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On the hyperbolic relaxation of the chemical potential in a phase
field tumor growth model

Pierluigi Colli, Elisabetta Rocca, Jirgen Sprekels

Abstract

In this paper, we study a phase field model for a tumor growth model of Cahn—Hilliard type in
which the often assumed parabolic relaxation of the chemical potential is replaced by a hyperbolic
one. We show that the resulting initial-boundary value problem is well posed and that its solutions
depend continuously on two given functions: one appearing in the mass balance equation and
one in the nutrient equation, representing, respectively, sources of drugs (e.g. chemotherapy)
and antiangiogenic therapy. We also discuss regularity properties of the solutions. Moreover, in
the case of a constant proliferation function, we rigorously analyze the asymptotic behavior as
the coefficient of the inertial term tends to zero, establishing convergence to the corresponding
viscous Cahn—Hilliard tumor growth model. Our results apply to a broad class of double-well
potentials, including nonsmooth ones.

1 Introduction

Leta > 0, 7 > 0, and let 2 C R3 denote some open and bounded domain having a smooth
boundary I' = 0f2 with outward normal n and corresponding outward normal derivative 0,,. More-
over, we fix some final time 7" > 0 and introduce for every ¢ € (0, T'] the sets ), := Q x (0,¢) and
Y :=T x (0,t), where we put, for the sake of brevity, () := Q7 and 3 := X7. We then consider
the following initial-boundary vaue problem:

aOup + Oy — Ap = P(p)(o + X(1 = @) — p) — h(p)u in Q, (1.1)
7O — Ap+ F'(p)=pu+Xo in Q, (1.2)
0o — Ao = —XAp — P(p)(o+X(1 —¢) — ) + ug in @, (1.3)
Onft = Onp = Ono =0 on X, (1.4)
1(0) = o, 9pa(0) = g, ©(0) = o, (0) = 09 in (2. (1.5)

The system (1.7)—(1.5) constitutes a simplified and relaxed version of the four-species thermodynam-
ically consistent model for tumor growth originally proposed by Hawkins-Daruud et al. in [34] that
additionally includes chemotactic terms. Let us briefly review the role of the occurring symbols. The
primary variables ¢, u, o denote the phase field, the associated chemical potential, and the nutrient
concentration, respectively. Furthermore, we stress that the additional term a0y 11 is a hyperbolic reg-
ularization of equation (1.1), whereas the term 70, is the viscosity contribution to the Cahn—Hilliard
equation. The key idea behind these regularizations originates from the fact that their presence al-
lows us to take into account more general potentials F' whose derivatives F”, which play the role of a
thermodynamic driving force in the model, may be singular and possibly nonregular.
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P. Colli, E. Rocca, J. Sprekels 2

The nonlinearity P denotes a proliferation function, whereas the positive constant X represents the
chemotactic sensitivity. The terms containing P(y) in the system (T.1)—(1.5) model tumor cell prolif-
eration. In (T-1), the factor P () modulates the source of the chemical potential according to the local
tumor density, coupling proliferation with nutrient availability (¢) and chemotaxis (X(1 — ¢)). In the
third equation (1.3), the same term with minus sign accounts for nutrient consumption by proliferating
cells. Thus, P(¢) provides a natural coupling between the evolution of the phase field and the nutrient,
reflecting the interplay between growth and resource uptake.

About equation (1.2), as is common in phase-field models, the function F'is assumed to have a double-
well structure. Typical examples include the regular, logarithmic, and double-obstacle potentials, which
are respectively defined by

1

Freg(r) = 2 (1 — 7“2)2, reR, (1.6)
1+7r)In(1+7r)+ 1 —=7)In(l —=7r)—kir?, re(=1,1),

Flog(r) = < 2In(2) — ky, re{-1,1}, (1.7)
+o0, ré¢[—1,1],
ko(1 — r? —-1,1

Fobs(T)Z{ 2(1—17), rel[-1,1], 1.8)
+00, ré¢[—1,1],

where k; > 1 and ko > 0, so that both Fj,, and F,s are nonconvex. All these potentials can be
written as the sum of a convex, lower-semicontinuous function (the main part) and a concave quadratic
perturbation. Note that F,, is particularly relevant in applications, since Fl’og(r) becomes unbounded
as r — 1. Moreover, in the case of F,, the second equation (1.2) must be interpreted as a
differential inclusion, where the derivative of the convex part of Fobs(go) is understood in the sense of

subdifferentials.

In the above model equations, there are two functions that may serve as distributed controls acting in
the phase and nutrient equations, respectively. The control variable w1, which is nonlinearly coupled
to the state variable ¢ in the phase equation (1.1), models the application of a cytotoxic drug into the
system; it is multiplied by a truncation function h(-) in order to have the action only in the spatial region
where the tumor cells are located. For instance, it can be assumed that h(—1) = 0,h(1) = 1, h(p)
is in between if —1 < ¢ < 1; see [29,:32,|35,136] for some insights on possible choices of h. On the
other hand, the control us can model the supply of antiangiogenic therapies aiming at reducing the
tumor vascularization (cf. [12] and [7},8] for similar control terms in models of prostate tumor growth).

Let us briefly recall the results already present in the literature on this class of models, which has
been first introduced in [34] in case @ = 7 = 0. As far as well-posedness is concerned, the above
model has already been deeply investigated in the case &« = 7 = X = 0 (cf. [5,[9+11}125]). Moreover,
many variants of this model were considered and similar results were proven, see, for instance, [16,
22,29,130,(32]. In fact, a large body of literature is devoted to diffuse-interface and Cahn—Hilliard-
type models for tumor growth. Foundational modelling contributions are due to Cristini, Lowengrub,
Wise and collaborators [19}20,47], of course enlightening the numerical and asymptotic investigations
in [34,[35]. Rigorous analytical studies began with [25], later extended to multi-species mixtures and
interactions in [21},[261/27], to Brinkman-type or Darcy-type couplings in [1,/22], and to nonlocal and
degenerate settings in [28]. Several works addressed chemotaxis, active transport, mechanical effects,
or additional biological mechanisms, establishing well-posedness and qualitative properties for a range
of tumour-growth systems [9,/29-33,/38]. Fractional and viscous variants of Cahn—Hilliard tumor-growth
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On the hyperbolic relaxation of the chemical potential in a phase field tumor growth model 3

models, together with asymptotics, vanishing viscosities and vanishing relaxation limits, have been
examined in [10L{11,[14},15]. Additional results on long-time behaviour and stability can be found in [5,
48]. Many of these analyses rely on convexity and compactness tools.

The optimal control of tumor-growth phase-field systems constitutes another important research di-
rection. Early works on boundary and distributed control appeared in [12,31]. Control strategies incor-
porating chemotaxis, active transport, variable mobilities, and Keller—Segel dynamics were developed
in [2,[13,[22,[361/46]. Further contributions included the optimal control theory and advanced optimality
conditions in [23,24], as well as refined analyses of treatment-time optimization and related asymp-
totics in [41-43]/49]. Singular logarithmic and double-obstacle potentials were addressed in [39)40],
whereas sparse controls and second-order conditions were studied in [6,45]. Well-posedness, reg-
ularity, and asymptotic behavior for models relevant to control applications and including chemotaxis
were developed in [16]. These results collectively provide a rigorous framework for the design and op-
timization of therapeutic strategies governed by diffuse—interface tumor-growth models. The authors
of this paper intend to undertake a detailed analysis of the distributed control problems associated
with the two controls u; and us in a subsequent work.

Concerning the hyperbolic relaxation of the chemical potential in the viscous Cahn—Hilliard equation
(uncoupled from the nutrient and without mass sources), we refer to the recent contributions [17,
18], which inspired the present work. In [17], well-posedness, continuous dependence, and regularity
results were established, along with an analysis of the asymptotic behavior as the relaxation parameter
« tends to 0. A related optimal control problem was studied in [18].

We now briefly outline the contents of the present paper. In Section [2} we first prove the existence
of a (weak) solution to the system (1.1)—(1.5), together with a continuous dependence result of the
solutions on the controls u; and wus: all this is precisely stated in Theorem Section (3] is devoted
to establishing regularity results, see Theorem [3.1] which lead to the existence of a strong solution
to (1.1)-(1.5) in a very general framework for the potentials, covering all the cases in (1.6)—(1.8).
Finally, Section |4] addresses the asymptotic limit as o \, 0 in the particular — but still relevant —
case when the proliferation function P(y) is constant, providing a detailed proof of convergence to
the corresponding system with o = 0 (see Theorem[4.1). Moreover, we are able to prove an estimate
of the difference of solutions in suitable norms with a precise rate of convergence (cf. Theorem 4.3).

2 General setting and well-posedness

In this section, we introduce the general setting of our problem and state well-posedness results for
the state system (T-1)—(T-5). To begin with, for a Banach space X we denote by || - || x the norm in the
space X or in a power thereof, and by X* its dual space. The only exception from this rule applies
to the norms of the L spaces and of their powers, which we often denote by || - ||, for 1 < p < oc.
As usual, for Banach spaces X and Y that are contained in the same topological vector space, we
introduce the linear space X MY which becomes a Banach space when endowed with its natural
norm ||ul|xny := ||ul|x + [[u]ly, for v € X N'Y. Moreover, we introduce the spaces

H:=L*Q), Vi=H(Q), W:={ve HQ): O,v=0o0nT}. (2.1)

Furthermore, by (-, -), || - ||, and {-,-), we denote the standard inner product and related norm
in H, as well as the dual product between 1/ and its dual V*. We then have the dense and compact
embeddings V' C H C V*, with the standard identification (v,w) = (v,w) for v € H and
weV.
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P. Colli, E. Rocca, J. Sprekels 4

Throughout the paper, we make repeated use of Hélder’s inequality, of the elementary Young’s in-
equality

1
ab < 6lal* + EW Va,beR, V§>0, (2.2)

as well as of the continuity of the embeddings H'(Q2) C LP(Q) for 1 < p < 6and H2(Q)) C C°(9).
Notice that the latter embedding is also compact, while this holds true for the former embeddings only
if p < 6. We also introduce for s € (0,7 and elements w € L*(0,T; L'(Q)) the notation

(1xw)(s) = /OS w(-,s)ds, (2.3)

thatis, (1xw)(s) € L*(£2) is the function that assigns to = € Q the value [, w(z, s) ds’. Obviously,
it holds that

[(Lxw)(s)] < (1 |w])(s)] forae.s e (0,7). (2.4)

Moreover, for 1 < p, p’ < oo conjugate exponents and functions v € L(0,7T; LP(2)) and w €
LY(0,T; L” (2)) we have that

< lv(s)llp lwll g1 0520 () forae.s € (0,T). (2.5)

JRCIRE

Finally, let us introduce a convention that will be tacitly employed throughout the paper: the symbol
(' is used to indicate every constant that depends only on the structural data of the problem (such
as T, ), a or 7, the shape of the nonlinearities, and the norms of the involved functions), so that its
meaning may change from line to line. If a parameter d enters the computation, then the symbol C’s
denotes constants that additionally depend on 4. On the contrary, precise constants that we refer to
are denoted in a different way.

We now provide assumptions on the data of the problem.
(A1) «, T and X are positive constants.

(A2) F' = F+ F; satisfies: F1 : R — [0, 4+00] is convex and lower semicontinuous with F(0) =
0, while F; € C*(R) has a Lipschitz continuous derivative .

(A3) P € CO(R) is nonnegative, bounded, and Lipschitz continuous.

(A4) h € C°(R) is nonnegative, bounded, and Lipschitz continuous.

Let us note that all of the potentials (1.6)—(1.8) are admitted. In fact, the assumption [(A2)| implies
that the subdifferential OF} of F} is a maximal monotone graph in R x R with effective domain
D(0F,) C D(Fy), and, since [} attains its minimum value 0 at 0, it turns out that 0 € D(0F}) and
0 € OF;(0). We also observe that the assumptions on F» imply that F;, grows at most quadratically,
that is, there are constants ¢, ¢, such that

|F2(T)| S/C\l +/C\2T2 VreR. (26)

Moreover, we introduce the following notation: for r € D(OF7), we denote by (OF})°(r) the minimal
section of OF}(r), that is, the element of OF}(r) having minimal modulus. Finally, we extend the
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notations F, 0F}, D(OF}), and (OF})° to the corresponding functionals and operators induced on
L? spaces.

Now, in the general setting of [(AT)H(A4)| we are able to provide a well-posedness result for the sys-
tem (1.1)—(1.5). First, we introduce our notion of a solution to (T.1)—(1.5).

Definition 2.1. A quadruple (u, @, &, o) is called a solution to the initial-boundary value problem
if
€ H*0,T;VYNWhH=(0,T; H) N L>(0,T; V), (
0 € WH(0,T; H)N HY(0,T; V) N L0, T; W) N C°(Q), (
o€ HY(0,T; H)nC°([0,T); V)N L*(0,T; W), @.
£e L>™0,T;H), 2.

and if (11, p, &, o) satisfies

(O p, v) + /ﬂ Orp v + /QV,M Vv = /QP(QO)(O’ +X(1—¢)—pv— / h(p)uv

Q
foreveryv € V and a.e. in (0,T), (2.11)
700 — Ap+E+ F) (o) =p+Xo, €€ 0Fi(p), ae inQ, (2.12)
0o — Ao = —XAp — P(p)(c+X(1 —p) —p) +us ae.in (@, (2.13)
as well as
p(0) = po,  Ou(0) = gy, ©(0) = o, o(0) =00, ae. inf. (2.14)

It is worth noting that the homogeneous Neumann boundary conditions are considered in the
conditions and for ¢ and o (cf. the definition of the space V) and incorporated in the varia-
tional equality for 11, when using the form fQ V u-Vv. Notice also that the initial conditions
make sense, since and imply that , 0 € C°([0,T7]; V'), while, owing to (2.7), it turns out
that € C1([0,T]; V*) N C°([0, T]; H), and, consequently, d; 11 is at least weakly continuous from
[0,7]to H.

We have the following result.

Theorem 2.2 (Well-posedness). Assume that[({A1)H(A4)| hold and let the initial data satisfy

o €V, uy€H, oo €V, o€ WNDOF)°
with Fi(po) € L*(Q), (0F1)°(w0) € H. (2.15)

Moreover, suppose that

(u1,uz) € L*(Q) x L*(Q). (2.16)

Then there exists at least one solution (11, p, &, o) in the sense of Definition Moreover, if

(w1, u9) € L*(0,T; L*(Q)) x L*(Q) (2.17)
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in addition to (2.16), then the solution is unique. Furthermore, let (ii;, i, &, 04), i = 1,2, be two
solutions to (T1)—~(1.5) associated with the data (u},ub) € L*(0,T;L3(Q)) x L*(Q), i = 1,2.
Then there exists a constant I{; > 0, which depends only on the data of the system, such that

1 — pal| oo o,mmy + |11 % (p1 — ) || oo 0,137

+ H% - <P2HL°°(0,T;H)0L2(0,T;V) + H01 - UzHLoo(o,T;H)mL?(o,T;V)

< Kl(“”% — || 20,15 + [y — U%HL?(O,T;H))- (2.18)

Before entering the proof, let us remark that the above result is very general and includes also the
cases of singular and nonsmooth potentials such as the double obstacle potential defined in (1.8). We
also note that the assumption Fi(po) € L'() stated in actually follows from other require-
ments on g thanks to the subdifferential property

/ Fi(pg) < / Fi(v) + ((OF1) (o), po — v) foreveryv € H.
Q Q

About the explicit dependencies of the constant /i in (2.18), we invite the reader to follow the proof
of the estimate given below.

Proof. The existence proof is rather standard, since similar arguments have already been used in
previous contributions. Hence, for that part, we proceed rather formally, just employing the Yosida ap-
proximation of O for our estimates without recurring to finite-dimensional approximation techniques
like the Faedo—Galerkin scheme. Hence, we introduce the Yosida regularization of OF}. Fore > 0, let
F . denote the Moreau—Yosida approximation of F at the level €. It is well known (see, e.g., [4]) that
the following conditions are satisfied:

0< Fi.(r) < Fi(r) foral r € R; (2.19)
FY_is Lipschitz continuous on R

with Lipschitz constant 1 /¢, and Fy/ _(0) = 0; (2.20)
|FY (r)] < [(0F1)°(r)| and l{% F/ (r) = (0Fy)°(r) forall r € D(OF}). (2.21)

We now study the e —approximating problem that results from the system (2.71)—-@2.14) if (OF})(r) is
replaced by F1,,g and the inclusion in (2.12) reduces to an equality. Namely, we argue on

1O — Ap + F| (p) + F)(p) = p+Xo ae.inQ. (2.22)

The existence of a solution to the e —approximating problem thus obtained can be shown by means of
a Faedo—Galerkin approximation using the eigenvalues {);};en and eigenfunctions {e; } jen of the
eigenvalue problem —Ae; = Aje; in 2, dye; = 0 onI'. In order not to overload the exposition,
we avoid here to write the Faedo—Galerkin system explicitly. Instead, we just provide the relevant a
priori estimates by performing the estimations directly on the solution to the e-approximating system.
Notice that the following estimates, while being only formal for the e-approximating system, are fully
justified on the level of the Faedo—Galerkin approximations. For the sake of simplicity, we still denote by
(1, ¢,€,0),with§ = FY (i), the solution to the e —approximating system in place of (i, <, &, 02 );
the correct notation will be reintroduced at the end of each estimate. Before entering the estimates,
we note that it follows from that o € C°(£2), and we conclude from the assumption that
FQ(QO()) S Ll(Q) and F2/((,00) € H.
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On the hyperbolic relaxation of the chemical potential in a phase field tumor growth model 7

FIRST ESTIMATE: Let t € (0,7 be arbitrary. First, we test (2.11) by O« and integrate over [0, t].
Using [(A3), [(A4), (2.15) and Young'’s inequality, we then obtain that

o 1
10wl + [ oo+ [ [Tute)?
Qt Q

1
=Sl +5 [ 9P+ [ [P)e+ 0= —w —b(e)u]ow, @29

t

where the last integral can be estimated as follows:

/ [P()(o + (1= X)p — 1) — h(p)us]Orpe

t

<C [ (of o+ I6 + 1+l + o) 224
Q1

Next, we differentiate (2.22) with respect to t, test by 0;(, and integrate over ();. We then find the
identity

T "
Slow®lF + [ Vo + [ Fiook

Q1 Q:
T "
= Lol - [ F@ask+ [ amdex [ oooe. @2

Qt t t

Now, writing (2.22) at ¢ = 0, we see that

0ip(0) = 771 (Apo — F (o) = Fy (o) + p1o + Xoy),

and we infer from (2.15), (2.21) and [(A2)| that ||0;,(0)|| is uniformly bounded. Moreover, we have
F{".(¢) > 0 so that the last term on the left-hand side is nonnegative, while F,’(¢) is bounded.
Hence, applying Young’s inequality to the fourth term on the right-hand side and then adding the
inequalities and (2.25), thus cancelling the terms involving ;¢ 0; 11, we arrive at

o} 1 T
10wl + 5 [ IVHOF + Z1wOl + [ 1906

t

1
< C+C [ (P +leP +1of + 0wl + o) + 35 [ 80P @29
Qt Q¢

Next, we test by O;0, integrate over (0, ¢), and add to both sides the expression 3 ||o(¢)||* —
sllooll* = [y, o0:o. We then find that

1 1
| 1ot Sl = Sloalf +x | - ao

+ [ [P+ ==+ 0+ w] o

Now observe that, integrating by parts in time and applying Young’s inequality,

X [ V- -Voo = X/ Vo(t)-Vo(t) — X/ Vo -Vog—X | Vo Vo
Q¢ Q Q Q¢
2

1 1 X
< g [IVoP [ VewP+; [ Vol s [ 9o,
4 Jo Q 2 Qt 2 Qt
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Hence, also applying Young’s inequality to the last term on the right-hand side of the penultimate
identity, we can infer that

1 1
5 | 180k + ol <0+ [ 1960
Qt Q

1

+5 [ Vol + (J/ (IVo? + o + [ + ul* + |uszl?) . (2.27)
Qt Q1

Finally, we test (2:22) by 0;¢, integrate over ), and add to both sides the expression L[| (t)]|? —

lleoll® = th 00O, p. In view of [(A2)|and (2.19), and taking the quadratic growth of F; into account,
we obtain that

[ 1+ gleli + | Aot

= slolfy + [ (Fuetion) + Faten)) = [ Faolt) + [ (u 3o+ o)

t

§C+/F(<ﬂo)+c(1+”9@0”2+/ goatso)+/ (1 + X0 + 9)up

Q + t

< C+C/ (1l + o + |o* + |0wpl?) (2.28)
Qt

where we have used Young’s inequality and (2.15) as well. Note moreover that the third term on first

line of (2.28) is nonnegative (cf. (2.19)).

At this point, we multiply (2.28) by 4X? and add the resulting inequality to the sum of the inequalities
(2.26) and (2.27). We infer that

o 1 T X2
X au(0)]? + 2 / Vad) + Zlow®) + S el
2 2 Jo 2 2
1 1 1
rare [ ol E [ vaeP+ 1 [ 1awl+ i
Q 2.Jq, 4 Jq, 4
< C+ O/ (Il + | ? + |o* + [Vol? + [0l + |0:0?) - (2.29)
Q¢

Now, note that the term C th |11 on the right-hand side can be estimated using the identity ji(s) =

po + Jo O, s € (0,t), sothat C [, |u> < C + C [, |0uf* 1tis then easily seen that the
inequality thus obtained from (2.29) admits the application of Gronwall’s lemma, and we finally can
deduce that

||,us||W1’°°(0,T;H)0L°°(O,T;V) + ||905||W1v°°(0,T;H)mH1(O,T;V)
+ HUsHHl(o,T;H)mLoo(o,T;V) <C. (2.30)

SECOND ESTIMATE: Next, we multiply (2:22), written for afixed t € (0, 7], by —Ap(t) and integrate
over €. This yields the identity

1At + / Fl (o (0) [V (t) = / (rdhp + FY() — Xo — u)(8) A (2)
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On the hyperbolic relaxation of the chemical potential in a phase field tumor growth model 9

and, using Young’s inequality, the monotonicity of Fl’ﬁ, the bound in which implies an
L>(0,T; H)-bound for (10yp + Fy(¢) — Xo — ), and the elliptic regularity theory, we plainly
deduce that

| @ellLoo.rmy < C. (2.31)

But then, by comparison in equation (2.22), we also realize that
| Y ()|l oy < C, (2.32)
while comparison in (2.13), along with and elliptic regularity again, yields that
o=l z20,mwy) < C. (2.33)
Finally, it follows from a comparison of terms in that

e || 20,0+ < C (2.34)

PASSAGE TO THE LIMIT AS ¢ N\, 0: Now, let for every ¢ > 0 the triple (ji, ¢., 0.) be a solution to

the problem (2.77), (2.22), (2.13), (2.74) with the regularity (2.7)—(2.9). Observe that the constants C'
occurring in the proof of the estimates (2.30)—(2.34) are all independent of €. Hence it follows from
standard weak and weak-star compactness results that there are functions i, , o, £ such that

e — p1 weakly starin H2(0,T;V*) N Wh=(0,T; H) N L>(0,T;V), (2.35)
©. — @ weakly starin W50, T; H) N H'(0,T; V)N L>(0,T; W), (2.36)
0. — o weaklystarin H*(0,7;H) N L>®(0,7; V)N L*0,T; W), (2.37)
FY (p:) = & weakly starin L>(0,T; H), (2.38)

as €\ 0, possibly along a subsequence. By virtue of (2.36) and the Aubin-Lions—Simon lemma (see,
e.g., [44, Sect. 8, Cor. 4]), as W is compactly embedded into CO(Q), we deduce that

w. — ¢ strongly in C°(Q),

whence, by Lipschitz continuity, also

P(pe) = Pp), hlp:) = h(p), Filp:) = F(g), allstronglyin C(Q).

On the other hand, by the same tool, we have that

pie = . strongly in C*([0, T1;V*) n C°([0, T]; H),
o. — o stronglyin C°([0,T); H) N L*(0,T;V),

as consequences of (2.35) and (2.37).

We then can pass to the limit in the respective variational equality and equation (2.13), in
particular, for the product term P(p.)(o. + X(1 — ¢.) — pe). This is also possible in (2.22) in order
to obtain in the limit: indeed, the inclusion in (2.12) results as a consequence of and
the maximal monotonicity of OF7, since we can apply, e.g., [3, Prop. 2.2, p. 38]. Finally, the initial
conditions can be readily obtained by observing that we have at least strong convergence in
C°([0,T]; V*) for all of the variables ., Oy/i., ., o-. With this, the existence part of the proof is
complete.
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UNIQUENESS AND CONTINUOUS DEPENDENCE: We now show the continuous dependence estimate
(2.18), which implies the uniqueness of the solution, in particular. To this end, let (u®, u3) € L>®(Q) x
L*(Q),i = 1,2, be given, and let (11;, ¢;, &, 04), @ = 1,2, be associated solutions in the sense of
Definition 2.1. We then introduce the abbreviating notation

W=y — fo, @ i= 01—, §i=& — &, 0 :1=01— 0y,

1 2 a1 2
ul . — ul_ul7 u2 - U2_U2.

We then see that the differences (i, ¢, £, o) satisfy the identities
(@ui ) + [ drpv+ [ Vo= [ (Plor) = Plea(on + (1= 01 = e
+ [ Plea)o+ =0+ mo= [ () = hleauto — [ hlgwue
Q Q

Q
forevery v € V and a.e.in (0,7, (2.39)
7O — @+ &+ Fy (1) — Fy(p2) = n+Xo,
& € 0F (), 1=1,2, ae.in Q, (2.40)
Oio — Ao = =XAp — (P(p1) = P(@2)) (01 + (1 = X)io1 — )
— P(pa)(c+ (1 —X)o —p) +us ae.in Q, (2.41)
u(0) =0, u(0) =0, ©0)=0, oc(0)=0, ae.ind (2.42)

Now recall that ¢; € C°(Q), i = 1, 2. Hence, there is some constant L > 0, which only depends on
R = max {[|¢1llcog) s ll92llcog > such that

|P(¢1) = P(p2)| + [M(e1) = h(p2)| + [Fy(01) — Fy(p2)] < Llp| ae.in Q. (243

Let t € (0,7] be arbitrary. We multiply (2.40) by ¢ and integrate over @), to obtain from (2.43) and
Young’s inequality that

Slelt+ [ e+ | e
=/ (XU—(FZ/(Spl)_Fz/(902>>)90+/ pp

t Qt

< | (ol + 1ol + / . (2.4
Qt t

We observe that the last term on the left-hand side of (2.44) is nonnegative on account of the mono-
tonicity of OF}.

Next, let M > 0 denote a constant that will be specified later. We multiply (2.47) by M o and integrate
over ;. Owing to the boundedness of P, and invoking (2.43), we then obtain the estimate

M
S le@®I>+M | Vol
2

Q:

< MX w-va+ML/ ol (] + |1 + o)) o
Qt Q1

L MC / (Il + 10 + o) + M / s 2, (2.45)
Q¢ Q¢
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where we have applied Young’s inequality to the last two terms on the right-hand side. Besides, we
observe that

M MX?
MX/ Ve:Vo < — Val|? + 5 / Vpl?. (2.46)
t Qt t

Finally, we recall that, thanks to the continuity of the embedding V' C L*(€2) and the regularity
properties (2.7)—(2.9), the functions 1, 1, 01 are all bounded in L°°(0, T'; L*(£2)). Therefore, we
can infer that the second term on the right-hand side of (2.45), which we denote by I, can be estimated
as follows:

1] < MC/O lo(s)lla (Il ()]s + lle1(s)lla + llor(s)]la) lo(s)] ds

< MC / lo(s) v lo(s)]] ds

2 MX2 2 2
< MC | et + IVol? + MC [ |o|*. (2.47)
Q 2 Jo Q
Hence, combining (2.45)—(2.47), we have shown the estimate

M M

SloP+ 5 [ 1P

2 2 Ja

< M| Vel + MC [ (Jul? + ol + o + |ua]?) - (2.48)

Qt Q¢

It remains to treat the identity (2.39) which we integrate with respect to time over [0, s| for s € (0, ¢].
Then we insert v = u(s) and integrate over [0, ¢], arriving at the identity

Sl + 5 [ 19w+ [

t

— / [1 * ((P((,Ol) - P(SOQ))(Ul + (1 - X)SOl — Ml)” H

t

+/ [1+ (P(soz)(GJr(l—X)so—u))}u—/ [1# (1) = hi(pa)) ug)]

t

- / (1 (h(p2)ur) | =L+ L+ I3+ Iy, (2.49)

t

with obvious meaning, where we have used the notation introduced in (2.3). We estimate the terms
on the right-hand side of individually, where we make repeated use of the Hélder and Young
inequalities, the estimates and with p = 2, and the continuous embedding V' C L%((2) for
1 < ¢ < 6. At first, by the Hélder and Young inequalites, as ui € L*(0,T; L3(2)) it is readily seen
that

t
L<l / M et Lo oy dis

0
t s

< L[ [l ods'ds
0 0

t
< Ol 2oz s / 1a() 1 el 2o ds

1 1 t
<L wep / o +C / l(s)|2ds 2.50)
4 Q¢ 4 Qt 0
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Similar reasoning, using the boundedness of both P and h, yields
I+ 14 < C/OtHu(S)H ol + [l + ul + lua| | o,5m) ds
S<TAHWSNHM%+M%HuHﬁmHhmmmds
< [ (P +1of + 1o + ) 251)

Qt

Finally, using (2.5), (2.43), as well as Hoélder’'s and Young’s inequalities, and invoking the fact that
01,01, 1 € L=(0,T; L*(Q)), we find the chain of inequalities
t
11§<?AHM@WHWKMJ+WmM+mﬂmDm@md8

<c / ()] / ol + leal + [ allo(s) [ d ds

t
< Ol + la] + o] IILoo<o,T;L4<Q>>/ () el 220.50v) ds
0

1 1 !
[ wel g [ ep e [P ds. 252
4 Qt 4 Qt 0

Combining the estimates (2.49)—(2.52), we thus have shown the estimate

S0l + 5 [ V0= OF + /

IA

1
<5 [ 19 [l lof + Jol ) 253
Q1
At this point, we add the inequalities (2.44), (2.48) and (2.53), obtaining the estimate
T
eI + ||<f< *+ ||u (O + /IV L p)(t
1 M
+-(1-2MX%) [ |VelP+= [ |Vo]?
2 Q 2 Ja,
< CM/ (Il + 1ol + 1ol + fua* + |uzf?) - (2.54)
Q1

Now, we make the choice M := 1/(4X2). Then the inequality follows from an application
of Gronwall’s lemma. As a consequence, if uj = u3 and u? = u3, then 1y = 2, 1 = 2 and
01 = 09. But then, by (2.40), also §; = &,. That is, the solution is unique. The assertion is thus
completely proved. O]

3 Regularity properties

The next theorem provides a regularity result in the case of a general potential F' satisfying |(A2),
but under more regular initial data and sources (u1, uy) with respect to the well-posedness result in
Theorem[2.2

DOI 10.20347/WIAS.PREPRINT.3234 Berlin 2025



On the hyperbolic relaxation of the chemical potential in a phase field tumor growth model 13

Theorem 3.1 (Regularity). Assume that[(AT)H(A4)] hold, and let the initial data satisfy (2.15) as well
as the additional assumptions

o €W, pg €V, a9 € L™(Q), (0F1)°(v0) € L=(Q). (3.1)
Moreover, suppose that
(uy,up) € L*(0,T;V) x L*®(0,T; H). (3.2)

Then the solution (11, ¢, &, o) to (T-1) in the sense of Definition|2.1] enjoys the further regularity
properties
o€ L®(Q), peH(0,T;V)NLX0,T;W), &elL¥(Q). (3.3)

Proof. First, observe that condition implies by Sobolev embeddings. Therefore, Theo-
rem already ensures the existence of a unique solution. Consequently, as in the proof of the
existence result, we proceed in a formal manner, employing the Yosida approximation of OF} in our
estimates, without resorting to finite-dimensional approximation techniques.

As in the previous proof, and for ease of notation, we continue to denote by (1, ¢, &, o) the solution of
the e—approximating system, where £ = Fl’ﬁ(go), throughout the computations below. We will revert
to the notation (i, ¢., &, 0.) at the end of each estimate.

FIRST ESTIMATE. From the boundedness properties in and (2.31), along with (3.2), we infer that
the right-hand side of is uniformly bounded in L>°(0, T'; H). Since the initial datum o belongs
to L>(2) (cf. (3:1)), maximal parabolic regularity (see, e.g., [37, Chapter Ill, Theorem 7.1, p. 181])
yields

o~y < C. (3.4)

SECOND ESTIMATE. We test (2.17) by — Ay, and integrate over (0, t). Integrating by parts in space,

and using the assumptions [(A3)], [(A4), (3.1), (3.2) along with the estimates (2.30), (2.31), we obtain

from the Holder and Young inequalities that
o' 1
SV + 51 800)

« 1
= Sl + 51 Amll* = [ Ve - Vo
Q1

+ / [P(@)(0 +X(1 =)+ p) —ul/ ()| Ve - VO

+/ P(¢)V(0—X¢+M)V@su—/ h(p)Vuy - Vo

t

<C+C [ |Vl
Q:

t
0/0 (ol + 1+ lol + lul + [ua] ) ()31 Vo (s) I ds

v [ 9o -xorwpee [ 1vup+ [ vou?
Q¢

Note that all terms on the right-hand side except the last are already bounded due to (2.30), (2.31),

(3.2) and Sobolev embeddings. Then, applying now a standard Gronwall lemma, we derive the regu-

larity estimate

| e || 111 0,03y Lo 0,7y < C (3.9)
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THIRD ESTIMATE. In view of (8:5), it turns out that 1 is bounded in L>°(0, T"; W), hence in L>°(Q).
The same can be concluded for F3 (), due to and|(A2), Then, let us rewrite the equation
as

100 — Ap + F (p) =h ae.in Q,
with h = p+ X o — F(p) bounded in L™(Q). (3.6)

To prove the third property in (3.3), it is enough to derive a uniform L>°(Q)-bound for F} _(¢). Let us
outline the argument by proceeding formally and pointing out that just a truncation of the test functions
would be needed for a rigorous proof. We take any p > 2 and test by |[FY . (@)|P*F{ (¢), a
function of ¢ which is increasing and attains the value 0 at 0 (cf. (2.20)). Then, we integrate from O to
t € (0,T)], obtaining

©(t) ) .
(IR Ga)
Q 0
p=1) [[ FterEL@mer+ [ R
®o
= T/ﬂ(/ |F1',E(S)|p_2F1’7E(s)ds> +// WEL ()P 2F(p). 37
0 t

Note that the first term on the left-hand side is nonnegative since Fll,s is monotone increasing with
Fl’ﬁs(O) = 0; moreover, the second term on the left-hand side is nonnegative since the derivative Fl”’6
is nonnegative everywhere. About the right-hand side we may recall (2.21) and observe that

)
r ([T 1P RL6s) < IR ollwl] < CIORF (o)l
0

On the other hand, thanks to p’ = p/(p — 1) and the Young inequality, we have that

//hwhww”ﬂu@SHWMwaﬁww*MWm

1
= [[hllr@n | FLo (@), < IIhIILp(Qt ];IIF{,( 7o) -

By rearranging from (3.7), and taking ¢ = 1", we infer that

15Dl < (pCIORY (o) + 1hlgy)
< (pCIERY(po)lE") " + 1hllzra)
Then, passing to the limit as p — 00 in the above chain of inequalities, we conclude that
IF (@)@ < 1f1(%0) e + Ihllz=(0)
Hence, as &, = Fl’ys(gos) (now using the notation with dependence on ¢), we finally arrive at
€l (@) < € (3.8)

We now collect the estimates (3.4), (3.5), and (3.8), and recall the limiting procedure as ¢ ~\, 0,
already carried out in the proof of Theorem Since the uniform estimates are preserved by lower
semicontinuity, the proof is thus concluded. O
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Remark 3.2. Let us point out that the regularity £ € L>°((Q)) established in (3.3) implies, in particular,
the so-called separation property in the case of the logarithmic potential (1.7). Indeed, since

!
g:m1+¢

€ L¥(Q),

there exist two real numbers 7, and r*, depending on the structure of the system, such that
—1<r, <pxt)<r* <1 forevery (x,t) € Q. (3.9)

Hence, the boundedness of £ prevents the phase variable ¢ from approaching the singular values
41, ensuring that ¢ remains within physically meaningful bounds throughout the evolution.

4 The case when P is constant

In this section, we restrict ourselves to the case where the proliferation function P reduces to a positive
constant and investigate the asymptotic behavior of the problem as « ™\, 0. Accordingly, we strengthen

assumption [(A3)| by imposing
P is a positive constant. (4.1)

Besides, we allow the initial data for 1, O;11, and o to depend on «, while we keep g, the initial value
of , fixed. This choice is made for simplicity, in view of the restrictions on ¢ stated in (2.15).

Thus, for 0 < a < 1, we consider families of data {10,, /£y o+ 00, } Such that

o, is uniformly bounded in V/, (4.2)
[0, is uniformly bounded in H, (4.3)

00,a is uniformly bounded in V/

and strongly converges to og in H as a N\, 0. (4.4)

Of course, it follows from (4.4) that oy € V' (cf. (2.15)) and 0y, — 0 weakly in V. We can state the
following convergence result.

Theorem 4.1. Assume that[(A1)H(A4)) (4.1) hold, and let the initial data satisfy (2.15) and (4.2)—(4.4).

Moreover, let
(ur,u2) € L*(Q) x L*(Q) with wy € H'(0,T; H) N L*(0,T; L*(2)), (4.5)
so that also is satisfied. For all o € (0, 1], let the quadruple (fia, oy Eay Oa ), With

flo € W22(0,T; V)N W0, T; H) N L>(0,T; V), (
Yo € W0, T; HYN H*(0,T; V)N L=(0,T; W) N C°(Q), (
§n € L™(0,T; H), (
oo € HY(0,T; H)NL>®(0,T; V)N L*(0,T; W), (
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be the solution to the initial value problem

(a@ttua,v)+/8tg0av+/V/La-VU
Q Q

- /QP (0o +X(1 = ¢0) — Ha)V — / h(pa)urv

foreveryv € V and a.e. in (0,7, ’ (4.10)
TOPa — Apa + o + FS (o) = pla + X 0o, &a € OF1(pa), ae.in Q, (4.11)
0106 — Aoy = —XApy — P (04 +X(1 — o) — fta) +uz a.e.in Q, (4.12)
1a(0) =t (Oe1a)(0) = ftg0 s Pa(0) = @0, 0(0) =00 ae.in. (4.13)

Then there exists a quadruple (i1, v, &, o) such that, for some subsequence «, tending to 0, there
holds

Lo, — [t weakly starin L>(0,T;V), (4.14)
Qifla, — 0 weakly starin W*>(0,T; V*) and strongly in W*(0,T; H), (4.15)
Doy, — p  weakly starin WH(0,T; H) N\ H'(0,T; V) N L0, T; W)

and strongly in C°([0,T]; V) N C°(Q), (4.16)
o, — & weakly starin L=(0,T; H), (4.17)
0w, — 0 weakly starin H'(0,T; H) N L>°(0,T; V) N L*(0,T; W). (4.18)

Moreover, (11, p, &, o) is a solution to the viscous Cahn—Hilliard system

Aat¢u+Lvu-vu:[2p<a+x<1—¢)—u)v—/ﬂﬂl(go)uw

foreveryv € V and a.e. in (0,T), (4.19)
TOp — Ap+E+ Fl(p) =+ Xo, &€ 0Fi(p), ae inQ, (4.20)
0o — Ao =—-XAp—P(c+X(1—¢)—p)+uy ae. in(@, (4.21)
©(0) = ¢, o(0) =09, ae. infl (4.22)

Proof. We go back to the proof of Theorem[2.2]and consider the First Estimate. We focus, in particular,
on the equality (2.23). Now, we change the treatment of the term coming from the right-hand side
of (4.10). Please, let us use the notation without any index when doing the computation. Then, by
integrating by parts in time, in place of we obtain

/Q [P (o + (1= X)g — 1) = h(p)ur) O
=5 [OF+3 [P + [ [Plo+1=200) ~hle)ul® (e
- /Q[P (00,0 + (1 = X)0) — h(p0)u1(0)] 0.

- / [P (80 — X010) — W (9)Apwr — h(2)dul,

t
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whence, from[(A4)] (4.7) and Hélder’s inequality, it follows that

/ [P0+ (1=X)p — p) = h(p)ur]drpe

t

< _g/ﬂm(t)|2+c+§/9|u(t)|2+c/ﬂ(ya(t)|2+lso(t)P)

+ Cllurllie ..y + C(llooall + lleoll + lluall Lo o.7:m) [l 10,6

1
t1g | 100f +C [ (0l + luP)
Q1 Q1

t
e / 100 ()] [ ()l [14(5) ot + Byt ooz + C / .

t

Therefore, in view of (4.2)—(4.5), and using Sobolev’s embeddings and Young’s inequality, we have
that

/ [P (0 + (1 =X)p — p) —h(p)us]Orpe

P
< _Z/ |u(t)l2+0+o(||00a|l2+/ oatcr) +O(Ilsoo||2+/ so@tw)
Q Q+ Qt

1

t
#3510t C [ (el 1) +.C [ o)1 o) s

and,consequenﬂm
/ [P0+ (1= X)p — 1) — h()ur]Oup

2
<—7 [ mt P+t [ 1ot

t
o (|0|2+|90|2+|3t90|2+|u|2)+C [ @R ek, 6z
t 0

By virtue of (4.23), the inequality (2.26) now becomes

«
Sl + 5 [ noF 5 [ wuor + Joc + [ 1vogr

<CcicC / (1 + [o]? + |o]? + [0pl?)
Qt

3 t
+3g . oot € [ Im @ nas, (420
0

so that in this context the subsequent inequality reads
o P T X2
Slomol + min { .5 @Ik + F1ow0IP + S el
1 1
+a0¢ [ o+ [ VagP+ 1 [ 1ol + Zlo0l
Qt Qt Q¢

t
<c+cC / (42 + ol + o2 + |0pl2) + C / ler ()2 ls) 2, @.25)
t 0
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where all of the constants C' in the above sequence of estimates are independent of «.. Note that
the function s — ||uy(s)||2 belongs to L'(0,T) (see (@5)), whence the application of the Gronwall
lemma to (4.25) leads us to

al/QHHHWLoo(o,T;H) + ||l 0,vy + lellwroe o, mynm 0,11

+ ||U”H1(0,T;H)mLoo(o,T;V) < C, (4.26)

which replaces (2.30). Next, a closer inspection of the proof of Theorem[2.2] Second Estimate, reveals
that the estimates (2.31)—(2.33) still hold, with constants independent of «, and that (2.34) can be
replaced by

a||ﬂ||W2,oo(07T;V*) S O, (427)

on account of the fact that (cf. (4.5)) the right-hand side of (#.10) is now bounded in L>°(0,T’; H).
In conclusion, the boundedness properties (2.31)—(2.33), (4.26), (4.27) are also valid for the solution

(fe, Pars Eay 0o) O @T0)—(@T3). This solution is unique due to Theorem since (4.5) implies
2.17).

Then, by a standard weak star compactness argument, we deduce the existence of a subsequence

ar N\ 0 and a quadruple (u, ¢, &, o) such that (4.14)—(@.18) hold. At this point, we can perform the
limit procedure as in the passage to the limit as € ™\, 0 in the proof of Theorem We just point out
that, in order to obtain the inclusion in (4.20), we should instead use [3, Lemma 2.3, p. 38], since the
subdifferential structure explicitly appears in as well. This concludes the proof. O

Remark 4.2. Note that Theorem [4.1]implicitly guarantees the existence of solutions to system (4.79)—
(4.22) for all potentials F' satisfying |(A2), and therefore for every convex and lower semicontinuous
function F; : R — [0, +oo] with F1(0) = 0. The obtained solution is in fact a strong solution.

Indeed, using (4.14)—(4.18), treating (4.19) appropriately, and invoking elliptic regularity theory, we
see that (4.19) can be rewritten as

Op—Apu=Pec+X(1—¢)—pn) —h(p)uy ae.in@, (4.28)
supplemented with the boundary condition
Ot =0 ae.onX, (4.29)

which yields the additional regularity o € L°°(0, T'; W'). Moreover, we remark that if o € VNL>(2)
and ug € L*°(0,T; H), then, by arguing as in the First Estimate in the proof of Theorem we
obtain the regularity o € L>®(Q).

At this stage, if (0F1)°(vo) € L*(2), we may also repeat the Third Estimate from the proof of
Theorem since the right-hand side £ in (3.6) belongs to L>°(Q). Hence, we deduce that £ €
L*>(Q), which in particular yields a separation property (cf. Remark|3.2) in the case of the logarithmic

potential (1.7).

We now derive an error estimate for the differences ¢, — ¢ and o, — o, measured in suitable norms
and quantified in terms of the parameter «.

Theorem 4.3. Under the same assumptions as in Theorem we let (fio, P, a, 0a) denote the

solution to (F10)—@.13), for o« € (0, 1], and (i, , &, o) be the solution to (#-19)—(4.22) found by the
asymptotic limit in (4.14)—(4.18). Moreover, in addition to (4.4) we assume as well that

00,0 — 00l < Cs ot forevery o € (0,1], (4.30)
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for some constant C', > 0. Then there is a constant K5 > 0, which depends on the structure of the
system but is independent of «, such that

CYl/ZHMaHLoo(o,T;H) + |1 % (pa — H)HLO@(O,T;V) + |0 — SDHLOO(O,T;H)OLQ(O,T;V)

+ |00 = oll2rm + 11 % (00 — )| Loy < K2a* forevery a € (0,1].  (4.31)

Proof. We proceed partly as in the proof of Theorem[2.2] specifically for the steps concerning Unique-
ness and Continuous Dependence. Let us introduce the auxiliary elements p, := 04, — Xu, p 1=
o — Xy and set

a — M @3:%004—% E::fa_ga
Oq — 0, P:=po—p and 0o := 0y, — 0p.

Ql =

The plan is to subtract (4.19)—(4.21) from the corresponding relations @.10)—(4.12). We begin by
integrating in time the difference between (4.10) and (4.19). Using (4.13), we then deduce that

/a@tuav—l—/V(l*ﬁ)-Vv—l—/P(l*ﬁ)v:/oz,ug,av—/@v
Q Q Q Q Q

+ [ Pasp= [ [Lx(bien) - heDulo
Q Q

forevery v € V and a.e.in (0,7)). (4.32)
From (4.11) and it follows that

TOP — AP+ E+ Fy(pa) — F3(0) =+ X5+ X2,
o € OF 1 (pn), € € OF (p), ae.in Q. (4.33)

We then perform another time integration on the difference of (4.12) and (4.21)), using (4.13) together
with (4.22). After adding —X © to both sides, it is straightforward to arrive at

p—A(l*xp)+P(lxp)=09+P(l*xp)—Xp ae.in Q. (4.34)
We also note that (cf. (2.3))

(1xm)(0)=0, $(0)=0, (1xp)(0)=0, ae.in. (4.35)

Now we take v = [z in (4.32) and test the equality in (4.33) by ©. Summing the two relations, observing
a cancellation, and integrating with respect to time, we obtain the inequality below. Since the product
& p is nonnegative — by the inclusions in (4.33) and the monotonicity of 9 F — we easily derive

K — 2 T =112 —12
Slasmol + Jleol+ [ Ve

Qt

« —
< Slhoal?+ [ admant [ amp1sm))
t Q

«
_at2
O +

[ P [ () - b))

—/ (Fz’(soa)—Fz’(sO)—X2¢)¢+/ Xpp (4.36)

t t
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forallt € (0,7, where K := min{ P, 1}. Now, recalling the boundedness properties and (4.3),
the estimate (@.26) for a'/2||9; pta || (0,711, @s well as the regularity © € L>(0,T; H), we deduce
from Young’s inequality

[0 —
Sl + [ it [ aupalism)
t

< Cat Call? 1 —/ (1% ) ()2 + Ca||p) o1

g(h”%%/ (1% 72) ()| (4.37)
Q

We integrate by parts in time the next two terms on the right side of (4.36). With the aid of the Lip-
schitz continuity of hh (see (2.43)), the estimates (2.4) and (2.5) with p = 6, and Holder and Young’s
inequalities we obtain

| Paspi- [ Weimien) - hip)u)a
- / P(1#7)(t)(1 % B)(t) — / (1% (h(a) — B(@))u)) () (1 % B)()

- [ Praem+ [ () ~me)mem
_16/|1*u O + 4P/|1*p OF + LI =)@l [ 176 ) s ds

w3 [k [laemeass L [ Roiln @b melds

Hence, thanks to the Sobolev embeddings and again to the Hélder and Young inequalities, we infer
that

| Paspn= [ [ (Ben) - Be)u)] 7
< S mlt+ 5 [1aemoras s [ o

t
+C/O ||(1*ﬁ)(8)||2vd8+0/0 lur ()13 1B (s)1* ds. (4.38)

As for the last two terms of (4.36), by virtue of the Lipschitz continuity of £, and the Young inequality,
we have that

N __ 1 _ _
—/ (Fz’(%)—Fz’(so)—X%)sH/ Xpp< g g ke . 7). (4.39)

At this point, collecting the estimates (4.37)—(4.39), it follows from (4.36) that

« K _ T _ _
SO + RO + Sl + [ Vel
Q¢

4P? 1
< car 4 1 / @sp)ORds+ L [ 1o
QO Qt

+C/O H(l*ﬁ)(s)||f/ds+c/0 (1 + [lur(s)]13) IB(s)]|* ds (4.40)
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forall ¢ € (0,77

Next, we test (4.34) by Mp, where the constant M > 0 will be specified below. Integrating with
respect to time and applying Young’s inequality, we obtain

_ MK _ 2 M _ _ _ M _
M [t SRl < 5 [ s Pasm - xel 4 [ il
Qt Q¢ Q+

so that the assumption (4.30) allows us to deduce that

M MK
7/ P+ =l P}, < M0a1/2+MO/ (It m +121%), (4.41)
Q1 Q¢
forall ¢ € (0,77
Before adding and (4.41), we choose M such that
M>1 g MK>4P2 , [T 18P2
—_ — an —_— — l.e. max —5 (-
2 2 2 K’ ’ T K?

With this choice, we may sum (4.40) and (4.41) and then apply the Gronwall lemma, using the fact
that s — ||uy(s)||3 belongs to L'(0,T') (cf. (4.5)). Therefore, we finally obtain the estimate

! tallzmormy + 11 % Bl 2= 070) + @l L7 0022 0,720
+ 12l 20728 + 11 % Dll e 0.1 < C '/, (4.42)
from which (#.37) follows immediately, recalling that p = po, — p = 00 — 0 — X(Y0 — ©)- O

Remark 4.4. We point out that applying a similar procedure to a pair of arbitrary solutions to problems
(4-19)—(4-22) would allow us to prove the uniqueness of the quadruple (u, , &, o), with

pe L>0,1T;V), £eL>0,T;H), (4.43)
© € WhH(0,T; H)nHY(0,T; V)N L>=(0,T; W) N C°Q), (4.44)
o€ H(0,T; H)nC°([0,T); V)N L*(0,T; W), (4.45)

solving (4.19)—(4.22). Indeed, obtaining an estimate analogous to (4.42) would directly yield unique-
ness for 1 * u, ¢, and p (and consequently for o), while the uniqueness of £ then follows from a

comparison in (4.20). Moreover, the uniqueness property implies that the convergences (4.14)—(4.18)
stated in Theorem[4.1]hold not only along a subsequence «;, — 0, but for the entire family as av — 0.
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