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Dimension reduction for a coupled electro-elastic saddle-point
problem at finite strains

Kateryna Buryachenko, Annegret Glitzky, Matthias Liero, Barbara Zwicknagl

Abstract

We study the finite deformation of a thin, elastically heterogeneous sheet subject to electro-
static coupling. The interaction between mechanics and electrostatics is formulated as a saddle-
point problem involving the deformation and the electrostatic potential. Starting from a three-
dimensional electro-elastic model with prestrain in the elastic energy, we rigorously derive a re-
duced plate model in the bending regime. To perform the dimension reduction, that is, to derive
the energy of a thin object by taking a suitable limit as its thickness tends to zero, we apply
Γ-convergence-type methods to the underlying saddle-point problem. In the case of bivariate
functionals, this convergence is understood in an adapted epi/hypo-convergence sense. In this
concept, we demonstrate the convergence of the rescaled electro-elastic problems to an effective
two-dimensional bending model coupled to electric effects. We verify that cluster points of saddle
points are saddle points for the limit.
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1 Introduction

The study of dimension reduction in continuum mechanics provides a rigorous framework for deriv-
ing effective lower-dimensional theories for thin domains that capture the dominant behavior while
reducing e.g. computational complexity, see [9, 10, 14, 26, 28]. More recently, approaches based on
variational methods such as Γ-convergence have proven to be a powerful and versatile tool espe-
cially for dimension reduction in nonlinear elasticity. The main task herein, i.e., the convergence of
global minimizers of suitably scaled elastic energy functionals, has been discussed by many authors
since the pioneering works by Le Dret and Raoult [14], and by Friesecke, James and Müller [16, 17].
This problem has gained increasing attention in the case of pre-strained bodies, and several results
appeared not only for the dimension reduction from three- to two-dimensional problems (see e.g.
[1, 7, 29]) but also in the three- to one-dimensional case, i.e., rods (see, for instance, [4, 6, 11] and
references therein).

In this paper, we deal with the derivation of an effective plate model in the bending regime for a coupled
three-dimensional electro-elastic model when the relative thickness 0 < ε � 1 of the plate goes to
zero. The model describes the finite deformation of a thin elastically heterogeneous sheet in response
to an electric field. While the former is given in terms of the deformation y : Ω→ R3 of the reference
configuration Ω, the latter is given by the electrostatic potential ϕ : Ω → R that solves the Poisson
equation, namely,

−div
(
κ(x,∇y)∇ϕ

)
= e0nch(x),

where κ(x,∇y) ∈ R3×3 is the symmetric and positive definite permittivity tensor in the Lagrangian
frame that depends on the deformation gradient, and nch(x) is a fixed charge distribution (e0 > 0 de-
notes the elementary charge). In particular, the nonlinear dependence of κ on∇y leads to significant
mathematical challenges, see e.g. Subsection 4.4. We make the crucial scaling assumption, that the
electrostatic potential ϕ and the charge density nch are of order ε (comp. (2.7)).

Electro-elastic models in the setting of large deformations are highly relevant due to their broad range
of applications in describing electromechanical effects in polymeric materials. Elastomeric materials
are sensitive to electric fields and can be used in transducer devices such as actuators and sensors,
see e.g. [12]. This development in materials science requires in turn a development of the mathe-
matical theory to improve the understanding of the electro-mechanical (in particular, electro-elastic)
interactions for material characterization and prediction via mathematical analysis and numerical sim-
ulations. A thorough study, review of key experiments, discussion of the range of applications, and the
history of development of the nonlinear theory of such models have been done, for example, by Dorf-
mann and Ogden in [13]. In addition, special attention is given to the development of electro-elastic the-
ory, constitutive equations for electro-elastic materials and then their specialization to isotropic electro-
elasticity. This is necessary for material characterization and analysis of general electro-elastic cou-
pling problems. Another novel polyconvex transversely-isotropic invariant oriented model of Electro-
Active Polymers (EAPs) is studied in [21]. In that paper, a series of numerical examples modelling the
performance of transversely isotropic EAPs at large strains are presented, and existence of minimiz-
ers, material stability (ellipticity) of simulations is ensured by means of a so-called A-polyconvexity
condition. Moreover, a polyconvex basis of invariants for the creation of polyconvex invariant-based
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 3

constitutive models is also introduced. In the work [25], Miehe, Vallicotti, and Zäh outline variational-
based definitions for structural and material stability for EAPs. Herein an enthalpy-based saddle-point
principle is considered as the most convenient setting for numerical implementation. Stability criteria
for a canonical energy minimization principle of electro-elasto-statics are formulated and shifted over
to representations related to this enthalpy-based saddle-point principle. A linearized version of the
EAP model in [25] was studied by Kružı́k and Roubı́ček in [22, Sect. 5.6], see also [32].

In our problem, the main mathematical challenge lies in the fact that it is not formulated as a family of
minimization problems, but as a family of saddle-point problems (see, for instance, [3]) for the energy
functionals Fε. This is in contrast, e.g., to the setting considered by Bartels et al. [5]. Therein, the
authors also deal with a coupled problem for elastomers, where the deformation y is coupled to the
behavior of a director field via a spontaneous curvature term. In their case, however, the problem
is formulated as a joint minimization problem for y and the director field. In our setting, the energy
functional has the form

Fε(y, ϕ) =Mε(y)− Eε(y, ϕ), (1.1)

whereMε denotes the purely elastic part depending only on y, see (2.23), while Eε represents the
electrostatic contribution depending on both, y and the electrostatic potential ϕ, see (2.24).

In contrast to linearized piezoelectric problems, see e.g. [22, Sect. 5.6], the existence of a saddle
point for fixed ε is not clear as physical principles require the energy Eε to be nonconvex (at most
polyconvex) with respect to the deformation. Thus, classical results such as [15, Ch. 4, Prop. 2.2]
cannot be applied. In this regard, the derivation of an effective and to some extent simpler model for
thin domains is much desired.

The idea of applying Γ-convergence methods to saddle-point problems is not new. A notion of con-
vergence for a sequence of bivariate functionals Fε : Y × V → R := R ∪ {±∞} to some limiting
functional F0 : Y0 × V0 → R in some metric spaces Y , V , Y0, V0 is called epi/hypo-convergence
and was introduced by Attouch and Wets in [2, 3]. We build on this idea but suitably adapt it to our set-
ting in order to deal with potential cancellation effects in the energy (1.1) which is defined as difference
of two non-negative contributions and a linear part, see Section 4.

Another challenge is that we take into account that the elastic contribution to the total energy contains
a so-called ”prestrain”. The latter arises, for example, from a layered material structure (see e.g. [23] for
prestrained nanorods) and is common in biological applications [1, 24]. Typically, these materials are
modeled by three-dimensional energy densities of the form Ŵ (x,∇y(x)) = Wel(x,∇y(x)M(x)−1)
for the deformation gradient∇y and a given prestrainM(x) ∈ GL(3). We will build upon the methods
in [1, 29] to prove the convergence to the bending model for the elastic part.

The main result of the present paper is contained in Section 4 (Subsection 4.2, Theorem 4.4), and
roughly states the following. Let (y∗ε , ϕ

∗
ε) ∈ Y1 × V1 be a given sequence of saddle points for the

family of functionals of total energy Fε : Y1 × V1 → R := R ∪ {±∞} (see 4.1), such that
(y∗ε , ϕ

∗
ε) → (y∗, ϕ∗) ∈ Y0 × V0. We prove that Fε converges to F0 : Y0 × V0 → R in a sense,

which is closely related to epi/hypo-convergence, and which guarantees that (y∗, ϕ∗) is a saddle point
of the effective bending model. The specific form of our functionals requires some suitable choices in
the topologies and spaces used.

Outline of the paper: In Section 2, we introduce the underlying three-dimensional electro-elastic model
as well as scaling assumptions and non-dimensionalization, see Subsections 2.2 and 2.3. The two-
dimensional limit model with limit functionalF0 =M0−E0 is introduced in Subsection 2.4. Moreover,
the rigorous assumptions for the limit passage are collected in Subsection 2.5. Section 3 provides
properties of saddle points for fixed ε. Uniform estimates for saddle points with respect to ε are derived
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in Subsection 3.2 (cf. Lemma 3.3 and Proposition 3.4). Section 4 is devoted to the actual dimension
reduction. We introduce the generalized notion of epi/hypo-convergence for saddle functionals and
prove the main result of this paper, Theorem 4.4, on epi/hypo-convergence of the functional Fε of
total energy. The proof of Theorem 4.4 relies on establishing several auxiliary asymptotic upper and
lower bounds (see Lemmas 4.6, 4.7, 4.8, and 4.9). In Subsection 4.4, we collect some convergence
properties that are relevant in finding recovery sequences. Section 5 is devoted to concluding remarks.

2 Setup for the coupled electro-elastic model

In this section, we collect all necessary setup statements, introduce the electro-elastic bending model
and its limiting model, provide scaling assumptions and non-dimensionalization for introduced model.

2.1 Notation

For the reader’s convenience, we collect the notation used throughout the paper here.

� For x ∈ R3, we write x = (x′, x3) or x = (x′, t), where x′ denotes the in-plane components and x3

or t corresponds to the out-of-plane component of x;

� ∇′ := (∂1, ∂2) means the in-plane gradient and∇ε := (∇′, 1
ε∂3) denotes the scaled gradient;

� {e1, e2, e3} is the standard basis in R3;

� Rn×n is the vector space of real n× n matrices, In ∈ Rn×n denotes the identity matrix;

� curlv stands for the vector product of∇ and the vector field v, i.e., curlv = ∇× v;

� GL(n) is the general linear group of degree n, i.e., the set of invertible n× n matrices;

� Sym(n) := {M ∈ Rn×n : M> = M}, the vector space of symmetric matrices, where M> is the
transposed matrix of M and M−> = (M>)−1 = (M−1)>;

� Skew(n) := {M ∈ Rn×n : M> = −M}, the set of skew-symmetric matrices;

� Msym := 1
2(M +M>),∇symy := 1

2(∇y + (∇y)>) for vector functions y;

� detM is the determinant of M ∈ Rn×n, and Cof M = (detM)M−> denotes the cofactor matrix of
M ;

� SO(3) := {M ∈ R3×3 : M>M = I3, det(M) = 1} is the set of rotations of R3;

� W 2,2
iso (ω,R3) := {y ∈W 2,2(ω,R3) : ∇′y>∇′y = I2}. For y ∈W 2,2

iso (ω,R3) let νy := ∂1y ∧ ∂1y,
Ry := (∂1y|∂2y|νy), and Πy := ∇′y>∇′ν the second fundamental form of the surface parametrized
by y in local coordinates;

� Lpav(Ω1,Rd) stands for (vector-valued) functions with vanishing average, i.e., f ∈ Lpav(Ω1,Rd) if f ∈
Lp(Ω1,Rd) and

∫
Ω1
f dx = 0. Moreover, we set W k,p

av (Ω1,Rd) = W k,p(Ω1,Rd) ∩ Lpav(Ω1,Rd);

� M2×2 denotes the 2 × 2 submatrix of M ∈ R3×3 resulting from M by omitting the last row and last
column;

� For vectors ai, bi ∈ Rn, their tensor product a⊗ b ∈ Rn×n is given by (a⊗ b)ij = aibj ;
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� For given G ∈ R2×2, let G◦ ∈ R3×3 denote the matrix obtained by

G◦ :=

 0
G

0
0 0 0

 ; (2.1)

� c stands for a generic constant, cε for a generic constant depending on ε.

2.2 Three-dimensional energy functional

We fix a domain Ωh := ω × (−h/2,+h/2), where we assume that

ω ⊂ R2 is an open, bounded and convex domain with piecewise C1-boundary. (2.2)

We consider the free energy functional for the deformation y and the electrostatic potential ϕ that
consists of a purely mechanical part and an electrostatic contribution, namely

F(y, ϕ) =M(y)− E(y, ϕ), with

M(y) =

∫
Ωh

{
Wel(x,∇y(x)M(x)−1) det(M(x)) +H(∇2y(x))

}
dx,

E(y, ϕ) =
1

2

∫
Ωh

{
κ(x,∇y)∇ϕ(x) · ∇ϕ(x)− e0nch(x)ϕ(x)

}
dx,

(2.3)

where e0 > 0 is the elementary charge, nch is a fixed charge-density,M(x) ∈ GL(3) is the prestrain,
and κ : Ωh × GL(3) → Sym(3) is the symmetric and uniformly positive definite permittivity ten-
sor pulled-back to the reference configuration, namely, for k ∈ L∞(Ωh, Sym(3)) uniformly positive
definite, we have

κ(x, F ) = det(F )F−1k(x)F−>, for almost all x ∈ Ωh and for all F ∈ GL(3). (2.4)

Note that we have also included a higher order contribution H(∇2y) to the mechanical energy that
acts as a regularization, see Section 3.

We are looking for deformations y and electrostatic potentials ϕ such that y minimizes F and ϕ is a
maximizer in suitable classes of functions, i.e., we are looking for saddle points of the functional F .
We have the following definition.

Definition 2.1. ([2, 3]). Let Ỹ and Ṽ be metric spaces, andF : Ỹ × Ṽ → R be a bivariate functional.
A pair (y∗, ϕ∗) ∈ Ỹ × Ṽ such that

F(y∗, ϕ) ≤ F(y∗, ϕ∗) ≤ F(y, ϕ∗) for all (y, ϕ) ∈ Ỹ × Ṽ , (2.5)

is called a saddle point for the functional F on the metric space Ỹ × Ṽ .

We will use this concept of saddle points for the functionals Fε and the limiting functional F0 on
different pairs of metric spaces (Ỹ , Ṽ) and (Y0,V0) respectively.

The existence of saddle points for the functional F defined in (2.3) is not clear. In particular, standard
existence results rely on the property that F is convex in y and concave in ϕ, see [15, 33], while
the concavity with respect to ϕ holds, the convexity in y is missing due to the dependence of κ on
∇y. Moreover, the frame indifference principle demands that also the stored-elastic-energy density
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Wel is non-convex. In the case of linearized elasticity, the problem becomes convex-concave, and the
existence of saddle points can be shown, [15, Ch. 4, Prop. 2.2]. We also refer to [22, Sect. 5.6].

The corresponding Euler–Lagrange equation for the functionalF with respect to the deformation reads

−div
(

(detM)∂FWel(∇yM−1)M−>︸ ︷︷ ︸
elastic stress

−div (∂GH(∇2y))︸ ︷︷ ︸
hyperstress

+ ΣMax(∇y,∇ϕ)︸ ︷︷ ︸
Maxwell stress

)
= 0,

where ΣMax is the Maxwell stress given for F = ∇y by

ΣMax =
(
kF−>∇ϕ⊗ F−>∇ϕ− 1

2
k(F−>∇ϕ) · (F−>∇ϕ)I3

)
Cof F.

The Piola transform TE 7→ TL := TECof∇y maps an Eulerian tensor field TE : y(Ωh) → R3×3

to its Lagrangian counterpart TL : Ωh → R3×3 such that det(∇y)div y(T
E) = div x(T

L). Thus,
the Maxwell stress takes the more familiar form in spatial (Eulerian) coordinates

ΣE
Max = −1

2
k∇yφ · ∇yφ I3 + k∇yφ⊗∇yφ,

where φ(y(x)) = ϕ(x) denotes the Eulerian electrostatic potential. The Euler–Lagrange equation for
the electrostatic potential, also called Poisson equation in this case, reads

−div
(
(detF )F−1k(x)F−>∇ϕ

)
= e0nch(x).

For simplicity, we complement this equation by the condition
∫

Ωh
ϕ dx = 0. We refer to [5, Subsec-

tion 2.3], where also additional boundary conditions for y are discussed.

2.3 Scaling assumptions and non-dimensionalization

In order to non-dimensionalize the energy in (2.3), we introduce a reference length scale ` > 0, a
reference voltage Vr > 0, a reference carrier density nr > 0, and a reference energy density E∗ > 0
(unit Joule/meter3). We then set the non-dimensional and scaled quantities

ω̃ := `−1ω, ε = `−1h, x̃ = `−1(x′, ε−1x3) = (`−1x′, h−1x3) ∈ ω̃ ×
(
−1

2
,+

1

2

)
.

The rescaled deformation ỹ, electrostatic potential ϕ̃, and charge density ñch are defined via

ỹ(x̃) = `−1y(`x̃′, `εx̃3), ϕ̃(x̃) = V −1
r ϕ(`x′, `εx̃3), ñch(x̃) = n−1

r nch(`x′, `εx̃3),

W̃el(x̃, F ) = E−1
∗ Wel((`x̃

′, `εx̃3), F ), M̃(x̃) = M(`x̃′, `εx̃3),

κ̃(x̃, F ) = κ−1
0 κ(`x′, `εx̃3, F ), H̃(G) = E−1

∗ H(G),

where κ0 > 0 is the vacuum permittivity. Note that this scaling leads to the identities ∇xy =
diag(1, 1, ε−1)∇x̃ỹ =: ∇εỹ and analogously for ϕ and ϕ̃. For the Hessians of y and ỹ, we have
the relations

∂2y

∂xi∂xj
= αεij

∂2ỹ

∂x̃i∂x̃j
, where αεij =


1/(`ε2) if i = j = 3,

1/(`ε) if (i = 3 and j 6= 3) or (j = 3 and i 6= 3),

1/` otherwise.
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We will write∇2
εỹ, where (∇2

εy)ijk = αεij
∂2ỹk
∂x̃i∂x̃j

, i, j, k = 1, 2, 3.

Plugging these identities into the energy functional F in (2.3), we obtain

1

ε3`3E∗
F(y, ϕ) = F̃ε(ỹ, ϕ̃),

with the rescaled energy functional

F̃ε(ỹ, ϕ̃) =
1

ε2

∫
Ω1

W̃el(x̃,∇εỹ(x̃)M̃(x̃)−1) det(M̃(x̃)) + H̃(∇2
εỹ(x̃)) dx̃

+
e0Vrnr

ε2E∗

∫
Ω1

ñch(x̃)ϕ̃(x̃) dx̃− κ0V
2

r

2ε2E∗

∫
Ω1

κ̃
(
x̃,∇εỹ(x̃)

)
∇εϕ̃(x̃) · ∇εϕ̃(x̃) dx̃. (2.6)

For the reference charge-carrier density nr and the reference voltage Vr, we suppose the following
smallness assumption

nr = nεr =
ε2

L3(Ωε)
=

ε

`3
and Vr = V ε

r = εV∗. (2.7)

Note that this assumption leads to the factors in front of the last two integrals in (2.6) to be of order 1,
namely:

γ :=
e0Vrnr

ε2E∗
=
e0V∗n∗
E∗

and β :=
κ0V

2
r

ε2E∗
=
κ0V

2
∗

E∗
. (2.8)

Concerning the prestrain, we follow [1] (and Sect. 4 in [29]) and assume that M̃ = I3 +εB̃(x), where
B̃(x̃) ∈ R3×3 is symmetric, see also Assumption (A3) below.

In the remaining text, we will drop the tilde-notation for notational simplicity.

2.4 The two-dimensional limit model

In this section, we describe the effective lower dimensional electro-elastic model. As usual in the theory
of bending models, see e.g. [1, 5], let Q3(x, ·) : R3×3 → R be a quadratic form such that∣∣∣Wel(x, I3 + F )− 1

2
Q3(x, F )

∣∣∣ ≤ |F |2rW (|F |), ∀F ∈ R3×3, ∀x ∈ Ω1

(see also Assumption (W3) below). Moreover, we introduce for a matrix X ∈ R2×2 the quadratic form
Q2 : Ω1 × R2×2 → R

Q2(x′, t, X) := min
z∈R3

Q3

(
x′, t, [X◦+z⊗e3]

)
= min

z∈R3
D2Wel(x

′, t, I3)
(
[X◦+z⊗e3], [X◦+z⊗e3]

)
,

where the notation X◦ is explained in (2.1). Now, let Q2 : ω × R2×2 → R be given via

Q2(x′, X) := min
s∈R2×2

∫ 1/2

−1/2

Q2(x′, t, tX + s−B(x′, t)2×2) dt

= min
s∈R2×2

∫ 1/2

−1/2

min
z∈R3

D2Wel(x
′, t, I3)([tX◦+s◦−(B2×2)◦+z⊗e3], [tX◦+s◦−(B2×2)◦+z⊗e3]) dt.
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With the assumptions on Wel below, Qn, n = 2, 3, are quadratic forms such that A 7→ Qn(x,A) is
positive semi-definite on R3×3 and positive definite on Sym(n). Moreover, we have that Qn(x, F ) =
0 for all F ∈ Skew(n), and F 7→ Qn(x, F ) is strictly convex on Sym(n). We refer to [24, Lemma
2.A.1.].

Additionally, we introduce the unit normal vector νy to the surface belonging to y ∈ W 2,2(ω,R3) with
∇′y>∇′y = I2 and the matrix Ry ∈ L2(ω,R3×3) via

νy(x
′) :=

∂1y × ∂2y

‖∂1y × ∂2y‖
= ∂1y ∧ ∂2y ∈ R3, Ry := (∇′y|νy) such that R>y Ry = I3. (2.9)

We work in the following function spaces

Y0 := W 2,2
iso (ω,R3) :=

{
y ∈ W 2,2(ω,R3) : ∇′y>∇′y = I2

}
,

V0 := W 1,2
av (ω) =

{
ϕ ∈ W 1,2(ω) :

∫
ω
ϕ dx′ = 0

}
.

(2.10)

By the canonical extension of functions defined on ω to functions on Ω1, we can view the spaces V0

and Y0 as subsets of W 1,2(Ω1) and W 2,2(Ω1,R3) respectively.

We define for y ∈ Y0 the limiting mechanical energy functionalM0(y) by

M0(y) :=
1

2

∫
ω

Q2(x′,∇y>∇νy) dx′

=
1

2

∫
ω

min
s∈R2×2

∫ 1/2

−1/2

min
z∈R3

Q3(x′, t, t∇y>∇νy − (B2×2)◦ + s+ z ⊗ e3) dt dx′.

Concerning the limiting electrostatic energy, the effective energy density is obtained by minimizing the
effect of the vertical derivatives, i.e., for fixed y ∈ Y0 and associated Ry = (∇′y|νy) we define

my,ϕ(x′) = arg min
m̂∈R

Ky(x
′)

(
∇′ϕ(x′)

m̂

)
·
(
∇′ϕ(x′)

m̂

)
, where

Ky(x
′) :=

∫ 1/2

−1/2

κ(x′, t, Ry(x
′)) dt = Ry(x

′)>k(x′)Ry(x
′),

with k(x′) :=

∫ 1/2

−1/2

k(x′, t) dt,

(2.11)

Ry by construction does not depend on t = x3. Measurability of my,ϕ follows from general results for
optimal values of normal integrands, see [31, Theorem 14.37]. Furthermore, by the assumptions on k
in (A5), Ky is uniformly positive definite and bounded, and hence for almost every x′ ∈ ω, we have

c|my,ϕ(x′)|2 ≤ c
∣∣((∇′ϕ(x′),my,ϕ(x′)

)∣∣2 ≤ Ky(x
′)(∇′ϕ(x′),my,ϕ(x′)) · (∇′ϕ(x′),my,ϕ(x′))

≤ Ky(x
′)(∇′ϕ(x′), 0) · (∇′ϕ(x′), 0) ≤ ‖k‖L∞(Ω1,R3×3)|∇′ϕ(x′)|2.

(2.12)

We can explicitly compute my,ϕ using Schur complements. Let us write

Ky =

(
Ky Ky

K>y ky

)
with Ky(x

′) ∈ R2×2, Ky(x
′) ∈ R2, ky(x

′) ∈ R+.
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 9

Then, the minimizer in (2.11) satisfies my,ϕ = − 1
ky
Ky · ∇′ϕ, and we obtain

Ky(x
′)

(
∇′ϕ(x′)

my,ϕ(x′)

)
·
(
∇′ϕ(x′)

my,ϕ(x′)

)
= Keff

y (x′)∇′ϕ(x′) · ∇′ϕ(x′)

with Keff
y (x′) = Ky(x

′)− 1

ky(x′)
Ky(x

′)⊗Ky(x
′) ∈ R2×2.

(2.13)

In particular, the effective tensor Keff
y is the Schur complement of the component ky in Ky. Obviously,

Keff
y is symmetric. It is also uniformly positive definite and bounded, see (2.12).

For y ∈ Y0 and ϕ ∈ V0, the effective electrostatic energy functional E0(y, ϕ) is defined by

E0(y, ϕ) :=
β

2

∫
ω

Keff
y (x′)∇′ϕ(x′) · ∇′ϕ(x′) dx′ − γ

∫
ω

nch(x′)ϕ(x′) dx′, (2.14)

where nch(x′) :=
∫ 1/2

−1/2
nch(x′, t) dt. Thus, minimizers for E0(y, ·) satisfy the effective Poisson equa-

tion
−div

(
Keff
y (x′)∇′ϕ

)
=
γ

β
nch(x′) in ω.

Remark 2.2 (Isotropic case). In the isotropic case k = k∗I3 with k∗ > 0, we obtain Ky = k∗I3,
sinceRy ∈ SO(3), such thatmy,ϕ ≡ 0. In particular, in this case we also have that Keff

y = k∗I2. The
limiting electrostatic energy does not depend on the deformation y in this case and the two equations
for the deformation and electrostatic potential decouple.

Finally, we introduce the effective total free energy F0 by

F0(y, ϕ) =M0(y)− E0(y, ϕ) for (y, ϕ) ∈ Y0 × V0. (2.15)

2.5 Assumptions for the bending model

We impose the following assumptions that allow us to pass to the bending model.

(A1) The elastic stored-energy density Wel : Ω1 × R3×3 → [0,∞] satisfies the conditions:

(W1) Wel(x,RF ) = Wel(x, F ), ∀F ∈ R3×3, R ∈ SO(3) for a.e. x ∈ Ω1 (frame indiffer-
ence);

(W2) For all F ∈ R3×3 and for a.e. x ∈ Ω1 it holds that (non-degeneracy and natural state)

Wel(x, F ) ≥ 1

CW
dist2(F, SO(3)), (2.16)

Wel(x, F ) ≤ CWdist2(F, SO(3)) if dist2(F, SO(3)) ≤ 1

CW
; (2.17)

(W3) For almost every x ∈ Ω1, there exists a quadratic form Q3(x, ·) : R3×3 → R such that∣∣∣Wel(x, I3 + F )− 1

2
Q3(x, F )

∣∣∣ ≤ |F |2rW (|F |), ∀F ∈ R3×3,

where rW : [0,∞)→ [0,∞] is monotone with limt→0 rW (t) = 0;
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(W4) There exist qW > 6 and CW > 0 such that for all F ∈ R3×3 and for a.e. x ∈ Ω1 there
holds the lower bound

Wel(x, F ) ≥

{
1
CW

max
{
|F |qW , det(F )−

qW
2

}
− CW if det(F ) > 0,

∞ else;

(W5) Wel is continuous and there exists a neighborhood U of SO(3) such that Wel ∈ C2(U)
and D2Wel is uniformly equicontinuous, i.e.,

∀ε > 0 ∃δ > 0 ∀F1, F2 ∈ U :
[
|F1−F2| < δ =⇒ |D2Wel(x, F1)−D2Wel(x, F2)| < ε

]
.

(A2) The hyperstress potential H : R3×3×3 → R+ has the form

H(G) = Hε(G) = εαHH∗(G), (2.18)

for some exponent αH > 0 to be fixed later. The function H∗ is convex, continuously differen-
tiable and there exist KH ≥ cH > 0 and qH > 3 such that qW/2 > 3qH/(qH−3) > 3 (for
qW from (W4)) and

cH |G|qH ≤ H∗(G) ≤ KH(1 + |G|qH ) for all G ∈ R3×3×3.

Moreover, H is frame indifferent, meaning that for all R ∈ SO(3) and G ∈ R3×3×3 we have
H(RG) = H(G).

(A3) For the prestrainM , we assume thatM(x) = Mε(x) := I3+εB(x) withB ∈ L∞(Ω1,R3×3
sym).

(A4) For the reference charge-carrier density nr and the reference voltage Vr, we suppose the fol-
lowing smallness assumption

nr = nεr =
ε2

L3(Ωε)
=

ε

`3
and Vr = V ε

r = εV∗. (2.19)

(A5) The quantity nch ∈ L∞(Ω1) is a fixed charge-density, and κ : Ω1 × GL(3) → Sym(3) is
defined as in (2.4) with k ∈ L∞(Ω1,R3×3) being symmetric and uniformly positive definite
such that there exists κ0 > 0 with k(x)ξ · ξ ≥ κ0|ξ|2 for all ξ ∈ R3 and almost every x ∈ Ω1.

Remark 2.3. 1 The conditions (W1)–(W3) are standard assumptions in the context of the deriva-
tion of plate theories from 3d-nonlinear elasticity. We also use Assumptions (W4) and (W5) as
in similar models on the elastic stored-energy density in [5] and [29]. However, note that we
need the stronger condition qW > 6 (see Lemma 4.10) than in [5], where qW > 4 is sufficient.

2 A typical choice for the hyperstress potential isH(G) = εαH
qH
|G|qH . In the limit ε→ 0, we want

its contribution to the free energy to vanish. This means, that the exponent αH should satisfy
αH > 2 + 2qH .

3 Assumption (A3) for the prestrain Mε gives for small ε > 0 the expansions

Mε(x)−1 = I3 − εB(x) +O(ε2), and (2.20)

detMε(x) = 1 + ε tr(B(x)) +O(ε2). (2.21)

We highlight that the factor detMε does not usually appear in the literature, see e.g. [1, 29].
Here, we follow the discussion in [6] where it is assumed that the prestrained body consists of
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 11

two materials occupying subdomains Ω(1) and Ω(2) with Ω = Ω
(1)∪̇Ω

(2)
. It is assumed that

subsets of Ω(1) or Ω(2) relax to a stress-free (elastic energy minimizing) state described by
affine deformations x 7→ Mix, i = 1, 2, such that Ω̃(i) = MiΩ

(i) define stress-free reference
configurations for the material. The elastic energy of a deformation ũ defined relative to Ω̃(i)

is given by
∫

Ω̃(i) Wel(∇ỹ) dx. The multiplicative decomposition ∇y = FelMi and the factor
detMi arise from the change-of-variables formula when going back to the common reference
configuration Ω. A typical example is a crystalline heterostructure consisting of two materials on
top of each other with different lattice constants, see e.g. [18]. However, note that in our setting
the factor satisfies detMi = 1 +O(ε) due to (2.21).

The assumptions above lead to the following definition of (subsets of) function spaces for the mechan-
ical deformations and the electrostatic potentials

Y1 :=
{
y ∈ W 2,qH (Ω1,R3)

∣∣ (det∇y)−1 ∈ LqW /2(Ω1),
∫

Ω1
y dx = 0

}
, and

V1 := {ϕ ∈ W 1,2(Ω1) |
∫

Ω1
ϕ dx = 0} = W 1,2

av (Ω1).
(2.22)

The purely mechanical energy functionalMε : Y1 → [0,∞] is defined as

Mε(y) :=
1

ε2

∫
Ω1

{
Wel(x,∇εy(x)Mε(x)−1) det(Mε(x)) + εαHH∗(∇2

εy(x))
}

dx. (2.23)

The electrostatic energy Eε : Y1 × V1 → R is given by

Eε(y, ϕ) :=
β

2

∫
Ω1

κ
(
x,∇εy(x)

)
∇εϕ(x)) · ∇εϕ(x) dx− γ

∫
Ω1

nch(x)ϕ(x) dx. (2.24)

Thus, the total free energy Fε : Y1 × V1 → R∞ := R ∪ {+∞} reads

Fε(y, ϕ) =Mε(y)− Eε(y, ϕ) for (y, ϕ) ∈ Y1 × V1. (2.25)

Remark 2.4. For fixed ε > 0 and deformations y ∈ Y1 with finite mechanical energy, i.e.,Mε(y) ≤
CM <∞, we get from Assumptions (W4) and (A2) by the Healey–Krömer theorem A.1 (see also [27,
Subsec. 3.1] and [22, Theorem 2.5.3]) that there exists a constant Cε

HK = CHK(CM, qH , qW , ε) > 0
such that

‖y‖W 2,qH ≤ Cε
HK, ‖y‖C1−3/qH ≤ Cε

HK, ‖(∇y)−1‖C1−3/qH ≤ Cε
HK,

and det∇y(x) ≥ 1/Cε
HK for all x ∈ Ω1.

(2.26)

Note that in general Cε
HK →∞ for ε→ 0.

For fixed ε > 0 and for a fixed y ∈ Y1 with bounded mechanical energy, the permittivity tensor
satisfies κ(x,∇εy) ∈ L∞(Ω1,R3×3) and is uniformly positive definite, i.e., κ(x,∇εy)ξ · ξ ≥ cε|ξ|2
for some constant cε > 0 and all ξ ∈ R3. In particular, the electrostatic energy Eε is finite for every
pair (y, ϕ) ∈ Y1 × V1.

3 Preliminary analytical results

Here, we collect results that will be used in the proof of the limit passage ε→ 0 in Section 4.
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3.1 Properties for fixed thickness

For the dimension reduction in Section 4, we will assume that a saddle point (yε, ϕε) ∈ Y1 × V1 for
the functional Fε defined in (2.6) exists. In particular, such a pair satisfies

∀(ŷ, ϕ̂) ∈ Y1 × V1 : Fε(yε, ϕ̂) ≤ Fε(yε, ϕε) ≤ Fε(ŷ, ϕε).

However, the existence of such a pair is not guaranteed. Standard existence results for saddle points
typically require, besides compactness properties, that the functional (y, ϕ) 7→ Fε(y, ϕ) is convex
in the first and concave in the second variable, see e.g. [15, Ch. 4, Prop. 2.2]. In [33], the existence
of saddle points under weaker coercivity assumptions is established, yet the analysis there also relies
on convex–concave structures. While we have concavity of ϕ 7→ Fε(y, ϕ), the convexity of y 7→
Fε(y, ϕ) cannot be assumed due to the dependence of κ on ∇y and since it violates the physical
principle of frame invariance.

For fixed ε > 0 and any deformation y ∈ Y1 with finite mechanical energyMε(y) < ∞, we prove
next the existence of a unique minimizer of the electrostatic energy Eε(y, ·).

Lemma 3.1. We assume (A1) – (A5). Let ε > 0 be fixed and consider a deformation y ∈ Y1 with
finite mechanical energy, i.e.,Mε(y) <∞. Then, there is a unique weak solution ϕ = ϕ(y, ε) ∈ V1

to

β

∫
Ω1

κ(∇εy)∇εϕ · ∇εϕ dx = γ

∫
Ω1

nchϕ dx ∀ϕ ∈ V1. (3.1)

Moreover, this ϕ is the unique minimizer of the electrostatic energy Eε(y, ·) : V1 → R, defined in
(2.24).

Proof. Since Mε(y) < ∞, the properties of the hyperstress potential in (A2) and the coercivity
property of the elastic stored energy (W4) ensure that

∇εy ∈ LqW (Ω1,R3×3), (det∇εy)−1 ∈ LqW /2(Ω1), ∇2
εy ∈ LqH (Ω1,R3×3×3),

and we find a constant cε > 0 depending on ε such that

‖∇y‖LqW (Ω1,R3×3) + ‖(det∇y)−1‖LqW /2(Ω1) + ‖∇2y‖LqH (Ω1,R3×3×3) ≤ cε.

The Healey–Krömer theorem A.1 ensures the existence of a constant Cε
HK > 0 such that

‖y‖W 2,qH ≤ Cε
HK, ‖y‖C1−3/qH ≤ Cε

HK, ‖(∇y)−1‖C1−3/qH ≤ Cε
HK,

and det∇y(x) ≥ 1/Cε
HK for all x ∈ Ω1.

Therefore, since qH > 3, we have∇y ∈ L∞(Ω1,R3×3), det∇y ∈ L∞(Ω1), Cof∇y ∈ L∞(Ω1,R3×3),
and for fixed ε > 0 also∇εy ∈ L∞(Ω1,R3×3) , det∇εy ∈ L∞(Ω1), and Cof∇εy ∈ L∞(Ω1,R3×3).
Moreover, the Healey–Krömer theorem also yields det∇εy(x) ≥ cε.

We set Sε := diag(1, 1, 1/ε) such that∇εϕ = Sε∇ϕ. Then, with Assumption (A5) and Cof∇εy =
(∇εy)−1 det∇εy, we can bound the coefficient matrix by∥∥ det∇εy Sε(∇εy)−1k(∇εy)−>Sε

∥∥
L∞(Ω1,R3×3)

=
∥∥∥Sε (Cof∇εy)>kCof∇εy Sε

det∇εy

∥∥∥
L∞(Ω1,R3×3)

≤ cε.
(3.2)
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 13

For ζ ∈ R3 and F ∈ R3×3, we have |ζ| = |FF−1ζ| ≤ |F ||F−1ζ|. Thus, by (A5) we obtain for all
ζ ∈ R3

(det∇εy)
[
Sε(∇εy)−1 k (∇εy)−>Sεζ

]
· ζ

= (det∇εy)k
[
(∇εy)−>Sεζ

]
·
[
(∇εy)−>Sεζ

]
≥ κ0(det∇εy)

∣∣(∇εy)−>Sεζ
∣∣2

≥ κ0 det∇εy

‖S−1
ε (∇εy)>‖2

L∞(Ω1,R3×3)

|ζ|2 ≥ cε|ζ|2 a.e. in Ω1.

(3.3)

In view of (3.2) and (3.3), the classical elliptic theory (Lax–Milgram lemma) ensures the existence of a
unique weak solution ϕ = ϕ(y, ε) ∈ V1 to

−div [det∇εy Sε(∇εy)−1k(∇εy)−>Dε∇ϕ] =
β

γ
nch, (3.4)

meaning that (3.1) is fulfilled, which is nothing but the Euler–Lagrange equation for ϕ 7→ Eε(y, ϕ).
In other words, ϕ = ϕ(y, ε) ∈ V1 is the unique minimizer of the (strictly convex) functional ϕ 7→
Eε(y, ϕ) for the fixed y ∈ Y1, thus

Eε(y, ϕ̂) ≥ Eε(y, ϕ), and Fε(y, ϕ̂) ≤ Fε(y, ϕ) ∀ϕ̂ ∈ V1.

This finishes the proof.

Corollary 3.2. We assume (A1) – (A5). Let ε > 0 be fixed and y ∈ Y1 a deformation. Further, let the
pair (y, ϕ) ∈ Y1 × V1 fulfill

Mε(y) <∞, and Fε(y, ϕ̄) ≤ Fε(y, ϕ) ∀ϕ̄ ∈ V1, (3.5)

i.e., ϕ is a maximizer of Fε(y, ·) (minimizer of Eε(y, ·)) for given deformation y. Then

β

∫
Ω1

k
(
∇εy

−>∇εϕ
)
·
(
∇εy

−>∇εϕ
)

det∇εy dx = γ

∫
Ω1

nchϕ dx, (3.6)

and the free energy can be rewritten in the two alternatives

Fε(y, ϕ) =Mε(y) +
β

2

∫
Ω1

k
(
∇εy

−>∇εϕ
)
·
(
∇εy

−>∇εϕ
)

det∇εy dx

=Mε(y) +
γ

2

∫
Ω1

nchϕ dx.

(3.7)

Proof. Note that the unique minimizer ϕ ∈ V1 of the (strictly convex) functional ϕ 7→ Eε(y, ϕ) for the
fixed y ∈ Y1 is the weak solution to the Euler–Lagrange equation (3.4), meaning that (3.1) is fulfilled.
Since ϕ = ϕ(y, ε) ∈ V1 is an admissible test function in (3.1), we obtain (3.6). The both alternative
expressions for the free energy Fε(y, ϕ) then follow from (3.6), (2.24), and (2.25).

The existence of a unique electrostatic potential ϕ = ϕ(y, ε) that minimizes the electrostatic energy
Eε for a fixed deformation y ∈ Y1 with finite elastic energy follows from Lemma 3.1. In particular, we
can always find pairs (yε, ϕε) ∈ Y1 × V1 such that

ϕε maximizes ϕ̂ 7→ Fε(yε, ϕ̂) over V1, and sup
ε>0
Fε(yε, ϕε) <∞. (3.8)

In contrast, the existence of a deformation yε that minimizes the total energy Fε(·, ϕ) = Mε −
Eε(·, ϕ) for a fixed electrostatic potential ϕ ∈ V1 is not trivial, since Eε(y, ϕ) = ∞ can occur if
det∇y is not uniformly bounded away from 0.
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3.2 Boundedness and converging subsequences

We adopt several ideas from [5] for the passage to the limit ε → 0, i.e., the dimension reduction. In
particular, Lemma 3.3 below is the analogue of [5, Lemma 4.1].

Lemma 3.3. We assume (A1) – (A5). Let (yε, ϕε)ε>0 ⊆ Y1 × V1 be a sequence such that

Fε(yε, ϕ̄) ≤ Fε(yε, ϕε) ∀ϕ̄ ∈ V1, and Fε(yε, ϕε) ≤ C.

Then, there exist constants c > 0 and ε0 > 0 such that for all ε ∈ (0, ε0)∫
Ω1

dist2
(
∇εyεM

−1
ε , SO(3)

)
detMε dx ≤ CW ε

2,

∫
Ω1

dist2(∇εyε, SO(3)) dx ≤ cε2, (3.9)∫
Ω1

(
|∇εyε|qW + | det(∇εyε)|−

qW
2

)
dx ≤ c(qW , CW ), (3.10)∫

Ω1

|F−>ε ∇εϕε|2 detFε dx ≤ c, where Fε = ∇εyε, (3.11)∫
Ω1

|∇εϕε|pW dx ≤ c for pW =
2

1 + 4/qW
. (3.12)

Proof. 1. Using Corollary 3.2 and the resulting form ofFε in the upper line in (3.7) and the Assumption
(W2) we find ∫

Ω1

dist2(∇εyεM
−1
ε , SO(3)) detMε dx ≤ CW ε

2,

and for ε small enough by (A3)∫
Ω1

dist2(∇εyεM
−1
ε , SO(3)) dx ≤ Cε2.

We argue as in [29, Subsec. 3.1]: There exists a measurable rotation field R(x) : Ω1 → SO(3) such
that ∫

Ω1

|∇εyεM
−1
ε −R(x)|2 dx ≤ cε2,

meaning that ‖∇εyεM
−1
ε − R‖L2 ≤ cε. Therefore, ‖∇εyεM

−1
ε ‖L2 ≤ ‖R‖L2 + cε holds. This

estimate then ensures ‖∇εyεM
−1
ε ‖L2 ≤ c for small ε. Since B is bounded, Assumption (A3) implies

that, for ε > 0 sufficiently small, ‖∇εyε‖L2 ≤ c. Next, we estimate by the triangle inequality∫
Ω1

dist2(∇εyε, SO(3)) dx ≤ 2

∫
Ω1

dist2(∇εyε,∇εyεM
−1
ε ) dx+ 2

∫
Ω1

dist2(∇εyεM
−1
ε , SO(3)) dx

≤ c‖∇εyε‖2
L2 ess sup

x∈Ω1

dist2
(
I3,Mε(x)−1

)
+ cε2Fε(yε, ϕε) ≤ Cε2.

2. We write det∇εyε = det(∇εyεM
−1
ε ) detMε and observe that by Assumption (A3), detMε > 0

for ε sufficiently small. Moreover, since Fε(yε, ϕε) ≤ C and by the growth condition in Assumption
(W4), the first factor is positive almost everywhere in Ω1. Thus det∇εyε > 0 a.e. in Ω1 for 0 < ε <
ε0.

3. Using |∇εyε| ≤ c|∇εyεM
−1
ε |, | det(∇εyε)|−1 ≤ c| det∇εyεM

−1
ε |−1, and the growth condition

in Assumption (W4), we derive∫
Ω1

(
|∇εyε|qW + | det(∇εyε)|−

qW
2

)
dx ≤ c(qW , CW )

∫
Ω1

(
Wel(x,∇εyεM

−1
ε ) + 1

)
dx ≤ c.
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4. Furthermore, working with the form (3.7) of Fε we find∫
Ω1

k
(
F−>ε ∇εϕε

)
·
(
F−>ε ∇εϕε

)
detFε dx ≤ C.

By Assumption (A5), k ∈ L∞(Ω1,R3×3) is positive definite, which leads to∫
Ω1

(F−>ε ∇εϕε(detFε)
1/2) · (F−>ε ∇εϕε(detFε)

1/2) dx =

∫
Ω1

|F−>ε ∇εϕε|2 detFε dx ≤ C.

Since |∇εϕε| ≤ (detFε)
1/2|F−>ε ∇εϕε||Fε|(detFε)

−1/2 it follows from Hölder’s inequality with
pW = 2

1+4/qW
that

‖∇εϕε‖LpW ≤
(∫

Ω1

|F−>ε ∇εϕε|2 detFε dx
)1/2

‖Fε‖LqW ‖(detFε)
−1‖1/2

LqW /2 ≤ c.

This completes the proof.

Proposition 3.4. We assume (A1) – (A5). Let (yε, ϕε)ε>0 ⊆ Y1 × V1 be a sequence fulfilling (4.6).
Then, there exist y0 ∈ Y0, ϕ0 ∈ V0, m0 ∈ L2(ω), and a non-relabeled subsequence (yε, ϕε)ε>0

such that

yε → y0 in L2(Ω1,R3), ∇εyε → (∇′y0|νy0) =: Ry0 in L2(Ω1,R3×3),

ϕε → ϕ0 in L2(Ω1), ∇εϕε ⇀ (∇′ϕ0,m0) in LpW (Ω1,R3),

where νy0 denotes the unit normal vector corresponding to y0 (cf. (2.9)) and pW := 2
1+4/qW

. In
particular, the convergences yε → y0 in Y , ϕε → ϕ0 in V hold true in the norm topology of the
spaces

Y := W 1,2(Ω1,R3), V := L2(Ω1). (3.13)

Proof. 1. The estimates in (3.9) for the sequence (yε)ε>0 ⊆ W 1,2(Ω1,R3) imply

lim sup
ε→0

1

ε2

∫
Ω1

dist2(∇εyε, SO(3)) dx <∞,

and therefore allow us to apply the compactness result of [16, Theorem 4.1]. This ensures that the
sequence (∇εyε)ε>0 is precompact in L2(Ω1,R3×3) and that there exist (∇′y0, b) ∈ H1(Ω1;R3×3)
and a non-relabeled subsequence such that ∇εyε → (∇′y0|b) in L2(Ω1,R3×3), where (∇′y0|b) ∈
SO(3) a.e. in Ω1. This latter property implies that b = νy0 with νy0 defined in (2.9).

Since 1
ε
∂3yε → νy0 in L2(Ω1,R3), we obtain ∂3yε → 0 in L2(Ω1,R3) and the limit y0 does not

depend on x3. Furthermore, (∇′y0|νy0) is independent of x3, and (∇′y0|νy0) ∈ W 1,2(ω,R3×3),
meaning that (∇′y0|νy0) is much more regular than naively expected.

According to the estimate in (3.10), we can conclude ‖∇εyε‖LqW ≤ c and therefore ‖∇yε‖L2 ≤ c.
As
∫

Ω1
yε dx = 0, we have by the Poincaré–Wirtinger inequality ‖yε‖W 1,2 ≤ c. Thus, (yε)ε>0 is

precompact in L2(Ω1;R3) and for a non-relabeled subsequence we obtain yε → y0 in L2(Ω1,R3)
with the same limit y0 as above.

2. From (3.12) and ϕε ∈ V1, we obtain ‖ϕε‖W 1,pW (Ω1) ≤ c. Therefore, we find ϕ0 ∈ W 1,pW (Ω1)
such that for a subsequence ϕε ⇀ ϕ0 inW 1,pW (Ω1), and for qW > 6 (cf. (W4), implying pW > 6/5)
ϕε → ϕ0 in L2(Ω1) by compact embedding. Moreover, ∇εϕε ⇀ (∇′ϕ0,m0) in LpW (Ω1,R3) can
be assumed with some m0 ∈ LpW (Ω1). From 1

ε
∂3ϕε ⇀ m0 in LpW (Ω1), we find that ∂3ϕε → 0

DOI 10.20347/WIAS.PREPRINT.3230 Berlin 2025



K. Buryachenko, A. Glitzky, M. Liero, B. Zwicknagl 16

in LpW (Ω1). Therefore, the limit ϕ0 does not depend on x3, and we can identify it with a function
ϕ0 ∈ W 1,pW (ω).

Since we only have that 6/5 < pW < 2, our next aim is to show that (∇′ϕ0,m0) ∈ L2(Ω1,R3). We
follow the ideas in [5, pp. 1483–1484] and show the following auxiliary result:

Let Zε ⇀ Z in LpW (Ω1,R3), Fε → Ry0 in L2(Ω1,R3×3) such that we have detFε > 0 and
Ry0 ∈ SO(3) a.e. in Ω1. Then, it holds that∫

Ω1

|Z|2 dx ≤ lim inf
ε→0

∫
Ω1

|F−>ε Zε|2 detFε dx. (3.14)

For the proof of (3.14), we use the measurable and bounded map

Ψ : R3×3 → R3×3, Ψ(F ) :=

{
F−>
√

detF if dist(F, SO(3)) ≤ 1
2
,

0 else

with CΨ := supF∈R3×3 |Ψ(F )| <∞. For a subsequence, we have Fε → Ry0 a.e. in Ω1. The conti-
nuity of Ψ in an open neighborhood of SO(3) and the property Ry0 ∈ SO(3) a.e. in Ω1 then ensure
Ψ(Fε)→ Ψ(R) = Ry0 a.e. in Ω1. Since Ψ(Fε) ≤ CΨ, we conclude from the weak convergence of
Zε in LpW (Ω1,R3) that also Ψ(Fε)Zε ⇀ Ry0Z in LpW (Ω1,R3) holds. Therefore, the weak lower
semicontinuity of convex functionals yields∫

Ω1

|Ry0Z|2 dx ≤ lim inf
ε→0

∫
Ω1

|Ψ(Fε)Zε|2 dx.

Using that pointwise |RZ| = |Z| and |Ψ(Fε)Zε|2 ≤ |F−>ε Zε|2| detFε| (by the definition of Ψ), we
obtain the desired estimate (3.14).

Applying now (3.14) for Z = (∇′ϕ0,m0), Zε = ∇εϕε, and Fε = ∇εyε together with the estimate
(3.11) gives (∇′ϕ0,m0) ∈ L2(Ω1,R3). From ϕε ∈ L2

av(Ω1) and ϕε → ϕ0 in L2(Ω1), we finally
conclude ϕ0 ∈ V0.

4 Main result: Dimension reduction for the electro-elastic
problem

This section contains the main result of the paper, namely, the convergence of the bivariate functionals
Fε defined in (2.25). First, we introduce our abstract notion of convergence building upon [3]. The
dimension reduction is carried out in Subsection 4.2.

4.1 Abstract convergence result for saddle point problems

We first introduce the abstract framework that will be used in the sequel, building on the notion of
epi/hypo-convergence developed in [2, 3]. Let Y ,Y0,Y1 and V ,V0,V1 be metric spaces such that
Yi ⊆ Y and Vi ⊆ V for i = 0, 1. Consider a family of bivariate functionalsFn : Y1×V1 → R∪{∞}
and a limit functional F∞ : Y0 × V0 → R.

A saddle point of Fn is a pair (y∗n, ϕ
∗
n) ∈ Y1 × V1 such that

Fn(y∗n, ϕ̂) ≤ Fn(y∗n, ϕ
∗
n) ≤ Fn(ŷ, ϕ∗n) ∀(ŷ, ϕ̂) ∈ Y1 × V1. (4.1)
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Similarly, a saddle point of F∞ is a pair (y∗0, ϕ
∗
0) ∈ Y0 × V0 such that

F∞(y∗0, ϕ̂) ≤ F∞(y∗0, ϕ
∗
0) ≤ F∞(ŷ, ϕ∗0) ∀(ŷ, ϕ̂) ∈ Y0 × V0. (4.2)

Proposition 4.1. Consider a family of bivariate functionals Fn : Y1 × V1 → R ∪ {∞} with saddle
points (y∗n, ϕ

∗
n) ∈ Y1×V1 with supnFn(y∗n, ϕ

∗
n) <∞ and such that (y∗n, ϕ

∗
n)→ (y∗0, ϕ

∗
0) ∈ Y0×V0

with convergence in Y × V . Assume that

∀ ϕ̂0 ∈ V0 ∃ (ϕ̂n) ⊆ V1 : ϕ̂n → ϕ̂0 in V and lim inf
n→∞

Fn(y∗n, ϕ̂n) ≥ F∞(y∗0, ϕ̂0), (4.3)

∀ ŷ0 ∈ Y0 ∃ (ŷn) ⊆ Y1 : ŷn → ŷ0 in Y and lim sup
n→∞

Fn(ŷn, ϕ
∗
n) ≤ F∞(ŷ0, ϕ

∗
0). (4.4)

Then (y∗0, ϕ
∗
0) is a saddle point for F∞ and limn→∞Fn(y∗n, v

∗
n) = F∞(y∗0, v

∗
0).

Proof. Let us denote a∗ := lim infn→∞Fn(y∗n, ϕ
∗
n) ≤ lim supn→∞Fn(y∗n, ϕ

∗
n) =: b∗. Let ϕ̂0 ∈

V0 be arbitrary. We choose a sequence (ϕ̂n) ⊆ V1 such that ϕ̂n → ϕ̂0 in V as in (4.3). Therefore, by
(4.1) we obtain

F∞(y∗0, ϕ̂0) ≤ lim inf
n→∞

Fn(y∗n, ϕ̂n) ≤ lim inf
n→∞

Fn(y∗n, ϕ
∗
n) = a∗.

Similarly, for arbitrary ŷ0 ∈ Y0 we choose a sequence (ŷn) ⊆ Y1 with ŷn → ŷ0 in Y satisfying (4.4)
to get b∗ ≤ F∞(ŷ0, ϕ

∗
0). This holds for any pairs (ŷ0, ϕ̂0) ∈ Y0 × V0. Thus, it results

F∞(y∗0, ϕ̂0) ≤ a∗ ≤ b∗ ≤ F∞(ŷ0, ϕ
∗
0) for all (ŷ0, ϕ̂0) ∈ Y0 × V0. (4.5)

Finally, choosing ϕ̂0 = ϕ∗0 in (4.5) gives F∞(y∗0, ϕ
∗
0) ≤ F∞(ŷ0, ϕ

∗
0) for all ŷ0 ∈ Y0, and analogously

for ŷ0 = y∗0 we obtain F∞(y∗0, ϕ
∗
0) ≥ F∞(y∗0, ϕ̂0) for all ϕ̂0 ∈ V0. Thus, (y∗0, ϕ

∗
0) is a saddle point

for F∞.

It remains to show the convergence Fn(yn, ϕn) → F∞(y∗0, ϕ
∗
0). Indeed, by (4.3) there exists a

sequence (ϕ̂n) ⊆ V1 such that ϕ̂n → ϕ∗0 in V and

F∞(y∗0, ϕ
∗
0) ≤ lim inf

n→∞
Fn(y∗n, ϕ̂n) ≤ lim inf

n→∞
Fn(y∗n, ϕ

∗
n) = a∗,

where we used that (y∗n, ϕ
∗
n) is a saddle point. Analogously, we get from (4.4) that b∗ ≤ F∞(y∗0, ϕ

∗
0).

Hence, a∗ = b∗ = F∞(y∗0, ϕ
∗
0).

Remark 4.2. The theory of epi/hypo-convergence of saddle-point problems developed in [3] (see also
[2]) is formulated only for one space Y × V , instead of the triple Y0 × V0,Y × V ,Y1 × V1 as in
our more specific case. Moreover, the upper and lower estimates in (4.3) and (4.4) are formulated for
general sequences instead of saddle points.

4.2 Dimension reduction

We aim to apply the abstract result of Proposition 4.1 to the electro-elastic saddle-point problem for
the functional (2.25) using the spaces Y0, V0 introduced in (2.10), Y1, V1 defined in (2.22), and Y , V
specified in (3.13). In particular, we show that for ε→ 0 the lim inf and lim sup conditions (4.3) and
(4.4) are satisfied (meaning that for every sequence εn → 0, as n → ∞, the conditions hold for
Fn = Fεn).
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We assume in the following that

(yε, ϕε)ε>0 ⊆ Y1 × V1 is a sequence such that

Fε(yε, ϕ̂) ≤ Fε(yε, ϕε) ∀ϕ̂ ∈ V1, and ∃C > 0 : Fε(yε, ϕε) ≤ C.
(4.6)

In particular, Lemma 3.3 and Proposition 3.4 apply, and we find (non-relabeled) subsequences and
limits (y0, ϕ0) ∈ Y0×V0 such that yε → y0 in Y , ϕε → ϕ0 in V . Recall the definitions of the limiting
functionalsM0, E0 and F0 in Subsection 2.4. We proceed in the following steps: First, we show that

(I) lim inf
ε→0

Mε(yε) ≥M0(y0),

(II) ∀ ϕ̂0 ∈ V0 ∃(ϕ̂ε)ε>0 ⊆ V1 : ϕ̂ε → ϕ̂0 in V and lim sup
ε→0

Eε(yε, ϕ̂ε) ≤ E0(y0, ϕ̂0).

If (I) and (II) are satisfied, the lim inf condition in (4.3) also holds since

lim inf
ε→0

Fε(yε, ϕ̂ε) ≥ lim inf
ε→0

Mε(yε)− lim sup
ε→0

Eε(yε, ϕ̂ε) ≥M0(y0)−E0(y0, ϕ̂0) = F0(y0, ϕ̂0).

Next, we show that the lim sup condition in (4.4) also holds, i.e.,

(III) ∀ ŷ0 ∈ Y0 ∃ (ŷε)ε>0 ⊆ Y1 : ŷε → ŷ0 and lim sup
ε→0

Fε(ŷε, ϕε) ≤ F0(ŷ0, ϕ0).

Finally, while not necessary for Proposition 4.1, we also show that

(IV) lim inf
ε→0

Eε(yε, ϕε) ≥ E0(y0, ϕ0). (4.7)

Remark 4.3. The conditions (II) and (IV) imply the Γ-convergence of the functionals Ẽε(·) := Eε(yε, ·)
for the fixed sequence of deformations yε. We will show that the sequence ŷε in (III) is also a recovery
sequence forMε such that together with (I) the Γ-convergence of the mechanical energyMε also
follows.

We introduce the following additional assumption as in [1]

(A6) Wel(x
′, x3) = Wel(x

′) and B(x) is such that curl
(

curl

∫ 1/2

−1/2

B2×2(x′, t) dt
)

= 0.

The operator ’curl’ inside the parenthesis acts on a 2× 2 matrix by taking the ’curl’ of each row, giving
as a result a two-dimensional vector. Note that the necessity of this assumption was removed in [29].
For the sake of clarity and comprehensibility in our proofs, we have kept the assumption. See also
Section 5.

The Assumption (A6) ensures by [1, Theorem 2.8], resp. [8, Theorem 3.2] that there exists a vector
potential g ∈ W 1,2(ω,R2) such that∫ 1/2

−1/2

B2×2(x′, t) dt = ∇symg :=
1

2
(∇′g +∇′g>), (4.8)

where g is unique up to rigid displacements.

Now we are ready to formulate the main result of our paper:
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Theorem 4.4. We assume (A1) – (A5). Let (yε, ϕε)ε>0 ⊆ Y1 × V1 be a sequence as in (4.6) Then
there exist y0 ∈ Y0, ϕ0 ∈ V0, m0 ∈ L2(ω), and a non-relabeled subsequence (yε, ϕε)ε>0 such that

yε → y0 in L2(Ω1,R3), ∇εyε → (∇′y0|νy0) =: Ry0 in L2(Ω1,R3×3),

ϕε → ϕ0 in L2(Ω1), ∇εϕε ⇀ (∇′ϕ0,m0) in LpW (Ω1,R3),

where νy0 denotes the unit normal vector corresponding to y0 and pW := 2
1+4/qW

. Moreover, the
conditions (I), (II), and (IV) are satisfied. Supposing additionally (A6), then also Condition (III) is
fulfilled.

The proof of Theorem 4.4 results from Lemma 3.3 and Proposition 3.4 in Subsection 3.2 and Lem-
mas 4.6, 4.8, 4.9, and 4.7 in Subsection 4.3.

Corollary 4.5. We assume (A1) – (A6). Then the saddle-point problems for the functionals Fε con-
verge to the saddle-point problem associated with the two-dimensional limit functionalF0 in the sense
of Proposition 4.1 and limits of saddle points (y∗ε , ϕ

∗
ε) for Fε are saddle points for F0.

We highlight that Theorem 4.4 is proven for sequences (yε, ϕε) satisfying (4.6), while the above
corollary considers sequences (y∗ε , ϕ

∗
ε) that are additionally saddle points.

4.3 Proof of asymptotic upper and lower bounds

We start with property (I):

Lemma 4.6. [Property (I)]. We assume (A1) – (A5). Let (yε, ϕε)ε>0 ⊆ Y1×V1 be a sequence fulfilling
(4.6). Moreover, let y0 ∈ Y0 be a limit with respect to the convergence stated in Proposition 3.4. Then,
it holds

lim inf
ε→0

Mε(yε) ≥M0(y0).

Proof. The non-negativity of the hyper stress term (see (A2)) ensures

Mε(yε) ≥
1

ε2

∫
Ω1

Wel(·,∇εyεM
−1
ε ) det(Mε) dx

=
1

ε2

∫
Ω1

Wel(·,∇εyεM
−1
ε )(det(Mε)− 1) dx+

1

ε2

∫
Ω1

Wel(·,∇εyεM
−1
ε ) dx.

Since det(Mε) = 1 + εtrB +O(ε2) (see Remark 2.3), we find ‖ det(Mε)−1‖L∞ → 0 for ε→ 0,
which together with the uniform boundedness of 1

ε2

∫
Ω1
Wel(·,∇εyεM

−1
ε ) dx (for ε small enough)

implies that the first term on the second line tends to zero for ε→ 0. As in the proof of [29, Theorem
1, Eq. (23), esp. Eq. (61)], we obtain for the second term lim infε→0

1
ε2

∫
Ω1
Wel(·,∇εyεM

−1
ε ) dx ≥

M0(y0), which finishes the proof.

We prove (II):

Lemma 4.7. [Property (II)]. We assume (A1) – (A5). Let (yε, ϕε)ε>0 ⊆ Y1×V1 be a sequence fulfill-
ing (4.6). Moreover, let y0 ∈ Y0 be the limit with respect to the convergence stated in Proposition 3.4.
Then for all ϕ̂ ∈ V0 there exists a sequence (ϕ̂ε)ε>0 ⊆ V1 such that ϕ̂ε → ϕ̂ in L2(Ω1) and

lim sup
ε→0

Eε(yε, ϕ̂ε) = E0(y0, ϕ̂).
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Proof. Let ϕ̂ ∈ V0 be arbitrary given and letm = my0,ϕ̂ ∈ L2(ω) be as in the definition of E0(y0, ϕ̂),
see (2.11). Since C∞(ω) is dense in V0 and L2(ω), we find for any l ∈ N some C∞(ω) functions
ϕ̂l, ml such that

‖ϕ̂− ϕ̂l‖W 1,2(ω) ≤
1

4l
, ‖ϕ̂− ϕ̂l‖L1(ω) ≤

1

4lγ‖nch‖L∞(Ω1)

, ‖m−ml‖L2(ω) ≤
1

4l
, and

β

2

∫
Ω1

∣∣∣R>y0kRy0(∇′ϕ̂l,ml) · (∇′ϕ̂l,ml)−R>y0kRy0(∇′ϕ̂,m) · (∇′ϕ̂,m)
∣∣∣ dx ≤ 1

4l
.

We define

ϕ̂lε(x
′, x3) := ϕ̂l(x

′) + εml(x
′)x3, thus ϕ̂lε ∈ C∞(Ω1),W 1,∞(Ω1).

From this definition, it follows directly that

ϕ̂lε → ϕ̂l, ∇εϕ̂lε = (∇′ϕ̂l + εx3∇′ml,ml)→ (∇′ϕ̂l,ml) in L∞(Ω1) as ε→ 0.

For the given sequence (yε)ε>0, let Fε := ∇εyε, we apply Lemma 4.10 below to verify that

lim
ε→0

β

2

∫
Ω1

F−1
ε kF−>ε (∇εϕ̂lε) · (∇εϕ̂lε) detFε dx =

β

2

∫
Ω1

R>y0kRy0(∇′ϕ̂l,ml) · (∇′ϕ̂l,ml) dx.

For l ∈ N, we choose a monotonously decaying sequence εl = ε(l), ε(l) < ε(l−1), such that
εl ↓ 0 and for all ε ≤ εl∣∣∣ ∫

Ω1

R>y0kRy0(∇′ϕ̂l,ml) · (∇′ϕ̂l,ml) dx−
∫

Ω1

F−1
ε kF−>ε (∇εϕ̂lε) · (∇εϕ̂lε) detFε dx

∣∣∣ ≤ 1

2lβ
,

and ‖ϕ̂lεl − ϕ̂l‖L1(Ω1) ≤
1

4lγ‖nch‖L∞(Ω1)

.

For ε ∈ (0, ε0), we further define the final sequence

ϕ̂ε := ϕ̂lε if ε ∈ (εl+1, εl] for this l ∈ N.

By the previous estimates, we obtain for ε ∈ (εl+1, εl]

|E0(y0, ϕ̂)− Eε(yε, ϕ̂ε)|

≤ γ
∣∣∣ ∫

Ω1

nch(ϕ̂− ϕ̂ε) dx
∣∣∣

+
β

2

∣∣∣ ∫
Ω1

{
F−1
ε kF−>ε (∇εϕ̂ε) · (∇εϕ̂ε) detFε −R>y0kRy0(∇′ϕ̂l,ml) · (∇′ϕ̂l,ml)

}
dx
∣∣∣

+
β

2

∣∣∣ ∫
Ω1

{
R>y0kRy0(∇′ϕ̂l,ml) · (∇′ϕ̂l,ml)−R>y0kRy0(∇′ϕ̂,m) · (∇′ϕ̂,m)

}
dx
∣∣∣ ≤ 1

l
,

l ∈ N. Thus, letting l →∞, meaning (εl+1, εl] 3 ε ↓ 0, we find Eε(yε, ϕ̂ε)→ E0(y0, ϕ̂) as ε→ 0.
This concludes the proof.

We now turn to property (III):
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Lemma 4.8. [Property (III)]. In addition to the Assumptions (A1) – (A5), we suppose that Assumption
(A6) holds, (comp. with [1, Theorem 2.6]). Let (yε, ϕε)ε>0 ⊆ Y1 × V1 be a sequence fulfilling (4.6).
Moreover, let ϕ0 ∈ V0 be the limit with respect to the convergence stated in Proposition 3.4. Then, for
all ŷ ∈ Y0 there exists a sequence (ŷε)ε>0 ⊆ Y1 such that ŷε → ŷ in W 1,2(Ω1,R3) and

lim sup
ε→0

Fε(ŷε, ϕε) ≤ F0(ŷ0, ϕ0).

Proof. 1. Let ŷ ∈ Y0 be arbitrarily given. Since functions in Y0 ∩ C∞(ω,R3) are dense in Y0 (see
[20] and [30]), we find for l ∈ N a sequence ŷl ∈ C∞(ω,R3) such that

‖ŷ − ŷl‖W 2,2 ≤ 1

4l
, ‖(∇′ŷl|νŷl)− (∇′ŷ|νŷ)‖L2 ≤ 1

4l
, |M0(ŷl)−M0(ŷ)| ≤ 1

4l
.

This construction, together with Q2 being a quadratic form on R2×2, ŷl → ŷ in Y0, and the definition
of Q2 yields

M0(ŷ)−M0(ŷl) =
1

2

∫
Ω1

{
Q2(x′,∇ŷ>∇νŷ)−Q2(x′,∇ŷ>l ∇νŷl)

}
dx′ → 0 for l→∞.

2. For each of the ŷl ∈ Y0, Theorem 4.11 ensures the existence of a sequence of functions in
W 2,qH (Ω1,R3), denoted ŷlε, such that∇εŷlε → (∇′ŷl|νŷl) in L2(Ω1,R3×3) and

lim
ε→0

1

ε2

∫
Ω1

Wel(x
′,∇εŷlε(x)Mε(x)−1) dx =

1

2

∫
Ω1

Q2(x′,∇ŷ>l ∇νŷl) dx′.

Assumption (A3) and Remark 2.3 therefore guarantee

lim
ε→0

1

ε2

∫
Ω1

Wel(·,∇εŷlεM
−1
ε ) detMε dx =

1

2

∫
Ω1

Q2(x′,∇ŷ>l ∇νŷl) dx′.

The functions ŷlε in the proof of Theorem 4.11 have the form (see (4.15))

ŷlε(x
′, x3) = ŷl(x

′) + ε
[
x3νŷl(x

′) +∇′ŷl(x′)gε(x′)
]

+ ε2Dlε(x
′, x3), (4.9)

where

Dlε(x
′, x3) :=

∫ x3

0

dlε(x
′, t) dt

with an ε dependent regularization dlε of a function dl ∈ L2(Ω1,R3) and gε is an ε dependent
regularization of the vector potential g defined by (4.8), (see also Lemma A.2).

3. To use the deformation ŷlε in the energy functional Fε, we additionally need ŷlε ∈ W 2,qH (Ω1,R3).
However, this property is guaranteed by Theorem 4.11 below. Moreover, we aim to show that

lim
ε→0

1

ε2

∫
Ω1

εαHH∗(∇2
εŷlε) dx = 0. (4.10)

The proof of Theorem 4.11 shows that dlε ∈ W 2,qH (Ω1,R3), gε ∈ W 2,qH (ω,R2) for all ε, as well
as ‖dlε‖qHW 2,qH (Ω1)

≤ c/ε and ‖gε‖qHW 2,qH (ω)
≤ c/ε. Moreover, we obtain dlε → dl in L2(Ω1,R3),

gε → g in W 1,2(ω,R2) for ε→ 0. We use Assumption (A2), (4.9), and (4.16) to estimate

1

ε2

∫
Ω1

εαHH∗(∇2
εŷlε) dx ≤

∫
Ω1

εαH−2KH(1 + |∇2
εŷlε|qH ) dx ≤ cεαH−2−2qH (1 + ‖ŷlε‖qHW 2,qH

)

≤ cεαH−2−2qH
(
1 + ‖ŷl‖qHC∞ + εqH

(
‖ŷl‖qHC∞ + ‖ŷl‖qHC∞‖gε‖

qH
W 2,qH

)
+ ε2qH‖dlε‖qHW 2,qH

)
≤ εαH−2−2qHc(l).
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(Note that ‖Dlε‖qHW 2,qH
) ≤ c‖dlε‖qHW 2,qH

.) Using that αH > 2+2qH , we find the desired convergence
(4.10).

4. We choose now a monotonically decreasing subsequence εl = ε(l) such that ε(l) < ε(l−1),

1

ε2

∫
Ω1

εαHH∗(∇2
εŷlε) dx <

1

4l
, ‖∇εŷlε − (∇′ŷl|νŷl)‖L2 <

1

4l
for all ε < ε(l),∣∣∣ 1

ε2

∫
Ω1

Wel(x
′,∇εŷlε(x)Mε(x)−1) dx− 1

2

∫
Ω1

Q2(x′,∇ŷ>l ∇νŷl) dx′
∣∣∣ < 1

4l
for all ε < ε(l),

(4.11)

and εl ↓ 0 as l→∞ which is possible due to Step 3 and Theorem 4.11.

For an arbitrary ε ∈ (0, ε0), we define

ŷε := ŷlε if ε ∈ (εl+1, εl] for this l ∈ N. (4.12)

For ε ∈ (εl+1, εl], Step 1 and (4.11) ensure that for l ∈ N∣∣∣ 1

ε2

∫
Ω1

{
Wel(x

′,∇εŷε(x)Mε(x)−1) + εαHH∗(∇2
εŷε)

}
dx−M0(ŷ)

∣∣∣ < 1

l
.

Thus, letting l→∞ (implying that (εl+1, εl] 3 ε ↓ 0), we find

1

ε2

∫
Ω1

{
Wel(x

′,∇εŷε(x)Mε(x)−1) + εαHH∗(∇2
εŷε)

}
dx→M0(ŷ),

andMε(ŷε)→M0(ŷ) as ε→ 0.

Therefore, for suitable c > 0 and ε̂0 > 0 it is ensured that Mε(ŷε) ≤ c for ε ∈ (0, ε̂0]. For
each such ε, the function ŷε ∈ W 2,qH (Ω1,R3) has bounded elastic energy, therefore, the Healey–
Krömer Theorem A.1 ensures that detFε > 0 a.e. in Ω1. Moreover, ∇εŷε → (∇′ŷ|νŷ) =: Rŷ in
L2(Ω1,R3×3) with Rŷ ∈ SO(3) a.e. in Ω1. This is guaranteed by the fact that for ε ∈ (εl+1, εl], we
have by Step 1, (4.11), and (4.12)

‖∇εŷε − (∇′ŷ|νŷ)‖L2 ≤
∥∥∇εŷε − (∇′ŷl|νŷl)

∥∥
L2 +

∥∥(∇′ŷl|νŷl)− (∇′ŷ|νŷ)
∥∥
L2 ≤

1

l
, l ∈ N.

Moreover, ŷε → ŷ in W 1,2(Ω1,R3) holds.

5. For the electrical part of the energy, we proceed as follows. Since the permittivity tensor k is positive
definite, we have the Cholesky decomposition k(x) = L(x)L(x)> with a regular lower triangular
matrix L(x) ∈ R3×3. Similarly to (3.14) in Proposition 3.4, but now with

Ψ : Ω1 × R3×3 → R3×3, Ψ(x, F ) :=

{
L(x)>F−>

√
detF if dist(F, SO(3)) ≤ 1

2
,

0 else,
(4.13)

and for Z = (∇′ϕ0,m0), Zε = ∇εϕε, and F̂ε = ∇εŷε, we have Zε ⇀ Z in LpW (Ω1,R3) by
assumption and F̂ε → Rŷ in L2(Ω1,R3×3), where det F̂ε > 0 and Rŷ ∈ SO(3) a.e. in Ω1. We
derive the estimate∫

Ω1

k(RŷZ) · (RŷZ) dx =

∫
Ω1

(L>RŷZ) · (L>RŷZ) dx

≤ lim inf
ε→0

∫
Ω1

k(F̂−>ε Zε) · (F̂−>ε Zε) det F̂ε dx.
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Therefore, we obtain by the definition of m = mŷ,ϕ0 in E0(y0, ϕ0) and ϕε → ϕ0 in L2(Ω1),

lim inf
ε→0

Eε(ŷε, ϕε) =
β

2
lim inf
ε→0

∫
Ω1

(kF̂−>ε Zε) · (F̂−>ε Zε) det F̂ε dx− γ lim
ε→0

∫
Ω1

nchϕε dx

≥ β

2

∫
Ω1

R>ŷ kRŷ(∇′ϕ0,m0) · (∇′ϕ0,m0) dx− γ
∫

Ω1

nchϕ0 dx

≥ β

2

∫
Ω1

R>ŷ kRŷ(∇′ϕ0,m) · (∇′ϕ0,m) dx− γ
∫

Ω1

nchϕ0 dx = E0(y0, ϕ0).

6. Finally, combining Steps 4 and 5, we verify

lim sup
ε→0

Fε(ŷε, ϕε) ≤ lim sup
ε→0

Mε(ŷε)− lim inf
ε→0

Eε(ŷε, ϕε) ≤M0(ŷ)− E0(ŷ, ϕ0) = F0(ŷ, ϕ0),

which completes the proof.

Finally, we show that property (IV) holds.

Lemma 4.9. [Property (IV)]. We assume (A1) – (A5). Let (yε, ϕε)ε>0 ⊆ Y1 × V1 be a sequence
fulfilling (4.6). Moreover, let y0 ∈ Y0 and ϕ0 ∈ V0 be the limits with respect to the convergences
stated in Proposition 3.4, then

lim inf
ε→0

Eε(yε, ϕε) ≥ E0(y0, ϕ0).

Proof. Similar to Step 5 of the proof in Lemma 4.8 with the definition of Ψ as in (4.13) and Z =
(∇′ϕ0,m0), Zε = ∇εϕε, and Fε = ∇εyε, one derives the estimate∫

Ω1

k(Ry0Z) · (Ry0Z) dx =

∫
Ω1

(L>Ry0Z) · (L>Ry0Z) dx

≤ lim inf
ε→0

∫
Ω1

k(F−>ε Zε) · (F−>ε Zε) detFε dx.

Therefore, we obtain by the definition of m = my0,ϕ0 in the limit energy E0(y0, ϕ0)

lim inf
ε→0

Eε(yε, ϕε) =
β

2
lim inf
ε→0

∫
Ω1

(kF−>ε Zε) · (F−>ε Zε) detFε dx− γ lim
ε→0

∫
Ω1

nchϕε dx

≥ β

2

∫
Ω1

R>y0kRy0(∇′ϕ0,m0) · (∇′ϕ0,m0) dx− γ
∫

Ω1

nchϕ0 dx

≥ β

2

∫
Ω1

R>y0kRy0(∇′ϕ0,m) · (∇′ϕ0,m) dx− γ
∫

Ω1

nchϕ0 dx = E0(y0, ϕ0),

which is the desired result.

4.4 Some convergence results for subproblems

Here we collect convergence properties that are relevant in finding recovery sequences as stated in
Lemma 4.7 and Lemma 4.8, respectively.
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Lemma 4.10 (Convergence of pulled-back tensor). We assume that (A1) – (A5) are satisfied. Let
(yε)ε>0 ⊆ Y1 be a sequence and y ∈ Y0 and denote R := (∇′y|ν) and Fε = ∇εyε. Let Fε → R
in L2(Ω1,R3×3) withR ∈ SO(3) a.e. in Ω1. Moreover, for some qW > 6, let ‖Fε‖LqW , ‖R‖LqW ≤ c
and ‖(detFε)

−1‖LqW /2 ≤ c, then

F−1
ε kF−>ε detFε =

Cof F>ε kCof Fε
detFε

→ R>kR in L1(Ω1,R3×3).

Proof. 1. Fix θ ∈ (0, 1). From ‖Fε−R‖Lq ≤ ‖Fε−R‖1−θ
LqW ‖Fε−R‖θL2 for 1/q = (1−θ)/qW +θ/2,

we obtain also Fε → R in Lq(Ω1,R3×3) for all q ∈ [2, qW ).

In three dimensions, the determinant of a matrix can be expressed as a sum of terms, each being
a product of three matrix entries. Consequently, detFε → detR in Lq/3(Ω1) holds for all q ∈
[3, qW ). Similarly, the cofactor matrix has entries that are sums of products of two matrix entries,
which implies the convergence Cof Fε → Cof R in Lq/2(Ω1;R3×3) for all q ∈ [2, qW ).

2. Since R ∈ SO(3) a.e. in Ω1, we have 1/ detFε − 1/ detR = (1− detFε)/ detFε, and∫
Ω1

∣∣∣ 1

detFε
− 1

detR

∣∣∣ dx =

∫
Ω1

∣∣∣1− detFε
(detFε)

∣∣∣ dx ≤ ∥∥∥ 1

(detFε)

∥∥∥
L
qW
2
‖1− detFε‖

L
qW
qW−2

.

By assumption, we have qW > 5 such that qW
qW−2

< qW
3
, and thus by Step 1, detFε → 1 in

L
qW
qW−2 (Ω1). Since, by assumption, ‖ 1

detFε
‖LqW /2 is bounded, it follows that 1

detFε
→ 1 in L1(Ω1). In

fact, we even have strong convergence in Lt(Ω1) for all t ∈ [1, qW/2). Indeed, let again θ ∈ (0, 1).
From ‖z‖Lt ≤ ‖z‖1−θ

LqW /2‖z‖θL1 for 1/t = (1−θ)2/qW + θ, we obtain

1

detFε
→ 1 in Lt(Ω1) for all t ∈ [1, qW/2).

3. For q ∈ [6, qW ), it holds that q
q−4
≤ q

2
< qW

2
, and we estimate∫

Ω1

∣∣∣Cof F>ε kCof Fε
detFε

− Cof R>kCof R
∣∣∣ dx

=

∫
Ω1

∣∣∣( 1

detFε
−1
)

Cof F>ε kCof Fε + (Cof F>ε −Cof R>)kCof Fε

+ Cof RTk(Cof Fε−Cof R)
∣∣∣ dx

≤
∥∥∥ 1

detFε
−1
∥∥∥
L

q
q−4
‖Cof Fε‖Lq/2‖k‖L∞‖Cof Fε‖Lq/2

+ ‖1‖
L

q
q−4
‖Cof Fε − Cof R‖Lq/2‖k‖L∞‖Cof Fε‖Lq/2

+ ‖1‖
L

q
q−4
‖Cof R‖Lq/2‖k‖L∞‖Cof Fε − Cof R‖Lq/2 .

The convergences proven in Steps 1 and 2 and Cof R>kCof R = R−1kR−> = R>kR for R ∈
SO(3) ensure the L1-convergence stated in the lemma.

The proof of the next result is mainly inspired by ideas in [1, Section 2].

Theorem 4.11 (Recovery sequence for the elastic energy). In addition to the Assumptions (A1)– (A3),
we suppose that the Assumption (A6) holds. Then, for every ŷ ∈ W 2,2

iso (ω,R3) ∩ C∞(ω,R3) there
exists a sequence of deformations yε ∈ W 2,qH (Ω1,R3) such that

yε → ŷ in W 1,2(Ω1,R3), ∇εyε → (∇′ŷ|νŷ) in L2(Ω1,R3×3), and
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lim
ε→0

1

ε2
Mel

ε (yε) =M0(ŷ), whereMel
ε (yε) :=

∫
Ω1

Wel(x
′,∇εyεMε(x)−1) dx.

Moreover, ε‖yε‖W 2,qH (Ω1,R3)→ 0 for ε→ 0.

Proof. 1. The Assumption (A6) is used in [1] to derive models for heterogeneous elastic plates with
in-plane modulation of the target curvature. In [1, Lemma 2.2] it is proved that

arg min
s∈Sym(2)

∫ 1/2

−1/2

Q2

(
x′, s+ x3G−B2×2(x′, x3)

)
dx3 = B2×2(x′) :=

∫ 1/2

−1/2

B2×2(x′, t) dt

for a.a. x′ ∈ ω and all G ∈ Sym(2). In particular, the minimizer is independent of G.

Let now the vector potential g ∈ W 1,2(ω;R2) be as in (4.8), i.e. ∇symg = B2×2, which of course
also does not depend on G. Therefore, we obtain

Q2(x′, G) =

∫ 1/2

−1/2

Q2

(
x′, x3G+B2×2(x′)−B2×2(x′, x3)

)
dx3

=

∫ 1/2

−1/2

Q2

(
x′, x3G+∇symg −B2×2(x′, x3)

)
dx3.

(4.14)

Using e.g. Lemma A.2 ii), we can approximate the potential g ∈ W 1,2(ω,R2) by gε ∈ W 2,qH (ω,R2)
(also not depending on G) such that ε‖gε‖W 2,qH (ω,R2) → 0 for ε→ 0.

2. Let ŷ ∈ W 2,2
iso (ω,R3) ∩ C∞(ω,R3) and the corresponding normal vector ν := νŷ ∈ C∞(ω,R3)

be given. Then, we have

R := Rŷ = (∇′ŷ|νŷ) = (∇′ŷ|ν) ∈ C∞(ω,R3×3) and R ∈ SO(3) a.e. in ω.

For dε ∈ W 2,qH (Ω1,R3), which also provide an approximation for a d ∈ L2(Ω1,R3) that is deter-
mined below (cf. also Lemma A.2 i)) and gε := (gε1, gε2) ∈ W 2,qH (ω,R2) as above, we define the
sequence

yε(x
′, x3) = ŷ(x′) + ε[x3ν(x′) +∇′ŷ(x′)gε(x

′)] + ε2Dε(x
′, x3), (4.15)

where

Dε(x
′, x3) =

∫ x3

0

dε(x
′, t) dt.

Note that the properties ŷ ∈ W 2,2
iso (ω,R3) ∩ C∞(ω,R3) (yielding in particular |∂1ŷ| = |∂2ŷ| = 1),

ν ∈ C∞(ω,R3), and Dε ∈ W 2,qH (Ω1,R3) imply that yε ∈ W 2,qH (Ω1,R3). Moreover, we easily
confirm that yε → ŷ in W 1,2(Ω1,R3) for ε→ 0. Moreover, we have the explicit estimate

ε‖yε‖W 2,qH ≤ εc
(
‖ŷ‖C∞ + ε

(
‖ŷ‖C∞ + ‖ŷ‖C∞‖gε‖W 2,qH

)
+ ε2‖dε‖W 2,qH

)
→ 0, (4.16)

which ensures the last assertion of the theorem.

A direct computation shows that

∇εyε(x
′, x3) = R(x′) + ε

(
x3∇′ν(x′) +∇′[∇′ŷ(x′)gε(x

′)]
∣∣dε(x)

)
+ ε2(∇′Dε(x)|0),

∇εyε(x
′, x3)Mε(x)−1 =

(
R(x′) + ε

(
x3∇′ν(x′) +∇′[∇′ŷ(x′)gε(x

′)]
∣∣dε(x)

)
+ ε2(∇′Dε(x)|0)

)
× (I3 − εB(x) + ε2B(x)2) +O(ε3).

(4.17)
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Since R ∈ SO(3), the frame indifference of Wel yields

Wel(x
′,∇εyεM

−1
ε ) = Wel(x

′, R>∇εyε(·, x3)M−1
ε )

= Wel

(
x′,
{
I3 + εR>

(
x3∇′ν +∇′[∇′ŷgε]

∣∣dε(·, x3)
)

+ ε2R>(∇′Dε(·, x3)|0)
}

× (I3 − εB(·, x3) + ε2B(·, x3)2) +O(ε3)
)
.

For ε sufficiently small, the properties (A.1) of the approximation dε and gε guarantee

dist
(
R>∇εyε(x

′, x3)M−1
ε , SO(3)

)
≤ ε‖R‖L∞

(
‖∇′ν‖L∞ + ‖ŷ‖W 2,∞‖gε‖L∞ + ‖ŷ‖W 1,∞‖gε‖W 1,∞ + ‖dε‖L∞ + ‖B‖L∞

)
+ ε2‖R‖L∞

(
‖∇′ν‖L∞ + ‖ŷ‖W 2,∞‖gε‖L∞ + ‖ŷ‖W 1,∞‖gε‖W 1,∞ + ‖dε‖L∞

)
‖B‖L∞

+ ε2‖R‖L∞‖∇′Dε‖L∞ + ε2‖B‖2
L∞ +Kε3 < ε0,

where ε0 > 0 is such that in the ε0-neighbourhood of SO(3), the elastic energy density Wel is
bounded and C2 regular. Using a Taylor expansion of Wel at I3 we get

1

ε2
Mel

ε (yε) =
1

ε2

∫
Ω1

Wel

(
I3 + εR>

(
x3∇′ν +∇′[(∇′ŷ)gε]

∣∣dε)+ ε2R>(∇′Dε|0)
)
×

× (I3 − εB + ε2B2) +O(ε3)
)

dx

=
1

2

∫
Ω1

{
D2Wel(I3)

(
R>
(
x3∇′ν +∇′[(∇′ŷ)gε]

∣∣dε(x)
)
−B

)⊗2

+O(ε)
}

dx,

resulting in

lim
ε→0

1

ε2
Mel

ε (yε) = lim
ε→0

1

2

∫
Ω1

D2Wel(I3)
(
R>
(
x3∇′ν +∇′[(∇′ŷ)gε]

∣∣dε)−B)⊗2

dx

= lim
ε→0

1

2

∫
Ω1

Q3

(
R>
(
x3∇′ν +∇′[(∇′ŷ)gε]

∣∣dε)−B) dx

=
1

2

∫
ω

∫ 1/2

−1/2

Q3

(
R>
(
x3∇′ν +∇′[(∇′ŷ)g]

∣∣d(x)
)
−B

)
dx3 dx′.

Here we used ŷ, ν ∈ C∞(ω;R3), dε → d in L2(Ω1,R3), gε → g in W 1,2(ω,R2).

Now, we follow the ideas in the proof of [1, Theorem 2.6 (III)]. Since Q3(F ) = Q3(Fsym) for all
F ∈ R3×3, we evaluate the symmetric part of the argument inQ3, and we will write it in a special form
(see (4.18) below). Indeed, let X denote the 2× 2 upper left part of the 3× 3 matrix in the argument
in Q3, and let X◦ be defined as in (2.1). We consider the map L : Sym(2) → R3 that assigns to
X ∈ Sym(2) the unique vector cX := argminc∈R3Q3

(
X◦ + (c ⊗ e3)

)
. Since Q3 is quadratic, the

first order optimality conditions for cX ensure the linearity of the mapping L. We introduce

d̄(x) := R(x′)
(
L(Xsym(x))−

( (∇′(∇′ŷ(x)g(x′)))>ν(x′)
0

)
+ (2B13 2B23B33)(x)>

)
.

We recall that due to X ∈ L∞(Ω1, Sym(2)), B ∈ L∞(Ω1, Sym(3)), ŷ, ν ∈ C∞(ω̄;R3), and
g ∈ W 1,2(ω,R2), thus, d̄ ∈ L∞(Ω1,R3) holds. Using the vector d = d̄ in the respective position in
Q3, we establish a representation of the symmetric part of the argument in Q3 by(
R>
(
x3∇′ν(x′)+∇′[∇′ŷ(x′)g(x′)]

∣∣d̄(x)
)
−B

)
sym

=

(
0

Xsym 0
0 0 0

)
+(L(Xsym(x))⊗e3)sym.

(4.18)
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Due to the identity (∇′ŷ)g = g1∂1ŷ + g2∂2ŷ, we find

∇′
(
(∇′ŷ)g

)
=
(
g1∂1∂1ŷ + g2∂1∂2ŷ

∣∣g1∂2∂1ŷ + g2∂2∂2ŷ
)

+∇′ŷ∇′g.

For ŷ ∈ W 2,2
iso (ω;R3), we have ∂iŷ · ∂j ŷ = δij and ∂i∂j ŷ · ∂kŷ = 0 for i, j, k = 1, 2. Moreover,∑3

j=1 νj∂iνj = 1
2
∂i|ν|2 = 0, i = 1, 2, since ν has norm one. These identities lead to

(∇′ŷ)>∇′
(
(∇′ŷ)g

)
= ∇′g, R>(∇′ν|0) =

(
(∇′ŷ)>∇′ν 0

0 0

)
.

Therefore, we calculate

Xsym(x) = x3(∇′ŷ(x′))>∇′ν(x′) +∇′symg(x′)−B(x)2×2 a.e. in Ω1. (4.19)

Using (4.18), (4.19), and the definitions of Q2 and Q2, we establish

lim
ε→0

1

ε2
Mel

ε (yε) = lim
ε→0

1

ε2

∫
Ω1

Wel(x
′,∇εyεMε(x)−1) dx

=
1

2

∫
ω

∫ 1/2

−1/2

Q3

(
x′, R>

(
x3∇′ν(x′) +∇′[∇′ŷ(x′)g(x′)]

∣∣d̄(x)
)
−B(x)

)
dx3 dx′

=
1

2

∫
ω

∫ 1/2

−1/2

Q2

(
x′, x3∇′ŷ>∇′ν +∇′symg −B(x)2×2

)
dx3 dx′

=
1

2

∫
ω

min
s∈R2×2

∫ 1/2

−1/2

Q2

(
x′, x3∇′ŷ>∇′ν + s−B(x)2×2) dx3 dx′

=
1

2

∫
ω

Q2(x′,∇ŷ>∇ν) dx′ =M0(ŷ).

Finally, (4.17), ε‖dε‖W 2,qH (Ω1,R3) → 0, and ε‖gε‖W 2,qH (ω,R2) → 0 for ε → 0, ensure that ∇εyε →
(∇′ŷ|νŷ) in L2(Ω1,R3×3), which completes the proof.

5 Concluding remarks

In this manuscript, we have restricted our considerations to prestrains satisfying (A6), primarily for the
sake of clarity and transparency in the proof of Theorem 4.11. We note, however, that the work [29]
addresses more general prestrains that satisfy only (A3).

We expect that, also in this more general setting, and in the spirit of Theorem 4.11, for all deformations
ŷ ∈ W 2,2

iso (ω,R3) ∩ C∞(ω,R3) a sequence (yε)ε>0 can be constructed with yε ∈ W 2,qH (Ω1,R3),
yε → ŷ in W 1,2(Ω1,R3), ∇εyε → (∇′ŷ|νŷ) in L2(Ω1,R3×3), and limε→0

1
ε2
Mel

ε (yε) = M0(ŷ),
and the additional property that ε‖yε‖W 2,qH (Ω1,R3) → 0 for ε→ 0 is satisfied. This would then ensure
the validity of Lemma 4.8 and Theorem 4.4 also in the more general prestrain setting.

Following the strategy of the proof of [29, Theorem 3], one would have to distinguish three cases for
the second fundamental form ÎI := (∇ŷ>∇νŷ), namely:

(i) ÎI = 0, treated by means of the ansatz in Eqn. (93) in [29],

(ii) Π̂ bounded away from zero, corresponding to the ansatz in Eqn. (115) in [29], and
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(iii) the general case, where ÎI is neither identically zero nor nowhere vanishing.

In the latter case, the previous two ansatzes would need to be smoothly connected by means of a
transition layer along the boundary of the set {Π̂ = 0}. This could be achieved through an ansatz of
the intricate form in Eqn. (139) in [29].

In addition, one must ensure that all terms in the sum belong to the space W 2,qH (Ω1,R3) and that
ε‖yε‖W 2,qH (Ω1,R3) → 0 as ε → 0. This, in particular, would require an additional smoothing proce-
dure for the various factors appearing in the different terms of (139) in [29]. We avoided this technically
involved construction by adopting the simplifying assumption (A6).

Finally, let us remark that also in the limit model a result similar to Corollary 3.2 holds.

Lemma 5.1. We assume (A1) – (A5). Let y0 ∈ Y0 and ϕ0 ∈ V0 be the limits with respect to
the convergences stated in Proposition 3.4. If F0(y0, ϕ0) ≥ F0(y0, ϕ) for all ϕ ∈ V0, meaning
E0(y0, ϕ0) ≤ E0(y0, ϕ) for all ϕ ∈ V0, then

N0(ϕ0) = 2Q0(y0, ϕ0), E0(y0, ϕ0) = Q0(y0, ϕ0)−N0(ϕ0),

where

Q0(y0, ϕ0) :=
β

2

∫
ω

Keff
y0

(x′)∇′ϕ0(x′) · ∇′ϕ0(x′) dx′, N0(ϕ0) := γ

∫
ω

nch(x′)ϕ0(x′) dx′.

Proof. We use ϕ ∈ V0 of the form ϕ = ϕ0(1 + a), a ∈ R. Then E0(y0, ϕ0) ≤ E0(y0, ϕ) for these
ϕ yields

β(2a+ a2)

2

∫
ω

Keff
y0
∇′ϕ0 · ∇′ϕ0 dx′ − γa

∫
ω

nchϕ0 dx′ ≤ 0.

Therefore, we find

γ

∫
ω

nchϕ0 dx′ − β(1 +
a

2
)

∫
ω

Keff
y0
∇′ϕ0 · ∇′ϕ0 dx′

{
≥ 0 ∀a < 0,

≤ 0 ∀a > 0.
(5.1)

We consider in (5.1) the limit a ↑ 0 and obtain

γ

∫
ω

nchϕ0 dx′ − β
∫
ω

Keff
y0
∇′ϕ0 · ∇′ϕ0 dx′ ≥ 0.

For the opposite inequality we take the limit a ↓ 0 in (5.1). This together ensures N0(ϕ0) =
2Q0(y0, ϕ0). Relation (2.14) then finalizes the proof.

A Auxiliary tools

The following result, due to Healey–Krömer [19] can also be found e.g. in [22, Theorem 2.5.3] and [27,
Theorem 3.1].

Theorem A.1 (Healey–Krömer). Assume that the elastic energyWel : Ω1×R3×3 → [0,∞] satisfies
(W4), and the hyperstress potential H : R3×3×3 → R+ fulfils (A2) with qW ≥ 3 and qW/2 >
3qH/(qH − 3). Then, for all CM > 0 there exists a CHK = CHK(CM, qH , qW ) > 0 such that for all
deformations y ∈ W 2,qH (Ω1,R3) with bounded elastic energy

∫
Ω1

(
Wel(∇y)+H(∇2y)

)
dx < CM

it is satisfied

‖y‖W 2,qH ≤ CHK, ‖y‖C1−3/qH ≤ CHK, ‖(∇y)−1‖C1−3/qH ≤ CHK,

det∇y(x) ≥ 1/CHK for all x ∈ Ω1.
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Lemma A.2. Let qH be defined as in Assumption (A2).

i) For d ∈ L2(Ω1,R3), there exists a sequence (dε)ε>0 such that dε ∈ W 2,qH (Ω1,R3), dε → d in
L2(Ω1,R3), and ε‖dε‖W 2,qH → 0 for ε→ 0.

ii) For g ∈ W 1,2(ω,R2), there exists a sequence (gε)ε>0 such that gε ∈ W 2,qH (ω,R2), gε → g in
W 1,2(ω,R2), and ε‖gε‖W 2,qH (ω,R2) → 0 for ε→ 0.

Proof. 1. We fix d ∈ L2(Ω1,R3) and construct approximations dε ∈ W 2,qH (Ω1,R3) by solving the
minimization problem

min
d̄∈W 2,qH (Ω1,R3)

Iε(d̄), where Iε(d̄) :=

∫
Ω1

{ ετ
qH

{
|∇2d̄|qH + |∇d̄|qH

}
+

1

2
|d̄−d|2

}
dx

for some τ ∈ (0, qH). Note that the functionals Iε are strictly convex and the minimizers, denoted by
dε, are unique. The associated Euler–Lagrange equation reads

0 =

∫
Ω1

{
ετ
{
|∇2dε|qH−2∇2dε

...∇2ξ + |∇dε|qH−2∇dε : ∇ξ
}

+ (dε−d) · ξ
}

dx

for all ξ ∈ W 2,qH (Ω1,R3). Testing the latter by ξ = dε, we find ‖dε‖qHW 2,qH (Ω1,R3)
≤ c/ετ . Since

τ < qH , we therefore get

ε‖dε‖W 2,qH ≤ c̃ε1−τ/qH → 0 and ε‖dε‖W 1,∞ → 0 for ε→ 0. (A.1)

Next, we show that dε ⇀ d in L2(Ω1,R3) by proving the Γ-convergence of the functional Iε to I0 in
the weak L2-topology, where the limiting functional I0 is defined by d̄ 7→ 1

2

∫
Ω1
|d̄−d|2 dx. Trivially,

the unique minimizer of I0 in L2(Ω1,R3) is given by d.

First, it is easy to see that for all sequences d̄ε ⇀ d∗ in L2(Ω1,R3), we have lim infε→0 Iε(d̄ε) ≥
I0(d∗). Indeed, this estimate follows from Iε(d̄ε) ≥ I0(d̄ε) and the weak lower semi-continuity of the
norm.

Second, for all d∗ ∈ L2(Ω1,R3), we can find a recovery sequence d̂ε → d∗ in L2(Ω1,R3) such

that lim supε→0 Iε(d̂ε) = I0(d∗). Namely, if d∗ ∈ W 2,qH (Ω1,R3), we take the constant sequence

d̂ε ≡ d∗, giving lim supε→0 Iε(d∗) = I0(d∗). In case d∗ /∈ W 2,qH (Ω1,R3), by density arguments
there exist (dk) ⊂ W 2,qH (Ω1,R3) with dk → d∗ in L2(Ω1,R3) and ak := ‖dk‖qHW 2,qH

, possibly
tending to infinity. For all ε > 0, there exists k(ε) ∈ N, k(ε) ≥ maxε′>ε k(ε′) such that ak(ε) ≤ ε−β .

Then, setting d̂ε := dk(ε), since d̂ε = dk(ε) → d∗ in L2(Ω1,R3) for ε→ 0, we find

lim sup
ε→0

Iε(d̂ε) ≤ lim sup
ε→0

{
ε1+τak(ε) + ‖d̂ε − d‖2

L2

}
≤ lim sup

ε→0

{
ε+ ‖d̂ε − d∗ + d∗ − d‖2

L2

}
= ‖d− d∗‖2

L2 = I0(d∗).
(A.2)

The fundamental theorem of Γ-convergence gives the weak convergence dε ⇀ d in L2(Ω1,R3).

It remains to show that the convergence of dε is actually strong in L2(Ω1,R3). Testing the Euler-
Lagrange equation by dε gives the identity

‖dε‖2
L2 + ετ

(
‖∇2dε‖qHLqH + ‖∇dε‖qHLqH

)
=

∫
Ω1

dεd dx.

Using the weak convergence of dε, we can pass to the limit in the right-hand side, giving

‖d‖2
L2 ≤ lim inf

ε→0

{
‖dε‖2

L2 + ετ
(
‖∇2dε‖qHLqH + ‖∇dε‖qHLqH

)}
≤ ‖d‖2

L2 .
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We conclude that dε is strongly converging to d. Moreover, we obtain the convergence ετ (‖∇2dε‖qHLqH+
‖∇dε‖qHLqH )→ 0.

2. The approximation for g ∈ W 1,2(ω;R3) is obtained similar to Step 1 by solving

min
ḡ∈W 2,qH (ω,R2)

Igε (ḡ), Igε (ḡ) :=

∫
ω

{ ετ
qH

{
|∇2ḡ|qH + |∇ḡ|qH

}
+

1

2
|∇(ḡ− g)|2 +

1

2
|ḡ− g|2

}
dx′,

and proceeding as in Step 1.
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[6] R. Bauer, S. Neukamm, and M. Schäffner. Derivation of a homogenized bending–torsion theory
for rods with micro-heterogeneous prestrain. Journal of Elasticity, 141(1):109–145, 2020.
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