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Dimension reduction for a coupled electro-elastic saddle-point

problem at finite strains

Kateryna Buryachenko, Annegret Glitzky, Matthias Liero, Barbara Zwicknag|

Abstract

We study the finite deformation of a thin, elastically heterogeneous sheet subject to electro-
static coupling. The interaction between mechanics and electrostatics is formulated as a saddle-
point problem involving the deformation and the electrostatic potential. Starting from a three-
dimensional electro-elastic model with prestrain in the elastic energy, we rigorously derive a re-
duced plate model in the bending regime. To perform the dimension reduction, that is, to derive
the energy of a thin object by taking a suitable limit as its thickness tends to zero, we apply
I"-convergence-type methods to the underlying saddle-point problem. In the case of bivariate
functionals, this convergence is understood in an adapted epi/hypo-convergence sense. In this
concept, we demonstrate the convergence of the rescaled electro-elastic problems to an effective
two-dimensional bending model coupled to electric effects. We verify that cluster points of saddle

points are saddle points for the limit.
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1 Introduction

The study of dimension reduction in continuum mechanics provides a rigorous framework for deriv-
ing effective lower-dimensional theories for thin domains that capture the dominant behavior while
reducing e.g. computational complexity, see [9, 10, 14, 26, 28]. More recently, approaches based on
variational methods such as I'-convergence have proven to be a powerful and versatile tool espe-
cially for dimension reduction in nonlinear elasticity. The main task herein, i.e., the convergence of
global minimizers of suitably scaled elastic energy functionals, has been discussed by many authors
since the pioneering works by Le Dret and Raoult [14], and by Friesecke, James and Mdller [16, 17].
This problem has gained increasing attention in the case of pre-strained bodies, and several results
appeared not only for the dimension reduction from three- to two-dimensional problems (see e.g.
[1, 7, 29]) but also in the three- to one-dimensional case, i.e., rods (see, for instance, [4, 6, 11] and
references therein).

In this paper, we deal with the derivation of an effective plate model in the bending regime for a coupled
three-dimensional electro-elastic model when the relative thickness 0 < ¢ < 1 of the plate goes to
zero. The model describes the finite deformation of a thin elastically heterogeneous sheet in response
to an electric field. While the former is given in terms of the deformation y : 2 — R? of the reference
configuration (2, the latter is given by the electrostatic potential ¢ : {2 — R that solves the Poisson
equation, namely,

—div (k(z, Vy)Ve) = egnen (),

where k(z, Vy) € R3*3 is the symmetric and positive definite permittivity tensor in the Lagrangian
frame that depends on the deformation gradient, and n, () is a fixed charge distribution (¢y > 0 de-
notes the elementary charge). In particular, the nonlinear dependence of x on V1 leads to significant
mathematical challenges, see e.g. Subsection 4.4. We make the crucial scaling assumption, that the
electrostatic potential ¢ and the charge density n.y, are of order € (comp. (2.7)).

Electro-elastic models in the setting of large deformations are highly relevant due to their broad range
of applications in describing electromechanical effects in polymeric materials. Elastomeric materials
are sensitive to electric fields and can be used in transducer devices such as actuators and sensors,
see e.g. [12]. This development in materials science requires in turn a development of the mathe-
matical theory to improve the understanding of the electro-mechanical (in particular, electro-elastic)
interactions for material characterization and prediction via mathematical analysis and numerical sim-
ulations. A thorough study, review of key experiments, discussion of the range of applications, and the
history of development of the nonlinear theory of such models have been done, for example, by Dorf-
mann and Ogden in [13]. In addition, special attention is given to the development of electro-elastic the-
ory, constitutive equations for electro-elastic materials and then their specialization to isotropic electro-
elasticity. This is necessary for material characterization and analysis of general electro-elastic cou-
pling problems. Another novel polyconvex transversely-isotropic invariant oriented model of Electro-
Active Polymers (EAPS) is studied in [21]. In that paper, a series of numerical examples modelling the
performance of transversely isotropic EAPs at large strains are presented, and existence of minimiz-
ers, material stability (ellipticity) of simulations is ensured by means of a so-called .A-polyconvexity
condition. Moreover, a polyconvex basis of invariants for the creation of polyconvex invariant-based
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 3

constitutive models is also introduced. In the work [25], Miehe, Vallicotti, and Zah outline variational-
based definitions for structural and material stability for EAPs. Herein an enthalpy-based saddle-point
principle is considered as the most convenient setting for numerical implementation. Stability criteria
for a canonical energy minimization principle of electro-elasto-statics are formulated and shifted over
to representations related to this enthalpy-based saddle-point principle. A linearized version of the
EAP model in [25] was studied by Kruzik and Roubicek in [22, Sect. 5.6], see also [32].

In our problem, the main mathematical challenge lies in the fact that it is not formulated as a family of
minimization problems, but as a family of saddle-point problems (see, for instance, [3]) for the energy
functionals .. This is in contrast, e.g., to the setting considered by Bartels et al. [5]. Therein, the
authors also deal with a coupled problem for elastomers, where the deformation ¥ is coupled to the
behavior of a director field via a spontaneous curvature term. In their case, however, the problem
is formulated as a joint minimization problem for y and the director field. In our setting, the energy
functional has the form

-Fz-:(y?(p) = ME(Z/) - gs(ya(p)a (1.1)

where M. denotes the purely elastic part depending only on v, see (2.23), while &, represents the
electrostatic contribution depending on both, v and the electrostatic potential ¢, see (2.24).

In contrast to linearized piezoelectric problems, see e.g. [22, Sect. 5.6], the existence of a saddle
point for fixed ¢ is not clear as physical principles require the energy £, to be nonconvex (at most
polyconvex) with respect to the deformation. Thus, classical results such as [15, Ch. 4, Prop. 2.2]
cannot be applied. In this regard, the derivation of an effective and to some extent simpler model for
thin domains is much desired.

The idea of applying I'-convergence methods to saddle-point problems is not new. A notion of con-
vergence for a sequence of bivariate functionals . : ) x V — R := R U {#00} to some limiting
functional Fy : Vo x Vy — R in some metric spaces )V, V, Yy, V, is called epi/hypo-convergence
and was introduced by Attouch and Wets in [2, 3]. We build on this idea but suitably adapt it to our set-
ting in order to deal with potential cancellation effects in the energy (1.1) which is defined as difference
of two non-negative contributions and a linear part, see Section 4.

Another challenge is that we take into account that the elastic contribution to the total energy contains
a so-called "prestrain”. The latter arises, for example, from a layered material structure (see e.g. [23] for
prestrained nanorods) and is common in biological applications [1, 24]. Typically, these materials are
modeled by three-dimensional energy densities of the form W (z, Vy(x)) = Wy (x, Vy(z) M (x)!)
for the deformation gradient Vy and a given prestrain M () € GL(3). We will build upon the methods
in [1, 29] to prove the convergence to the bending model for the elastic part.

The main result of the present paper is contained in Section 4 (Subsection 4.2, Theorem 4.4), and
roughly states the following. Let (y, ) € )1 x V) be a given sequence of saddle points for the
family of functionals of total energy F. : V1 x Vi — R := R U {400} (see 4.1), such that
(v, ) — (y*,¢*) € Yy x Vy. We prove that F. converges to Fy : Vy x Vo — R in a sense,
which is closely related to epi/hypo-convergence, and which guarantees that (y*, ©*) is a saddle point
of the effective bending model. The specific form of our functionals requires some suitable choices in

the topologies and spaces used.

Outline of the paper: In Section 2, we introduce the underlying three-dimensional electro-elastic model
as well as scaling assumptions and non-dimensionalization, see Subsections 2.2 and 2.3. The two-
dimensional limit model with limit functional 7o = My — &, is introduced in Subsection 2.4. Moreover,
the rigorous assumptions for the limit passage are collected in Subsection 2.5. Section 3 provides
properties of saddle points for fixed €. Uniform estimates for saddle points with respect to € are derived
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in Subsection 3.2 (cf. Lemma 3.3 and Proposition 3.4). Section 4 is devoted to the actual dimension
reduction. We introduce the generalized notion of epi/hypo-convergence for saddle functionals and
prove the main result of this paper, Theorem 4.4, on epi/hypo-convergence of the functional . of
total energy. The proof of Theorem 4.4 relies on establishing several auxiliary asymptotic upper and
lower bounds (see Lemmas 4.6, 4.7, 4.8, and 4.9). In Subsection 4.4, we collect some convergence
properties that are relevant in finding recovery sequences. Section 5 is devoted to concluding remarks.

2 Setup for the coupled electro-elastic model

In this section, we collect all necessary setup statements, introduce the electro-elastic bending model
and its limiting model, provide scaling assumptions and non-dimensionalization for introduced model.

2.1 Notation
For the reader’s convenience, we collect the notation used throughout the paper here.

B Forx € R3, we write 2 = (2/, z3) or & = (', t), where 2 denotes the in-plane components and '3
or t corresponds to the out-of-plane component of x;

V' := (01, 02) means the in-plane gradient and V. := (V’, %83) denotes the scaled gradient;
{e1, e2, ez} is the standard basis in R?;

R™ ™ is the vector space of real n x n matrices, I, € R™*"™ denotes the identity matrix;
curl v stands for the vector product of V and the vector field v, i.e., curlv = V x v;

GL(n) is the general linear group of degree n, i.e., the set of invertible n. x n matrices;

Sym(n) := {M € R™ " : MT = M}, the vector space of symmetric matrices, where M ' is the
transposed matrix of M and M~ T = (M ")~ = (M—HT;

Skew(n) := {M € R™™: MT = —M}, the set of skew-symmetric matrices;
B My = 5(M +MT"), Veymy == 5(Vy + (Vy)T) for vector functions y;

B det M is the determinant of M € R™ ™, and Cof M = (det M)M~" denotes the cofactor matrix of
M;

B SO3):={M cR¥3: MTM =13, det(M) = 1} is the set of rotations of R3;

B W2 (w,R3) = {y € W22(w,R3) : V'y V'y =L} Fory € W2(w,R3) let v, := 81y A Oy,
y

iso iso
R, = (01y|0ay|vy), and I1,, := V'y T V'v the second fundamental form of the surface parametrized
by v in local coordinates;

B L5,(Q,RY) stands for (vector-valued) functions with vanishing average, i.e., f € L5 (1, R?)if f €
LP(Q,R%) and Jo, f dz = 0. Moreover, we set WEP(Q, RY) = WhP(Qq, RY) N L2,(Qy, RY);

B )M, denotes the 2 x 2 submatrix of M € R3*3 resulting from M by omitting the last row and last
column;

B For vectors a;, b; € R™, their tensor product a ® b € R™*" is given by (a ® b);; = a;b;;
J j
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 5

B For given G € R?*2 let G° € R3*3 denote the matrix obtained by

0

0 |; (2.1)
0

B c stands for a generic constant, c. for a generic constant depending on ¢.

2.2 Three-dimensional energy functional

We fix a domain €, := w X (—h/2,+h/2), where we assume that
w C R?is an open, bounded and convex domain with piecewise C’l-boundary. (2.2)

We consider the free energy functional for the deformation ¢ and the electrostatic potential ¢ that
consists of a purely mechanical part and an electrostatic contribution, namely

Fly,p) = M(y) — E(y, ), with
M(y) = /Q {We|(x, Vy(z)M(z)™") det(M(x)) + H(VQy(x))} dz, 23
1

E(y, p) = 5/9 {f-’»(fﬂ, Vy)V(z) - V() — eonch(:c)so(x)} dz,

where ¢y > 0 is the elementary charge, n, is a fixed charge-density, M (x) € GL(3) is the prestrain,
and kK : Q;, x GL(3) — Sym(3) is the symmetric and uniformly positive definite permittivity ten-
sor pulled-back to the reference configuration, namely, for k € L (€2, Sym(3)) uniformly positive
definite, we have

k(x, F) = det(F)F~'k(z)F~", foralmostall z € €, and for all ' € GL(3). (2.4)

Note that we have also included a higher order contribution H(VQy) to the mechanical energy that
acts as a regularization, see Section 3.

We are looking for deformations 3 and electrostatic potentials ¢ such that y minimizes F and ¢ is a
maximizer in suitable classes of functions, i.e., we are looking for saddle points of the functional F.
We have the following definition.

Definition 2.1. ([2, 3]). Let ? and V be metric spaces, and F : )7 %V — R be a bivariate functional.
A pair (Y., v«) € Y x V such that

F(yer 0) < F (Y, 04) < Fy, ) forall (y, ) €Y xV, (2.5)

is called a saddle point for the functional F on the metric space 37 x V.

We will use this concept of saddle points for the functionals . and the limiting functional o on
different pairs of metric spaces (), V) and (), Vo) respectively.

The existence of saddle points for the functional F defined in (2.3) is not clear. In particular, standard
existence results rely on the property that F is convex in y and concave in ¢, see [15, 33], while
the concavity with respect to ¢ holds, the convexity in y is missing due to the dependence of Kk on
V. Moreover, the frame indifference principle demands that also the stored-elastic-energy density
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K. Buryachenko, A. Glitzky, M. Liero, B. Zwicknagl 6

W is non-convex. In the case of linearized elasticity, the problem becomes convex-concave, and the
existence of saddle points can be shown, [15, Ch. 4, Prop. 2.2]. We also refer to [22, Sect. 5.6].

The corresponding Euler—Lagrange equation for the functional F with respect to the deformation reads

—div ( (det M)@FW6|(VyM‘1)M‘t:div (06 H(V?Y)) + Zua(Vy, Vo) ) =0,

elastic stress hyperstress Maxwell stress

where Yy is the Maxwell stress given for F' = Vy by
1
Svax = (BF 'V ® F~ 'V — §k(F_TVg0) (F~TV)I3) Cof F.

The Piola transform 7% — T := TECof Vy maps an Eulerian tensor field 77 : y(€,) — R3*3
to its Lagrangian counterpart 7" : ), — R3*3 such that det(Vy)div ,(TF) = div . (T"). Thus,
the Maxwell stress takes the more familiar form in spatial (Eulerian) coordinates

1
Vi = —5kVy0 - Vyo Iy + kVy6 © V0,

where ¢(y(x)) = ¢(x) denotes the Eulerian electrostatic potential. The Euler-Lagrange equation for
the electrostatic potential, also called Poisson equation in this case, reads

—div ((det F)F~'k(z)F~ Vo) = egnen(z).

For simplicity, we complement this equation by the condition th pdx = 0. We refer to [5, Subsec-
tion 2.3], where also additional boundary conditions for ¢ are discussed.

2.3 Scaling assumptions and non-dimensionalization

In order to non-dimensionalize the energy in (2.3), we introduce a reference length scale ¢ > 0, a
reference voltage V; > 0, a reference carrier density n, > 0, and a reference energy density £, > 0
(unit Joule/meter3). We then set the non-dimensional and scaled quantities

- 11
Oi=L0"w, e=0Th, T=012 e a3) = ("2 h ) €D x (—5, +§> .

The rescaled deformation 7, electrostatic potential o, and charge density 7., are defined via

U(T) = 007 lexs), B(T) =V o(la! lexs), Nen(T) = n 'na (b, (eTs),

Wa(Z, F) = E- \Wo (6T, leTs), F), M(F) = M((Z', (e75),
R(Z,F) = ky'k(l2! (73, F), H(G) = E'H(Q),

where ko > 0 is the vacuum permittivity. Note that this scaling leads to the identities V,y =
diag(1,1,e71)Vzy =: V.J and analogously for ¢ and @. For the Hessians of y and 7, we have
the relations

1/(¢e?) ifi=j=3,
where «;; = ¢ 1/(le) if(i=3andj #3)or(j=3andi#3),
1/¢ otherwise.

Py . P
c%ié’xj n ij@%}(‘?ij’
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 7

We will write V27, where (V2y);;, = af; a?g%’ i,j,k=1,2,3.
i0Tj

Plugging these identities into the energy functional F in (2.3), we obtain

1 ~
m}—(% v) = F(y,9),
with the rescaled energy functional
~ 1 ~ e~ —~ ~ SN
3.2 =% [ Wald, VA@ME) ) det(NI@) + H(V25(@) &2
951

eOX/rnr SOOI [iovz / s e e o
pbxy; : d7. (26
+ 2F, /91 nen (2)p(7) da 27E, Jo k(Z,V.y(2))V-0(2) - V.9(T)dT. (2.6)

For the reference charge-carrier density n, and the reference voltage V;, we suppose the following
smallness assumption

82

5 € e __
nr:nrzﬁ?’(Qa):E_?’ and Vi =V =¢£V,. (2.7)

Note that this assumption leads to the factors in front of the last two integrals in (2.6) to be of order 1,

namely:

eoVine  eoVin, roV? RV

= = d = — =
7T 2E, oAy Ny oy

. (2.8)

Concerning the prestrain, we follow [1] (and Sect. 4 in [29]) and assume that M = I3 +€§(:1:), where
B(7) € R33 is symmetric, see also Assumption (A3) below.

In the remaining text, we will drop the tilde-notation for notational simplicity.

2.4 The two-dimensional limit model

In this section, we describe the effective lower dimensional electro-elastic model. As usual in the theory
of bending models, see e.g. [1, 5], let Q3(z, -) : R3*® — R be a quadratic form such that

1
Wale,Ts + F) = 5Qs(@, F)| < [FIPru(F]), VF € R™, Vo e 0y

(see also Assumption (W3) below). Moreover, we introduce for a matrix X € R?*? the quadratic form
Q2191XR2X2—>R

Q2(x',t, X) := min Q3 (', t, [X°+2®e5]) = min D*We(2', 1, I3) ([X° +2®es], [X° +2®es)),

z€R3 2€ER3

where the notation X ° is explained in (2.1). Now, let Q, : w x R?*? — R be given via

1/2
Q,(7', X) := min / / Qo(2',t,tX + 5 — B(a',t)ax2) dt
~1/2

SE]R2><2

1/2
= min / minDQWel(.CE/,t,]13)([th—i-So—(Bng)o‘l'Z@eg],[tXO+SO—(B2X2)O+Z®€3]) dt.

sER2X2 |1 /9 2€R?
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K. Buryachenko, A. Glitzky, M. Liero, B. Zwicknagl 8

With the assumptions on Wy, below, @),,, n = 2, 3, are quadratic forms such that A — Q,,(z, A) is
positive semi-definite on R**3 and positive definite on Sym(n). Moreover, we have that Q,,(z, F') =
0 for all F' € Skew(n), and F' +— Q,(z, F) is strictly convex on Sym(n). We refer to [24, Lemma
2 A1l

Additionally, we introduce the unit normal vector v, to the surface belongingto y € WZ’Q(w, ]R3) with
V'y"V'y = 1, and the matrix R, € L*(w, R3*?) via

Oy X Opy

_ R3 = (VY h th "R, =15. (2
191y % Doyl Oy Ny eR’, R, :=(V'yly,) suchthat R, R, =13 (2.9)

vy (') =

We work in the following function spaces

Vo = W22(w R%) = {y e W**(w,R*) : V'y ' V'y =L},

180

2.10
Vo =W (w) ={pe W (w): [ ¢ da =0} (2.10)

By the canonical extension of functions defined on w to functions on €21, we can view the spaces V),
and ) as subsets of W12(£2;) and W%2(Qy, R?) respectively.

We define for y € ), the limiting mechanical energy functional M(y) by
1 a) ! T /
Mo(y) = 5 [ Qule', 9y, dr

1
= —/ min / min Qs (2, t,tVy " Vv, — (Baxa)® + s+ 2z ®e3) dt dz'.

w SERZXZ | /9 2€R3

Concerning the limiting electrostatic energy, the effective energy density is obtained by minimizing the
effect of the vertical derivatives, i.e., for fixed y € ) and associated R, = (V'y|v, ) we define

my (o) = arg min K, (') (V/@‘i(‘”/)) . (v/¢(xl>), where

meR m T/T\L
1/2 _
&@%:/mmau&mwa:&uwmm&@% 211)

B 1/2
with k(z') := / k(' t)dt,

1/2

R, by construction does not depend on ¢t = x3. Measurability of m,, ,, follows from general results for
optimal values of normal integrands, see [31, Theorem 14.37]. Furthermore, by the assumptions on k
in (A5), KK, is uniformly positive definite and bounded, and hence for almost every =’ € w, we have

c|my,¢(x/)|2

< C‘((V’ (v ) myw xl )‘ K )( (37/) My, w(xl)) : (V,‘P(x/)amy,w(x/))
<Ky (2)(V'p(a'),0) - (V'o(2'),0) < ||kl (g, moxs) | Vi (2!) 7.
(2.12)

We can explicitly compute m,, ,, using Schur complements. Let us write
K, K, -, 2x2 / 2 /
K, = KTk with K, (2') € R*%, K, (2") € R, k,(2") € Ry
y
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 9

Then, the minimizer in (2.11) satisfies m,, , = — - K, - V', and we obtain
Y

i) (7 ) ) (VAT = KVt - Tl .
/ |
(

—/>Ky(3:') ® K,(z') € R¥.
T

In particular, the effective tensor KZH is the Schur complement of the component &, in IK,,. Obviously,
Kzﬂ is symmetric. It is also uniformly positive definite and bounded, see (2.12).
Fory € )y and ¢ € V), the effective electrostatic energy functional & (y, ) is defined by

&@wwzQ/Kﬁwwwwwv¢WMf—v/mmwwa% 214)

w

where T, (T f 12 nen (2, t) dt. Thus, minimizers for &y (y, -) satisfy the effective Poisson equa-

tion
—div (K (2') V') = %ﬁch(x') inw.

Remark 2.2 (Isotropic case). In the isotropic case k = k£.ll3 with £, > 0, we obtain K, = k.I;,
since R, € SO(3), such that m,, , = 0. In particular, in this case we also have that K" = k,I,. The
limiting electrostatic energy does not depend on the deformation ¥ in this case and the two equations
for the deformation and electrostatic potential decouple.

Finally, we introduce the effective total free energy Fg by

Foly, ©) = Moly) — Eoly, ) for (y,0) € Vo x V. (2.15)

2.5 Assumptions for the bending model

We impose the following assumptions that allow us to pass to the bending model.

(A1) The elastic stored-energy density Wy, : £2; x R3*3 — [0, oo satisfies the conditions:

(W1) Wy(x, REF) = Wy(z, F), VF € R¥3 R € SO(3) for a.e. z € € (frame indiffer-
ence);

(W2) For all ' € R3*3 and for a.e. z € € it holds that (non-degeneracy and natural state)

1
Wea(z, F) > ——dist?(F, SO(3)), (2.16)
Cw
1
We(z, F) < Cydist?(F, SO(3)) if dist?(F, SO(3)) < roms (2.17)
w

(W3) For almost every = € ), there exists a quadratic form Q3(z, ) : R**3 — R such that
1
Wy(z, I3+ F) — §Q3(x,F) < |FPrw(|F|), VF € R¥3,

where ry : [0, 00) — [0, 00| is monotone with limy_,q 7y (¢) = 0;
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(W4) There exist iy > 6 and Cyr > 0 such that for all £ € R3*3 and for a.e. x € € there
holds the lower bound

iy 2 e s IPI QP E () >,
em7 —
! 00 else;

(W5) W, is continuous and there exists a neighborhood U of SO(3) such that Wy, € C*(U)
and D?W,, is uniformly equicontinuous, i.e.,

Ve>036>0VF, Feld: [|F1—F2| <§ = |D*Walz, F\)—D*Wa(z, Fy)| < g]‘

(A2) The hyperstress potential H : R3*3*3 — R, has the form
H(G) = H.(G) = e*" H,(Q), (2.18)

for some exponent acy > 0 to be fixed later. The function H, is convex, continuously differen-
tiable and there exist Ky > ¢y > 0 and gy > 3 such that qi /2 > 3qu/(qu—3) > 3 (for
qw from (W4)) and

cu|G|™ < H (G) < Ky(1+|G|™) forall G € R¥***,

Moreover, H is frame indifferent, meaning that for all R € SO(3) and G' € R3*3*3 we have
H(RG) = H(G).
(A3) Forthe prestrain M, we assume that M (x) = M.(z) := Is+eB(z) with B € L>(Qy, R3%3).
(A4) For the reference charge-carrier density n, and the reference voltage V;, we suppose the fol-
lowing smallness assumption

€
n,=n. = =— and V=V =¢V. (2.19)

(A5) The quantity ng, € L>°(€);) is a fixed charge-density, and k : 2; x GL(3) — Sym(3) is
defined as in (2.4) with k € L>(€;,R3*3) being symmetric and uniformly positive definite
such that there exists o > 0 with k()& - &€ > k|| for all ¢ € R? and almost every x € ;.

Remark 2.3. 1 The conditions (W1)—(W3) are standard assumptions in the context of the deriva-
tion of plate theories from 3d-nonlinear elasticity. We also use Assumptions (W4) and (W5) as
in similar models on the elastic stored-energy density in [5] and [29]. However, note that we
need the stronger condition gy > 6 (see Lemma 4.10) than in [5], where ¢y > 4 is sufficient.

2 Atypical choice for the hyperstress potential is H(G) = f—HH|G|qH. In the limit ¢ — 0, we want
its contribution to the free energy to vanish. This means, that the exponent a i should satisfy
ag > 2+ 2qy.

3 Assumption (A3) for the prestrain M, gives for small ¢ > 0 the expansions

M. (z)™!' =15 — eB(z) + O(¢?), and (2.20)
det M.(z) = 1+ etr(B(x)) + O(e?). (2.21)

We highlight that the factor det M, does not usually appear in the literature, see e.g. [1, 29].
Here, we follow the discussion in [6] where it is assumed that the prestrained body consists of
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 11

two materials occupying subdomains QW and Q) with Q = ﬁ(l)Uﬁ(Q). It is assumed that
subsets of QM) or Q) relax to a stress-free (elastic energy minimizing) state described by
affine deformations  — M;z, i = 1,2, such that 2 = M;Q() define stress-free reference
configurations for the material. The elastic energy of a deformation u defined relative to Q)
is given by [, Wa(Vy) dz. The multiplicative decomposition Vy = FyM; and the factor
det M; arise from the change-of-variables formula when going back to the common reference
configuration €. A typical example is a crystalline heterostructure consisting of two materials on
top of each other with different lattice constants, see e.g. [18]. However, note that in our setting
the factor satisfies det M; = 1 + O(¢) due to (2.21).

The assumptions above lead to the following definition of (subsets of) function spaces for the mechan-
ical deformations and the electrostatic potentials

V1= {y € Wi (Q R?) | (det Vy) ™ € L™/2(), [ ydz =0}, and

(2.22)
Vii={p e W) | fo, pdz =0} = Wi2().

The purely mechanical energy functional M. : J; — [0, oo is defined as

1
=]

M. (y) == /Q {We|(:v, V.oy(z) M (z)™Y) det(M.(x)) + EO‘HH*(ng(x))} dz. (2.23)

The electrostatic energy &, : V1 X Vi — Ris given by

&)= [ (e Vepl@) Vepla)) - Vepla)do = [ malaplo)de. @29

Thus, the total free energy F. : My X Vi — R := R U {+00c} reads

Fe(y,0) = Mc(y) — E(y, @) for (y,¢) € Y1 x V1. (2.25)

Remark 2.4. For fixed ¢ > 0 and deformations y € )); with finite mechanical energy, i.e., M. (y) <
Cu < 00, we get from Assumptions (W4) and (A2) by the Healey—Krémer theorem A.1 (see also [27,
Subsec. 3.1] and [22, Theorem 2.5.3]) that there exists a constant C5x = Cux (Chw, qi, qw, €) > 0
such that

HZUHWQ"JH < Ciy H@/Hcl%/m < Cx H(Vy)ichlﬁ/qH < Ci

2.26
and det Vy(x) > 1/Cj forallz € Q. (2.26)

Note that in general Cjx — oo fore — 0.
For fixed ¢ > 0 and for a fixed y € ) with bounded mechanical energy, the permittivity tensor
satisfies (2, V.y) € L>=(Q, R3*3) and is uniformly positive definite, i.e., k(x, V.y)& - € > c.|&|?

for some constant ¢, > 0 and all £ € R3. In particular, the electrostatic energy &. is finite for every
pair (y, ) € V1 X V1.

3 Preliminary analytical results

Here, we collect results that will be used in the proof of the limit passage € — 0 in Section 4.
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3.1 Properties for fixed thickness

For the dimension reduction in Section 4, we will assume that a saddle point (y., ¢.) € V1 x V; for
the functional . defined in (2.6) exists. In particular, such a pair satisfies

‘v’@\, 9/5) S yl X Vl : .7:5(.%,%5) S -F6<y67 (;05) S ]:6(@\’ @s)

However, the existence of such a pair is not guaranteed. Standard existence results for saddle points
typically require, besides compactness properties, that the functional (y, ¢) — F.(y, ) is convex
in the first and concave in the second variable, see e.g. [15, Ch. 4, Prop. 2.2]. In [33], the existence
of saddle points under weaker coercivity assumptions is established, yet the analysis there also relies
on convex—concave structures. While we have concavity of ¢ — F.(y, ¢), the convexity of y +—
F-(y, @) cannot be assumed due to the dependence of k on Vy and since it violates the physical
principle of frame invariance.

For fixed € > 0 and any deformation y € )); with finite mechanical energy M. (y) < oo, we prove
next the existence of a unique minimizer of the electrostatic energy &.(y, -).

Lemma 3.1. We assume (A1) — (A5). Let ¢ > 0 be fixed and consider a deformation y € ), with
finite mechanical energy, i.e., M. (y) < oo. Then, there is a unique weak solution p = p(y,€) € V,
to

8 K(Vy)V.p-Vpde =~ / napde Vo e 1)
Q1 Q1

Moreover, this @ is the unique minimizer of the electrostatic energy E.(y,-) : Vi — R, defined in
(2.24).

Proof. Since M.(y) < oo, the properties of the hyperstress potential in (A2) and the coercivity
property of the elastic stored energy (W4) ensure that

Vey € LW (0, R¥3), (det V.y) ™' € LW/2(Q), Viye LU (Qp, R¥¥3),
and we find a constant ¢, > 0 depending on € such that
VYl Law (@, roxsy + || (det Vy)lemw/ml) + IVl orr (@, gxaxsy < ce.
The Healey—Krémer theorem A.1 ensures the existence of a constant Cy > 0 such that

[ylwean < G Mllor-san < Cie 1(VY) " ller-ssan < Cic,
and det Vy(z) > 1/Cf forallz € Q.

Therefore, since iy > 3, we have Vy € L°(Q, R3*3), det Vy € L>(Qy), Cof Vy € L= (O, R3*3),
and for fixede > Oalso V.y € L>=(Q, R33) det V.y € L>(£2;),and Cof V.y € L*°(Qy, R3*3).
Moreover, the Healey—Krémer theorem also yields det V.y(z) > c..

We set S := diag(1, 1, 1/¢) such that V. = S.V . Then, with Assumption (A5) and Cof V. .y =
(V.y)~! det V.y, we can bound the coefficient matrix by
| det Vey Se(Vey) " R(Vey) ™ S| o 0, s

B H S. (Cof V.y) "k Cof V.y S.
N det V.y

)
(3.2)

< c..
LOO(Ql’R3><3)
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For ( € R®and F' € R¥*3, we have |¢| = |FF~!(| < |F||F~*¢|. Thus, by (A5) we obtain for all
(eR?
(det Vey) [Se(Vey) ™ K (Vey) 7S] - ¢
= (det Vo) k [(Vey)TSC - [(Vey) ™ TS
> ko(det V.y) | (Vey) ™7 Se¢|” (33)
ko det V.y

||S ( >T||2oo Ql RSXS)

In view of (3.2) and (3.3), the classical elliptic theory (Lax—Milgram lemma) ensures the existence of a
unique weak solution ¢ = p(y,€) € V; to

IC]? > c.[¢]* ae.in@.

—div [det V.y Sg(ng)_lk(Vay)_TDEVgo] = gnCh’ (3.4)

meaning that (3.1) is fulfilled, which is nothing but the Euler—Lagrange equation for ¢ +— E.(y, ¢).
In other words, ¢ = ©(y,e) € V), is the unique minimizer of the (strictly convex) functional ¢
E-(y, p) for the fixed y € ), thus

&y, @) = E(y,p), and  Fe(y, ) < Fely, ) VP e
This finishes the proof. O

Corollary 3.2. We assume (A1) — (A5). Letc > (O be fixed andy € Y, a deformation. Further, let the
pair (y, ) € Y1 x Vi fulfill

M:(y) < oo, and F.(y,p) < Fely,p) Vo eV, (3.5)
i.e.,  is a maximizer of F.(y, -) (minimizer of £.(y, -)) for given deformation y. Then
5[ KV V) (Vo V) detVapdr = [ magds @)
Ql Q1

and the free energy can be rewritten in the two alternatives

Fiy o) = Molw) +
951

= M.(y) + z/ Nentp dz.
2 O

k(V.y~ 'V.p) - (Vey™ 'Vep) det Voy dz

Proof. Note that the unique minimizer ¢ € V) of the (strictly convex) functional ¢ — E.(y, @) for the
fixed y € ) is the weak solution to the Euler—Lagrange equation (3.4), meaning that (3.1) is fulfilled.
Since ¢ = @(y,&) € V), is an admissible test function in (3.1), we obtain (3.6). The both alternative
expressions for the free energy F.(y, ) then follow from (3.6), (2.24), and (2.25). O

The existence of a unique electrostatic potential ¢ = ¢(y, £) that minimizes the electrostatic energy
. for a fixed deformation y € )); with finite elastic energy follows from Lemma 3.1. In particular, we
can always find pairs (y., p.) € V1 X V; such that

. maximizes ¢ — F.(y., p) over Vi, and sup F.(y.,p:) < 00. (3.8)

e>0

In contrast, the existence of a deformation y. that minimizes the total energy F.(-,) = M. —
E.(+, ) for a fixed electrostatic potential ¢ € V; is not trivial, since £.(y, ) = oo can occur if
det Vy is not uniformly bounded away from 0.
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3.2 Boundedness and converging subsequences

We adopt several ideas from [5] for the passage to the limit £ — 0, i.e., the dimension reduction. In
particular, Lemma 3.3 below is the analogue of [5, Lemma 4.1].

Lemma 3.3. We assume (A1) — (A5). Let (Y., ¢:)e>0 C V1 X Vi be a sequence such that
Fe(ye, ) < Fe(ye, ) Yo V1, and  Fo(ye ) < C.

Then, there exist constants ¢ > 0 and ey > 0 such that for all ¢ € (0, &¢)

/ dist*(V.y. M ", SO(3)) det M. dz < Cye?, / dist?(V.y., SO(3)) dz < ce?, (3.9)
951

Q1
/ (IVepel + | det(Vey)| ) do < clgw, Cw), (3.10)
Q1
|F7 V.o *det Fodo < ¢, where F. = V.y., (3.11)
2
2

|Va§05|pw dz <c forpw =

S — (3.12)

Proof. 1.Using Corollary 3.2 and the resulting form of . in the upper line in (3.7) and the Assumption
(W2) we find

/ dist®(V.y.M*,SO(3)) det M. dz < Cye?,
951

and for € small enough by (A3)
/ dist*(V.y.M",SO(3)) do < Ce?.
971

We argue as in [29, Subsec. 3.1]: There exists a measurable rotation field R(x) : 2; — SO(3) such
that

|Voy. M — R(z)|? do < ce?,
1971

meaning that ||V.y.M-' — R||;2 < ce. Therefore, |V.y-M-'|z2 < ||R||z2 + ce holds. This
estimate then ensures || V.y. M || 2 < cfor small €. Since B is bounded, Assumption (A3) implies
that, for ¢ > 0 sufficiently small, || V.y.||z2 < c. Next, we estimate by the triangle inequality

/ dist*(V.y., SO(3)) dz < 2 / dist*(Voy., Vey. M) dz + 2 / dist*(V.y.M', SO(3)) do
(951 Q1 951

< ¢||Vey: |72 esssup dist? (I3, M.(z) ") + ce®Fe(ye, ¢-) < Ce.
e

2. We write det V.y. = det(V.y. M) det M. and observe that by Assumption (A3), det M. > 0
for £ sufficiently small. Moreover, since F.(y., ¢.) < C and by the growth condition in Assumption
(W4), the first factor is positive almost everywhere in €2;. Thus det V.y. > 0 a.e.in ) for0 < e <
£0-

3. Using |V y.| < ¢|Voy-M !
in Assumption (W4), we derive

| (19l 1 det( D) ) da < claw o) [
]

951

L]

det(Voy.)| ™! < ¢ det V.y.M1|7!, and the growth condition

(We|(x, Ve MY + 1) de < c.
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4. Furthermore, working with the form (3.7) of . we find
/ k(F-TVep.) - (F7"Vepe) det Foda < C.
971

By Assumption (A5), k € L>(Q, R3*3) is positive definite, which leads to

/ (F-TV.op.(det F)Y?) - (F7 TVopo(det F)Y?)de = | |F- TVeop.|*det FLdz < C.
Ql Ql
Since |V.p.| < (det F.)Y2|F-TV.o.||F.|(det F.)~/2 it follows from Hélder's inequality with
PW = g, that
1/2
IVeellon < ([ 1ETVepul? det Fo do) " J1Fe o (et F2) e <
1
This completes the proof. O

Proposition 3.4. We assume (A1) — (A5). Let (Y, ¢:)-=0 C V1 X Vi be a sequence fulfilling (4.6).
Then, there exist jo € Vo, wo € Vo, mg € L*(w), and a non-relabeled subsequence (y., ¢.)->0
such that

Ye = Yo in L2(917R3)7 vaya - (V/yoyl/yo) = Ryo in L2(QlyR3X3)a
0. — 0o in L*(Q), V.. — (V'go,mg) in LPY (Q1, R?),

where v, denotes the unit normal vector corresponding to yo (cf. (2.9)) and py = m. In
particular, the convergences y. — Yo in Y, o= — o in YV hold true in the norm topology of the
spaces

Yi=Wh(Q, R, V:=L*Q). (3.13)

Proof. 1. The estimates in (3.9) for the sequence (4. ).»0 € W1?(Q2;, R3) imply

lim sup %/ dist*(V.y., SO(3)) dz < oo,
e—0 €& 0

and therefore allow us to apply the compactness result of [16, Theorem 4.1]. This ensures that the

sequence (V.1. )0 is precompact in L2(£2;, R3*3) and that there exist (V'yo, b) € H'(£2;; R3*3)

and a non-relabeled subsequence such that V.y. — (V'yo|b) in L?(Qq, R3*3), where (V'yo|b) €

SO(3) a.e. in £2;. This latter property implies that b = v,,, with 1, defined in (2.9).

Since %83% — vy, in L*(Q4,R?), we obtain d3y. — 0 in L*(£21, R?) and the limit y, does not
depend on x3. Furthermore, (V'yo|v,,) is independent of x3, and (V'yo|vy,) € W2 (w, R**3),
meaning that (V'yo|v,, ) is much more regular than naively expected.

According to the estimate in (3.10), we can conclude ||V y.||aw < ¢ and therefore || V.| 2 < c.
As [, y-daz = 0, we have by the Poincaré-Wirtinger inequality [|yc|[w1.2 < c. Thus, (yc)e>0 is
precompact in L?(€;; R?) and for a non-relabeled subsequence we obtain y. — o in L?(, R3)
with the same limit yy as above.

2. From (3.12) and . € V1, we obtain [¢c|ly 1w (q,) < ¢ Therefore, we find o € WHPW (Qy)
such that for a subsequence . — @g in W1Pw (Q), and for gy > 6 (cf. (W4), implying pyw > 6/5)
- — o in L?(Q;) by compact embedding. Moreover, V.. — (V'g, mg) in LPW (€1, R?) can
be assumed with some mgy € LPW (€);). From %83% — mg in LPW (€), we find that J3p0. — 0
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in LPW (21). Therefore, the limit ¢, does not depend on x3, and we can identify it with a function
wo € Wwiew (w)

Since we only have that 6/5 < py < 2, our next aim is to show that (V'¢g, mg) € L?(;, R3). We
follow the ideas in [5, pp. 1483-1484] and show the following auxiliary result:

Let Z. — Zin LPW(Q,R?), F. — R,, in L*(£2;,R**3) such that we have det F. > 0 and
Ry, € SO(3) a.e.in ;. Then, it holds that

|Z|? dz < liminf/ |\F-TZ.|*det F. da. (3.14)
o e—0 o

For the proof of (3.14), we use the measurable and bounded map

F~TVdet F it dist(F,SO(3)) < £,

TR 5 RS P(F) = {
0 else

with C'y = suppepsxs |V (F)| < oo. For a subsequence, we have F. — R, a.e.in ;. The conti-
nuity of W in an open neighborhood of SO(3) and the property R, € SO(3) a.e. in {2; then ensure
U(F.) - ¥(R) = R,, a.e. in . Since ¥(F.) < Cy, we conclude from the weak convergence of
Z.in LPW (Q,R?) that also W (F.)Z. — R, Z in LW (21, R®) holds. Therefore, the weak lower
semicontinuity of convex functionals yields

Ry, 2 de < liminf | |U(F)Z. do.

Q Q1

Using that pointwise |RZ| = |Z] and |¥(F.)Z.|? < |F- " Z.|?| det F.| (by the definition of W), we
obtain the desired estimate (3.14).

Applying now (3.14) for Z = (V'¢g, mg), Z. = V.., and F. = V.y. together with the estimate
(3.11) gives (V'pg,mg) € L*(2;,R3). From . € L2,(2;) and . — g in L*(£2;), we finally
conclude ¢y € V. O

4 Main result: Dimension reduction for the electro-elastic
problem

This section contains the main result of the paper, namely, the convergence of the bivariate functionals
JF. defined in (2.25). First, we introduce our abstract notion of convergence building upon [3]. The
dimension reduction is carried out in Subsection 4.2.

4.1 Abstract convergence result for saddle point problems

We first introduce the abstract framework that will be used in the sequel, building on the notion of
epi/hypo-convergence developed in [2, 3]. Let ), Vo, V1 and V, Vy, V; be metric spaces such that
Y, CYandV; C Viori = 0, 1. Consider a family of bivariate functionals F,, : J; X V; — RU{co}
and a limit functional F, : Vo X Vo — R.

A saddle point of F, is a pair (%, ©%) € V1 x V; such that
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Similarly, a saddle point of o is a pair (¥, ¢5) € Yo X Vo such that

Proposition 4.1. Consider a family of bivariate functionals F,, : J; x Vi — R U {oo} with saddle
points (y;:, ©k) € V1 xVy withsup,, F.(yk, k) < oo and such that (y;, ) — (y5, ©5) € Yox Vo
with convergence in Y x V. Assume that

Voo € Vo3 (pn) CVi: & — poinV and lirginf Folys, &n) = FoolYy, Po), (4.3)
VYo € Yo 3 (WUn) CV1: Un — Yo inY and limsup F, (Un, ) < FoolYo, ¢5)- (4.4)
n—oo

Then (y3, @5) is a saddle point for Fo, and limy,, oo Fr (Y, v5) = Foo (Y, v5)-

Proof. Let us denote a, := liminf, . F, (v}, ¢r) < limsup,,_,. Fn(yl, ¢l) =: b Let y €
V) be arbitrary. We choose a sequence ($,,) C V) such that ¢, — @ in V as in (4.3). Therefore, by
(4.1) we obtain

Foo(y5, Po) < liminf F,(y;,, @n) < liminf F,(y;, o) = a..
n—oo n—oo

Similarly, for arbitrary 7, € ) we choose a sequence (y,,) C ) with 7, — o in ) satisfying (4.4)
to get b, < Foo(Yo, 5)- This holds for any pairs (Yo, Po) € Vo X Vo. Thus, it results

«Foo(yg)ka 9/0\0) S A S b* S .7'-00@\0, 903) for all (@\07@0) S yO X VO' (45)

Finally, choosing @y = f in (4.5) gives Foo (U, ©5) < Foo(Yo, ) for all yo € Yy, and analogously
for Yo = yg we obtain Foo (Y5, ©5) = FeolUs, Po) for all @y € Vo. Thus, (yg, ¢5) is a saddle point
for Foo.

It remains to show the convergence F.,(Yn,¥n) — FoolUy, ¢5)- Indeed, by (4.3) there exists a
sequence (p,) C V; such that @,, — ¢} in V and

Foo (Y5, v5) < liminf F,(yy, @n) < liminf F,(y;, o) = as,
n—oo n—oo

where we used that (v, ¢ ) is a saddle point. Analogously, we get from (4.4) that b, < Foo(yg, ©5)-
Hence, a. = b, = Foo (Y5, ¢5)- -

Remark 4.2. The theory of epi’hypo-convergence of saddle-point problems developed in [3] (see also
[2]) is formulated only for one space ) X V, instead of the triple )y X Vo,V X V, )V, X V; as in
our more specific case. Moreover, the upper and lower estimates in (4.3) and (4.4) are formulated for
general sequences instead of saddle points.

4.2 Dimension reduction

We aim to apply the abstract result of Proposition 4.1 to the electro-elastic saddle-point problem for
the functional (2.25) using the spaces ), V, introduced in (2.10), ), V; defined in (2.22), and ), V
specified in (3.13). In particular, we show that for ¢ — 0 the lim inf and lim sup conditions (4.3) and
(4.4) are satisfied (meaning that for every sequence ¢, — 0, as n — o0, the conditions hold for
Fn=Fc).
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We assume in the following that

(Y, e )es0 C W1 X V) is a sequence such that

4.6
FeWe, @) < Fe(ye, o) Vo € Vi, and 3C > 00 Fo(ye, pe) < C. (46)

In particular, Lemma 3.3 and Proposition 3.4 apply, and we find (non-relabeled) subsequences and
limits (o, o) € Yo X Vo such that y. — 4o in Y, . — ¢ in V. Recall the definitions of the limiting
functionals M, &) and JF in Subsection 2.4. We proceed in the following steps: First, we show that

() ﬁfgn_}glf/\/ls(ye) > Mo(yo),
(VP €VoIPe)eso SVi: P = @oinVand limsup E(ye, P:) < Eo(yo, Po)-

e—0

If (1) and (l1) are satisfied, the lim inf condition in (4.3) also holds since

hrsn_gonf Jrs(ys: {55) 2 llrarl_gglf-/\/la(ys) —lim sup 85<y57 3/58) 2 Mo(yo) _50(y07 9/50) = fO(y(); 9/50)

e—0

Next, we show that the lim sup condition in (4.4) also holds, i.e.,

(”l) Vﬂo S y()El (Z//\E)€>0 g yl . :/U\s — 370 and hmsupfs(@\ea 905> S fO(/y\()aSOO)-

e—0

Finally, while not necessary for Proposition 4.1, we also show that

(V) hgglf E(Ye, v) > Eo(Yo, ¥0)- (4.7)

Remark 4.3. The conditions (Il) and (IV) imply the I"-convergence of the functionals g'g() = E&(ye, ")
for the fixed sequence of deformations 1.. We will show that the sequence 7. in (lll) is also a recovery
sequence for M, such that together with (1) the I'-convergence of the mechanical energy M. also
follows.

We introduce the following additional assumption as in [1]

1/2
(A6) We (2!, x3) = We(2') and B(z) is such that curl (curl/

—-1/2

BQXQ(.I'/, t) dt) = 0.

The operator 'curl’ inside the parenthesis acts on a 2 x 2 matrix by taking the ‘curl’ of each row, giving
as a result a two-dimensional vector. Note that the necessity of this assumption was removed in [29].
For the sake of clarity and comprehensibility in our proofs, we have kept the assumption. See also
Section 5.

The Assumption (A6) ensures by [1, Theorem 2.8], resp. [8, Theorem 3.2] that there exists a vector
potential g € TW1?(w, R?) such that

1/2 1
/ Bayo(2', 1) dt = Vgymg := 5(V’g +V'g"), (4.8)

1/2

where g is unique up to rigid displacements.

Now we are ready to formulate the main result of our paper:
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Dimension reduction for a coupled electro-elastic saddle-point problem at finite strains 19

Theorem 4.4. We assume (A1) — (A5). Let (Y., :)es0 C V1 XV be a sequence as in (4.6) Then
there existyy € Vo, o € Vo, mo € L?(w), and a non-relabeled subsequence (y., p. )->o such that

Ys — Yo in L2(QI’R3)7 vsya — (V,%’Vyo) = Ryo in LZ(QlaR3X3)v
. — 0o in L*(Q), V. — (V'go,mg) in LPY (Q1,R?),

where v,, denotes the unit normal vector corresponding to 1oy and py = m. Moreover, the
conditions (1), (Il), and (IV) are satisfied. Supposing additionally (A6), then also Condition (II1) is
fulfilled.

The proof of Theorem 4.4 results from Lemma 3.3 and Proposition 3.4 in Subsection 3.2 and Lem-
mas 4.6, 4.8, 4.9, and 4.7 in Subsection 4.3.

Corollary 4.5. We assume (A1) — (A6). Then the saddle-point problems for the functionals JF. con-
verge to the saddle-point problem associated with the two-dimensional limit functional F in the sense
of Proposition 4.1 and limits of saddle points (y*, %) for F. are saddle points for Fy.

We highlight that Theorem 4.4 is proven for sequences (y., ¢.) satisfying (4.6), while the above
corollary considers sequences (i, %) that are additionally saddle points.

4.3 Proof of asymptotic upper and lower bounds

We start with property (1):

Lemma 4.6. [Property (I)]. We assume (A1) — (A5). Let (Y., ¢ )e=0 € V1 XV be a sequence fulfilling
(4.6). Moreover, lety, € ), be a limit with respect to the convergence stated in Proposition 3.4. Then,
it holds
lim inf /\/le(yg) > Mo(yg).
e—0

Proof. The non-negativity of the hyper stress term (see (A2)) ensures

1
M (y.) > = Wea(:, Vey. M) det(M,) dx

82 Q

1
! 1
= ?/ We(+, Veye M) (det (M) — 1) da + = Wa(-, Voy.M1) dz.
91

951
Since det(M.) = 1 + etrB + O(e?) (see Remark 2.3), we find || det(M.)—1||p~ — 0fore — 0,
which together with the uniform boundedness of 5% le Wal(-, Vey. M 1) dz (for & small enough)
implies that the first term on the second line tends to zero for € — 0. As in the proof of [29, Theorem
1, Eq. (23), esp. Eq. (61)], we obtain for the second term lim inf._,q & Jo, Wa(; Vey M) do >
M (yo), which finishes the proof. O

We prove (Il):

Lemma 4.7. [Property (I)]. We assume (A1) — (A5). Let (Y., < )e>0 C V1 XV be a sequence fulfill-
ing (4.6). Moreover, lety, € ), be the limit with respect to the convergence stated in Proposition 3.4.
Then for all § € V), there exists a sequence (9. ).~o0 C V; such that . — @ in L?(Q2;) and

lim sup & (ye, @) = Eo(Yo, D).

e—0
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Proof. Let $ € V), be arbitrary given and let m = my, 5 € L?(w) be as in the definition of £y(vo, ¢),
see (2.11). Since C™(w) is dense in Vy and L*(w), we find for any I € N some C*°(w) functions
©1, my such that

1 1 1
0~ 2(w) S TR 0~ w) S ) - w) < R d
||<P SOZHWl 2(w) = 1l ||<P SOZHLl( ) > 4l7||nch”m(m) ||m mzHL2( y S 1 an
_ . . 1
p / ‘RT kR,,(NV'o,my) - (V'or,my) — RJOk:RyO(V’@, m) - (V'g,m)| do < 0

We define
Oie(',23) = () + emy(a)zz,  thus @ € C(Qy), WHe(Qy).
From this definition, it follows directly that

@la — {5[, Vgg/ﬁlg = (V’@l + €$3V,ml, ml) — (V’@,ml) in LOO(Ql) ase — 0.
For the given sequence (ye):0, let F: := V.y., we apply Lemma 4.10 below to verify that

lﬂ%i QFa‘lkF;T(Vg@E) - (Veic) det F. dz = v QR;kRyo(v’@,ml) (V'@ my) da.

For [ € N, we choose a monotonously decaying sequence ¢; = (l), €(I) < (I—1), such that
g d Oandforalle < g

. - _ _ - - 1
’/ R;kRyO(V'gol,ml) ~(V'gy,my) do — / F'RFT (V) - (Vepie) det F. dx| < 35
Ql Q1
1

1 .
B =y Inen| 1o o)

and |1, — @]

For e € (0, ), we further define the final sequence

P = Qe ife € (€141, forthis I € N.
By the previous estimates, we obtain for € € (g/41, £/

‘50(3/07 @) - Ss(?/ev 9/56)‘
<] [ na@- 3 s
951

+ é‘ {FglkF;T(Ve@) - (Ve@e) det Fr — R} kR, (V'Gr,my) - (VG my) } da

[ € N. Thus, letting [ — oo, meaning (g,41,¢;] 3 € | 0, we find & (ye, p-) = Eo(Yo, P) as e — 0.
This concludes the proof. O

We now turn to property (IlI):
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Lemma 4.8. [Property (III)]. /n addition to the Assumptions (A1) — (A5), we suppose that Assumption
(A6) holds, (comp. with [1, Theorem 2.6]). Let (y., ¢-)e>0 C V1 X Vi be a sequence fulfilling (4.6).
Moreover, let oy € V, be the limit with respect to the convergence stated in Proposition 3.4. Then, for
ally € ), there exists a sequence (Y. ).~o C Vi such thaty. — 7 in WH(Q, R?) and

lim sup -7:5@\57 QO&‘) S -7'_0@\07 900)

e—0

Proof. 1. Lety € ), be arbitrarily given. Since functions in )y N C°°(w, R3) are dense in ), (see
[20] and [30]), we find for | € N a sequence 7j; € C*°(w, R?) such that

SN 1 . . 1 R 1
1T = Billwze < —, [[(VTlvg) — (V) < —,  [IMo(Bi) — Mo(¥)] <

= ar A 4l
This construction, together with (), being a quadratic form on R?*2, Uy — yin )y, and the definition
of (), yields

1

Mo (y) — Mo(y) = —/ {QQ(x', V@\TVVg) — Q,(2', V7, Vuyl)} de’ =0 forl — oco.
951

2

2. For each of the i; € ), Theorem 4.11 ensures the existence of a sequence of functions in
W2 (0, R?), denoted ., such that V.4, — (V'7i|vg,) in L? (21, R**?) and
1

hm—/ Wea(2', Vegie ()Mo (2) ) do = =
951

5 @2@ vyl VVyz) da’

Assumption (A3) and Remark 2.3 therefore guarantee

hm—/ We(+, Veie M) det M, dx— 5 Qz(x vy Vug,) da’
951

e—0 52

The functions ;. in the proof of Theorem 4.11 have the form (see (4.15))

Ui (2 x3) = gi(2) + 5[9031/@ (2') + V’@(m’)gs(x’)} + 2Dy (2, z3), (4.9)
where

73
Dy (2, z3) ::/ die (2!, t) dt
0

with an & dependent regularization d;. of a function d; € L*(Q2;,R3) and ¢. is an £ dependent
regularization of the vector potential g defined by (4.8), (see also Lemma A.2).

3. To use the deformation 7j;. in the energy functional ., we additionally need ;. € W24 (), R?).
However, this property is guaranteed by Theorem 4.11 below. Moreover, we aim to show that

1 « 2~
?3% = /Q1 e H,(VZy.) dz = 0. (4.10)
The proof of Theorem 4.11 shows that dj. € W29 (Q,R?), g. € W% (w, R?) for all €, as well
as Hdl&”?/{/{?,m(gl) < ¢/e and ||g5||“1,§2_qu(w) < c/e. Moreover, we obtain d. — d; in L*(€;, R3),
g — gin Wh2(w, R?) for ¢ — 0. We use Assumption (A2), (4.9), and (4.16) to estimate

G [ T dr < [ Ry (1 [V o < 2t (1 )
Ql Q1

< ce™ T (1 +{|TE + e (ITllE + NGIE 9=z ) + €2 e )

< gHT2m2H (],

DOI 10.20347/WIAS.PREPRINT.3230 Berlin 2025



K. Buryachenko, A. Glitzky, M. Liero, B. Zwicknagl| 22

(Note that || Dy ||

”W2,qH) < CHdlE
(4.10).

772057 -) Using that ccgr > 2424y, we find the desired convergence

4. We choose now a monotonically decreasing subsequence ¢; = (1) such that e(1) < £(I—1),

1 1
— an H (V27,.)de < —,
52 o, € ( Yl ) Z 4]

1 R 1
?/ W2, Ve ()Mo (x) ") do — 5 QQ(:U vy Vig,) da’ <u foralle < (1),
1951

~ ~ 1
IVbie = (VUlvg )|z < i for all e < (1),

(4.11)
and g; | 0 as [ — oo which is possible due to Step 3 and Theorem 4.11.
For an arbitrary € € (0, £¢), we define
Ue ==Y ife € (e41,5] forthisl € N, (4.12)
Fore € (g141,¢€1), Step 1 and (4.11) ensure that for [ € N

1 ;o ~ _ N R R 1
—/ {We|(x,V5y5(x)M5(x) Hte HH*(ngE)} dx — Mo(y)’ <7
Q

82

Thus, letting [ — oo (implying that (£/41,&;] 3 € | 0), we find
1

52 o
and M (y.) — My(y)ase — 0.

{Wal@', V.5 (@) M.(@) ™) + < HL(V20) | do = Mo(5),

Therefore, for suitable ¢ > 0 and &y > 0 it is ensured that M.(y.) < cfore € (0,&]. For
each such ¢, the function 7. € W29 (Q;, R3) has bounded elastic energy, therefore, the Healey—
Krdmer Theorem A.1 ensures that det . > 0 a.e. in Q5. Moreover, V.y. — (V'ylyy) = Ryin
L*(Qq, R3*3) with R; € SO(3) a.e. in Q. This is guaranteed by the fact that for £ € (£/11, &/, we
have by Step 1, (4.11), and (4.12)

~ 1 -~ 1~ 1 lF 1
IV = (VGp)llee < [Vl = (VOlva)| = + |(Vlvg) = (V)| < 7. 1EN.

Moreover, 7. — ¥ in W12(Q;,R3) holds.

5. For the electrical part of the energy, we proceed as follows. Since the permittivity tensor k is positive
definite, we have the Cholesky decomposition k(z) = L(z)L(x)" with a regular lower triangular
matrix L(z) € R3*3. Similarly to (3.14) in Proposition 3.4, but now with

Lz) F~TVdet F if dist(F,SO(3)) < 1,

4.13
0 else, ( )

U xR 5 R U(n, F) = {
and for Z = (V ©0, M), Ze = Vep., and ﬁ = VEQE, we have Z. — Z in LW (Q,R3) by
assumption and F. — Ry in L2(€, R¥3), where det F. > 0 and Ry € SO(3) ae. in €. We
derive the estimate

/ k(R;Z) - (R3Z) dx = / (L"R3Z) - (L"RyZ) dx
Q Q1

< lim inf / k(F- T2 (F-TZ.)det F. dx.
1951

e—0
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Therefore, we obtain by the definition of m = mg.,, in £ (Yo, po) and . — @g in L*(Qy),

lim inf & (., p.) = 5 lim in / (kE-T2) - (F-TZ) det Fe dz —ylim | nawp. da
e—0 2 o e—0

e—0 Q

> g R;kRg(V'goo,mo) - (V'pg, mgo) dz — fy/ Neno dr
Ql Q1

> g R;kRg(VQpO, m) - (V'go,m) do — 7/ Neno dz = E(Yo, ¥o)-
Ql Q1

6. Finally, combining Steps 4 and 5, we verify

lim sup Jra(il//\sa 905) S lim sup Me(y\s) - hgn_gonf 85(@\57 905) S MO(:?/\) - 50(?77 900) = FO(??) 900)7

e—0 e—0

which completes the proof. O

Finally, we show that property (V) holds.

Lemma 4.9. [Property (IV)]. We assume (A1) — (A5). Let (Y., ¢:)-=0 € M1 X V) be a sequence
fulfilling (4.6). Moreover, let y, € Yy and ¢y € V, be the limits with respect to the convergences
stated in Proposition 3.4, then

liminf & (ye, v:) > (Yo, o).
e—0

Proof. Similar to Step 5 of the proof in Lemma 4.8 with the definition of W as in (4.13) and Z =
(V'po,mg), Z. = V., and F. = V.y., one derives the estimate

/ K(RyyZ) - (RyyZ) da = / (LTRy,Z) - (L"RyyZ) da
0 91

< lim inf / k(F-"Z.)- (F-"Z.)det F, dx.
1951

e—0

Therefore, we obtain by the definition of m = my, ., in the limit energy & (vo, ¥o)

liminf & (y., ¢.) = 5 lim in / (kFE-"Z) - (F7"Z)det F. dz — ylim [ nae. do
e—0 2 Q e—0

e—0 Q

B
> 5 R;OkRyO(V'cpo,mo) (V'gpog,mo) dz — v | napo dz
Q1 Q1
> g Rz—;okRyo(v/SOOam) ) (VISDOa m) dz — '7/ TchP0 dr = go(y()? 900)7
Ql Ql
which is the desired result. O

4.4 Some convergence results for subproblems

Here we collect convergence properties that are relevant in finding recovery sequences as stated in
Lemma 4.7 and Lemma 4.8, respectively.
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Lemma 4.10 (Convergence of pulled-back tensor). We assume that (A1) — (A5) are satisfied. Let
(Ye)eso € YV be a sequence andy € ),y and denote R := (V'y|v) and F. = V.y.. Let F. — R
in L2 (21, R3*3) with R € SO(3) a.e. in§)y. Moreover, for some qy > 6, let || F.|| ow , | R||zow < ¢
and ||(det F.) || Lo /2 < ¢, then

f FTkCof
FkET det B — 20 = t"’go 5 Rk R in L}(Q, R¥S).
€Ll

Proof. 1.Fix6 € (0,1). From || F. — R||za < ||Fe—R|| s || Fe— R||%,for1/q = (1-0)/qw+6/2,
we obtain also F. — Rin L4(Q;,R3*3) for all ¢ € [2, qw).

In three dimensions, the determinant of a matrix can be expressed as a sum of terms, each being
a product of three matrix entries. Consequently, det F, — det R in LQ/?’(Ql) holds for all ¢ €
[3, qw ). Similarly, the cofactor matrix has entries that are sums of products of two matrix entries,
which implies the convergence Cof F. — Cof R in LY2(Q; R3*®) forall ¢ € [2, qw').

2. Since R € SO(3) a.e.in €y, we have 1/ det F. — 1/det R = (1—det F.)/ det F_, and

J,

By assumption, we have gy > 5 such that q“i < I and thus by Step 1, det F, — 1in

2 30
q

quW2(Ql) 357 || Law /2 is bounded, it follows that -+ tF — 1in LY(€). In

fact, we even have strong convergence in Lt(Ql) forallt € [1,qw/2). Indeed, let again 6 € (0,1).

From |||+ < [|#]| z||9, for 1/t = (1—0)2/qw + 6, we obtain

ay ||1— det F. || _aw

L dx—/ ‘ det F H
det F. detR ~ Jo, | (det FY) — Il (det F)) Iz

qu/2H

— 1in L'(Qy) forall t € [1, qw/2).

det F.

W and we estimate

3. For g € [6, qw), it holds that .47 < & < 4,

J,

__t/ﬁ(<detF; 1)cxﬁzg kCof F. + (Cof F.T —Cof RT)kCof F.

Cof FTkCof F.
ot B0 ——CofRTkCofR’dr
det F.

—%CofRTk«kﬁll—CofR”dx

< || qerz 2oz 1O Fellrs Bl Cf Fof
+ |11 LHCOfF — Cof R|| pas2|| k|| Lo || Cof F|| a2
111 2, COf R o K o | Cof P — Cof R

The convergences proven in Steps 1 and 2 and Cof RTkCof R = R™'kR™" = RTkRfor R €
SO(3) ensure the L'-convergence stated in the lemma. O
The proof of the next result is mainly inspired by ideas in [1, Section 2].

Theorem 4.11 (Recovery sequence for the elastic energy). In addition to the Assumptions (A1)— (A3),
we suppose that the Assumption (A6) holds. Then, for every § € Wi (w, R?) N C*(w, R?) there
exists a sequence of deformations y. € W% (Q;, R®) such that

Y. —> 4 in W1’2(Q1,R3), Veye = (V'ylyg) in LQ(Ql,R?’XS), and
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o1
lim —
e—0 52

M (y.) = Mo(7), where M (y,) = / Wa(2', VeyeM.(z) ) dz.
1971
Moreover, €|y |lw2.am (1, R?) — 0 fore — 0.

Proof. 1. The Assumption (A6) is used in [1] to derive models for heterogeneous elastic plates with
in-plane modulation of the target curvature. In [1, Lemma 2.2] it is proved that

1/2 1/2

arg min Q- (x', s+ 123G — Baya(a, xg)) dzs = Bayyo(2') = / Baso(2',t) dt
s€Sym(2) J—1/2 —1/2

fora.a. 2’ € wand all G € Sym(2). In particular, the minimizer is independent of G.

Let now the vector potential g € Wh%(w;R?) be as in (4.8), i.e. Vmg = Baxa, which of course
also does not depend on (. Therefore, we obtain

. 1/2 B
@' 6) = [ Qo036+ Bonals) — Basale' )
—1/2
1//2 (4.14)
= / Q2 <$,7 3G + Vymg — Baxa(/, x3)> dxs.
~1/2

Using e.g. Lemma A.2 ii), we can approximate the potential g € W1?(w, R?) by g. € W2 (w, R?)
(also not depending on G) such that €| g ||yy2.0s (o g2) — 0 for e — 0.

2. Lety € W22 (w,R?) N C>(@, R?) and the corresponding normal vector v := v € C (@, R?)

iso

be given. Then, we have
R:= Ry = (V'Plvy) = (V'ylv) € C°(w,R***) and R € SO(3) ae. inw.

For d. € W24 (), R3), which also provide an approximation for a d € L?(€, R?) that is deter-
mined below (cf. also Lemma A.2i)) and ¢. := (g.1, g-2) € W% (w,R?) as above, we define the
sequence

v (2, 23) = Y(a') + elasv(a) + V'y(a")g.(2")] + 2 D.(2', z3), (4.15)

where

x3
Dg(x’,xg):/ d.(z',t)dt.
0

Note that the properties § € W2 (w, R?) N (@, R?) (yielding in particular |017] = |0:7] = 1),

iso
v € C°(w,R3),and D. € W24 (Q, R3) imply that y. € W% (Q,, R3). Moreover, we easily
confirm that 5. — 7/in W12(Q;,R3) for ¢ — 0. Moreover, we have the explicit estimate

ellye o < ec(Fles +(lfllew + IFlow g lwaan ) +2d iz ) =0, @416

which ensures the last assertion of the theorem.

A direct computation shows that
Voye(@',05) = R@) + ¢ (0aV'0(@') + V' [V(')g. ()] (x) ) + (V' Do()]0),

Veye (o, 2) Mo(2) ™ = (R() + (V' (a') + V' VG()g2()]|do(2) + (V' Do(2)]0)

x (I3 — eB(x) + > B(x)?) + O(&%).
(4.17)
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Since R € SO(3), the frame indifference of IV, yields
Wa(', Vey-MZ") = Wa(2', R'Vey. (-, 25) M)
= Wa (o', {Ts + R (2590 + V'[V'Gig.]|do(-, 23)) + 2 RT(V'Do(-,25)[0) }
x (I3 — eB(-, x3) + £2B(-, 3)?) + 0(53)).
For ¢ sufficiently small, the properties (A.1) of the approximation d. and g. guarantee
dist (R V.y. (', z3) M ', SO(3))
< e[ R e (HV'VHLoo + [[7llw2ee lgellzes + 15llwree llgellwroe + [1de]l e + HBHLOO>

+ || R = (HV’VHLoo + [17llw2ee llgellzes + 151l llgellwroe + Hdsllm> Bl
+ | Rl | V' Dl + || Bl|7~ + K < €,
where ¢y > 0 is such that in the ¢y-neighbourhood of SO(3), the elastic energy density W, is
bounded and C? regular. Using a Taylor expansion of W at I3 we get
1 1 ~
S M) = / W <]I3 +eRT (xgv’y +V[(V'D)g.] }de> + eQRT(V’D€|O)> x
1951
x (I — eB + £2B%) + 0(53)) do

1 ®2

.- / { D*Wa(ls) (R (23V' + V[(V)gil|[de(2)) = B)  +Oe) } da,

2

resulting in

lim — M () = lim = [ DWW (L) (RT (25V'v + V[(V')gc]|de) — B) *

e—0 62 e—0 2 o

= llm Qg( "(sV'v + V'[(V'))g]|d:) — B) dz

e—0 2

1/2
/ Qs (RT (V' + V[(VG)gl|d(x)) — B) des da'.
~1/2

Here we used 7, v € C™°(w; R?), d. — din L?(21,R?), g. — g in Wh?(w, R?).

Now, we follow the ideas in the proof of [1, Theorem 2.6 (Ill)]. Since Q3(F) = Q3(Fiym) for all
F € R3*3, we evaluate the symmetric part of the argument in O3, and we will write it in a special form
(see (4.18) below). Indeed, let X denote the 2 X 2 upper left part of the 3 X 3 matrix in the argument
in (3, and let X ° be defined as in (2.1). We consider the map L : Sym(2) — R3 that assigns to
X € Sym(2) the unique vector cy := argmin,cps@Q3(X° + (c ® e3)). Since Q5 is quadratic, the
first order optimality conditions for ¢ ensure the linearity of the mapping L. We introduce

5 V'(V'y(z)g(2")) Tv (2

i(w) = R@)(L(Xgu(2) — (T VIO 4 098, By (@)
We recall that due to X € L>(Qy,Sym(2)), B € L®(€,Sym(3)), §, v € C*(w;R?), and
g € WH2(w,R?), thus, d € L>=(2;,R?) holds. Using the vector d = d in the respective position in
(3, we establish a representation of the symmetric part of the argument in ()3 by

T ~ 7 X 0
(R (w;;V’u(a:’)+V’[V/y(a:’)g(x’)]|d(x)) _B>Sym _ ( Osygl 8 ) + (L(Xsym(x))®€3)5ym.

(4.18)
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Due to the identity (V'y)g = ¢101y + 92027y, we find
V'((V'ﬂ)g) = (glalalﬂ‘F 923162@\‘91323137—1— 923232@\) +V'gV'y.

Fory € W”(w Rg) we have 0,y - 0,y = d;; and 0,0;y - Oxy = 0 for i, j,k = 1,2. Moreover,

1S0
Z?:l vjOiv; = 2 = 0,7 = 1,2, since v has norm one. These identities lead to

P ! 1 / !/ V/A Tv/ 0
(VP'V'((V'Dg) =V'g. R(V'v[0) = < ( yz) " ) -
Therefore, we calculate
Xoym () = 23(V'Y(2") ' Vv (2) + Ving(z') — B(x)2x2  ae.in . (4.19)
Using (4.18), (4.19), and the definitions of (), and @2, we establish
llr% 2/\/lel(y€) = hr%—Q/ Wa(2', Voy. M. (z) ™) dx
e— — 0
1/2 B
= / Q3 (2, R (z3V'v(2') + V'[V'G(a')g(2)]|d(z)) — B(z)) das da’
~1/2

1/2
= // Q2 (7', 23V’ Vv + Vg — B(2)ax2) das da’

1/2

1/2
= —/ min Q2 (2, 23V'Y V'V + 5 — B(x)axo) daz da’

wS€R2X2 1/2
1 A () T / ~
- E/QQ(.T ,VyTVV) dz’ = My(y).

Finally, (4.17), e|dc||w2.au (0, r3) — 0, and €[ g: ||y 2.ax (o g2) — 0 for & — 0, ensure that V.y. —
(V'glvg) in L2 (21, R3*3), which completes the proof. O

5 Concluding remarks

In this manuscript, we have restricted our considerations to prestrains satisfying (A6), primarily for the
sake of clarity and transparency in the proof of Theorem 4.11. We note, however, that the work [29]
addresses more general prestrains that satisfy only (A3).

We expect that, also in this more general setting, and in the spirit of Theorem 4.11, for all deformations

ye Wéf(w R3) N C*(w, R?) a sequence (1. ).~o can be constructed with e € W2 (Qq, R3),
ya — 7in WH2(Q,R?), Vey. — (V'glyg) in L2(Q,R33), and lim. o 5 M (y:) = Mo(1),
and the additional property that &||y. || 2. (0, gsy — O for e — 0 is satisfied. This would then ensure

the validity of Lemma 4.8 and Theorem 4.4 also in the more general prestrain setting.

Following the strategy of the proof of [29, Theorem 3], one would have to distinguish three cases for
the second fundamental form 11 := (V5T V5), namely:

-~

(i) II = 0, treated by means of the ansatz in Egn. (93) in [29],

(ii) 11 bounded away from zero, corresponding to the ansatz in Egn. (115) in [29], and
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(iii) the general case, where 11 is neither identically zero nor nowhere vanishing.

In the latter case, the previous two ansatzes would need to be smoothly connected by means of a
transition layer along the boundary of the set {II = 0}. This could be achieved through an ansatz of
the intricate form in Egn. (139) in [29].

In addition, one must ensure that all terms in the sum belong to the space WQ’qH(Ql, R3) and that
ellyellwzan @, g3y — 0as e — 0. This, in particular, would require an additional smoothing proce-
dure for the various factors appearing in the different terms of (139) in [29]. We avoided this technically
involved construction by adopting the simplifying assumption (A6).

Finally, let us remark that also in the limit model a result similar to Corollary 3.2 holds.

Lemma 5.1. We assume (A1) — (A5). Letyo € Vp and ¢y € Vy be the limits with respect to
the convergences stated in Proposition 3.4. If Fo(yo, v0) > Fo(yo, ) for all o € Vy, meaning
Eo(Yo, v0) < Eo(Yo, @) forall g € Vo, then

/\/0(900) = QQO(QOaSDO)a 50(907 900) = Qo(yo,%) —NO(SDO),

where

Qs (10 70) / K () V' po(’) - V'go(a') de’,  Noio) = / Men(2') 00 (') da’

Proof. We use @ € V), of the form @ = o(1 + a), a € R. Then & (yo, o) < Eo(Yo, P) for these
@ yields

9 2
M / K‘;gvlsﬁo - V'poda' — Va/ﬁchQOO dz’ <0.
Therefore, we find
a >0 Va<0
_C d r 1 @ Keffv/ . v/ d / - ) 51
fy/wnhgoox 5(‘1‘2)/w yo V¥ PO 9003:{ <0 Va>0. &

We consider in (5.1) the limit @ 1 0 and obtain
Y / Tlenpo da’ — 3 / KZEFVICPO - V'poda' > 0.

For the opposite inequality we take the limit @ | 0 in (5.1). This together ensures Ny(po) =
290 (yo, ¢o)- Relation (2.14) then finalizes the proof. O

A Auxiliary tools

The following result, due to Healey—Krémer [19] can also be found e.g. in [22, Theorem 2.5.3] and [27,
Theorem 3.1].

Theorem A.1 (Healey—Krémer). Assume that the elastic energy W : Q1 x R3*3 — [0, oo] satisfies
(W4), and the hyperstress potential H : R3*3*3 — R, fulfils (A2) with qur > 3 and qw /2 >
3qu/(qu — 3). Then, for all Cy; > 0 there exists a Cyx = Cux(Cw, qi, qw) > 0 such that for all

deformations y € W4 (Qy, R*) with bounded elastic energy [, (Wa(Vy)+H(V?y)) dz < Oy
it is satisfied

lyllw2an < Cux,  Yllgr-san < Cux, 1(VY) ™ lgr-s/an < Chik,
det Vy(z) > 1/Cyx for all z € .
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Lemma A.2. Let gy be defined as in Assumption (A2).

i) Ford € L*(21,IR3), there exists a sequence (d. ).~ such thatd. € W9 (2, R3),d. — d in
L0y, R?), — 0 fore — 0.

ii) For g € WH2(w, R?), there exists a sequence (g.).-o such that g. € W2 (w,R?), g. — g in
Wh2(w,R?), and | ge|lw2.am (o g2y — 0 fore — 0.

Proof. 1. We fix d € L*(€;,R?®) and construct approximations d. € W21 (€, R?) by solving the
minimization problem

_ _ T _ _ 1
 min  Z.(d), where Z.(d) ::/ {8—{]V2d|qH+]Vd\‘“{}+—\d—d]2}da:
deW29H (Q1,R3) o “qH 2

for some 7 € (0, gir ). Note that the functionals Z. are strictly convex and the minimizers, denoted by
d., are unique. The associated Euler-Lagrange equation reads

0= / {gf{yv2d5|qr2v2d€ IV 4 V|2V, VE) + (do—d) - 5} dar
951

for all & € W9 (€, R?). Testing the latter by § = d., we find [|d.[|{/%.,, () S ¢/e". Since
T < q, we therefore get
ellde|ly2an < e/ — 0 and g||d.|| e — 0 fore — 0. (A1)

Next, we show that d. — d in L*(£2;, R?) by proving the I'-convergence of the functional Z. to Z, in
the weak L?-topology, where the limiting functional Z, is defined by d — 3 Jo, ld—d[* dz. Trivially,
the unique minimizer of Zy in L*(2;, R?) is given by d.

First, it is easy to see that for all sequences d. — d* in L?(Q,R?), we have lim inf._,o Z.(d.) >

Ty(d*). Indeed, this estimate follows from Z_(d.) > Zy(d. ) and the weak lower semi-continuity of the
norm.

Second, for all d* € L2(Q;,R?), we can find a recovery sequence d. — d* in L2(2;,R3) such
that lim sup._,, Z.(d.) = Zo(d*). Namely, if d* € W2 (€}, R?), we take the constant sequence
d. = d*, giving lim sup,_, Z.(d*) = Zo(d*). In case d* ¢ W21 (), R3), by density arguments
there exist (d) C W2 (Qy, R?) with dj, — d* in L*(Q,R?) and a; = ||dy|{F%.,,, , possibly
tending to infinity. For all & > 0, there exists k(c) € N, k(e) > max./~. k(¢') such that ay) <
Then, setting d. = di(e), since d. = di(ey — d*in L*(Q,R?) for e — 0, we find

limsup Z.(d.) < lim sup {EHTak(E) + ||d. — dHiz}
e—0 e—0

. (A2)
< lim sup {5 | — dF 4+ d — d||ig} = ||d — d*||2. = To(d").
e—0

The fundamental theorem of I'-convergence gives the weak convergence d. — d in L?(2;,R3).

It remains to show that the convergence of d. is actually strong in L2(Ql, R3). Testing the Euler-
Lagrange equation by d. gives the identity

ldel2s + & (IV2de | + [V 2,) = / d.ddz.

Using the weak convergence of d., we can pass to the limit in the right-hand side, giving

ldllz> < liminf {[|de[[7. + &7 (IV*de|1 0 + Vel ) } < lldllz-.
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We conclude that d. is strongly converging to d. Moreover, we obtain the convergence €7 (|| V2d. || %, +
IVd.||75) — 0.

2. The approximation for g € W12 (w; R?) is obtained similar to Step 1 by solving

) _ _ e” B 3 1 B 1
min  7¢(g), Z¢(9) 12/{Q—H{!VQQVH+|V9|qH}+§|V(g—g)|2+§|g—g|2}dm’,

GEW2:9H (w,R2)

and proceeding as in Step 1. O
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