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The Birman–Solomyak theorem revisited: A novel elementary
proof, generalisation, and applications

Volker Bach, Antonius Frederik Maria ter Elst, Joachim Rehberg

Abstract

We provide a new short proof for the Birman–Solomyak theorem for Hilbert–Schmidt operators
and give an application to a Schrödinger–Poisson system.

1 Introduction

About sixty years ago, Birman and Solomyak developed their calculus of double operator spectral
integrals, see [BS1] [BS2] [BS3] and derived, among other results, estimates of the form

‖f(A)− f(B)‖Sp ≤ L(f) ‖A−B‖Sp , (1.1)

where A,B are bounded, self-adjoint operators, f : R → R is a function from an adequate class,
L(f) < ∞ is a suitable constant depending only on f , and ‖ · ‖Sp is a Schatten norm. A directly
accessible case of (1.1) is p = 2, where the Lipschitz property of f is sufficient for (1.1), with L(f)
being the Lipschitz constant of f . Birman and Solomyak remarked in [BS4] page 156 that, in spite of
this simple characterisation, an elementary proof of (1.1) for p = 2 was lacking for a long time, and
it was eventually given by Gesztesy, Pushnitski and Simon more than forty years later in [GPS]. Their
approach is based on a classical theorem of Löwner [Löw] for finite-dimensional operators comple-
mented by suitable limit arguments. We became interested in (1.1) when one of us applied it in [KR1]
[KR2] for the derivation of estimates for particle density operators in the Kohn–Sham system.

The first aim of this paper is to give an elementary proof of (1.1) for p = 2, which is quite different
from the one in [GPS] and to generalise (1.1) for the case p = 2 to arbitrary unbounded self-adjoint
operators, provided f : R → R is (globally) Lipschitz continuous. More precisely, we prove the fol-
lowing theorem, in which, for a given Hilbert spaceH, we denote by LHS(H) the Hilbert space of all
Hilbert–Schmidt operators and Hilbert–Schmidt norm ‖ · ‖HS.

Theorem 1.1. Let A,B be two self-adjoint operators in a Hilbert space H . Let C ∈ LHS(H) and
suppose that A = B + C . Let f : R→ R be a Lipschitz continuous function with Lipschitz constant
L. Then D(A) = D(B) ⊂ D(f(A)) = D(f(B)) and the operator f(A) − f(B) extends to a
Hilbert–Schmidt operator, by abuse of notation still denoted by f(A)− f(B), such that

‖f(A)− f(B)‖HS ≤ L ‖C‖HS. (1.2)

In our proof of Theorem 1.1 we first assume that f is bounded and thatA andB have pure point spec-
trum, which includes all compact operators and those with compact resolvent. In contrast to [GPS] our
proof only requires Parseval’s identity. Having this at hand, we employ an argument quite similar to one
in [GPS] to carry this over to the class of all self-adjoint operators A,B, still with the Hilbert–Schmidt
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V. Bach, A. F. M. ter Elst, J. Rehberg 2

condition. Finally, an approximation argument allows us to eliminate the boundedness assumption for
f . While our proof of (1.1) in case that p = 2 does not generalise to other Schatten classes with
p 6= 2, we note that Peller [Pel] succeeded in proving (1.1) for p 6= 2 by using double and triple sums
instead of the calculus of double spectral integrals.

Secondly, we deduce from (1.2) estimates of the form

‖f(A)− f(B)‖HS ≤ K ‖(A+ λ)−1 − (B + λ)−1‖HS, (1.3)

where K > 0 depends on the Lipschitz constant of f and λ. For smooth functions f with a cer-
tain decay the estimate (1.3) is also in [GN] (3.5) for general Schatten classes. The proof in [GN]
involves the Helffer–Sjöstrand calculus, which is much more complicated. The importance of (1.3)
lies in the fact that, e.g., for Schrödinger operators, the difference of A = − div

(
m−1∇

)
+ U and

B = − div
(
m−1∇

)
+ V is usually not a Hilbert–Schmidt operator, but the difference of their resol-

vents often is. Note that for the validity of (1.3) only Lipschitz continuity of f is required. In particular,
f does not need to be smooth, nor compactly supported and no almost analytic extension of f is
required. We further remark that an estimate similar to (1.3) was derived and used in [KR1] and [KR2]
for the estimation of density matrices with respect to Schrödinger potentials.

The third part of the paper is devoted to an application of the Birman–Solomyak theorem in density
functional theory, namely, in the investigation of the Schrödinger–Poisson system. The connection to
the Birman–Solomyak theorem is the following. Let Ω ⊂ Rd, with d ∈ {1, 2, 3}, be a bounded Lip-
schitz domain and f : R → (0,∞) a strictly decreasing differentiable function with suitable asymp-
totics at∞. Let H = − div

(
m−1∇

)
be the unperturbed Schrödinger operator with mixed boundary

conditions on ∂Ω. If U ∈ L2(Ω,R), then the spectrum of the Schrödinger operatorH+U on L2(Ω)
is purely discrete with sufficiently rapidly growing eigenvalues, hence for all µ ∈ R the operator

f(H + U − µ)

defines a density matrix, that is a positive trace-class operator, and the diagonal of its Schwartz kernel
defines a particle density N (U) ∈ L2(Ω,R). More precisely, viewing a bounded function W as a
multiplication operator, one can show that the map

W 7→ tr
(
f(H + U − µ)W

)
extends to a continuous linear functional on L2(Ω), which can be represented by a functionN (U) ∈
L2(Ω). In physics, the number µ ∈ R is a Lagrange multiplier called the Fermi level. It ensures the
normalisation condition tr (f(H + U − µ)) = N , where N > 0 is the particle number. In many
applications, U = V0 + V is a small perturbation of a fixed reference potential V0 ∈ L2(Ω). Since
the Schrödinger–Poisson system can be written as one single equation (see [Nie])

−∇ · ε∇V −N (V0 + V ) = q, (1.4)

one is interested in the functional analytic properties of the map U 7→ N (U) from L2(Ω) into L2(Ω)
and from W 1,2(Ω) into W−1,2(Ω), see also [WPH] Subsection 3.5. In [Nie] it was proved that the
operator from W 1,2(Ω) into W−1,2(Ω) is antimonotone and locally Lipschitz continuous, so that the
standard monotone theory with the Browder-Minty theorem applies. Unfortunately, the proofs in [Nie]
are technically involved. We will use the Birman–Solomyak theorem to prove that U 7→ N (U) is
locally Lipschitz continuous from L2(Ω) into L2(Ω). In [KNR], however, the monotonicity of U 7→
N (U) from L2(Ω) into L2(Ω) and from W 1,2(Ω) into W−1,2(Ω) was established by an abstract
operator-theoretic principle, without using specific properties of the concrete Schrödinger operators
which are involved. Moreover, the proof in [KNR] is fairly simple.
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The Birman–Solomyak theorem revisited 3

Concerning the continuity properties, in [KR1] and [KR2] local Lipschitz continuity of the map U 7→
N (U) from L2(Ω) into L2(Ω) was established, which implies, trivially, the local Lipschitz continuity
from W 1,2(Ω) into W−1,2(Ω). These two properties, (anti)monotonicity and local Lipschitz continuity,
are the key ingredients for an adequate investigation of the Schrödinger–Poisson system (1.4). Since
the latter is a fundamental model in modern physics (see [POM] for a recent overview), we recall the
essentials of the analysis for this system. This includes both a derivation of the local Lipschitz continuity
for the particle density operator and a description of the foundation of a numerical procedure, which is
standard nowadays, and rests on a functional-analytic based contraction principle.

As already indicated, several ideas of this paper are already present in the quoted foregoing papers,
frequently with complicated proofs. It is, however, our intention to present an entirely self-contained
text on the Schrödinger–Poisson system, now based on elementary proofs of the crucial properties
of the particle density operator and readable also for theoretical physicists. Essentially new in this
paper is a deeper analysis of the Schrödinger operators. In particular it is proved that H + V makes
sense also as operator sum, and not only via forms. Moreover, a deeper analysis shows here that
the resolvents of the operators (H + U) map L2(Ω) into L∞(Ω), and the corresponding norms are
bounded, uniformly on L2-bounded sets of potentials U . Moreover, in Theorem 5.1 we prove that the
solution of the Schrödinger–Poisson system as function of the reference potential V0 and the right
hand side q also is locally Lipschitz. This is the key tool for the treatment of the Kohn–Sham system,
see [KR1] [KR2]. We refer to [WPH] Section 3.5 for the numerics of the Kohn–Sham system.

The paper is organised as follows. In Section 2 we prove Theorem 1.1. In Section 3 we prove (1.3) on
resolvents. We provide in Section 4 an abstract theorem to construct a solution for a strongly monotone
operator via the Banach contraction theorem. In Theorem 5.1 we give a rigorous statement and proof
of the Schrödinger–Poisson system (1.4) and show that the solution is (locally) Lipschitz as function
of the data.

2 The elementary proof

If (X,A, µ) is a measure space, then we say that (X,A, µ) is a locally finite if for all E ∈ A with
µ(E) = ∞ there exists an F ∈ A such that F ⊂ E and 0 < µ(F ) < ∞. If A is an operator in a
Hilbert spaceH, then we provide D(A) with the graph norm given by ‖u‖2

D(A) = ‖Au‖2
H + ‖u‖2

H.

We need some lemmas.

Lemma 2.1. Let A be a self-adjoint operator in a Hilbert space H and f : R → R a Lipschitz
continuous function. Then one has the following.

(a) D(A) ⊂ D(f(A)).

(b) D(A) is a core for f(A).

(c) For all n ∈ N define χn : R → R by χn = (−n) ∨ x ∧ n. Then limn→∞(χn ◦ f)(A)u =
f(A)u for all u ∈ D(f(A)).

Proof. Using the spectral theorem we may assume thatH = L2(X,A, µ) andA is the multiplication
operator with a measurable function h : X → R, where (X,A, µ) is a locally finite measure space.
Since f is Lipschitz continuous, there are L, b > 0 such that |f(x)| ≤ L |x| + b for all x ∈ R. Now
f(A) is the multiplication operator with the function f ◦ h.
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‘(a)’. Let u ∈ D(A). Then
∫
|hu|2 <∞ and

∫
|u|2 <∞. Hence∫

|(f ◦ h) · u|2 ≤
∫
|L |h|+ b|2 |u|2 ≤ 2L2

∫
|hu|2 + 2b2

∫
|u|2 <∞.

Therefore u ∈ D(f(A)).

‘(b)’. Let u ∈ D(f(A)). If n ∈ N, then u1[|h|≤n] ∈ D(A). Moreover,

lim
n→∞

∫
|(f ◦ h)u1[|h|≤n]|2 =

∫
|(f ◦ h)u|2

by the monotone convergence theorem. So

lim
n→∞

‖A(u− u1[|h|≤n])‖2
H = lim

n→∞

∫ (
|(f ◦ h)u|2 −

∫
|(f ◦ h)u1[|h|≤n]|2

)
= 0.

Similarly limn→∞ ‖u− u1[|h|≤n]‖2
H = 0 and limu1[|h|≤n] = u in D(A). Hence D(A) is a core for

f(A).

‘(c)’. If n ∈ N and u ∈ D(f(A)), then |(χn ◦ f ◦ h) · u|2 ≤ |(f ◦ h) · u|2 and also limn→∞(χn ◦
f ◦ h) · u = (f ◦ h) · u. Then the statement follows from the Lebesgue dominated convergence
theorem.

The next two lemmas are trivial.

Lemma 2.2. Let A,B be operators in a Hilbert spaceH and T ∈ L(H). Let D be a subspace ofH.
Suppose that D is a core for B, the operator A is closed and Au = Bu + Tu for all u ∈ D. Then
D(B) ⊂ D(A) and Au = Bu+ Tu for all u ∈ D(B).

Proof. Let u ∈ D(B). Then there exists a sequence (un)n∈N in D such that limun = u in D(B).
Now limAun = lim(Bun + Tun) = Bu + Tu. Since A is closed, it follows that u ∈ D(A) and
Au = Bu+ Tu.

Lemma 2.3. Let T be a densely defined symmetric operator in a Hilbert spaceH. Let (uα)α∈I be an
orthonormal basis in H. Suppose that uα ∈ D(T ) and

∑
α∈I ‖Tuα‖2

H < ∞. Then T extends to a
bounded operator onH.

Proof. Let u ∈ D(T ). Then

‖Tu‖2
H =

∑
α∈I

|(Tu, uα)|2 =
∑
α∈I

|(u, Tuα)|2 ≤
∑
α∈I

‖u‖2
H ‖Tuα‖2

H = ‖u‖2
H

∑
α∈I

‖Tuα‖2
H

and the lemma follows.

Now we prove Theorem 1.1 in the special case that A and B have a pure point spectrum. The proof
is very elementary. For simplicity we assume that f is bounded.

Proposition 2.4. Adopt the assumptions and notation of Theorem 1.1. Suppose in addition that A
and B both have a pure point spectrum and that the function f is bounded. Then f(A)− f(B) is a
Hilbert–Schmidt operator and

‖f(A)− f(B)‖HS ≤ L ‖C‖HS.
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Proof. Since A has a pure point spectrum there exists an orthonormal basis (uα)α∈I for H and for
all α ∈ I there exists a λα ∈ R such that Auα = λα uα. Similarly for B there exists an orthonormal
basis (vα)α∈I forH and for all α ∈ I there exists a µα ∈ R such that Bvα = µα vα.

If α, β ∈ I , then

((f(A)− f(B))uα, vβ)H = (f(A)uα, vβ)H − (uα, f(B)vβ)H

= (f(λα)uα, vβ)H − (uα, f(µβ) vβ)H = (f(λα)− f(µβ)) (uα, vβ)H.

Now let α ∈ I . Then Parseval’s identity gives

‖(f(A)− f(B))uα‖2
H =

∑
β∈I

|((f(A)− f(B))uα, vβ)H|2 =
∑
β∈I

|f(λα)− f(µβ)|2 |(uα, vβ)H|2

≤
∑
β∈I

L2 |λα − µβ|2 |(uα, vβ)H|2 = L2 ‖(A−B)uα‖2
H = L2 ‖Cuα‖2

H.

Hence

‖f(A)− f(B)‖2
HS =

∑
α∈I

‖(f(A)− f(B))uα‖2
H ≤

∑
α∈I

L2 ‖Cuα‖2
H = L2 ‖C‖2

HS <∞

and the proposition follows.

We now drop the assumption that A and B have a pure point spectrum, but add the assumption that
H is separable. The proof is a modification of the proof of [GPS] Theorem 4.1.

Proposition 2.5. Adopt the assumptions and notation of Theorem 1.1. Suppose in addition that the
function f is bounded and the Hilbert spaceH is separable. Then f(A)− f(B) is a Hilbert–Schmidt
operator and

‖f(A)− f(B)‖HS ≤ L ‖C‖HS.

Proof. By Proposition 2.4 we my assume that H is infinite dimensional. Since H is separable and
A is self-adjoint there exists an orthonormal basis (ek)k∈N for H with ek ∈ D(A) for all k ∈
N. For all n ∈ N let Pn be the orthogonal projection of H onto span{e1, . . . , en}, set An =
PnAPn and Bn = PnB Pn. Now limn→∞An = A in the strong resolvent sense. Therefore
limn→∞ f(An) = f(A) strongly inH by [RS] Theorem VIII.20, where we use that f is bounded. In
particular, limn→∞ f(An)ek = f(A)ek for all k ∈ N. Similarly limn→∞ f(Bn)ek = f(B)ek for all
k ∈ N.

Let m ∈ N. Then for all n ∈ N with n > m we obtain by Proposition 2.4 that

m∑
k=1

‖(f(An)− f(Bn))ek‖2
H ≤

n∑
k=1

‖(f(An)− f(Bn))ek‖2
H = ‖f(An)− f(Bn)‖2

HS

≤ L2 ‖An −Bn‖2
HS = L2 ‖PnC Pn‖2

HS ≤ L2 ‖C‖2
HS.

Now take the limit n→∞ to deduce that

m∑
k=1

‖(f(A)− f(B))ek‖2
H ≤ L2 ‖C‖2

HS.

The limit m→∞ gives ‖f(A)− f(B)‖2
HS ≤ L2 ‖C‖2

HS as required.
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In the next step we drop the assumption that f is bounded, but keep thatH is separable.

Proposition 2.6. Adopt the assumptions and notation of Theorem 1.1. Suppose in addition that the
Hilbert space H is separable. Then D(A) = D(B) ⊂ D(f(A)) = D(f(B)) and the operator
f(A) − f(B) extends to a Hilbert–Schmidt operator, by abuse of notation still denoted by f(A) −
f(B), such that

‖f(A)− f(B)‖HS ≤ L ‖C‖HS.

Proof. The equality D(A) = D(B) is trivial.

For all n ∈ N define χn : R → R by χn = (−n) ∨ x ∧ n. Then χn is Lipschitz continuous
with Lipschitz constant 1. Hence the composition fn = χn ◦ f is Lipschitz continuous with Lipschitz
constant M . Define Tn = fn(A) − fn(B). It follows from Proposition 2.5 that Tn ∈ LHS(H) and
‖Tn‖HS ≤ L ‖C‖HS. Hence the sequence (Tn)n∈N is bounded in the Hilbert space LHS(H). Pass-
ing to a subsequence if necessary, there exists a T ∈ LHS(H) such that limn→∞ Tn = T weakly
in LHS(H). Then limn→∞ Tn = T in the weak operator topology on L(H) and limn→∞ Tnu = Tu
weakly inH for all u ∈ H
Now let u ∈ D(A). Then u ∈ D(f(A)) by Lemma 2.1(a). So limn→∞ fn(A)u = f(A)u in H
by Lemma 2.1(c). Similarly limn→∞ fn(B)u = f(B)u. Hence limn→∞ Tnu = (f(A) − f(B))u
in H. Therefore Tu = (f(A) − f(B))u for all u ∈ D(A) and f(A)u = f(B)u + Tu for all
u ∈ D(A). Since D(A) is a core for f(B) by Lemma 2.1(b) and f(A) is closed, it follows from
Lemma 2.2 that D(f(B)) ⊂ D(f(A)) and f(A)u = f(B)u + Tu for all u ∈ D(f(A)). Similarly
D(f(A)) ⊂ D(f(B)). HenceD(f(A)) = D(f(B)). Moreover, T is an extension of f(A)−f(B).

Finally, since limn→∞ Tn = T weakly in LHS(H) one deduces that

‖T‖HS ≤ lim inf
n→∞

‖Tn‖HS ≤ L ‖C‖HS

as required.

Finally we drop the assumption thatH is separable.

Proof of Theorem 1.1. Since C is a compact operator, there exists a separable subspace H0 of H
such that C(H0) ⊂ H0 and Cu = 0 for all u ∈ H⊥0 . Let U and V be the Cayley transforms of A
and B. There exists a separable closed subspace H1 of H such that H0 ⊂ H1 and H1 is invariant
under the four bounded operators U , V , U∗ and V ∗. Write H2 = H⊥1 . Then H2 is invariant under
U and V . Let P : H → H1 be the orthogonal projection onto H1. Then the restriction of U to H1

is a unitary map fromH1 ontoH1. This corresponds to a self-adjoint operator A1 inH1. Moreover, if
u ∈ D(A), then Pu ∈ D(A1) and A1Pu = PAu. Similarly one can define a self-adjoint operator
A2 inH2. Moreover, one can define similarly operators B1 and B2.

Since A = B + C one deduces that A1 = B1 + C and A2 = B2. Proposition 2.6 gives
D(A1) = D(B1) ⊂ D(f(A1)) = D(f(B1)) and the operator f(A1)−f(B1) extends to a Hilbert–
Schmidt operator on H1, denoted by T1, such that ‖T1‖HS ≤ L ‖C‖HS. Trivially f(A2) = f(B2).
Now f(A) = f(A1) ⊕ f(A2), with a similar decomposition for f(B). So D(f(A)) = D(f(B)).
Moreover, f(A)−f(B) = (f(A1)−f(B1))⊕0. Hence the operator T1⊕0 extends f(A)−f(B).
Furthermore, T ⊕ 0 is a Hilbert–Schmidt operator with ‖T ⊕ 0‖HS ≤ L ‖C‖HS. The proof of Theo-
rem 1.1 is complete.

DOI 10.20347/WIAS.PREPRINT.3231 Berlin 2025
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3 Resolvent estimates

Very often one is in the situation that self-adjoint operatorsA andB do not differ by a Hilbert–Schmidt
operator, but the difference of the resolvents (A− λ)−1 − (B − λ)−1 is a Hilbert–Schmidt operator.
Under an additional decay assumption on the function f we shall show that f(A)−f(B) is a Hilbert–
Schmidt operator and estimate the Hilbert–Schmidt norm in terms of the Hilbert–Schmidt norm of the
difference of the resolvents.

Theorem 3.1. Let A and B be two lower-bounded self-adjoint operators with lower bound ρ ∈ R.
Let λ > −ρ. Let f : (0, 1

λ−ρ ] → R be a Lipschitz continuous function with Lipschitz constant L.

Define g : [−ρ,∞) → R by g(x) = f( 1
x+λ

). Suppose that the difference of the resolvents (A +
λ I)−1 − (B + λ I)−1 is a Hilbert–Schmidt operator. Then g(A) and g(B) are bounded operators,
their difference is a Hilbert–Schmidt operator and

‖g(A)− g(B)‖HS ≤ L ‖(A+ λ)−1 − (B + λ)−1‖HS.

Proof. Note that g(A) = f((A+λ I)−1). We may extend f to a Lipschitz continuous function, again
denoted by f , by taking it constant on (−∞, 0] and constant on ( 1

λ−ρ ,∞). Then f is bounded, so

f((A+λ I)−1) is bounded. Similarly g(B) = f((B+λ I)−1) is bounded. Then the theorem follows
from Theorem 1.1 or Proposition 2.5.

Corollary 3.2. Let A and B be two lower-bounded self-adjoint operators with lower bound ρ ∈ R.
Let λ > −ρ. Let g : [ρ,∞)→ R be a differentiable function and suppose that L = supx∈[ρ,∞)(x+
λ)2 |g′(x)| < ∞. Suppose that the difference of the resolvents (A + λ I)−1 − (B + λ I)−1 is a
Hilbert–Schmidt operator. Then g(A) and g(B) are bounded operators, their difference is a Hilbert–
Schmidt operator and

‖g(A)− g(B)‖HS ≤ L ‖(A+ λ)−1 − (B + λ)−1‖HS.

Proof. Define f : (0, 1
λ−ρ ] → R by f(t) = g(1

t
− λ). Then g(x) = f( 1

x+λ
) for all x ∈ [ρ,∞).

Moreover, f ′(t) = − 1
t2
g′(1

t
− λ) = −(x+ λ)2 g′(x) for all t ∈ (0, 1

λ−ρ ], where x = 1
t
− λ. Hence

f is Lipschitz continuous with Lipschitz constant L. Now apply Theorem 3.1.

4 A contractive iteration scheme

In this section we provide a sufficient condition to obtain a solution of a nonlinear map on a real Hilbert
space via the Banach contraction theorem.

IfH is a real Hilbert space, A : H → H∗ is a map and m > 0, then A is called strongly monotone
with monotonicity constant m if 〈Au − Av, u − v〉H∗×H ≥ m ‖u − v‖2

H for all u, v ∈ H. Note
that then ‖Au− Av‖H ≥ m‖u− v‖H and A is injective.

Theorem 4.1. Let H be a real Hilbert space, m > 0 and A : H → H∗ a strongly monotonous
map with monotonicity constant m. Let R > 0 and let B = {u ∈ H : ‖u‖H ≤ R} be the closed
ball centred at 0 and radius R. Suppose that the restriction A|B is Lipschitz continuous with Lipschitz
constant M . Let J : H → H∗ denote the duality map. Fix f ∈ H∗. Define Q : B → H by

Qu = u− m

M2
J−1(Au− f).

Then one has the following.

DOI 10.20347/WIAS.PREPRINT.3231 Berlin 2025
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(a) The map Q is a contraction with contraction constant
√

1− m2

M2 .

(b) Suppose R ≥ 2
m
‖A0− f‖H∗ . Then Q maps B into itself.

(c) Suppose R ≥ 2
m
‖A0 − f‖H∗ . Then there exists a unique u ∈ B such that Au = f . Define

u1 = 0 and for all n ∈ N define un+1 = Qun. Then u = limn→∞ un. Moreover,

‖u‖H ≤
1

m
‖A0− f‖H∗ .

(d) Let also g ∈ H∗. Suppose R ≥ 2
m
‖A0 − f‖H∗ and R ≥ 2

m
‖A0 − g‖H∗ . Then there exist

unique u, v ∈ H such that Au = f and Av = g. Furthermore, ‖u− v‖H ≤ 1
m
‖f − g‖H∗ .

Proof. ‘(a)’. Let u, v ∈ B. Using the duality map J , one estimates

‖Qu−Qv‖2
H = (u− v − m

M2
J−1(Au− Av), u− v − m

M2
J−1(Au− Av))H

= ‖u− v‖2
H − 2

m

M2
(J−1(Au− Av), u− v)H +

m2

M4
‖J−1(Au− Av)‖2

H

= ‖u− v‖2
H − 2

m

M2
〈Au− Av, u− v〉H∗×H +

m2

M4
‖Au− Av‖2

H∗

≤ ‖u− v‖2
H − 2

m2

M2
‖u− v‖2

H +
m2

M2
‖u− v‖2

H = (1− m2

M2
)‖u− v‖2

H,

where we used the strong monotonicity and Lipschitz continuity in the last inequality.

‘(b)’. Let u ∈ B. Then if follows from Statement (a) that

‖Qu‖H ≤ ‖Qu−Q0‖H + ‖Q0‖H ≤
√

1− m2

M2
‖u‖H +

m

M2
‖A0− f‖H∗

≤
(√

1− m2

M2
+

m2

2M2

)
R ≤ R.

‘(c)’. Most follows from the Banach fixed point theorem. Since

‖f − A0‖H∗ ‖u‖H = ‖Au− A0‖H∗ ‖u‖H ≥ 〈Au− A0, u− 0〉H∗×H ≥ m‖u‖2
H,

the estimate follows.

‘(d)’. The existence follows from Statement (c). The monotonicity givesm ‖u−v‖2
H ≤ 〈Au−Av, u−

v〉H∗×H = 〈f − g, u− v〉H∗×H ≤ ‖f − g‖H∗ ‖u− v‖H and hencem ‖u− v‖H ≤ ‖f − g‖H∗ .

In [Zei] Section 25.4 and [GGZ] Theorem 3.4 in Subsection III.3.2 global Lipschitz continuity for A is
demanded, but in the latter is at least indicated that local Lipschitz continuity suffices. The required
radius of the ball B in [GGZ], however, is not optimal, and the proof is unnecessarily complicated. In
general, global Lipschitz continuity is a severe restriction and, in general not fulfilled if A is not linear.
In particular, the operator used in Proposition 5.14 is not globally Lipschitz.
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5 An application in density functional theory

In this section we give an application of Corollary 3.2 via a Schrödinger–Poisson system used in
electron transport theory. The main theorem of this section is as follows.

Theorem 5.1. Let d ∈ {1, 2, 3} and Ω ⊂ Rd a bounded open set with Lipschitz boundary. Let
ε,m : Ω → Rd×d be bounded measurable functions with ε(x) and m(x) symmetric for all x ∈ Ω.
Let µ, µ̃ > 0. Suppose that

(ε(x)ξ, ξ)Rd ≥ µ ‖ξ‖2
Rd and (m(x)ξ, ξ)Rd ≥ µ̃ ‖ξ‖2

Rd

for all ξ ∈ Rd. Let f : R → (0,∞) be a differentiable and strictly decreasing function with f ′ locally
bounded. Moreover, suppose that both r 7→ r4 f(r) and r 7→ r4 f ′(r) are bounded on [0,∞). Then
f : R→ f(R) is bijective and assume in addition that its inverse is locally Lipschitz. Let D ⊂ ∂Ω be
closed. Fix N > 0.

Let W 1,2
D (Ω) be the W 1,2(Ω)-closure of the set {u|Ω : u ∈ C∞(Rd) and suppu ∩ D = ∅}. Let

cP > 0. Suppose that
‖u‖2

L2(Ω) ≤ cP ‖∇u‖2
L2(Ω)

for all u ∈ W 1,2
D (Ω). (So the space W 1,2

D (Ω) admits a Poincaré inequality.) For all V ∈ L2(Ω,R)
and ψ, ϕ ∈ W 1,2

D (Ω) it follows that V ψ ϕ ∈ L1(Ω). Define tV : W 1,2
D (Ω)×W 1,2

D (Ω)→ C by

tV [ψ, ϕ] = t[ψ, ϕ] +

∫
Ω

V ψ ϕ.

Then one has the following.

(a) For all V ∈ L2(Ω,R) the sesquilinear form tV is closed, symmetric and lower-bounded. We
denote by H the associated operator in case V = 0 and by H u V the associated lower-
bounded self-adjoint operator.

(b) For all V ∈ L2(Ω,R) the operator f(H u V ) is nuclear.

(c) For all V ∈ L2(Ω,R) there exists a unique E(V ) ∈ R such that

tr f(H u (V − E(V )1Ω)) = N.

(d) For all V ∈ L2(Ω,R) there exists a uniqueN (V ) ∈ L2(Ω,R) such that∫
Ω

N (V )W = tr
(
MW f(H u V − E(V ))

)
for all W ∈ L∞(Ω), where MW is the multiplication operator with W .

(e) For all V0 ∈ L2(Ω,R) and q ∈ (W 1,2
D (Ω,R))∗ there exists a unique V ∈ W 1,2

D (Ω,R) such
that ∫

Ω

ε∇V · ∇W − (N (V0 + V ),W )L2(Ω) = 〈q,W 〉(W 1,2
D (Ω,R))∗×W 1,2

D (Ω,R)

for all W ∈ W 1,2
D (Ω,R). Write Ψ(V0, q) = V .

(f) If V0 ∈ L2(Ω,R) and q ∈ (W 1,2
D (Ω,R))∗, then

‖Ψ(V0, q)‖W 1,2
D (Ω,R) ≤

1 + cP
µ
‖q +N (V0)‖(W 1,2

D (Ω))∗ .
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(g) If V0 ∈ L2(Ω,R), then

‖Ψ(V0, q)−Ψ(V0, q̃)‖W 1,2
D (Ω) ≤

1 + cP
µ
‖q − q̃‖(W 1,2

D (Ω))∗

for all q, q̃ ∈ (W 1,2
D (Ω,R))∗.

(h) For all R > 0 there is a c > 0 such that

‖Ψ(V0, q)−Ψ(V1, q̃)‖W 1,2
D (Ω) ≤ c ‖V0 − V1‖L2 +

1 + cP
µ
‖q − q̃‖(W 1,2

D (Ω))∗

for all V0, V1 ∈ L2(Ω,R) and q, q̃ ∈ (W 1,2
D (Ω,R))∗ with ‖V0‖L2 ≤ R, ‖V1‖L2 ≤ R,

‖q‖(W 1,2
D (Ω))∗ ≤ R and ‖q̃‖(W 1,2

D (Ω))∗ ≤ R.

The proof of Theorem 5.1 requires quite some preparation and the statements will be proved in sep-
arate lemmas and propositions in this section. Throughout this section we adopt the notation and
assumptions of Theorem 5.1.

Define the sesquilinear form t : W 1,2
D (Ω)×W 1,2

D (Ω)→ C by

t[ψ, ϕ] =

∫
Ω

m−1∇ψ · ∇ϕ.

Then t is a closed positive symmetric form. We define the unperturbed Schrödinger operator H on
L2(Ω) as the operator associated to the form t. Formally H = − div

(
m−1∇

)
In semiconductor

modelling m describes the position dependent effective mass (modulo Planck’s constant and a fac-
tor 2). Then H is a positive self-adjoint operator. The form domain W 1,2

D (Ω) gives the realisation of
the operator H with homogeneous Dirichlet conditions on D and homogeneous Neumann conditions
on ∂Ω \D. We refer to [ET] for more details of the spaces W 1,2

D (Ω).

We need for the sequel that the resolvent of H is a Hilbert–Schmidt operator, or equivalently that
(H + 1)−1/2 belongs to the Schatten 4-class.

Proposition 5.2. (H + 1)−1/2 ∈ S4.

Proof. Define l : W 1,2(Ω)×W 1,2(Ω)→ C by l[ψ, ϕ] =
∫

Ω
∇ψ · ∇ϕ. Then there is a c > 0 such

that l[ψ] ≤ c t[ψ] for all ψ ∈ W 1,2
D (Ω). If ∆N is the Laplacian with Neumann boundary conditions,

then−∆N is the operator associated with l. Let λ1 ≤ λ2 ≤ . . . be the eigenvalues of the operatorH ,
repeated with multiplicity and let µ1 ≤ µ2 ≤ . . . be the eigenvalues of the operator −∆N , repeated
with multiplicity. Then the mini-max theorem gives µn ≤ c λn for all n ∈ N. The Weyl asymptotics
give that there is a c′ > 0 such that µn ≥ c′ n2/d for large n ∈ N. Since d ≤ 3 this implies that∑∞

n=1

(
(λn + 1)−1/2

)4

<∞.

In the sequel H is perturbed by a potential V ∈ L2(Ω,R). We will prove a form bound with respect
to t in order to see that the form sum is well-defined.

Lemma 5.3. There is a γ > 0 such that∣∣∣ ∫
Ω

V ψ ψ
∣∣∣ ≤ 3

4
(t + 1)[ψ] + γ‖V ‖4

L2
‖ψ‖2

L2

uniformly for all V ∈ L2(Ω,R) and ψ ∈ W 1,2
D (Ω).
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Proof. Since Ω is Lipschitz, one has the continuous embedding W 1,2
D (Ω) ↪→ L6(Ω), where we use

that d ≤ 3. Let c1 be the embedding constant. Then∣∣∣ ∫
Ω

V ψ ψ
∣∣∣ ≤ ‖V ‖L2‖ψ‖2

L4
≤ ‖V ‖L2(‖ψ‖2

L6
)
3
4 (‖ψ‖2

L2
)
1
4 ≤ c

3
2
1 ‖V ‖L2(‖ψ‖2

W 1,2
D

)
3
4 (‖ψ‖2

L2
)
1
4

≤ c
3
2
1

(
(‖m‖L∞ + 1)(t + 1)[ψ]

) 3
4‖V ‖L2(‖ψ‖2

L2
)
1
4

≤ 3

4
(t + 1)[ψ] +

c6
1‖V ‖4

L2
(‖m‖L∞ + 1)3

4
‖ψ‖2

L2

by Young’s inequality.

Throughout the remainder of this section we let γ > 0 be as in Lemma 5.3. For all V ∈ L2(Ω,R)
define the sesquilinear form tV : W 1,2

D (Ω)×W 1,2
D (Ω)→ C by

tV [ψ, ϕ] = t[ψ, ϕ] +

∫
Ω

V ψ ϕ.

By Lemma 5.3 the form tV is symmetric, semibounded and closed. We denote the corresponding
self-adjoint operator by H u V .

Lemma 5.4. Let R > 0. Define λ = 1 + γ R4. Let V ∈ L2(Ω,R) with ‖V ‖L2 ≤ R. Then one has
the following.

(a) The operator H u V + λ is positive, invertible and ‖(H u V + λ)−1‖L2→L2 ≤ 4.

(b) 1
4
t[ψ]− λ ‖ψ‖2

L2
≤ tV [ψ] ≤ 7

4
t[ψ] + λ ‖ψ‖2

L2
for all ψ ∈ W 1,2

D (Ω).

(c) ‖(H + 1)1/2(H u V + λ)−1/2‖ ≤ 2.

(d) ‖(H u V + λ)−2‖1/4
S1 = ‖(H u V + λ)−1/2‖S4 ≤ 2‖(H + 1)−1/2‖S4 <∞.

Proof. ‘(a)’. Let ψ ∈ W 1,2
D (Ω). Then

tV [ψ] = t[ψ] +

∫
Ω

V ψ ψ ≥ t[ψ]−
∣∣∣ ∫

Ω

V ψ ψ
∣∣∣ ≥ 1

4
(t + 1)[ψ]− λ ‖ψ‖2

L2
,

or, equivalently,

tV [ψ] + λ ‖ψ‖2
L2
≥ 1

4
(t + 1)[ψ]. (5.1)

This implies Statement (a).

‘(b)’. This follows similarly.

‘(c)’. It follows from (5.1) that

‖(H u V + λ)1/2ψ‖2
L2
≥ 1

2
‖(H + 1)1/2ψ‖2

L2

for all ψ ∈ W 1,2
D (Ω). Now use [Kat] Theorem VI.2.23.

‘(d)’. Since (H u V + λ)−1/2 = (H + 1)−
1
2

(
(H + 1)

1
2 (H u V + λ)−1/2

)
, the statement follows

from Statement (c) and Proposition 5.2.
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The form method gives that D(H1/2) = D(H u V + 1 + γ ‖V ‖4
L2

)1/2 for all V ∈ L2(Ω,R). Even
more is valid. For all V ∈ L2(Ω,R) let MV be the self-adjoint operator in L2(Ω) by multiplication
with V .

Proposition 5.5. Let R > 0. Define λ = 1 + γ R4. Then there is a c > 0 such that for all V ∈
L2(Ω,R) with ‖V ‖L2 ≤ R the following is valid.

(a) D(H u V ) = D(H).

(b) D(H) ⊂ L∞(Ω) ⊂ D(MV ).

(c) H u V = H +MV .

(d) ‖(H u V + λ)−1‖L2→L∞ ≤ c.

Proof. Let S be the semigroup on L2 generated by −(H + λ). It follows from [AE] Theorem 4.4
together with Example 4.3 that there are c, ω > 0 such that ‖St‖L2→L∞ ≤ c t−d/4 eωt for all t > 0.

Let ρ ∈ R with ρ > ω be such that cR (ρ − ω)−
4−d
4 Γ(4−d

4
) = 1

2
. Let ψ ∈ L2. Then a Laplace

transform gives (H + λ+ ρ)−1ψ ∈ L∞, where we use that d ≤ 3. In particular, D(H) ⊂ D(MV ).
Moreover,

‖MV (H + λ+ ρ)−1ψ‖L2 ≤ ‖V ‖L2

∫ ∞
0

e−ρt ‖St‖L2→L∞ dt ‖ψ‖L2

≤ c ‖V ‖L2 (ρ− ω)−
4−d
4 Γ(

4− d
4

) ‖ψ‖L2

≤ 1

2
‖ψ‖L2 .

Therefore MV is H-bounded with relative bound 1
2
. Then it follows from [Kat] Theorem V.4.3 that

the operator H + MV is self-adjoint. Note that D(H + MV ) = D(H). Let ψ ∈ D(H). Then
ψ ∈ D(MV ). If ϕ ∈ W 1,2

D (Ω), then tV [ψ, ϕ] = t[ψ, ϕ] + (V ψ, ϕ)L2 = (Hψ + V ψ, ϕ)L2 . Hence
ψ ∈ D(H u V ) and (H u V )ψ = Hψ + V ψ = (H + MV )ψ. We proved that H u V is an
extension ofH+MV . But bothHuV andH+MV are self-adjoint. ThereforeHuV = H+MV .
In particular D(H u V ) = D(H) ⊂ L∞.

Next
(H u V + λ+ ρ)−1

(
1 +MV (H + λ+ ρ)−1

)
= (H + λ+ ρ)−1

and

(H u V + λ+ ρ)−1 = (H + λ+ ρ)−1
(

1 +MV (H + λ+ ρ)−1
)−1

.

Therefore ‖(H u V + λ+ ρ)−1‖L2→L∞ ≤ 2‖(H + λ+ ρ)−1‖L2→L∞ .

As a result we obtain a resolvent equation. Note that the multiplication operator in the next corollary is
an unbounded operator in general.

Corollary 5.6. Let R > 0. Define λ = 1 + γ R4. Let U, V ∈ L2(Ω,R) with ‖U‖L2 ≤ R and
‖V ‖L2 ≤ R. Then D(H u V + λ) ⊂ D(MU) and

(H u U + λ)−1 − (H u V + λ)−1 = −(H u U + λ)−1MU−V (H u V + λ)−1.

Lemma 5.7. Let R > 0. Define λ = 1 + γ R4. Then one has the following.
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(a) For all k ∈ {0, . . . , 4} there is a ck > 0 such that f(H u V )ψ ∈ D((H u V + λ)k) for
all ψ ∈ L2(Ω) and ‖(H u V + λ)k f(H u V )‖L2→L2 ≤ ck for all V ∈ L2(Ω,R) with
‖V ‖L2 ≤ R.

(b) For all k ∈ {0, 1, 2} there exists an Mk > 0 such that the operator

(H u V + λ)k f(H u V )

is nuclear and ‖(H u V + λ)k f(H u V )‖S1 ≤Mk for all V ∈ L2(Ω,R) with ‖V ‖L2 ≤ R.

Proof. ‘(a)’. The operator H u V is self-adjoint and lower bounded by −γ by Lemma 5.4(a). Define
g : R → R by g(r) = (r + λ)k f(r). Then g is bounded on [−λ,∞) by the assumptions on f .
Therefore the spectral theorem gives ‖(H u V + λ)k f(H u V )‖L2→L2 ≤ supr∈[−λ,∞) |g(r)| =

supr∈[−λ,∞)(r + λ)k f(r).

‘(b)’. Now

‖(H u V + λ)k f(H u V )‖S1 ≤ ‖
(
H u V + λ)−2‖S1 ‖

(
(H u V + λ)k+2 f(H u V )‖L2→L2

≤ (2‖(H + 1)−1/2‖S4)4 ck+2,

where we used Lemma 5.4(d) and Statement (a).

For all W ∈ L∞(Ω) we denote by MW the multiplication operator on L2(Ω) by multiplying with W .
Let V ∈ L2(Ω,R). Choosing k = 0 in Lemma 5.7(b) gives that f(H u V ) is trace class. Then

|tr (MWf(H u V ))| ≤ ‖MW‖L2→L2 tr |f(H u V )| ≤ ‖W‖L∞(Ω) tr f(H u V )

for all W ∈ L∞(Ω). Hence there is a uniqueM(V ) ∈ L1(Ω,R) such that∫
Ω

M(V )W = tr
(
MW f(H u V )

)
for all W ∈ L∞(Ω).

Proposition 5.8. Let R > 0. Then there exists an M > 0 such that the following is valid.

(a) If V ∈ L2(Ω,R) with ‖V ‖L2 ≤ R, thenM(V ) ∈ L2(Ω,R) and ‖M(V )‖L2 ≤M .

(b) ‖M(U) −M(V )‖L2 ≤ M ‖U − V ‖L2 for all U, V ∈ L2(Ω,R) with ‖U‖L2 ≤ R and
‖V ‖L2 ≤ R.

Proof. ‘(a)’. Let c3 > 0 be as in Lemma 5.7(a) and c > 0 as in Proposition 5.5(d). Write λ = 1+γ R4.
Let W ∈ L∞(Ω). Then∣∣∣ ∫

Ω

M(V )W
∣∣∣ =

∣∣∣ tr(MW f(H u V )
)∣∣∣

=
∣∣∣ tr(MW (H u V + λ)−1(H u V + λ)3 f(H u V ) (H u V + λ)−2

)∣∣∣
≤ ‖MW (H u V + λ)−1‖L2→L2 ·

· ‖(H u V + λ)3 f(H u V )‖L2→L2 ‖(H u V + λ)−2‖S1
≤ c ‖W‖L2 c3 (2‖(H + 1)−1/2‖S4)4,
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where we used Proposition 5.5(d), Lemma 5.7(a) and Lemma 5.4(d).

‘(b)’. Write λ = 1 + γ R4. Define the function g : R → R by g(r) = (r + λ)2 f(r). Let U, V ∈
L2(Ω,R) with ‖U‖L2 ≤ R and ‖V ‖L2 ≤ R. Let W ∈ L∞(Ω). Then∫

Ω

M(V )W = tr (MW f(H u V ))

= tr
(
g(H u V ) (H u V + λ)−1MW (H u V + λ)−1

)
with a similar expression for U instead of V . Therefore∣∣∣ ∫

Ω

(
M(U)−M(V )

)
W
∣∣∣

=
∣∣∣tr(g(H u U)− g(H u V )

)
(H u U + λ)−1MW (H u U + λ)−1

+ tr g(H u V )
(

(H u U + λ)−1MW (H u U + λ)−1

− (H u V + λ)−1MW (H u V + λ)−1
)∣∣∣

≤ ‖g(H u U)− g(H u V )‖HS ‖(H u U + λ)−1MW (H u U + λ)−1‖HS

+ ‖g(H u V )‖HS ‖(H u U + λ)−1MW (H u U + λ)−1

− (H u V + λ)−1MW (H u V + λ)−1‖HS.

We estimate the two factors of the two terms.

First consider ‖g(H u U)− g(H u V )‖HS. If r ∈ [−λ,∞), then

(r + λ)2 |g′(r)| = 2(r + λ)3 f(r) + (r + λ)4 f ′(r).

Set
L = sup

r∈[−λ,∞)

(r + λ)2 |g′(r)|.

The assumptions on the function f imply that L <∞. Then Corollary 3.2 together with Corollary 5.6
give

‖g(H u U)− g(H u V )‖HS

≤ L ‖(H u U + λ)−1 − (H u V + λ)−1‖HS

= L ‖(H u U + λ)−1MU−V (H u V + λ)−1‖HS

≤ ‖(H u U + λ)−1‖HS ‖MU−V (H u V + λ)−1‖L2→L2

≤ (2‖(H + 1)−1/2‖S4)2 c ‖U − V ‖L2 ,

where we used Lemma 5.4(d) and c > 0 is as in Proposition 5.5(d).

Secondly and similarly

‖(H u U + λ)−1MW (H u U + λ)−1‖HS ≤ (2‖(H + 1)−1/2‖S4)2 c ‖W‖L2 .
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Thirdly,
‖g(H u V )‖HS ≤ ‖g(H u V )‖1/2

S1 ‖g(H u V )‖1/2
L2→L2

≤ c
1/2
2 M

1/2
2 ,

where c2 and M2 are as in Lemma 5.7.

Finally, using again Corollary 5.6 we obtain

‖(H u U + λ)−1MW (H u U + λ)−1 − (H u V + λ)−1MW (H u V + λ)−1‖HS

≤ ‖
(

(H u U + λ)−1 − (H u V + λ)−1
)
MW (H u U + λ)−1‖HS

+ ‖(H u V + λ)−1MW

(
(H u U + λ)−1 − (H u V + λ)−1

)
‖HS

≤ ‖(H u U + λ)−1MU−V (H u V + λ)−1MW (H u U + λ)−1‖HS

+ ‖(H u V + λ)−1MW (H u U + λ)−1MU−V (H u V + λ)−1‖HS.

Now

‖(H u U + λ)−1MU−V (H u V + λ)−1MW (H u U + λ)−1‖HS

≤ ‖(H u U + λ)−1‖HS ‖MU−V (H u V + λ)−1‖L2→L2 ·

· ‖MW (H u U + λ)−1‖L2→L2

≤ (2‖(H + 1)−1/2‖S4)2 c2 ‖U − V ‖L2 ‖W‖L2 ,

where we used Lemma 5.4(d) and c > 0 is as in Proposition 5.5. Similarly

‖(H u V + λ)−1MW (H u U + λ)−1MU−V (H u V + λ)−1‖HS

≤ (2‖(H + 1)−1/2‖S4)2 c2 ‖U − V ‖L2 ‖W‖L2 .

Together we obtain that there is a C > 0 such that∣∣∣ ∫
Ω

(
M(U)−M(V )

)
W
∣∣∣ ≤ C ‖U − V ‖L2 ‖W‖L2

for all W ∈ L∞(Ω) and U, V ∈ L2(Ω,R) with ‖U‖L2 ≤ R and ‖V ‖L2 ≤ R. Hence

‖M(U)−M(V )‖L2 ≤ C ‖U − V ‖L2

for all U, V ∈ L2(Ω,R) with ‖U‖L2 ≤ R and ‖V ‖L2 ≤ R, as required.

The mapM has the following monotonicity on the real Hilbert space L2(Ω,R).

Proposition 5.9. Let U, V ∈ L2(Ω,R). Then (M(U)−M(V ), U − V )L2 ≤ 0.

Proof. We follow arguments given in [KNR]. First suppose that U, V ∈ L∞(Ω,R). There exists an
orthonormal basis (ψn)n∈N for L2(Ω) and for all n ∈ N there is a λn ∈ R such that (H u U)ψn =
λn ψn. Similarly there exists an orthonormal basis (ϕn)n∈N for L2(Ω) and for all n ∈ N there is a
µn ∈ R such that (H u V )ϕn = µn ϕn.

Let n,m ∈ N. Then ψn ∈ D(H u U) = D(H) = D(H u V ) by Proposition 5.5(a). Hence

((U − V )ψn, ϕm)L2 = ((H u U −H u V )ψn, ϕm)L2 = (λn − µm) (ψn, ϕm)L2 .
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Then ∫
Ω

(U − V )M(U) = tr(MU−V f(H u U) =
∞∑
n=1

(MU−V f(H u U)ψn, ψn)L2

=
∞∑
n=1

f(λn) ((U − V )ψn, ψn)L2

=
∞∑

n,m=1

f(λn) ((U − V )ψn, ϕm)L2(ϕm, ψn)L2

=
∞∑

n,m=1

f(λn) (λn − µm) |(ψn, ϕm)L2|2.

Similarly ∫
Ω

(V − U)M(V ) =
∞∑

n,m=1

f(µm) (µm − λn) |(ψn, ϕm)L2|2.

Hence∫
Ω

(U − V )
(
M(U)−M(V )

)
=

∞∑
n,m=1

(f(λn)− f(µm)) (λn − µm) |(ψn, ϕm)L2|2 ≤ 0

since f is decreasing.

Now the proposition follows from Proposition 5.8(b) by density and continuity.

If V ∈ L2(Ω,R) and t ∈ R, then H u V − t = H + (V − t1Ω) and V − t1Ω ∈ L2(Ω,R).
Choosing k = 0 in Lemma 5.7(b) gives that f(H u V − t) is trace class for all V ∈ L2(Ω,R) and
t ∈ R.

Lemma 5.10. For all V ∈ L2(Ω,R) and Ñ ∈ (0,∞) there is a unique t ∈ R such that tr
(
f(H u

V − t)
)

= Ñ .

Proof. Let λ1 ≤ λ2 ≤ . . . be the eigenvalues of the operator H uV , repeated with multiplicity. Then

tr
(
f(H u V − t)

)
=
∞∑
n=1

f(λn − t)

for all t ∈ R. This series is absolutely convergent for each t ∈ R. Since f is continuous and strictly
decreasing, it follows from the Lebesgue dominated convergence theorem that t 7→ tr

(
f(HuV −t)

)
is continuous and strictly increasing.

Because f(0) > 0 one deduces that limt→∞ tr
(
f(H u V − t)

)
= ∞. Using again the Lebesgue

dominated convergence theorem it follows that limt→−∞ tr
(
f(HuV − t)

)
= 0. Then the existence

follows.

For all V ∈ L2(Ω,R) we define the Fermi level E(V ) = t, where t ∈ R is such that

tr
(
f(H u V − t)

)
= N.

Recall that N is fixed in Theorem 5.1. We next prove that the function V 7→ E(V ) is locally bounded.
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Proposition 5.11. For allR > 0 there exists anM > 0 such that |E(V )| ≤M for all V ∈ L2(Ω,R)
with ‖V ‖L2 ≤ R.

Proof. The proof is a modification of the proof of Lemma 5.10. Write λ = 1 + γ R4. For all V ∈
L2(Ω,R) with ‖V ‖L2 ≤ R let λ(V )

1 ≤ λ
(V )
2 ≤ . . . be the eigenvalues of the operator H u V ,

repeated with multiplicity. Then the mini-max theorem together with the form bounds of Lemma 5.4(b)
gives

1
4
λ(0)
n − λ ≤ λ(V )

n ≤ 7
4
λ(0)
n + λ

for all n ∈ N. Let t ∈ R. Since f is decreasing one estimates

∞∑
n=1

f(7
4
λ(0)
n + λ− t) ≤

∞∑
n=1

f(λ(V )
n − t) ≤

∞∑
n=1

f(1
4
λ(0)
n − λ− t).

Arguing as in the proof of Lemma 5.10 there are T, T̃ ∈ R such that

∞∑
n=1

f(7
4
λ(0)
n + λ− T ) = N =

∞∑
n=1

f(1
4
λ(0)
n − λ− T̃ ).

Then T ≥ E(V ) ≥ T̃ .

Define the particle densityN : L2(Ω,R)→ L2(Ω,R) by

N (V ) =M(V − E(V )1Ω).

So ∫
Ω

N (V )W = tr
(
MW f(H u V − E(V ))

)
and ∫

Ω

N (V ) = tr f(H u V − E(V )) = N (5.2)

for all V ∈ L2(Ω,R) and W ∈ L∞(Ω). We next prove that Proposition 5.8(b) remains valid ifM is
replaced byN . This was proved before in [KR2] Section 4.

Proposition 5.12. Let R > 0. Then there exists an M > 0 such that

‖N (U)−N (V )‖L2 ≤M ‖U − V ‖L2

for all U, V ∈ L2(Ω,R) with ‖U‖L2 ≤ R and ‖V ‖L2 ≤ R.

Proof. Using Propositions 5.11 and 5.8(b) it suffices to show that there is an M > 0 such that
|E(U)− E(V )| ≤M ‖U − V ‖L2 for all U, V ∈ L2(Ω,R) with ‖U‖L2 ≤ R and ‖V ‖L2 ≤ R.

For all V ∈ L2(Ω,R) let λ(V )
1 ≤ λ

(V )
2 ≤ . . . be the eigenvalues of the operator H u V , repeated

with multiplicity. Then the mini-max theorem together with the form bounds of Lemma 5.4(b) gives

1
4
λ

(0)
1 − λ ≤ λ

(V )
1 ≤ 7

4
λ

(0)
1 + λ

for all V ∈ L2(Ω,R) with ‖V ‖L2 ≤ R, where λ = 1 + γ R4. By Proposition 5.11 there is an
M1 > 0 such that |E(V )| ≤M1 for all V ∈ L2(Ω,R) with ‖V ‖L2 ≤ R. Since f is locally bounded,

there is an M2 > 0 such that f(λ
(V )
1 − E(V )) ≤ M2 for all V ∈ L2(Ω,R) with ‖V ‖L2 ≤ R. By
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the assumptions on f there is an L > 0 such that |t − s| ≤ L |f(t) − f(s)| for all t, s ∈ R with
f(t) ∈ [−M2,M2] and f(s) ∈ [−M2,M2]. By Proposition 5.8(b) there is a c > 0 such that

‖M(U)−M(V )‖L2 ≤ c ‖U − V ‖L2

for all U, V ∈ L2(Ω,R) with ‖U‖L2 ≤ R +M1 |Ω|1/2 and ‖V ‖L2 ≤ R +M1 |Ω|1/2.

Now let U, V ∈ L2(Ω,R) with ‖U‖L2 ≤ R and ‖V ‖L2 ≤ R. Without loss of generality we may
assume that E(V ) ≥ E(U). Since f is decreasing one deduces that

f(λ(V )
n − E(V ))− f(λ(V )

n − E(U)) ≥ 0

for all n ∈ N. Consequently

tr f(H u V − E(V ))− tr f(H u V − E(U))

=
∞∑
n=1

(
f(λ(V )

n − E(V ))− f(λ(V )
n − E(U))

)
≥ |f(λ

(V )
1 − E(V ))− f(λ

(V )
1 − E(U))|

≥ L−1 |(λ(V )
1 − E(V ))− (λ

(V )
1 − E(U))|

= L−1 |E(U)− E(V )|.

On the other hand,

tr f(H u V − E(V )) = N = tr f(H u U − E(U))

and hence

tr f(H u V − E(V ))− tr f(H u V − E(U))

= |tr f(H u U − E(U))− tr f(H u V − E(U))|

=
∣∣∣ ∫

Ω

(
M(U − E(U))−M(V − E(U))

)∣∣∣
≤ |Ω|1/2 ‖M(U − E(U))−M(V − E(U))‖L2

≤ c |Ω|1/2 ‖U − V ‖L2

from which the theorem follows.

Also Proposition 5.9 is valid forN instead ofM.

Proposition 5.13. Let U, V ∈ L2(Ω,R). Then (N (U)−N (V ), U − V )L2 ≤ 0.

Proof. Using (5.2) and Proposition 5.9 one deduces that

(N (U)−N (V ), U − V )L2

= (N (U)−N (V ), (U − E(U)1Ω)− (V − E(V )1Ω))L2

= ((M(U − E(U)1Ω)−M(V − E(V )1Ω), (U − E(U)1Ω)− (V − E(V )1Ω))L2 ≤ 0

as required.
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We next show that for all V0 ∈ L2(Ω,R) and q ∈ (W 1,2
D (Ω,R))∗ there is a V ∈ W 1,2

D (Ω) such that

−∇ · ε∇V = q +N (V0 + V )

in a weak sense.

Proposition 5.14. Let V0 ∈ L2(Ω,R). WriteH = W 1,2
D (Ω,R). Define the map A0 : H → H∗ by

〈A0V,W 〉H∗×H =

∫
Ω

ε∇V · ∇W − (N (V0 + V ),W )L2(Ω).

Then one has the following.

(a) The operator A0 is strongly monotone with monotonicity constant µ (1 + cP )−1.

(b) For all R > 0 there exists a C > 0 such that

‖A0U − A0V ‖H∗ ≤ C ‖U − V ‖H

for all U, V ∈ H with ‖U‖H ≤ R and ‖V ‖H ≤ R.

(c) For all q ∈ H∗ there is a unique V ∈ H such that

〈A0V,W 〉H∗×H = 〈q,W 〉H∗×H

for all W ∈ H. It follows that ‖V ‖H ≤ 1+cP
µ
‖q +N (V0)‖H∗ .

Proof. ‘(a)’. Let U, V ∈ H. Then

〈A0U − A0V, U − V 〉H∗×H

≥ µ

∫
Ω

|∇(U − V )|2 − (N (V0 + U)−N (V0 + V ), (V0 + U)− (V0 + V ))L2

≥ µ (1 + cP )−1‖U − V ‖2
H,

where we used Proposition 5.13.

‘(b)’. This follows from Proposition 5.12 and the boundedness of the coefficient function ε.

‘(c)’. This follows immediately from the previous statements and Theorem 4.1.

Write Ψ(V0, q) = V if V0, q and V are as in Proposition 5.14(c).

Proof of Theorem 5.1(h). If follows from Theorem 4.1(d) that

‖Ψ(V0, q)−Ψ(V0, q̃)‖W 1,2
D (Ω) ≤

1 + cP
µ
‖q − q̃‖(W 1,2

D (Ω))∗ .

Hence it remains to estimate ‖Ψ(V0, q) − Ψ(V1, q)‖W 1,2
D (Ω). Write H = W 1,2

D (Ω,R). Define the
maps A0, A1 : H → H∗ by

〈A0V,W 〉H∗×H =

∫
Ω

ε∇V · ∇W − (N (V0 + V ),W )L2(Ω) and

〈A1V,W 〉H∗×H =

∫
Ω

ε∇V · ∇W − (N (V1 + V ),W )L2(Ω).
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Write m = µ
1+cP

. Let

R =
2

m
max{‖q +N (V0)‖H∗ , ‖q +N (V1)‖H∗}.

By Proposition 5.14(b) there exists an M > 0 such that

‖A0U − A0V ‖H∗ ≤M ‖U − V ‖H and ‖A1U − A1V ‖H∗ ≤M ‖U − V ‖H

for all U, V ∈ H with ‖U‖H ≤ R and ‖V ‖H ≤ R. By Proposition 5.12 there exists a c > 0 such
that

‖N (U)−N (V )‖L2 ≤ c ‖U − V ‖L2

for all U, V ∈ L2(Ω,R) such that ‖U‖L2 ≤ R + ‖V0‖L2 + ‖V1‖L2 and ‖V ‖L2 ≤ R + ‖V0‖L2 +
‖V1‖L2 . Let J : H → H∗ be the duality map. Define Q0, Q1 : {U ∈ H : ‖U‖H ≤ R} → H by

Q0U = U − m

M2
J−1(A0U − q) and Q1U = U − m

M2
J−1(A1U − q). (5.3)

Now we estimate ‖Ψ(V0, q) − Ψ(V1, q)‖W 1,2
D (Ω). Write U = Ψ(V0, q) and V = Ψ(V1, q). Then

‖U‖L2 ≤ R and ‖V ‖L2 ≤ R by Proposition 5.14(c). Moreover, Q0U = U and Q1V = V . Using
Proposition 5.14(a) and Theorem 4.1(a) one estimates

‖U − V ‖H = ‖Q0U −Q1V ‖H = ‖Q0U −Q0V ‖H + ‖Q0V −Q1V ‖H

≤
√

1− m2

M2
‖U − V ‖H +

m

M2
‖J−1(N (V0 + V )−N (V1 + V ))‖H.

Rearrangement gives

‖U − V ‖H ≤
(

1−
√

1− m2

M2

)−1 m

M2
‖N (V0 + V )−N (V1 + V )‖H∗

≤
(

1−
√

1− m2

M2

)−1 m

M2
‖I‖L2→H∗ ‖N (V0 + V )−N (V1 + V )‖L2

≤
(

1−
√

1− m2

M2

)−1 m

M2
‖I‖L2→H∗ c ‖V0 − V1‖L2

as required.

Finally we consider regularity of the solutions under some weak additional assumptions. For all p ∈
(1,∞) let W 1,p

D (Ω) be the W 1,p(Ω)-closure of the set

{u|Ω : u ∈ C∞(Rd) and suppu ∩D = ∅}.

Let p′ be the dual exponent of p. Define W−1,p′

D (Ω) to be the dual space of W 1,p
D (Ω).

Theorem 5.15. Let V0 ∈ L2(Ω,R), p ∈ [2,∞], and q ∈ W−1,p
D (Ω,R).

(a) If p > d, then Ψ(V0, q) ∈ L∞(Ω).

(b) If 2 < p ≤ d = 3, then Ψ(V0, q) ∈ Lp∗(Ω), where 1
p∗

= 1
p
− 1

3
.
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(c) Suppose p > d. Under a measure theoretic condition of the relative boundary of D in ∂Ω
(see [ER] Assumption (III) in Theorem 1.1 ) it follows that Ψ(V0, q) is Hölder continuous for all
V0 ∈ L2(Ω,R) and q ∈ W−1,p

D (Ω).

(d) Suppose that D = ∂Ω and that the coefficient function ε is Lipschitz continuous. Further
suppose that Ω is of class C1,1 or convex. Then Ψ(V0, q) ∈ W 2,2(Ω) if q ∈ L2(Ω,R).

Proof. The Sobolev embedding theorem gives L2(Ω) ⊂ W−1,6
D (Ω). Write p̃ = min(p, 6) and V =

Ψ(V0, q). Then q +N (V0 + V ) ∈ W−1,p̃
D (Ω). Moreover,∫

Ω

ε∇V · ∇W = 〈q +N (V0 + V ),W 〉D′(Ω)×D(Ω) (5.4)

for all W ∈ C∞c (Ω).

‘(a)’. Now p̃ > d and [Sta] Théorème 4.2(a) implies that V ∈ L∞(Ω).

‘(b)’. Now p̃ = p and one can use [Sta] Théorème 4.2(b).

‘(c)’. See [ER] Theorem 1.1.

‘(d)’. We use (5.4). Then the regularity follows from [Gri] Theorem 2.2.2.3 in case Ω is of class C1,1

and from [Gri] Theorem 3.2.1.2 in case Ω is convex.

Theorem 5.16. Suppose that the set D is a (d− 1)-set in the sense of Jonsson–Wallin ([JW] Chap-
ter II). Then there exists a p > 2 such that Ψ(V0, q) ∈ W 1,p

D (Ω) for all V0 ∈ L2(Ω,R) and
q ∈ W−1,p

D (Ω).

Proof. This follows from [HJKR] Theorem 5.6.

If V0 ∈ L2(Ω,R) and q ∈ (W 1,2
D (Ω,R))∗, then the solution Ψ(V0, q) of the Schrödinger–Poisson

system obtained in Theorem 5.1(e), or Proposition 5.14(c), is constructed via a contraction in Theo-
rem 4.1(c). Explicitly, if Q0 is as in (5.3), U1 = 0 and inductively Un+1 = Q0Un for all n ∈ N, then
Ψ(V0, q) = limn→∞ Un in W 1,2

D (Ω). We do not know whether the convergence is valid in any of the
spaces mentioned in Theorems 5.15 and 5.16.
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