T ;V )∩L∞(0,T ;W ) ≤ C . (3.5)
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THIRD ESTIMATE. In view of (3.5), it turns out that µ is bounded in L∞(0, T ;W ), hence in L∞(Q).
The same can be concluded for F ′2 (ϕ), due to (2.8) and (A2). Then, let us rewrite the equation (2.22)
as

τ∂tϕ−∆ϕ+ F ′1,ε(ϕ) = h a.e. in Q,

with h = µ+ χσ − F ′2 (ϕ) bounded in L∞(Q). (3.6)

To prove the third property in (3.3), it is enough to derive a uniform L∞(Q)-bound for F ′1,ε(ϕ). Let us
outline the argument by proceeding formally and pointing out that just a truncation of the test functions
would be needed for a rigorous proof. We take any p > 2 and test (3.6) by |F ′1,ε(ϕ)|p−2F ′1,ε(ϕ), a
function of ϕ which is increasing and attains the value 0 at 0 (cf. (2.20)). Then, we integrate from 0 to
t ∈ (0, T ], obtaining

τ

∫
Ω

(∫ ϕ(t)

0

|F ′1,ε(s)|p−2F ′1,ε(s)ds
)

+ (p− 1)

∫∫
Qt

|F ′1,ε(ϕ)|p−2F ′′1,ε(ϕ)|∇ϕ|2 +

∫∫
Qt

|F ′1,ε(ϕ)|p

= τ

∫
Ω

(∫ ϕ0

0

|F ′1,ε(s)|p−2F ′1,ε(s)ds
)

+

∫∫
Qt

h|F ′1,ε(ϕ)|p−2F ′1,ε(ϕ) . (3.7)

Note that the first term on the left-hand side is nonnegative since F ′1,ε is monotone increasing with
F ′1,ε(0) = 0; moreover, the second term on the left-hand side is nonnegative since the derivative F ′′1,ε

is nonnegative everywhere. About the right-hand side we may recall (2.21) and observe that

τ

∫
Ω

(∫ ϕ0

0

|F ′1,ε(s)|p−2F ′1,ε(s)ds
)
≤ τ‖F ′1,ε(ϕ0)‖p−1

∞ ‖ϕ0‖∞|Ω| ≤ C‖(∂F1)◦(ϕ0)‖p−1
∞ .

On the other hand, thanks to p′ = p/(p− 1) and the Young inequality, we have that∫∫
Qt

h|F ′1,ε(ϕ)|p−2F ′1,ε(ϕ) ≤ ‖h‖Lp(Qt) ‖ |F ′1,ε(ϕ)|p−1‖Lp′ (Qt)

= ‖h‖Lp(Qt) ‖F ′1,ε(ϕ)‖p/p
′

Lp(Qt)
≤ 1

p
‖h‖pLp(Qt)

+
1

p′
‖F ′1,ε(ϕ)‖pLp(Qt)

.

By rearranging from (3.7), and taking t = T , we infer that

‖F ′1,ε(ϕ)‖Lp(Q) ≤
(
pC‖(∂F1)◦(ϕ0)‖p−1

∞ + ‖h‖pLp(Q)

)1/p

≤
(
pC‖(∂F1)◦(ϕ0)‖p−1

∞
)1/p

+ ‖h‖Lp(Q).

Then, passing to the limit as p→ +∞ in the above chain of inequalities, we conclude that

‖F ′1,ε(ϕ)‖L∞(Q) ≤ ‖f ′1(ϕ0)‖∞ + ‖h‖L∞(Q).

Hence, as ξε = F ′1,ε(ϕε) (now using the notation with dependence on ε), we finally arrive at

‖ξε‖L∞(Q) ≤ C. (3.8)

We now collect the estimates (3.4), (3.5), and (3.8), and recall the limiting procedure as ε ↘ 0,
already carried out in the proof of Theorem 2.2. Since the uniform estimates are preserved by lower
semicontinuity, the proof is thus concluded.
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Remark 3.2. Let us point out that the regularity ξ ∈ L∞(Q) established in (3.3) implies, in particular,
the so-called separation property in the case of the logarithmic potential (1.7). Indeed, since

ξ = ln
1 + ϕ

1− ϕ
∈ L∞(Q),

there exist two real numbers r∗ and r∗, depending on the structure of the system, such that

−1 < r∗ ≤ ϕ(x, t) ≤ r∗ < 1 for every (x, t) ∈ Q. (3.9)

Hence, the boundedness of ξ prevents the phase variable ϕ from approaching the singular values
±1, ensuring that ϕ remains within physically meaningful bounds throughout the evolution.

4 The case when P is constant

In this section, we restrict ourselves to the case where the proliferation function P reduces to a positive
constant and investigate the asymptotic behavior of the problem asα↘ 0. Accordingly, we strengthen
assumption (A3) by imposing

P is a positive constant. (4.1)

Besides, we allow the initial data for µ, ∂tµ, and σ to depend on α, while we keep ϕ0, the initial value
of ϕ, fixed. This choice is made for simplicity, in view of the restrictions on ϕ0 stated in (2.15).

Thus, for 0 < α ≤ 1, we consider families of data {µ0,α, µ
′
0,α, σ0,α} such that

µ0,α is uniformly bounded in V, (4.2)

µ′0,α is uniformly bounded in H, (4.3)

σ0,α is uniformly bounded in V

and strongly converges to σ0 in H as α↘ 0. (4.4)

Of course, it follows from (4.4) that σ0 ∈ V (cf. (2.15)) and σ0,α → σ0 weakly in V . We can state the
following convergence result.

Theorem 4.1. Assume that (A1)–(A4), (4.1) hold, and let the initial data satisfy (2.15) and (4.2)–(4.4).
Moreover, let

(u1, u2) ∈ L2(Q)× L2(Q) with u1 ∈ H1(0, T ;H) ∩ L2(0, T ;L3(Ω)), (4.5)

so that also (2.17) is satisfied. For all α ∈ (0, 1], let the quadruple (µα, ϕα, ξα, σα), with

µα ∈ W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (4.6)

ϕα ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ C0(Q), (4.7)

ξα ∈ L∞(0, T ;H), (4.8)

σα ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (4.9)
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be the solution to the initial value problem

〈α∂ttµα, v〉+

∫
Ω

∂tϕα v +

∫
Ω

∇µα · ∇v

=

∫
Ω

P (σα + χ(1− ϕα)− µα)v −
∫

Ω

h(ϕα)u1v

for every v ∈ V and a.e. in (0, T ), (4.10)

τ∂tϕα −∆ϕα + ξα + F ′2 (ϕα) = µα + χσα, ξα ∈ ∂F1(ϕα), a.e. in Q, (4.11)

∂tσα −∆σα = −χ∆ϕα − P (σα + χ(1− ϕα)− µα) + u2 a.e. in Q, (4.12)

µα(0) = µ0,α , (∂tµα)(0) = µ′0,α , ϕα(0) = ϕ0, σ(0) = σ0,α a.e. in Ω. (4.13)

Then there exists a quadruple (µ, ϕ, ξ, σ) such that, for some subsequence αk tending to 0, there
holds

µαk
→ µ weakly star in L∞(0, T ;V ), (4.14)

αkµαk
→ 0 weakly star in W 2,∞(0, T ;V ∗) and strongly in W 1,∞(0, T ;H), (4.15)

ϕαk
→ ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

and strongly in C0([0, T ];V ) ∩ C0(Q), (4.16)

ξαk
→ ξ weakly star in L∞(0, T ;H), (4.17)

σαk
→ σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (4.18)

Moreover, (µ, ϕ, ξ, σ) is a solution to the viscous Cahn–Hilliard system∫
Ω

∂tϕv +

∫
Ω

∇µ · ∇v =

∫
Ω

P (σ + χ(1− ϕ)− µ)v −
∫

Ω

h(ϕ)u1v

for every v ∈ V and a.e. in (0, T ), (4.19)

τ∂tϕ−∆ϕ+ ξ + F ′2 (ϕ) = µ+ χσ, ξ ∈ ∂F1(ϕ), a.e. in Q, (4.20)

∂tσ −∆σ = −χ∆ϕ− P (σ + χ(1− ϕ)− µ) + u2 a.e. in Q, (4.21)

ϕ(0) = ϕ0, σ(0) = σ0, a.e. in Ω. (4.22)

Proof. We go back to the proof of Theorem 2.2 and consider the First Estimate. We focus, in particular,
on the equality (2.23). Now, we change the treatment of the term coming from the right-hand side
of (4.10). Please, let us use the notation without any index when doing the computation. Then, by
integrating by parts in time, in place of (2.24) we obtain∫

Qt

[
P (σ + (1− χ)ϕ− µ)− h(ϕ)u1

]
∂tµ

= −P
2

∫
Ω

|µ(t)|2 +
P

2

∫
Ω

|µ0,α|2 +

∫
Ω

[P (σ + (1− χ)ϕ)− h(ϕ)u1](t)µ(t)

−
∫

Ω

[
P (σ0,α + (1− χ)ϕ0)− h(ϕ0)u1(0)

]
µ0,α

−
∫
Qt

[P (∂tσ − χ∂tϕ)− h′(ϕ)∂tϕu1 − h(ϕ)∂tu1]µ,
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whence, from (A4), (4.1) and Hölder’s inequality, it follows that∫
Qt

[
P (σ + (1− χ)ϕ− µ)− h(ϕ)u1

]
∂tµ

≤ −P
2

∫
Ω

|µ(t)|2 + C +
P

4

∫
Ω

|µ(t)|2 + C

∫
Ω

(
|σ(t)|2 + |ϕ(t)|2

)
+ C‖u1‖2

L∞(0,T ;H) + C
(
‖σ0,α‖+ ‖ϕ0‖+ ‖u1‖L∞(0,T ;H)

)
‖µ0,α‖

+
1

16

∫
Qt

|∂tσ|2 + C

∫
Qt

(
|∂tϕ|2 + |µ|2

)
+ C

∫ t

0

‖∂tϕ(s)‖ ‖u1(s)‖3 ‖µ(s)‖6ds+ C‖∂tu1‖2
L2(0,T ;H) + C

∫
Qt

|µ|2 .

Therefore, in view of (4.2)–(4.5), and using Sobolev’s embeddings and Young’s inequality, we have
that ∫

Qt

[
P (σ + (1− χ)ϕ− µ)− h(ϕ)u1

]
∂tµ

≤ −P
4

∫
Ω

|µ(t)|2 + C + C

(
‖σ0α‖2 +

∫
Qt

σ∂tσ

)
+ C

(
‖ϕ0‖2 +

∫
Qt

ϕ∂tϕ

)
+

1

16

∫
Qt

|∂tσ|2 + C

∫
Qt

(
|∂tϕ|2 + |µ|2

)
+ C

∫ t

0

‖u1(s)‖2
3 ‖µ(s)‖2

V ds,

and, consequently,∫
Qt

[
P (σ + (1− χ)ϕ− µ)− h(ϕ)u1

]
∂tµ

≤ −P
4

∫
Ω

|µ(t)|2 + C +
2

16

∫
Qt

|∂tσ|2

+ C

∫
Qt

(
|σ|2 + |ϕ|2 + |∂tϕ|2 + |µ|2

)
+ C

∫ t

0

‖u1(s)‖2
3 ‖µ(s)‖2

V ds . (4.23)

By virtue of (4.23), the inequality (2.26) now becomes

α

2
‖∂tµ(t)‖2 +

P

4

∫
Ω

|µ(t)|2 +
1

2

∫
Ω

|∇µ(t)|2 +
τ

2
‖∂tϕ(t)‖2 +

∫
Qt

|∇∂tϕ|2

≤ C + C

∫
Qt

(
|µ|2 + |ϕ|2 + |σ|2 + |∂tϕ|2

)
+

3

16

∫
Qt

|∂tσ|2 + C

∫ t

0

‖u1(s)‖2
3 ‖µ(s)‖2

V ds , (4.24)

so that in this context the subsequent inequality (2.29) reads

α

2
‖∂tµ(t)‖2 + min

{
P

4
,
1

2

}
‖µ(t)‖2

V +
τ

2
‖∂tϕ(t)‖2 +

χ2

2
‖ϕ(t)‖2

V

+ 4τχ2

∫
Qt

|∂tϕ|2 +
1

2

∫
Qt

|∇∂tϕ|2 +
1

4

∫
Qt

|∂tσ|2 +
1

4
‖σ(t)‖2

V

≤ C + C

∫
Qt

(
|µ|2 + |ϕ|2 + |σ|2 + |∂tϕ|2

)
+ C

∫ t

0

‖u1(s)‖2
3 ‖µ(s)‖2

V ds , (4.25)
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where all of the constants C in the above sequence of estimates are independent of α. Note that
the function s 7→ ‖u1(s)‖2

3 belongs to L1(0, T ) (see (4.5)), whence the application of the Gronwall
lemma to (4.25) leads us to

α1/2‖µ‖W 1,∞(0,T ;H) + ‖µ‖L∞(0,T ;V ) + ‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )

+ ‖σ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C , (4.26)

which replaces (2.30). Next, a closer inspection of the proof of Theorem 2.2, Second Estimate, reveals
that the estimates (2.31)–(2.33) still hold, with constants independent of α, and that (2.34) can be
replaced by

α‖µ‖W 2,∞(0,T ;V ∗) ≤ C , (4.27)

on account of the fact that (cf. (4.5)) the right-hand side of (4.10) is now bounded in L∞(0, T ;H).
In conclusion, the boundedness properties (2.31)–(2.33), (4.26), (4.27) are also valid for the solution
(µα, ϕα, ξα, σα) of (4.10)–(4.13). This solution is unique due to Theorem 2.2, since (4.5) implies
(2.17).

Then, by a standard weak star compactness argument, we deduce the existence of a subsequence
αk ↘ 0 and a quadruple (µ, ϕ, ξ, σ) such that (4.14)–(4.18) hold. At this point, we can perform the
limit procedure as in the passage to the limit as ε↘ 0 in the proof of Theorem 2.2. We just point out
that, in order to obtain the inclusion in (4.20), we should instead use [3, Lemma 2.3, p. 38], since the
subdifferential structure explicitly appears in (4.11) as well. This concludes the proof.

Remark 4.2. Note that Theorem 4.1 implicitly guarantees the existence of solutions to system (4.19)–
(4.22) for all potentials F satisfying (A2), and therefore for every convex and lower semicontinuous
function F1 : R → [0,+∞] with F1(0) = 0. The obtained solution is in fact a strong solution.
Indeed, using (4.14)–(4.18), treating (4.19) appropriately, and invoking elliptic regularity theory, we
see that (4.19) can be rewritten as

∂tϕ−∆µ = P (σ + χ(1− ϕ)− µ)− h(ϕ)u1 a.e. in Q, (4.28)

supplemented with the boundary condition

∂nµ = 0 a.e. on Σ, (4.29)

which yields the additional regularity µ ∈ L∞(0, T ;W ). Moreover, we remark that if σ0 ∈ V ∩L∞(Ω)
and u2 ∈ L∞(0, T ;H), then, by arguing as in the First Estimate in the proof of Theorem 3.1, we
obtain the regularity σ ∈ L∞(Q).

At this stage, if (∂F1)◦(ϕ0) ∈ L∞(Ω), we may also repeat the Third Estimate from the proof of
Theorem 3.1, since the right-hand side h in (3.6) belongs to L∞(Q). Hence, we deduce that ξ ∈
L∞(Q), which in particular yields a separation property (cf. Remark 3.2) in the case of the logarithmic
potential (1.7).

We now derive an error estimate for the differences ϕα − ϕ and σα − σ, measured in suitable norms
and quantified in terms of the parameter α.

Theorem 4.3. Under the same assumptions as in Theorem 4.1, we let (µα, ϕα, ξα, σα) denote the
solution to (4.10)–(4.13), for α ∈ (0, 1], and (µ, ϕ, ξ, σ) be the solution to (4.19)–(4.22) found by the
asymptotic limit in (4.14)–(4.18). Moreover, in addition to (4.4) we assume as well that

‖σ0,α − σ0‖ ≤ Cσ α
1/4 for every α ∈ (0, 1], (4.30)
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for some constant Cσ > 0. Then there is a constant K2 > 0, which depends on the structure of the
system but is independent of α, such that

α1/2‖µa‖L∞(0,T ;H) + ‖1 ∗ (µα − µ)‖L∞(0,T ;V ) + ‖ϕα − ϕ‖L∞(0,T ;H)∩L2(0,T ;V )

+ ‖σα − σ‖L2(0,T ;H) + ‖1 ∗ (σα − σ)‖L∞(0,T ;V ) ≤ K2 α
1/4 for every α ∈ (0, 1]. (4.31)

Proof. We proceed partly as in the proof of Theorem 2.2, specifically for the steps concerning Unique-
ness and Continuous Dependence. Let us introduce the auxiliary elements ρα := σα − χϕα, ρ :=
σ − χϕ and set

µ := µα − µ, ϕ := ϕα − ϕ, ξ := ξα − ξ,
σ := σα − σ, ρ := ρα − ρ and σ0 := σ0,α − σ0.

The plan is to subtract (4.19)–(4.21) from the corresponding relations (4.10)–(4.12). We begin by
integrating in time the difference between (4.10) and (4.19). Using (4.13), we then deduce that∫

Ω

α ∂tµα v +

∫
Ω

∇(1 ∗ µ) · ∇v +

∫
Ω

P (1 ∗ µ)v =

∫
Ω

αµ′0,α v −
∫

Ω

ϕv

+

∫
Ω

P (1 ∗ ρ)v −
∫

Ω

[1 ∗ ((h(ϕα)− h(ϕ))u1)]v

for every v ∈ V and a.e. in (0, T ). (4.32)

From (4.11) and (4.20) it follows that

τ∂tϕ−∆ϕ+ ξ + F ′2 (ϕα)− F ′2 (ϕ) = µ+ χρ+ χ2 ϕ,

ξα ∈ ∂F1(ϕα), ξ ∈ ∂F1(ϕ), a.e. in Q. (4.33)

We then perform another time integration on the difference of (4.12) and (4.21), using (4.13) together
with (4.22). After adding −χϕ to both sides, it is straightforward to arrive at

ρ−∆(1 ∗ ρ) + P (1 ∗ ρ) = σ0 + P (1 ∗ µ)− χϕ a.e. in Q. (4.34)

We also note that (cf. (2.3))

(1 ∗ µ)(0) = 0, ϕ(0) = 0, (1 ∗ ρ)(0) = 0, a.e. in Ω. (4.35)

Now we take v = µ in (4.32) and test the equality in (4.33) by ϕ. Summing the two relations, observing
a cancellation, and integrating with respect to time, we obtain the inequality below. Since the product
ξ ϕ is nonnegative – by the inclusions in (4.33) and the monotonicity of ∂F1 – we easily derive

α

2
‖µα(t)‖2 +

K

2
‖(1 ∗ µ)(t)‖2

V +
τ

2
‖ϕ(t)‖2 +

∫
Qt

|∇ϕ|2

≤ α

2
‖µ0,α‖2 +

∫
Qt

α ∂tµα µ+

∫
Ω

αµ′0,α(1 ∗ µ)(t)

+

∫
Qt

P (1 ∗ ρ)µ−
∫
Qt

[1 ∗ ((h(ϕα)− h(ϕ))u1)]µ

−
∫
Qt

(
F ′2 (ϕα)− F ′2 (ϕ)− χ2 ϕ

)
ϕ+

∫
Qt

χρϕ (4.36)
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for all t ∈ (0, T ], whereK := min{P, 1}. Now, recalling the boundedness properties (4.2) and (4.3),
the estimate (4.26) for α1/2‖∂tµα‖L∞(0,T ;H), as well as the regularity µ ∈ L∞(0, T ;H), we deduce
from Young’s inequality

α

2
‖µ0,α‖2 +

∫
Qt

α ∂tµα µ+

∫
Ω

αµ′0,α(1 ∗ µ)(t)

≤ Cα + Cα1/2 +
K

16

∫
Ω

|(1 ∗ µ)(t)|2 + Cα2‖µ′0,α‖2

≤ Cα1/2 +
K

16

∫
Ω

|(1 ∗ µ)(t)|2. (4.37)

We integrate by parts in time the next two terms on the right side of (4.36). With the aid of the Lip-
schitz continuity of h (see (2.43)), the estimates (2.4) and (2.5) with p = 6, and Hölder and Young’s
inequalities we obtain∫

Qt

P (1 ∗ ρ)µ−
∫
Qt

[1 ∗ ((h(ϕα)− h(ϕ))u1)]µ

=

∫
Ω

P (1 ∗ ρ)(t)(1 ∗ µ)(t)−
∫

Ω

[1 ∗ ((h(ϕα)− h(ϕ))u1)](t)(1 ∗ µ)(t)

−
∫
Qt

P ρ (1 ∗ µ) +

∫
Qt

(h(ϕα)− h(ϕ))u1(1 ∗ µ)

≤ K

16

∫
Ω

|(1 ∗ µ)(t)|2 +
4P 2

K

∫
Ω

|(1 ∗ ρ)(t)|2 + L‖(1 ∗ µ)(t)‖6

∫ t

0

‖ϕ(s)‖‖u1(s)‖3 ds

+
1

4

∫
Qt

|ρ|2 + P 2

∫ t

0

‖(1 ∗ µ)(s)‖2 ds+ L

∫ t

0

‖ϕ(s)‖‖u1(s)‖3‖(1 ∗ µ)(s)‖6 ds.

Hence, thanks to the Sobolev embeddings and again to the Hölder and Young inequalities, we infer
that ∫

Qt

P (1 ∗ ρ)µ−
∫
Qt

[1 ∗ ((h(ϕα)− h(ϕ))u1)]µ

≤ K

8
‖(1 ∗ µ)(t)‖2

V +
4P 2

K

∫
Ω

|(1 ∗ ρ)(t)|2 ds+
1

4

∫
Qt

|ρ|2

+ C

∫ t

0

‖(1 ∗ µ)(s)‖2
V ds+ C

∫ t

0

‖u1(s)‖2
3 ‖ϕ(s)‖2 ds. (4.38)

As for the last two terms of (4.36), by virtue of the Lipschitz continuity of F ′2 and the Young inequality,
we have that

−
∫
Qt

(
F ′2 (ϕα)− F ′2 (ϕ)− χ2 ϕ

)
ϕ+

∫
Qt

χρϕ ≤ 1

4

∫
Qt

|ρ|2 + C

∫
Qt

|ϕ|2. (4.39)

At this point, collecting the estimates (4.37)–(4.39), it follows from (4.36) that

α

2
‖µα(t)‖2 +

K

4

∥∥(1 ∗ µ)(t)
∥∥2

V
+
τ

2
‖ϕ(t)‖2 +

∫
Qt

|∇ϕ|2

≤ Cα1/2 +
4P 2

K

∫
Ω

|(1 ∗ ρ)(t)|2 ds+
1

2

∫
Qt

|ρ|2

+ C

∫ t

0

∥∥(1 ∗ µ)(s)
∥∥2

V
ds+ C

∫ t

0

(
1 + ‖u1(s)‖2

3

)
‖ϕ(s)‖2 ds (4.40)
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for all t ∈ (0, T ].

Next, we test (4.34) by Mρ, where the constant M > 0 will be specified below. Integrating with
respect to time and applying Young’s inequality, we obtain

M

∫
Qt

|ρ|2 +
MK

2

∥∥(1 ∗ ρ)(t)
∥∥2

V
≤ M

2

∫
Qt

|σ0 + P (1 ∗ µ)− χϕ|2 +
M

2

∫
Qt

|ρ|2,

so that the assumption (4.30) allows us to deduce that

M

2

∫
Qt

|ρ|2 +
MK

2

∥∥(1 ∗ ρ)(t)
∥∥2

V
≤MCα1/2 +MC

∫
Qt

(
|1 ∗ µ|2 + |ϕ|2

)
, (4.41)

for all t ∈ (0, T ].

Before adding (4.40) and (4.41), we choose M such that

M

2
>

1

2
and

MK

2
>

4P 2

K
, i.e., M > max

{
1,

8P 2

K2

}
.

With this choice, we may sum (4.40) and (4.41) and then apply the Gronwall lemma, using the fact
that s 7→ ‖u1(s)‖2

3 belongs to L1(0, T ) (cf. (4.5)). Therefore, we finally obtain the estimate

α1/2 ‖µα‖L∞(0,T ;H) + ‖1 ∗ µ‖L∞(0,T ;V ) + ‖ϕ‖L∞(0,T ;H)∩L2(0,T ;V )

+ ‖ρ‖L2(0,T ;H) + ‖1 ∗ ρ‖L∞(0,T ;V ) ≤ C α1/4, (4.42)

from which (4.31) follows immediately, recalling that ρ = ρα − ρ = σα − σ − χ(ϕα − ϕ).

Remark 4.4. We point out that applying a similar procedure to a pair of arbitrary solutions to problems
(4.19)–(4.22) would allow us to prove the uniqueness of the quadruple (µ, ϕ, ξ, σ), with

µ ∈ L∞(0, T ;V ), ξ ∈ L∞(0, T ;H), (4.43)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ C0(Q), (4.44)

σ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ), (4.45)

solving (4.19)–(4.22). Indeed, obtaining an estimate analogous to (4.42) would directly yield unique-
ness for 1 ∗ µ, ϕ, and ρ (and consequently for σ), while the uniqueness of ξ then follows from a
comparison in (4.20). Moreover, the uniqueness property implies that the convergences (4.14)–(4.18)
stated in Theorem 4.1 hold not only along a subsequence αk → 0, but for the entire family as α→ 0.
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