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The Birman—-Solomyak theorem revisited: A novel elementary
proof, generalisation, and applications

Volker Bach, Antonius Frederik Maria ter Elst, Joachim Rehberg

Abstract

We provide a new short proof for the Birman—Solomyak theorem for Hilbert—Schmidt operators
and give an application to a Schrdédinger—Poisson system.

1 Introduction

About sixty years ago, Birman and Solomyak developed their calculus of double operator spectral
integrals, see [BS1] [BS2] [BS3] and derived, among other results, estimates of the form

1£(A) = f(B)lls, < L(f) [[A = Bls,, (1.1)

where A, B are bounded, self-adjoint operators, f: R — R is a function from an adequate class,
L(f) < oo is a suitable constant depending only on f, and | - |, is a Schatten norm. A directly
accessible case of (1.1) is p = 2, where the Lipschitz property of f is sufficient for (1.1), with L(f)
being the Lipschitz constant of f. Birman and Solomyak remarked in [BS4] page 156 that, in spite of
this simple characterisation, an elementary proof of (1.1) for p = 2 was lacking for a long time, and
it was eventually given by Gesztesy, Pushnitski and Simon more than forty years later in [GPS]. Their
approach is based on a classical theorem of Léwner [Léw] for finite-dimensional operators comple-
mented by suitable limit arguments. We became interested in (1.1) when one of us applied it in [KR1]
[KR2] for the derivation of estimates for particle density operators in the Kohn—Sham system.

The first aim of this paper is to give an elementary proof of (1.1) for p = 2, which is quite different
from the one in [GPS] and to generalise (1.1) for the case p = 2 to arbitrary unbounded self-adjoint
operators, provided f: R — R is (globally) Lipschitz continuous. More precisely, we prove the fol-
lowing theorem, in which, for a given Hilbert space H, we denote by Lys(#) the Hiloert space of all
Hilbert-Schmidt operators and Hilbert-Schmidt norm || - || us.

Theorem 1.1. Let A, B be two self-adjoint operators in a Hilbert space H. Let C € Lys(H) and
suppose that A = B + C. Let f: R — R be a Lipschitz continuous function with Lipschitz constant
L. Then D(A) = D(B) C D(f(A)) = D(f(B)) and the operator f(A) — f(B) extends to a
Hilbert-Schmidt operator, by abuse of notation still denoted by f(A) — f(B), such that

1F(A) = f(B)llus < L|Cllus. (1.2)

In our proof of Theorem 1.1 we first assume that f is bounded and that A and B have pure point spec-
trum, which includes all compact operators and those with compact resolvent. In contrast to [GPS] our
proof only requires Parseval’s identity. Having this at hand, we employ an argument quite similar to one
in [GPS] to carry this over to the class of all self-adjoint operators A, B, still with the Hilbert—Schmidt
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V. Bach, A. F. M. ter Elst, J. Rehberg 2

condition. Finally, an approximation argument allows us to eliminate the boundedness assumption for
f. While our proof of (1.1) in case that p = 2 does not generalise to other Schatten classes with
p # 2, we note that Peller [Pel] succeeded in proving (1.1) for p # 2 by using double and triple sums
instead of the calculus of double spectral integrals.

Secondly, we deduce from (1.2) estimates of the form
1F(A) = F(B)]lus < K [[(A+ X" = (B+X) " lus, (1.3)

where K > 0 depends on the Lipschitz constant of f and A. For smooth functions f with a cer-
tain decay the estimate (1.3) is also in [GN] (3.5) for general Schatten classes. The proof in [GN]
involves the Helffer-Sjéstrand calculus, which is much more complicated. The importance of (1.3)
lies in the fact that, e.g., for Schrédinger operators, the difference of A = — div (m”V) + U and
B = —div (m’1V) + V is usually not a Hilbert—-Schmidt operator, but the difference of their resol-
vents often is. Note that for the validity of (1.3) only Lipschitz continuity of f is required. In particular,
f does not need to be smooth, nor compactly supported and no almost analytic extension of f is
required. We further remark that an estimate similar to (1.3) was derived and used in [KR1] and [KR2]
for the estimation of density matrices with respect to Schrédinger potentials.

The third part of the paper is devoted to an application of the Birman—Solomyak theorem in density
functional theory, namely, in the investigation of the Schrédinger—Poisson system. The connection to
the Birman—Solomyak theorem is the following. Let 2 C R<, with d € {1, 2,3}, be a bounded Lip-
schitz domain and f: R — (0, c0) a strictly decreasing differentiable function with suitable asymp-
totics at co. Let H = —div (m_IV) be the unperturbed Schrédinger operator with mixed boundary
conditions on 0. If U € L(£2, R), then the spectrum of the Schrédinger operator H + U on Ly(€2)
is purely discrete with sufficiently rapidly growing eigenvalues, hence for all i+ € R the operator

f(H+U —p)

defines a density matrix, that is a positive trace-class operator, and the diagonal of its Schwartz kernel
defines a particle density N (U) € Ly(£2, R). More precisely, viewing a bounded function W as a
multiplication operator, one can show that the map

Wi tr (f(H+U—p) W)

extends to a continuous linear functional on Lo (2), which can be represented by a function N (U) €
Lo(€2). In physics, the number 1 € R is a Lagrange multiplier called the Fermi level. It ensures the
normalisation condition tr (f(H + U — p)) = N, where N > 0 is the particle number. In many
applications, U = Vj + V' is a small perturbation of a fixed reference potential 1 € Lo(£2). Since
the Schrddinger—Poisson system can be written as one single equation (see [Nie])

—V - eVV NV, +V) =g, (1.4)

one is interested in the functional analytic properties of the map U — N (U) from L (2) into Lo(Q2)
and from TWH2(Q) into W~=12(Q), see also [WPH] Subsection 3.5. In [Nie] it was proved that the
operator from W12(Q) into W~12(()) is antimonotone and locally Lipschitz continuous, so that the
standard monotone theory with the Browder-Minty theorem applies. Unfortunately, the proofs in [Nie]
are technically involved. We will use the Birman—Solomyak theorem to prove that U +— N (U) is
locally Lipschitz continuous from Ly (€2) into Lo(€2). In [KNR], however, the monotonicity of U >
N (U) from Ly(Q) into Ly(Q2) and from W12(Q) into W~12(Q2) was established by an abstract
operator-theoretic principle, without using specific properties of the concrete Schrédinger operators
which are involved. Moreover, the proof in [KNR] is fairly simple.
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The Birman—Solomyak theorem revisited 3

Concerning the continuity properties, in [KR1] and [KR2] local Lipschitz continuity of the map U
N(U) from Ly(Q2) into Lo(§2) was established, which implies, trivially, the local Lipschitz continuity
from W12(Q) into W~12(Q)). These two properties, (anti)monotonicity and local Lipschitz continuity,
are the key ingredients for an adequate investigation of the Schrédinger—Poisson system (1.4). Since
the latter is a fundamental model in modern physics (see [POM] for a recent overview), we recall the
essentials of the analysis for this system. This includes both a derivation of the local Lipschitz continuity
for the particle density operator and a description of the foundation of a numerical procedure, which is
standard nowadays, and rests on a functional-analytic based contraction principle.

As already indicated, several ideas of this paper are already present in the quoted foregoing papers,
frequently with complicated proofs. It is, however, our intention to present an entirely self-contained
text on the Schrédinger—Poisson system, now based on elementary proofs of the crucial properties
of the particle density operator and readable also for theoretical physicists. Essentially new in this
paper is a deeper analysis of the Schrodinger operators. In particular it is proved that H + V' makes
sense also as operator sum, and not only via forms. Moreover, a deeper analysis shows here that
the resolvents of the operators (H + U) map Lo (£2) into Lo (£2), and the corresponding norms are
bounded, uniformly on Lo-bounded sets of potentials U/. Moreover, in Theorem 5.1 we prove that the
solution of the Schrédinger—Poisson system as function of the reference potential 1{, and the right
hand side ¢ also is locally Lipschitz. This is the key tool for the treatment of the Kohn—Sham system,
see [KR1] [KR2]. We refer to [WPH] Section 3.5 for the numerics of the Kohn—Sham system.

The paper is organised as follows. In Section 2 we prove Theorem 1.1. In Section 3 we prove (1.3) on
resolvents. We provide in Section 4 an abstract theorem to construct a solution for a strongly monotone
operator via the Banach contraction theorem. In Theorem 5.1 we give a rigorous statement and proof
of the Schrédinger—Poisson system (1.4) and show that the solution is (locally) Lipschitz as function
of the data.

2 The elementary proof

If (X,.A, 1) is a measure space, then we say that (X, A, 1) is a locally finite if for all £ € A with
p(E) = oo there exists an F' € Asuchthat F' C Eand 0 < u(F') < oo. If Ais an operator in a
Hilbert space 7, then we provide D(A) with the graph norm given by [[ul|3, 4 = [[AullF, + [|u/l3.

We need some lemmas.

Lemma 2.1. Let A be a self-adjoint operator in a Hilbert space H and f: R — R a Lipschitz
continuous function. Then one has the following.

@  D(A) C D(f(A)).
(b) D(A)isacorefor f(A).

(¢) Foralln € N define xp,: R — R by x», = (—n) V & An. Then lim,, o (Xn © f)(A)u =
f(A)u forallu € D(f(A)).

Proof. Using the spectral theorem we may assume that H = Lo( X, A, 1) and A is the multiplication
operator with a measurable function h: X — R, where (X, A, 1) is a locally finite measure space.
Since f is Lipschitz continuous, there are L, b > 0 such that | f(z)| < L |z| + bforall z € R. Now
f(A) is the multiplication operator with the function f o h.
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“@). Letu € D(A). Then [ |hu|? < oo and [ |u|* < oo. Hence

/\(foh)-u\2 < /\L|h\ + b Ju* < 2L2/\hu\2 —|—2b2/\u]2 < 00.
Therefore uw € D(f(A)).
‘(b). Letu € D(f(A)).fn € IN, then u L <) € D(A). Moreover,

lim /\(foh)u]l[hgn]‘zz/‘(th)U’2

n—oo

by the monotone convergence theorem. So

lim A~ u o) [ = lim / (17 onyul - / (f o By ulgpzaf?) = 0.

n—oo

Similarly lim,, oo [|u — u Ly <p|13;, = 0 and lim w L <) = win D(A). Hence D(A) is a core for
F(A).

‘€. 1fn € Nandu € D(f(A)), then |(xn o foh)-ul?> <|(foh)-ul*andalso lim,_,(xn ©
foh)-u= (foh)- u Then the statement follows from the Lebesgue dominated convergence
theorem. O

The next two lemmas are trivial.

Lemma 2.2. Let A, B be operators in a Hilbert space H andT' € L(H). Let D be a subspace of H.
Suppose that D is a core for B, the operator A is closed and Au = Bu + Tu for alluw € D. Then
D(B) C D(A) and Au = Bu + Tu forallu € D(B).

Proof. Letu € D(B). Then there exists a sequence (uy, )nen in D such that lim u,, = u in D(B).
Now lim Aw,, = lim(Bu,, + Tu,) = Bu + Tu. Since A is closed, it follows that u € D(A) and
Au = Bu+ Tu. O

Lemma 2.3. Let T be a densely defined symmetric operator in a Hilbert space H. Let (u)acr be an
orthonormal basis in 1. Suppose that u, € D(T) and y", ;| Tuqs||3, < oo. Then T extends to a
bounded operator on H.

Proof. Letu € D(T'). Then

ITul3 =Y 1(Tu,ua) P =Y 1w, Tua) P < Y lullyy 1 Tuallf = lully, D 1 Tuall3

acl acl a€el a€el

and the lemma follows. O

Now we prove Theorem 1.1 in the special case that A and B have a pure point spectrum. The proof
is very elementary. For simplicity we assume that f is bounded.

Proposition 2.4. Adopt the assumptions and notation of Theorem 1.1. Suppose in addition that A
and B both have a pure point spectrum and that the function f is bounded. Then f(A) — f(B) is a
Hilbert—Schmidt operator and

1/(A) = f(B)llus < L|Cllus.
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Proof. Since A has a pure point spectrum there exists an orthonormal basis (1, )acs for H and for
all « € I there exists a A\, € R such that Au, = A, u,. Similarly for B there exists an orthonormal
basis (vy)acs for H and for all o € I there exists a 1, € R such that Bu, = fiq Vq-

If o, 5 € I, then

((f(A) = f(B))ua, vg)u = (f(A)ua, v8)n — (Ua, [(B)vg)n
= (f(Ma) Uas v8)u — (Ua, f(1s) va)u = (f(Aa) — f(1p)) (tas vp)n-

Now let o« € I. Then Parseval’s identity gives

1(F(A) = F(B)uallze =D I((F(A) = F(B)tas va)al® = > 1F(Na) = F 1) |(ttary v5) 24

Bel Bel
<D L o = sl (s va)ul* = L [(A = Buall3, = L* || Cualf3-

Bel

Hence

1£(A) = F(B)llfs = Y IS (B)uallzy <> L [|Cuallf, = L*[|C|fs < o0

acl acl

and the proposition follows. O

We now drop the assumption that A and B have a pure point spectrum, but add the assumption that
H is separable. The proof is a modification of the proof of [GPS] Theorem 4.1.

Proposition 2.5. Adopt the assumptions and notation of Theorem 1.1. Suppose in addition that the
function f is bounded and the Hilbert space H is separable. Then f(A) — f(B) is a Hilbert-Schmidt
operator and

1F(A) = F(B)llus < L[Cllus.

Proof. By Proposition 2.4 we my assume that 7 is infinite dimensional. Since H is separable and
A is self-adjoint there exists an orthonormal basis (ex)renw for H with e, € D(A) for all k €
IN. For all n € IN let P, be the orthogonal projection of H onto span{ey,...,e,}, set A, =
P,AP, and B, = P,BP,. Now lim,_,., A, = A in the strong resolvent sense. Therefore
lim,, o f(An) = f(A) strongly in H by [RS] Theorem VII1.20, where we use that f is bounded. In
particular, lim,, .. f(A,)er = f(A)ey for all k € IN. Similarly lim,, .. f(B,)ex = f(B)e for all
k € IN.

Let m € IN. Then for all n € IN with n > m we obtain by Proposition 2.4 that

DA = F(Bu)erllz < D I (A) = f(Ba)exllf = I1F(An) — f(Ba)ls

< L? || Ay = Bulliis = L* [P C Palliis < L*[|Clfys-

Now take the limit n — oo to deduce that
S IF(A) = f(B))exllz, < L2 [|Cls-
k=1

The limit m — oo gives || f(4) — f(B)|[fs < L* [|C/[fs as required. O
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In the next step we drop the assumption that f is bounded, but keep that H is separable.

Proposition 2.6. Adopt the assumptions and notation of Theorem 1.1. Suppose in addition that the
Hilbert space H. is separable. Then D(A) = D(B) C D(f(A)) = D(f(B)) and the operator
f(A) — f(B) extends to a Hilbert-Schmidt operator, by abuse of notation still denoted by f(A) —
f(B), such that

1/(A) = f(B)llns < L|Cllus.

Proof. The equality D(A) = D(B) is trivial.

For all n € IN define x,,: R — R by x,, = (—n) V & A n. Then Y, is Lipschitz continuous
with Lipschitz constant 1. Hence the composition f,, = x,, o f is Lipschitz continuous with Lipschitz
constant M. Define T,, = f,(A) — f.(B). It follows from Proposition 2.5 that 7,, € Lys(#) and
IT|lns < L ||C||lus- Hence the sequence (7},),cn is bounded in the Hilbert space Lys(#H). Pass-
ing to a subsequence if necessary, there exists a 7' € Lyg(H) such that lim,, o, 7, = 1" weakly
in Lys(H). Then lim,,_,, T, = T in the weak operator topology on £(H) and lim,, o T,u = Tu
weakly in H forallu € H

Now let u € D(A). Then u € D(f(A)) by Lemma 2.1(a). So lim,, o fr(A)u = f(A)uin H
by Lemma 2.1(c). Similarly lim,, ., f,(B)u = f(B)u. Hence lim,, o, To,u = (f(A) — f(B))u
in M. Therefore Tu = (f(A) — f(B))uforalu € D(A) and f(A)u = f(B)u + Tu for all
u € D(A). Since D(A) is a core for f(B) by Lemma 2.1(b) and f(A) is closed, it follows from
Lemma 2.2 that D(f(B)) C D(f(A)) and f(A)u = f(B)u+ Tuforallu € D(f(A)). Similarly
D(f(A)) C D(f(B)).Hence D(f(A)) = D(f(B)).Moreover, T'is an extension of f(A)— f(B).

Finally, since lim,, ,, T,, = T weakly in Lys(# ) one deduces that
[Tlns < liminf |T5[jus < L [[Clns
n—oo

as required. O
Finally we drop the assumption that H is separable.

Proof of Theorem 1.1. Since (' is a compact operator, there exists a separable subspace H of H
such that C'(Hg) C Hoand Cu = O forall u € Hg. Let U and V be the Cayley transforms of A
and B. There exists a separable closed subspace #; of H such that Hy C H; and H; is invariant
under the four bounded operators U, V/, U* and V*. Write Hy = H1 . Then H, is invariant under
U and V. Let P: H — H; be the orthogonal projection onto ;. Then the restriction of U to H;
is a unitary map from #; onto ;. This corresponds to a self-adjoint operator A; in . Moreover, if
u € D(A), then Pu € D(A;) and A; Pu = P Au. Similarly one can define a self-adjoint operator
Ay in Hs. Moreover, one can define similarly operators B, and Bs.

Since A = B + C one deduces that A; = B; + C and A, = B,. Proposition 2.6 gives
D(A;) = D(B;) € D(f(A1)) = D(f(By)) and the operator f (A1) — f(B;) extends to a Hiloert—
Schmidt operator on H;, denoted by T3, such that |71 |lus < L ||C|lus. Trivially f(A2) = f(Ba).
Now f(A) = f(A1) & f(A2), with a similar decomposition for f(B). So D(f(A)) = D(f(B)).
Moreover, f(A)— f(B) = (f(A1) — f(B1)) @ 0. Hence the operator 17 &0 extends f(A) — f(B).
Furthermore, T' & 0 is a Hilbert—Schmidt operator with || 7" & 0||gs < L ||C||us. The proof of Theo-
rem 1.1 is complete. O
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The Birman—Solomyak theorem revisited 7

3 Resolvent estimates

Very often one is in the situation that self-adjoint operators A and B do not differ by a Hilbert—Schmidt
operator, but the difference of the resolvents (A — \)~! — (B — X)~! is a Hilbert-Schmidt operator.
Under an additional decay assumption on the function f we shall show that f(A) — f(B) is a Hiloert—
Schmidt operator and estimate the Hilbert—Schmidt norm in terms of the Hilbert—Schmidt norm of the
difference of the resolvents.

Theorem 3.1. Let A and B be two lower-bounded self-adjoint operators with lower bound p € R.
Let \ > —p. Let f: (0, A%p} — R be a Lipschitz continuous function with Lipschitz constant L.
Define g: [—p,00) — R by g(x) = f(15). Suppose that the difference of the resolvents (A +
M)t — (B + X I)~! is a Hilbert-Schmidt operator. Then g(A) and g(B) are bounded operators,

their difference is a Hilbert—Schmidt operator and

lg(A) = g(B)llus < LI(A+X)"" = (B+ N us.

Proof. Notethat g(A) = f((A+A1)~!). We may extend f to a Lipschitz continuous function, again
denoted by f, by taking it constant on (—o0, 0] and constant on (A%p, o0). Then f is bounded, so
F((A+XI)~1)is bounded. Similarly g(B) = f((B+ X I)™') is bounded. Then the theorem follows
from Theorem 1.1 or Proposition 2.5. O

Corollary 3.2. Let A and B be two lower-bounded self-adjoint operators with lower bound p € RR.
Let A > —p. Letg: [p,00) — R be a differentiable function and suppose that L = sup,,c(, «, (T +
A2 1g'(x)| < oo. Suppose that the difference of the resolvents (A + A\I)™* — (B + AI)"!isa
Hilbert-Schmidt operator. Then g(A) and g(B) are bounded operators, their difference is a Hilbert—
Schmidt operator and

lg(A) = g(B)llus < LI(A+X)"" = (B+ )" us.

Proof. Define f: (0,5=] — Rby f(t) = g(+ — \). Then g() f(ﬁ) for all x € [p, 00).

) )\_—,D =
Moreover, f(t) = — 5 ¢'(+ = A) = —(z + A)* ¢/(z) forall ¢ € (0, /\%p] where z = 1 — \. Hence
f is Lipschitz continuous with Lipschitz constant L. Now apply Theorem 3.1. O

4 A contractive iteration scheme

In this section we provide a sufficient condition to obtain a solution of a nonlinear map on a real Hilbert
space via the Banach contraction theorem.

If H is a real Hilbert space, A: H — H* is a map and m > 0, then A is called strongly monotone
with monotonicity constant m if (Au — Av,u — V)yrx3 > m||u — vl|3, for all u,v € H. Note
that then || Au — Avl|y > m|lu — v|| and A is injective.

Theorem 4.1. Let H be a real Hilbert space, m > 0 and A: H — H* a strongly monotonous
map with monotonicity constant m. Let R > 0 and let B = {u € H : ||ul]lx < R} be the closed
ball centred at 0 and radius R. Suppose that the restriction A|g is Lipschitz continuous with Lipschitz
constant M. Let J: H — H* denote the duality map. Fix f € H*. Define Q: B — H by

mo .
Then one has the following.
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(a) The map () is a contraction with contraction constant 1/ 1 — %

(b)  Suppose R > 2 ||AO — f||3+. Then Q maps B into itsel

(c)  Suppose R > 2 || A0 — f||3. Then there exists a unique u € B such that Au = f. Define
u; = 0 and for alln € IN define u,, 1 = Qu,. Thenu = lim,,_,, u,,. Moreover,

1
Julle < — 140 - f]

H* -

1+. Then there exist
u—vllu < lIf -9

(d) Letalsog € H*. Suppose R > 2 ||A0 — f|l+ and R > 2 || A0 — g|

unique u,v € H such that Au = f and Av = g. Furthermore,

H*-

Proof. ‘(a). Let u, v € B. Using the duality map .J, one estimates

1Qu — Qul3, = (u—v — S JHAu — Av),u —v — ﬂJ’l(Au — Av))y

M? M?
9
m _ m _
— o ol = 2 (T (A = o) — 0+ 7 (A = v
m m?

= [lu— vz — 2

(Au — Av,u — v) e + e | Au — Av||3,.

M?
2 2 m2

m m
< flu— vl — 22l — ol + 2w — vl = (1= T = ol

where we used the strong monotonicity and Lipschitz continuity in the last inequality.

‘(b)'. Let u € B. Then if follows from Statement (a) that

m? m
[Qull < 1Qu — QOll + 1Q0ll < 11— ol + gl A0 — f

H*

m2 m?
< (4112 ) <R
_< M2+2M2 R=R

‘(c)’. Most follows from the Banach fixed point theorem. Since

If — AQ|

ullw = [[Au — A0

e we Nl > (Au— A0, w — 0)3- 30 > mllul?,,

the estimate follows.

(d). The existence follows from Statement (c). The monotonicity gives m ||u—v||3, < (Au— Av, u—
Vs = (f = g u—0)asn < || f =g u—v|y and hence m [[u—vljz < ||f = glln-. O

H*

In [Zei] Section 25.4 and [GGZ] Theorem 3.4 in Subsection 111.3.2 global Lipschitz continuity for A is
demanded, but in the latter is at least indicated that local Lipschitz continuity suffices. The required
radius of the ball B in [GGZ], however, is not optimal, and the proof is unnecessarily complicated. In
general, global Lipschitz continuity is a severe restriction and, in general not fulfilled if A is not linear.
In particular, the operator used in Proposition 5.14 is not globally Lipschitz.
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The Birman—Solomyak theorem revisited 9

5 An application in density functional theory

In this section we give an application of Corollary 3.2 via a Schrédinger—Poisson system used in
electron transport theory. The main theorem of this section is as follows.

Theorem 5.1. Letd € {1,2,3} and Q) C R a bounded open set with Lipschitz boundary. Let
g,m: Q — R¥? pe bounded measurable functions with £(x) and m(x) symmetric for all x € €.
Let i, ft > 0. Suppose that

(e(@)&,E)pe > p ke and (m(z)€,E)pa > i ]|€]|Ra

forall ¢ € R%. Let f: R — (0,00) be a differentiable and strictly decreasing function with f’ locally
bounded. Moreover, suppose that bothr — r* f(r) andr — r* f'(r) are bounded on [0, o). Then
f: R — f(R) is bijective and assume in addition that its inverse is locally Lipschitz. Let D C Of) be
closed. Fix N > 0.

Let W% (Q) be the W2(Q)-closure of the set {ulq : u € C*(R?) and suppu N D = 0}. Let
cp > 0. Suppose that
[ul|7,) < cp IVullZ, o

for allu € WE’Z(Q). (So the space Wll)’Q(Q) admits a Poincaré inequality.) For all V' € Lo(2, R)
and 1, p € W5*() it follows that V ¢ @ € L1(R). Define ty: W5(2) x W5*(Q) — C by

wlvol = oo+ [ Vo
Q
Then one has the following.

(@) ForallV € Ly(2, R) the sesquilinear form ty, is closed, symmetric and lower-bounded. We
denote by H the associated operator in case V' = 0 and by H + V the associated lower-
bounded self-adjoint operator.

(b)  ForallV € Ly(Q,R) the operator f(H + V) is nuclear.
(c) ForallV € Ly(£2, R) there exists a unique E(V') € R such that

tr f(H+(V—E(V)1g)) = N.

(d)  ForallV € Ly(Q,R) there exists a unique N' (V') € Ly(2, R) such that
[N W = st g4V - )
0

forall W € L..(€)), where My is the multiplication operator with W .

(e) ForallVy € Ly(,R) and g € (W5*(2, R))* there exists a unique V € W5*(€, R) such
that

o eVV .- VW — (N(VQ + V), W)LQ(Q) = <q, W>(W$’2(Q,R))*><W$’2(Q,R)

forall W € W5 (Q,R). Write U(Vy, q) = V.
(f)  IfVy € Ly(Q,R) and g € (WS5(Q, R))*, then

1+cp

”‘I’(VOaQ)HWLl;Q(Q,R) < Hq—i_j\[(vo)H(VVLI>’2(Q))’“'
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(@  IVp € Lo(Q, R), then

_ 1+cp
1P (Vo, q) — \Ij(‘/O7Q)”W117’2(Q) < lg — ‘]H L2())*
forallq,q € (W5 (Q,R))*.
(h)  Forall R > 0 there is a c > 0 such that
1+ Cp

W (Vo,q) = ¥(Vi, )2y < cllVo = Valle, + lg = dll w2 ()
for all Vo, Vi € Lo(2,R) and g, (j

= ( (Q ]R)) with |“0HL2 =
lall w2y < R and||q|| WL2(Q . <R
(Wp™() (

o, < R,

The proof of Theorem 5.1 requires quite some preparation and the statements will be proved in sep-
arate lemmas and propositions in this section. Throughout this section we adopt the notation and
assumptions of Theorem 5.1.

Define the sesquilinear form t: W5(Q) x W5*(Q) — C by

{4, o] = /Q n vy - V.

Then t is a closed positive symmetric form. We define the unperturbed Schrodinger operator H on
L(€2) as the operator associated to the form t. Formally H = — div(m™'V) In semiconductor
modelling m describes the position dependent effective mass (modulo Planck’s constant and a fac-
tor 2). Then H is a positive self-adjoint operator. The form domain WLI,’Q(Q) gives the realisation of
the operator H with homogeneous Dirichlet conditions on 1D and homogeneous Neumann conditions
on 9\ D. We refer to [ET] for more details of the spaces W ,;(Q).

We need for the sequel that the resolvent of H is a Hilbert—-Schmidt operator, or equivalently that
(H + 1)~'/2 belongs to the Schatten 4-class.

Proposition 5.2. (H +1)"1/2 € ;.

Proof. Define [: W12(2) x W'2(Q) — Cby [[¢),¢] = [, Vi) - Vipo. Then there is a ¢ > 0 such

that [[¢)] < ct[)] for all i € W52(Q). If Ay is the Laplacian with Neumann boundary conditions,
then — Ay is the operator associated with [. Let \; < Ay < ... be the eigenvalues of the operator H,
repeated with multiplicity and let ;17 < s < ... be the eigenvalues of the operator —A y, repeated
with multiplicity. Then the mini-max theorem gives 1, < ¢\, for all n € IN. The Weyl asymptotics
give that there is a ¢ > 0 such that p,, > ¢ n?/4 for large n € IN. Since d < 3 this implies that

5, (O + 1)1/2>4 < . o

In the sequel H is perturbed by a potential V' € Ly(€2, R). We will prove a form bound with respect
to tin order to see that the form sum is well-defined.

Lemma 5.3. Thereis a~y > 0 such that
| [ vou] < S DV i,

uniformly for all V € Ly(Q, R) andy € W5*(Q).
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Proof. Since (2 is Lipschitz, one has the continuous embedding W5*(€2) < Lg(Q), where we use

that d < 3. Let ¢; be the embedding constant. Then

oY

| [ Vo] S IVILlol, < W ORI 01E)E < e IV1(ie)

< ¢ ((Imlloe. + D+ D)) IV L (112,)3

AV, (mll e +1)°
4

S2G+DWH—

111,

by Young’s inequality.

(l11Z,)

=

O

Throughout the remainder of this section we let v > 0 be as in Lemma 5.3. For all V' € Ly(Q, R)

define the sesquilinear form ty: W52(Q) x W5(2) — C by

. ¢ Zf[¢,¢]+/QV¢¢-

By Lemma 5.3 the form ty, is symmetric, semibounded and closed. We denote the corresponding

self-adjoint operator by H + V.

Lemma 5.4. Let R > 0. Define A\ = 1 + v R*. LetV € Lo(Q, R) with ||V ||, < R. Then one has

the following.

(@)  The operator H + V + X is positive, invertible and ||(H + V + \) Y| 1,1, < 4.

®  pt] =AY, < tvlv] < D)+ A, forally € W),
© NH+DAHEV N <2

@ (VN2 = NH YV 4+ 0T, < 2(H +1) 725, < oo,

Proof. “(a). Let) € W*(€2). Then

Wil =1+ [ Vo> =] [ Ves|2 20+ 1l - A,

or, equivalently,

1
e+ A 01L, = Z(t+ DY
This implies Statement (a).
‘(b)’. This follows similarly.

‘(c). It follows from (5.1) that

. 1
I(H +V 4+ NP2, > S I(H + 1)

forall i) € Wllj’Q(Q). Now use [Kat] Theorem VI.2.23.

‘(dy. Since (H+V +X) V2= (H+1)2 ((H +1)2(H+V + )\)_1/2>, the statement follows

from Statement (c) and Proposition 5.2.
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The form method gives that D(H'/?) = D(H +V 4+ 1+~ ||V|[|1,)"/?*forall V € Ly(2, R). Even
more is valid. For all V' € Ly(€2, R) let My be the self-adjoint operator in Ly(£2) by multiplication
with V.

Proposition 5.5. Let R > (. Define \ = 1 + ~y R*. Then there is a ¢ > 0 such that for all V €
Ly(Q, R) with | V]|, < R the following is valid.

(@ D(H+ V)= D(H).

(b) D(H)C Lo(2) C D(My).
) H+V=H-+DM,y.

@ JHFEV+N oo, <c

Proof. Let S be the semigroup on Lo generated by —(H + A). It follows from [AE] Theorem 4.4

together with Example 4.3 that there are c,w > 0 such that ||S;||z, .. < ct™¥*e“t forallt > 0.
Let p € R with p > w be such that ¢ R (p — w)~ "7 I'(4%) = 1. Lety € L. Then a Laplace
transform gives (H + A + p) !4 € L., where we use that d < 3. In particular, D(H) C D(My).

Moreover,

1My (H + X+ p) " |z, < V]2, / e " NSell e At Y]]
0

d

_aa_4—d
< eVlls (o) T L,

<

11l

DN | —

Therefore My, is H-bounded with relative bound % Then it follows from [Kat] Theorem V.4.3 that
the operator H + My is self-adjoint. Note that D(H + My ) = D(H). Let v € D(H). Then
v € D(My). It o € Wp(Q), then ty 1), o] = t{v), 0] + (V, 9)r, = (HY + V), @)1, Hence
Y€ D(H+V)and (H+ V)Y = HY + Vip = (H + My ). We proved that H + V' is an
extension of H + M. Butboth H +V and H + My are self-adjoint. Therefore H +V = H + My, .
In particular D(H + V) = D(H) C L.

Next
(H+V+>\+p)*1<1+MV(H+A+p)*1> =(H+X+p)"
and _1
(H+V+r+p) t=H+M+p)! (1+MV(H+A+p)*1)
Therefore || (H +V 4+ A+ p) " HLysroe < 20(H + A+ )7 2oL 3

As a result we obtain a resolvent equation. Note that the multiplication operator in the next corollary is
an unbounded operator in general.

Corollary 5.6. Let R > 0. Define \ = 1 + yR*. Let U,V € Ly(, R) with |U||r, < R and
IV, < R.ThenD(H +V + \) C D(My) and

(H+U+N T = (HEV+ ) = —(H+U+N " My_yv (H+V + )L

Lemma 5.7. Let R > 0. Define A\ = 1 + v R*. Then one has the following.
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(@) Forallk € {0,...,4} thereis acy > 0 such that f(H + V)i € D((H + V + \)¥) for
ally € Ly(Q) and ||[(H +V + N f(H + V)||1,n, < ¢ forall V € Ly(Q,R) with
Ve, < R.

(b)y  Forallk € {0,1,2} there exists an My, > 0 such that the operator
(HFV+ N f(HFV)

is nuclear and || (H +V + \)* f(H +V)||s, < My, forall V € Ly(Q, R) with ||V |1, < R.

Proof. ‘(a). The operator H + V is self-adjoint and lower bounded by —~ by Lemma 5.4(a). Define
g: R — Ry g(r) = (r + A)* f(r). Then g is bounded on [—\, 00) by the assumptions on f.
Therefore the spectral theorem gives ||(H + V + \)* f(H 4 V)|l1, 0, < SUDc(_y 00 19(7)] =

SUD, ¢y 00) (1 + N)F (7).
“(b)". Now

ICH £V N PO A V)lsy < I V422l [((H 4V 4 052 H V),
< (QH(H + 1)_1/2H54)4 Ck+2,

where we used Lemma 5.4(d) and Statement (a). O

Forall W € L. (€2) we denote by My, the multiplication operator on Ly(£2) by multiplying with 1.
Let V' € Ly(£2, R). Choosing k = 0 in Lemma 5.7(b) gives that f(H + V) is trace class. Then

[tr (Mw f(H + V)| < [Mw ||y, tr |f(H + V)| < W |z tr f(H +V)

forall W € L. (£2). Hence there is a unique M (V') € L;(€2, R) such that
/ MV)W = tr(My f(H+V))
0

forall W € Lo ().

Proposition 5.8. Let R > 0. Then there exists an M > 0 such that the following is valid.

(@  IfV e Ly(QR) with ||V ||z, < R, then M(V) € Ly(2, R) and |M(V)]|1, < M.

b |MU) = M), < M||U =V, foral UV € Ly(2, R) with |U]|, < R and

Proof. ‘(a)’. Letcs > O be asinLemma5.7(a) and ¢ > 0 as in Proposition 5.5(d). Write A\ = 14y R
Let W € Lo (2). Then

‘/QM(V)W‘:

tr(Mw f(H +V)) ‘

- ‘tr(MW(H+V+>\)‘1(H+V+)\)3f(H+V)(H+V+/\)‘2>‘
< |[Mw (H+V +X)"L,r, -

ANH +V + A SH V)| gz I(H +V 4+ 272 ls,
< c|[Wily es (211(H +1)72]1s,)",
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where we used Proposition 5.5(d), Lemma 5.7(a) and Lemma 5.4(d).

‘(b). Write \ = 1 + v R*. Define the function g: R — R by g(r) = (r + \)? f(r). Let U,V €
Ly(Q2, R) with ||U||, < Rand ||V ||, < R.LetW € L (2). Then
/ MV)YW =tr (Mw f(H+V))
Q
:u(MH+VMH+V+Arwm4H+V+Arg
with a similar expression for U instead of V. Therefore
L/@MW—MWDW(
Q
:h%ﬂﬂ+m—¢H+myH+U+»4MWm+U+»4
+uﬂH+W(W+U+M”MWW¢U+M”

—%H+V+M“MWW#V+M4)

<|lg(H+U) —g(H+V)|as |(H+U+X)" My (H+U+X)""{us
+ lg(H W) |las ||(H+U + X)) My (H+U + X))
—(HFV+N "My (H+V 4+ X)"Yas.

We estimate the two factors of the two terms.

First consider ||g(H + U) — g(H 4+ V)||us. If r € [\, 00), then
(r+ 2?19/ ()] = 2(r + X f(r) + (r+ )" /(7).

Set

L= swp (r+A?1g0r)]
re[—\,00)

The assumptions on the function f imply that L. < co. Then Corollary 3.2 together with Corollary 5.6
give
lg(H +U) — g(H + V)|us
SLI|HFU+N—HFV+N) s
=L|(H+U+XN""My_v (H+V +X)"us
<|[(H+U+N)"us [My—v (H+V + X",
< QIH +1)72)ls)? cl|U = VL,
where we used Lemma 5.4(d) and ¢ > 0 is as in Proposition 5.5(d).

Secondly and similarly

I(H + U+ X" My (H U+ 0 s < )1(H + 1)) ¢ [|W]| 2,
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Thirdly,
. . 1/2 . 1/2 1/2 1/2
lg(H 4+ V)|lus < llg(H + VI g(H + V)12, < o My,

where ¢o and M, are as in Lemma 5.7.

Finally, using again Corollary 5.6 we obtain
(H+U+XN""My (HFU+NT = (HFV+N My (H+V 4+ 27 lus

gH«H+U+Arh4H+v+M*ﬂh4H+U+»4MS

I +V 4+ 27 My (B4 U+ 07 = (H 4V )7 s
<|(H+U+X)" My (H+V + N7 My (H+U+ X)) ns
+ N H+V+N My (H+U+XN)"My_y (H+V + A7 s.
Now
I(H+U+ N My_y (H+V+X) " My (H+U+ ) "us
< NH + U+ N las [ My—v (H+V + N za1, -
N Mw (H+U + X" roosrs
< @IH+ 1) 2s)? ENU = Ve, W]z,
where we used Lemma 5.4(d) and ¢ > 0 is as in Proposition 5.5. Similarly
I(H +V + X" My (H+U + ) My—y (H+V 42 lus
< 2I(H + 175 )? U = Vi, Wi,

Together we obtain that there is a C' > 0 such that
| [ (M) = M) W] £ U = Vo, W
forall W € Lo(2) and U,V € Lo(2, R) with ||U||, < Rand ||V ., < R.Hence
[IMU) = MV )|z, <CU = V|,
forall U,V € Ly(2, R) with ||U||, < Rand ||V, < R, as required. O
The map M has the following monotonicity on the real Hilbert space Ly(€2, R).
Proposition 5.9. LetU,V € Ly(Q, R). Then ( M(U) — M(V),U — V), < 0.

Proof. We follow arguments given in [KNR]. First suppose that U, V' € L. (£2,R). There exists an
orthonormal basis (¢, )new for L2(£2) and for all n € N there is a A, € R such that (H + U )1, =
An ¥y, Similarly there exists an orthonormal basis (¢, )nen for Lo(€2) and for all n € N there is a
tn € Rsuchthat (H 4 V)@, = fin @n.

Letn,m € N. Then,, € D(H +U) = D(H) = D(H + V') by Proposition 5.5(a). Hence

((U - V)wm Spm)Lz = ((H +U—-H+ V)wna @m)Lz = ()‘n - ,um> (wn, @m)Lr
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Then
/Q(U — V) M(U) = tI‘(MU_V f(H ‘I‘ U) = Z(MU—V f(H + U)¢n7 ¢n)L2
n=1
- Z f()‘n) ((U - V),lvbn’ ¢n)L2
n=1
= Y FOW) (U = V)b, 0m) 1 (P Pn) L
n,m=1
= Z f()‘n) (/\n - Nm) |<77Dn7 me)L2|2'
n,m=1
Similarly
L =M = 3 70 Gt = A o)
n,m=1
Hence
L@ =) (M@0) = M0)) = 32 (F0) = ) O = ) o n)saf < 0
n,m=1
since f is decreasing.
Now the proposition follows from Proposition 5.8(b) by density and continuity. O

fV € Ly(,R)andt € R,then H +V —t = H+ (V —tlg)and V —t1g € Ly(Q,R).
Choosing k = 0 in Lemma 5.7(b) gives that f(H + V — t) is trace class for all V' € Ly(Q2, R) and
t € R.

Lemma 5.10. ForallV € Ly(, R) and N € (0, 00) there is a unique t € R such that tr(f (H +
V —t)) =N.

Proof. Let \; < Xy < ... be the eigenvalues of the operator H + V', repeated with multiplicity. Then
r(fH+V=1)=> fn—1)
n=1

for all £ € R. This series is absolutely convergent for each ¢t € RR. Since f is continuous and strictly
decreasing, it follows from the Lebesgue dominated convergence theorem that ¢ — tr(f(H—i—V—t))
is continuous and strictly increasing.

Because f(0) > 0 one deduces that lim;_, tr(f(H +V - t)) = 00. Using again the Lebesgue
dominated convergence theorem it follows that lim;_, . tr(f(H +V - t)) = (. Then the existence
follows. O

Forall V' € Ly(2, R) we define the Fermi level £(V') = ¢, where ¢ € R is such that
t(f(H+V —1)) = N.

Recall that [V is fixed in Theorem 5.1. We next prove that the function V' — £(V/) is locally bounded.
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Proposition 5.11. Forall R > 0 there exists an M > 0 suchthat|E(V)| < M forallV € Ly(2, R)
with ||V ||, < R.

Proof. The proof is a modification of the proof of Lemma 5.10. Write A\ = 1 + v R* Forall V ¢
Ly(Q2, R) with |V, < R let )\gv) < A§V> < ... be the eigenvalues of the operator H + V,
repeated with multiplicity. Then the mini-max theorem together with the form bounds of Lemma 5.4(b)
gives

IO X< AW < IAO 4 )

foralln € IN. Lett € R. Since f is decreasing one estimates

o0

Zf AV a—t) <N f AW—tgf: FEND X 1),

Arguing as in the proof of Lemma 5.10 there are T, T € R such that

SFEAHX-T) =N = " fEA) A -T).
n=1 n=1

ThenT > E(V) > T. 0

Define the particle density N': Ly(Q, R) — Ly(92, R) by
NV)= MV —-EV)1g).

So
/N(V) W = te(My f(H -V — £(V)))
and

/N(V) =trf(H+V -&V))=N (5.2)
Q

forall V € Ly(2,R) and W € L., (£2). We next prove that Proposition 5.8(b) remains valid if M is
replaced by \/. This was proved before in [KR2] Section 4.

Proposition 5.12. Let R > (. Then there exists an M > 0 such that
IN(U) = NV)|e, < MU= VL,
forall U,V € Ly(Q, R) with ||U||, < Rand||V| L, <R.

Proof. Using Propositions 5.11 and 5.8(b) it suffices to show that there is an M > 0 such that
EWU) = EWV)| < M||U = V||, forall U,V € Ly(Q,R) with |U||, < Rand ||V]|z, < R.

Forall V € Ly(2,R) let )\gv) < )\gv) < ... be the eigenvalues of the operator H + V/, repeated
with multiplicity. Then the mini-max theorem together with the form bounds of Lemma 5.4(b) gives

A —x < < TAO 1)

forall V € Lo(Q,R) with |V, < R, where A\ = 1 + v R*. By Proposition 5.11 there is an
M; > Osuchthat |E(V)| < M forall V € Ly(2, R) with ||V, < R. Since f is locally bounded,
there is an My > 0 such that f(A") — (V) < My forall V € Ly(€, R) with ||V ||, < R. By
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the assumptions on f there is an L > O such that |t — s| < L|f(t) — f(s)| forall t,s € R with
f(t) € [-My, Ms] and f(s) € [— Mz, M,]. By Proposition 5.8(b) there is a ¢ > 0 such that

[MU) = MV, < el|lU = V|,

forall U,V € Ly(Q, R) with ||U]|z, < R+ M; |Q*? and |V ||z, < R+ M, QY2

Now let U,V € Lo(2,R) with |U]|z, < R and ||V]|z, < R. Without loss of generality we may
assume that £(V') > E(U). Since f is decreasing one deduces that

FOY =E(WV) = FO) = EU)) = 0
for all n € IN. Consequently

tr f(H+V -EWV))—tr f(H+V =EU))

On the other hand,
tr f(H+V —EWV)=N=trf(H+U —EU))
and hence
trf(H—FV—E(V)) —trf(H—FV—S(U))

=ltrf(H+U-EWU))—tr f(H+V —=E(U))|
- | /Q (MW — @)~ MV —£))]
< QP IMU = EU)) = MV = EU)) |1,
<c|QY? U =V,

from which the theorem follows. O

Also Proposition 5.9 is valid for V" instead of M.
Proposition 5.13. LetU,V € Ly(Q, R). Then (N (U) — N (V),U — V), <0.
Proof. Using (5.2) and Proposition 5.9 one deduces that
N(U) =N(V),U=V)y,
= WN(U)=N(V), (U =EU)1a) = (V= E(V) 1a))r,
= (MU =&E(U) 1g) =MV = E(V) 1g), (U= E(U) La) = (V= E(V) 1a))r, <0

as required. O
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We next show that for all Vy € Ly(Q,R) and ¢ € (WS*(Q,R))* thereis a V € W;*(Q) such that
—V-eVV =¢g+ N (W, + V)
in a weak sense.

Proposition 5.14. Let Vy € Ly(£2, R). Write H = W,%;Q(Q, R). Define the map Ay: H — H* by

(A, W)t = / YV VW — (N (Vo £ V), W)@,
Q

Then one has the following.

(a)  The operator Ay is strongly monotone with monotonicity constant yu (1 + cp) ™.

(b)  Forall R > 0 there exists a C' > 0 such that

|AgU — AV |

w < CIU = Vly

forallU,V € H with ||U||l < Rand||V]x < R.
(¢)  Forallq € H* there is a unique V' € H such that

(AVoW ) e = (@ W) pe s

forall W € . It follows that [|V/[l3; < 2 ||g + N (Vp)]

"
Proof. ‘(a)’. Let U,V € H. Then
(AU — AoV, U — V) ape e
> [ 90 =V = NV +0) = NV + V), (6 + V) = (Va + V).
> (14 ep) U = VIE,

where we used Proposition 5.13.
‘(b)’. This follows from Proposition 5.12 and the boundedness of the coefficient function €.

‘(c)’. This follows immediately from the previous statements and Theorem 4.1. O
Write U(Vg, q) = V it Vg, ¢ and V' are as in Proposition 5.14(c).

Proof of Theorem 5.1(h). If follows from Theorem 4.1(d) that

14+cp
1

W (Vo, q) = ¥(Vo, @) lly2() < lg = all w2y

Hence it remains to estimate |V (Vp, q) — W(VA, Q)||W113’2(Q)' Write H = W5*(Q, R). Define the
maps Ag, A1: H — H* by

(A, W )yie e = / EVV VW — (N(Vo + V), W)py@ and
Q

ALV, W gt = / YV VW — (N(Vi + V), W) 1.
Q
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; __p
Write m = T

2
R = = max{lg + N (Vo) -

g+ N (V)]

He )
By Proposition 5.14(b) there exists an M > 0 such that

|AgU — AgV|

HH* S MHU— VH’H and ||A1U—A1V|

w < MU= V]n

forall U,V € H with ||U||x < Rand ||[V|3 < R. By Proposition 5.12 there exists a ¢ > 0 such
that

IN(U) =NV, < cllU = VL,

forall U,V € Ly(Q2, R) such that ||U||z, < R+ ||Vol|z, + |Villz, and [[V||z, < R+ [|[Vol|z, +
IVillL,- Let J: H — H* be the duality map. Define Qo, Q1: {U € H : |U]||lx < R} — H by

Q()U U — W J- (A()U - (]) and QlU U— W J- (AlU — q) (5.3)

Now we estimate || (Vp, q) — \Il(Vl,q)HW]lJ,z(Q). Write U = ¥ (Vj,q) and V' = ¥(V1, q). Then
Uz, < Rand||V| 1, < R by Proposition 5.14(c). Moreover, QoU = U and )1V = V. Using
Proposition 5.14(a) and Theorem 4.1(a) one estimates

||U - VHH = ||Q0U - QlVHH = HQOU - QOVHH + ||Q0V - QlV”H
1— ||U Vin+ 552 NN (Vo + V) = N (Vi + V)

Rearrangement gives

U=V < (1=4/1=22) 25 IN (o +V) = N (Vi + V)

S M2 M2 1| pysee IV (Vo + V) = N(Vi + V)|,
S \/ M2 MQ |IHL2—>’H*C||VE) ‘/1|’L2
as required. -

Finally we consider regularity of the solutions under some weak additional assumptions. For all p €
(1,00) let WP () be the WP(Q)-closure of the set

{ulg : w € C*°(R?%) and suppun D = (}}.
Let p/ be the dual exponent of p. Define W, (2) to be the dual space of W7 ().

Theorem 5.15. LetV, € Ly(Q, R), p € [2, 00, and g € W, P(, R).

(@ Ifp>d, then¥U(Vy,q) € Loo(Q).
by If2<p<d=3, thenV(Vy,q) € L,(52), where # =

Wl

1
p
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(¢)  Suppose p > d. Under a measure theoretic condition of the relative boundary of D in OS2
(see [ER] Assumption (Ill) in Theorem 1.1 ) it follows that W (V5 q) is Hélder continuous for all
Vo € Ly(Q, R) and g € W, P(Q).

(d) Suppose that D = 0f) and that the coefficient function ¢ is Lipschitz continuous. Further
suppose that () is of class C'* or convex. Then ¥ (Vy, q) € W2(Q) ifq € L2(Q, R).

Proof. The Sobolev embedding theorem gives Lo(€2) C W, (). Write 5 = min(p,6) and V =
U(Vo, q). Then g + N (Vo + V) € W, 'P(Q). Moreover,

/ EVV VW = (g +N(Vo + V), W) prayxpie) (54)
Q

forall W e C2°(Q).

‘(@)’. Now p > d and [Sta] Théoréme 4.2(a) implies that V' € L..(12).
‘(b)’. Now p = p and one can use [Sta] Théoréme 4.2(b).

‘(c)’. See [ER] Theorem 1.1.

(

d)’. We use (5.4). Then the regularity follows from [Gri] Theorem 2.2.2.3 in case {2 is of class C'''!
and from [Gri] Theorem 3.2.1.2 in case (2 is convex. O

Theorem 5.16. Suppose that the set D is a (d — 1)-set in the sense of Jonsson—-Wallin ([JW] Chap-

ter Il). Then there exists a p > 2 such that U(Vy,q) € WEP(Q) for all Vi € Ly(Q,R) and
7171)

q € Wp Q).

Proof. This follows from [HJKR] Theorem 5.6. O

If Vo € Ly(,R) and ¢ € (W5(, R))*, then the solution W(V;, ) of the Schrédinger—Poisson
system obtained in Theorem 5.1(e), or Proposition 5.14(c), is constructed via a contraction in Theo-
rem 4.1(c). Explicitly, if Q)y is as in (5.3), U; = 0 and inductively U, .1 = QoU, for alln € N, then
U (Vo, q) = lim, 00 U, in W};Q(Q). We do not know whether the convergence is valid in any of the
spaces mentioned in Theorems 5.15 and 5.16.
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