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Classical solutions for a van Roosbroeck-Helmholtz model for a
semiconductor laser diode

Giuseppe Alì, Zeina Amer, Patricio Farrell, Nella Rotundo

Abstract

We consider a coupled light-matter model for semiconductor lasers consisting of the transient
van Roosbroeck system for charge transport and a Helmholtz eigenvalue problem for the transver-
sal optical field. The coupling is realized through a stimulated recombination operator in the car-
rier continuity equations and a carrier-dependent dielectric function in the Helmholtz problem. In
this paper, we establish, under physically relevant assumptions, local-in-time well-posedness of
the coupled van Roosbroeck-Helmholtz system. The proof relies on the abstract framework of
quasi-linear parabolic equations in Banach spaces developed by Kaiser, Neidhardt, and Rehberg
which requires in particular a local Lipschitz continuity property of the nonlinear recombination
operators. By deriving precise local Lipschitz bounds for the stimulated recombination operator,
we verify the conditions needed to apply the abstract existence theorem. As a consequence, we
obtain the existence and uniqueness of weak solutions to a drift-diffusion-Helmholtz model of
semiconductor lasers that incorporates stimulated emission in a mathematically consistent way.
To the best of our knowledge, this is the first rigorous existence and uniqueness result for the
nonlinear coupling of the van Roosbroeck system with a Helmholtz eigenvalue problem under
physically motivated assumptions.

1 Introduction

Semiconductor lasers are one of the most important opto-electronic applications. For such lasers,
different models [1, 2, 3, 4, 5, 6], mathematical theory [7] and simulations [8, 9, 10, 11] exist. For the
present paper, we consider a physically relevant mathematical model of a semiconductor laser which
correctly couples electronic charge transport with optical stimulation, and then prove that it admits a
weak, unique, local-in-time solution. The semiconductor laser model considered here consists of two
different parts: a drift-diffusion system and a Helmholtz eigenvalue problem. We discuss the known
mathematical theory for both models separately.

On the one hand, electron and hole charge transport in semiconductor material is mathematically de-
scribed via a system of drift-diffusion equations, first introduced by van Roosbroeck [12]. A rigorous
mathematical treatment of these equations is provided by Jerome in [13], while a comprehensive pre-
sentation, including numerical simulation aspects, can be found in the book of Selberherr [14] and in
the book of Markowich, Ringhofer, and Schmeiser [15]. More recently, Gamba and collaborators have
contributed analytical and numerical results on drift-diffusion systems and their extensions, particu-
larly in the context of coupled models and multiscale approaches (see, e.g., [16, 17]). For a review
of the physical derivation and limitations of the drift-diffusion model, we refer to Baccarani et al. [18].
In general, the van Roosbroeck system has been extensively analyzed. Early contributions are due
to Mock [19], who studied the stationary van Roosbroeck system and showed that, under reason-
able assumptions on material parameters, boundary conditions, and recombination terms, the system
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of nonlinear equations describing electrons, holes, and electrostatic potential has at least one solu-
tion. This was one of the first rigorous mathematical frameworks for semiconductor models. Then,
Gajewski proved existence, uniqueness, and asymptotic stability of solutions for the time-dependent
drift-diffusion system under Boltzmann statistics [20]. This analysis was extended in joint work with
Gröger, where they established global existence of weak solutions also under Fermi-Dirac statistics
[21] and later treated stationary problems with variable mobilities [22] using monotone operator meth-
ods. They proved global existence of weak solutions to the transient drift-diffusion equations with
Boltzmann or Fermi-Dirac statistics. A systematic presentation of the steady-state theory was then
provided in the book of Markowich [23]. Since then, many related steady-state existence results have
been published, for example coupling the van Roosbroeck system to electric circuits [24, 25] or for a
laser-related stationary van Roosbroeck system, formulated in [26], which was perturbed by additional
generation-recombination mechanisms [27].

On the other hand, to model electromagnetic waves in optoelectronic applications at the most general
level, Maxwell’s equations are typically used [28, 29]. However, it is often convenient to reduce the
complexity of Maxwell’s equations, which govern both the electric and magnetic fields. Therefore, in
this paper, we consider a useful simplification of Maxwell’s equations which results in a Helmholtz
eigenvalue problem for the transversal electric field [3]. The existence theory for the Helmholtz eigen-
value problem has been studied in classical books [30, 31]. The perturbation theory for linear operators
and their spectral properties can be found in [32].

In order to now couple the charge transport model with the Helmholtz eigenvalue problem, we intro-
duce a so-called stimulated recombination term in the van Roosbroeck system and take into account
a dielectric function for the Helmholtz problem, which depends on the charge carriers. Related models
have been discussed from a numerical [33] and physical [34] perspective. In this model, we neglect
the photon balance equation and consider only the largest optical power component, which is justified
since the remaining components are physically negligible.

The existence theory for such coupled van-Roosbroeck-Helmholtz light-matter models is still not well
developed and has only been addressed to some extent in [7]. However, the existence result is stated
for recombination terms, which are assumed to satisfy a local Lipschitz continuity condition. In the
present paper, our goal is to rigorously prove the local Lipschitz continuity of the physically rele-
vant stimulated recombination thereby enabling the subsequent novel proof of existence for the van
Roosbroeck-Helmholtz model.

The key idea of the proof in [7], as well as of the present work, relies on the more abstract existence
result for quasi-linear parabolic equations in [35]. In the present paper, we show that the assumptions
of the aforementioned abstract existence result in [35] are satisfied.

The remainder of this paper is organized as follows: In Section 2, we introduce the opto-electronically
coupled model, in Section 3, we introduce the mathematical notation and the assumptions needed in
order to rewrite the problem in quasi-linear parabolic form. Then, in Section 4, we state the quasi-linear
parabolic system. In Section 5 we show the main result before we conclude in the final section.

2 Presentation of the model

In this section, we present the opto-electronic model for a semiconductor laser. While the so-called
van Roosbroeck model (Section 2.1) will describe the flow of electrons and holes in a self-consistent
electrical field due to drift and diffusion, a Helmholtz eigenvalue problem (Section 2.2) will provide
eigenmodes which describe the optical part of the laser. The electronic quantities of interest are the
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densities n and p of electrons and holes as well as the electrostatic potential φ of the self-consistent
electrical field. Instead of electron and hole densities one may treat the electrochemical potentials φn

and φp of electrons and holes as unknowns, which are in the physical literature typically referred to
as quasi-Fermi potentials [36]. This is approach has advantages from a numerical and analytical point
of view, since all the three potentials are on the same order of magnitude and quite naturally lead
to a gradient structure [37]. These unknowns have to satisfy Poisson’s equation and the continuity
equations for the current densities of electrons and holes with some side conditions. The latter are
given by the relations between the potentials and the densities. The continuity equations for the current
densities are excited by a stimulated generation term depending on the eigenvalues and eigenvectors
of the Helmholtz eigenvalue problem for the electric potential which rules the optical behavior of the
laser. Important derived quantities are the electron and hole currents, jn and jp.

The spatial domain of the semiconductor laser diode is three-dimensional, with the longitudinal di-
mension much greater than the transversal dimensions, see Figure 2. In particular, an active layer is
present along the longitudinal direction between two thicker semiconductor layers with higher doping.
The active layer will be excited by an electric potential with appropriate resonance conditions.

It is possible to reduce the dimensionality of the model from three to two space dimensions by con-
sidering a transversal section of the space domain. The semiconductor equations keep the same
structure, but the Helmholtz eigenvalue problem decouples into two subsystems, one for the longitu-
dinal variable and one for the transversal variables [28, Chapter 7], [29, Chapter 4], [38]. We consider
the laser model for a fundamental excitation frequency ω0 which will be taken as part of the model
data.

The transversal Helmholtz eigenvalue problem is coupled with the semiconductor equations by means
of the dielectric function εopt, which is a function of the charge carrier densities.

Let Ω be the two-dimensional (bounded) domain representative of a transverse cut of the diode do-
main. The metal contacts are in D ⊂ ∂Ω and the rest of the boundary of Ω is denoted by Γ.

22μm

3.
05
μ
m

active region

metal contact

metal contact

Figure 1: Schematic of the laser diode. Left is the 3-dimensional geometry, and right is a 2-dimensional
cross section of the diode.

2.1 The van Roosbroeck system

The van Roosbroeck system [12] describes how charge carriers, electrons and holes, flow through a
semiconductor device. It couples the Poisson equation for the electrostatic potential φ self-consistently
with the continuity equations for the electron and hole densities n and p.
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The Poisson problem, with mixed boundary conditions, is given by:

−∇ · (ε∇φ) = qe(C + p− n) in Ω, (2.1a)

φ = φD on D, (2.1b)

ν · (ε∇φ) = 0 on Γ, (2.1c)

where ε andC are bounded, measurable functions on Ω with values in the set of real, and correspond
to the spatially varying dielectric permittivity and doping profile, respectively, and qe is the modulus of
the electron charge. With φD we indicate the voltage applied at the contacts of the device.

The continuity equations for the electron and hole current densities are

−qe
∂n

∂t
+∇ · jn = qe(R +Rs) in Ω× (0, T ), (2.2a)

qe
∂p

∂t
+∇ · jp = −qe(R +Rs) in Ω× (0, T ), (2.2b)

with constitutive relations for the current densities jn, jp,

jn = −qenµn∇φn, (2.2c)

jp = −qepµp∇φp, (2.2d)

supplemented with mixed boundary conditions

φn = φn,D, φp = φp,D on D × (0, T ), (2.2e)

ν · jn = 0, ν · jp = 0 on Γ× (0, T ), (2.2f)

and initial values

φn(0) = φI
n, φp(0) = φI

p in Ω. (2.2g)

In (2.2a) and (2.2b), µn and µp are the mobilities for electrons and holes, respectively, which are
measurable, bounded real functions on Ω, R is the semiconductor generation-recombination term
andRs is the so-called stimulated generation term due the Helmholtz problem, which will be specified
later.

The fundamental variables of the continuity equations are the quasi-Fermi potentials φn, φp, and the
carrier densities are related the the quasi-Fermi potentials and the electrostatic potential by the state
equations

n(φ, φn) = NcF(χn), p(φ, φp) = Nv F(χp), (2.3)

where Nc and Nv are the conduction and valence band densities of states, and χp and χn are the
chemical potentials, and the function F represents the statistical distribution of the electrons and holes
on the energy band. We consider the Fermi-Dirac statistics

F(s) =
2√
π

∫ ∞

0

√
ξ

1 + eξ−s
dξ, s ∈ R. (2.4)

The chemical potentials are related to the quasi-Fermi potentials by

χn =
qe(φ− φn)− Ec

kBTL
, χp =

qe(φp − φ) + Ev

kBTL
, (2.5)
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where Ec and Ev are the conduction and valence band-edge energies, respectively, kB is the Boltz-
mann constant and TL is the lattice temperature which we consider to be constant.

Finally, the semiconductor generation-recombination termR describes the production of electrons and
holes and is the sum of different mechanisms like the Shockley-Read-Hall recombination and Auger
recombination. It is given by

R = s(n, p)
(
np− ni(χn, χp)

2
)
, (2.6)

where the non-equilibrium intrinsic concentration ni is given by:

ni(χn, χp)
2 =NcNv exp

(
−Ec − Ev

kBTL

)
F(χn)F(χp)

exp(χn) exp(χp)
,

and s(n, p) is a model-dependent generation-recombination rate. We will consider three recombina-
tion processes, namely, Shockley-Read-Hall, Auger and spontaneous recombination. This implies that
the function r in (2.6) consists of the following three parts:

s := sSRH + sAuger + sspont :=
1

τp(n+ n∗) + τn(p+ p∗)
+ (Cnn+ Cpp) + sspont, (2.7)

where the carrier life times τn, τp, the reference carrier densities n∗, p∗ and the coefficients sspont, Cn,
Cp are material-dependent parameters.

2.2 The optical model

The optical part is described by a complex amplitude Φ, of a monochromatic electromagnetic wave,
which satisfies the Helmholtz equation [10]

−
(
∇2 + εopt

)
Φ = λΦ in Ω (2.8a)

Φ = 0 on ∂Ω. (2.8b)

This is an eigenvalue problem for the eigenpair (λ,Φ), where Φ is the eigenfunction associated to the
eigenvalue λ. In (2.8), the function εopt is defined as

εopt :=
ω2
0

c2

(
ñ+ i

c(g − α)

2ω0

)2

, (2.9)

where c the speed of light, and ñ is the refractive index, g the gain, and α the absorption, which are
functions of the space variable x and the carrier densities n, p (see, for instance [10]).

The Helmholtz problem (2.8) admits a sequence of eigenpairs (λm,Φm), m ∈ N. The resulting
monochromatic electromagnetic wave affects the semiconductor diode by means of the stimulated
recombination term Rs (resulting in the stimulated emission of photons), which couples the electronic
model to the optical one and has the form

Rs =
ñg

ℏc

∞∑
m=1

Pm

Re(βm)

|Φm|2∫
Ω
|Φm|2 dx

. (2.10)

The value βm is related to the eigenvalue λm by β2
m = −λm, with Re(βm) ≥ 0. The coefficients Pm,

m = 1, 2, . . . , are the optical powers, which are solutions of the photon balance equation:

∂

∂t
Pm = vg,m(Gm − α̂m − γm)Pm + Ṗsp,m. (2.11)
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Here, vg,m is the modal group velocity,Gm = 2Im(βm) the net gain of mode traveling along the cavity,
α̂m the additional losses due to longitudinal scattering, γm = 1

2L
log 1

Rm(0)Rm(L)
the outcoupling

losses of a Fabry-Perot laser, Rm(0), Rm(L) the reflectivities at the facets at z = 0, z = L, and
Ṗsp,m(x, n, p) is the rate of spontaneous emission into the mode [10].

2.3 The van Roosbroeck-Helmholtz model

We consider a simplified model by making the following assumptions:

(1) The imaginary part of the dielectric function εopt defined in (2.9) is small compared to the real

part, so that εopt ≈ ε∗ :=
ω2
0

c2
ñ2.

(2) The main optical power is associated with the Dirichlet principal eigenvalue λ of the Helmholtz
operator −(∇2 + ε∗), and we assume λ < 0.

(3) The photon balance equation (2.11) relaxes to a stationary solution faster than the semiconduc-
tor equations.

The above three assumptions, which are based on empirical observations, lead to the following ap-
proximation. The Helmholtz problem (2.8) reduces to a self-adjoint eigenvalue problem:

−
(
∇2 + ε∗

)
Φ = λΦ in Ω, (2.12a)

Φ = 0 on ∂Ω. (2.12b)

Moreover, equations (2.10) and (2.11) simplify to

Rs = αs(n, p)
|Φ|2

β
, (2.13)

αs(n, p) =
ñ(n, p) g(n, p)

ℏc
P (n, p), P (n, p) = − Ṗsp(n, p)

vg(G− α̂− γ)
, (2.14)

where β :=
√
−λ, with λ < 0 the principal eigenvalue of (2.12), and Φ is the principal eigenfunction,

normalized so that
∫
Ω
|Φ|2 dx = 1, Φ > 0 in Ω. For the justification of the last statement, see

Proposition 3.3.

2.3.1 Nondimensional van Roosbroeck-Helmholtz model

In the following, we rewrite the van Roosbroeck-Helmholtz model (also referred to as drift-diffusion-
Helmholtz model) into a nondimensional one. For any physical quantity F we write F = F̄ F̂ where
F̄ is a reference value and F̂ is the nondimensional quantity. For the independent and dependent
variables, we choose

x̄ := diam(Ω), t̄ :=
x̄2

µ̄Uth
, φ̄ = φ̄n = φ̄p = Uth :=

kBTL
qe

,

and for the other physical quantities we choose the scaling factors

ε̄ :=
qC̄x̄2

Uth
, C̄ := sup

x∈Ω
C(x), µ̄n = µ̄p = µ̄ := max

{
sup
x∈Ω

µn(x), sup
x∈Ω

µp(x)

}
.
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We scale n, p with the reference doping C̄ so that the scaled state equations are

n̂(φ̂, φ̂n) = N̂cF(χ̂n), p̂(φ̂, φ̂p) = N̂v F(χ̂p), (2.15)

with N̄c = N̄v = C̄ , and

χ̂n = φ̂− φ̂n − Êc, χ̂p = φ̂p − φ̂+ Êv, (2.16)

with Ēc = Ēv = kBTL. For the recombination terms we have

R̂(n̂, p̂) =
t̄

C̄
R(C̄n̂, C̄p̂), (2.17)

R̂s(n̂, p̂) = α̂s(n̂, p̂)
|Φ̂|2

β̂
, α̂s(n̂, p̂) =

t̄

x̄C̄
αs(C̄n̂, C̄p̂) (2.18)

Concerning the Helmholtz problem, we choose

β̄ =
1

x̄
, Φ̄ =

1

x̄
, ε̄∗ =

1

x̄2
.

After removing all the notational hats, the scaled system is stated in Box 2.

Box 2: SCALED VAN ROOSBROEK-HELMHOLTZ MODEL FOR LASER DIODES

Van Roosbroek equations

−∇ · (ε∇φ) = C + p− n (2.19a)

− ∂n

∂t
−∇ · (µnn∇φn) = R +Rs in Ω× (0, T ), (2.19b)

− ∂p

∂t
+∇ · (µpp∇φp) = R +Rs (2.19c)

φ = φD φn = φn,D, φp = φp,D on D × (0, T ), (2.19d)

ν · (ε∇φ) = 0 ν · ∇φn = 0, ν · ∇φp = 0 on Γ× (0, T ), (2.19e)

φn(0) = φI
n, φp(0) = φI

p in Ω, (2.19f)

Helmholtz eigenvalue problem

−
(
∇2 + ε∗

)
Φ = λΦ in Ω, (2.19g)

Φ = 0 on ∂Ω, (2.19h)

λ < 0 principal eigenvalue, Φ > 0 normalized principal eigenfunction

Coupling conditions

Rs = αs(n, p)
|Φ|2

β
, β =

√
−λ, (2.19i)

ε∗ = ε∗(n, p). (2.19j)
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3 Mathematical prerequisites

3.1 Notation and general assumptions

For a Banach space X , we denote its norm by ∥ · ∥X and the action of a bounded linear functional
ψ∗ ∈ X∗ on ψ ∈ X by the dual pairing ⟨ψ∗, ψ⟩X . IfX is a Hilbert space, identified with its dual, then
⟨ ·, · ⟩X represents the inner product in X . Specifically, for X = Rd, we may also use the notation
a · b for the scalar product of two vectors a,b ∈ Rd.

The space B(X;Y ) shall represent bounded linear operators from a Banach spaceX to another Ba-
nach space Y . If both Banach spaces are equal, we use the simplified notation B(X) := B(X;X).
The space of compact operators on X is denoted by B∞(X). The notation [X,Y ]θ refers to the
complex interpolation space between X and Y at index θ ∈ [0, 1].

For a differentiable function ψ on a time interval with values in a Banach space, ψ′ denotes its time
derivative. The ∇-calculus applies in the distributional sense.

We use the following real-valued function spaces on a spatial domain Ω ⊆ R2: for p ∈ [1,∞),
Lp denotes the set of all Lebesgue measurable, p-integrable functions on Ω, and L∞ denotes the
space of essentially bounded functions on Ω. The norms in these spaces and the following spaces
are usually denoted with a subscript. We use the simplified notation ∥ · ∥ instead of ∥ · ∥L2 .

The space W s,p(∂Ω) is the Sobolev space of fractional order s ∈ (0, 1] and integrability exponent
p ∈ [1,∞) on ∂Ω. These definitions extend accordingly to measurable functions on subsets of ∂Ω.
For p ∈ [1,∞), we define the Sobolev space W 1,p = {ψ ∈ Lp : ∇ψ ∈ Lp}, the subspace
W 1,p

Γ = {ψ ∈ W 1,p : ψ|D = 0} of functions with vanishing trace on D, and the subspace
W 1,p

0 = {ψ ∈ W 1,p : ψ|∂Ω = 0} of function with vanishing trace on ∂Ω. The dual of W 1,p
Γ is

denoted by W−1,p′

Γ , where 1/p+ 1/p′ = 1.

3.2 Function spaces and linear elliptic operators

In this section, we define three differential operators corresponding to model equations (2.19a) to
(2.19c) and specify the functional spaces that will be used in the main result, along with assumptions
on the boundary and initial conditions.

Assumption 3.1. We assume that ε is a bounded, measurable real function on Ω, and it is bounded
below by a positive constant.

Definition 3.1 (Poisson operator). We define the Poisson operator −∇ · ε∇ from W 1,2 to W−1,2
Γ by

⟨−∇ · ε∇ψ1 , ψ2⟩W 1,2
Γ

:=

∫
Ω

ε∇ψ1 · ∇ψ2 dx, ∀ψ1 ∈ W 1,2, ψ2 ∈ W 1,2
Γ ,

and we denote its restriction toW 1,2
Γ by P0 := −∇·ε∇

∣∣
W 1,2

Γ
. We use the same symbol P0 to denote

the maximal restriction of −∇ · ε∇ to any subspace that is continuously embedded in the domain
W 1,2

Γ .

Definition 3.2 (Electron and hole continuity operators). For any function n, p ∈ L∞, we define the
operators −∇ · nµn∇ and −∇ · pµp∇ from W 1,2 to W−1,2

Γ by

⟨−∇ · nµn∇ψ1 , ψ2⟩W 1,2
Γ

:=

∫
Ω

nµn∇ψ1 · ∇ψ2 dx,
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Classical solutions for a van Roosbroeck-Helmholtz model for a semiconductor laser diode 9

and

⟨−∇ · pµp∇ψ1 , ψ2⟩W 1,2
Γ

:=

∫
Ω

pµp∇ψ1 · ∇ψ2 dx,

for ψ1 ∈ W 1,2, ψ2 ∈ W 1,2
Γ . The same definition applies to the operators −∇ · µn∇ and −∇ · µp∇.

We denote the restrictions of −∇ · µn∇ and −∇ · µp∇ to the space W 1,2
Γ by an : W 1,2

Γ → W−1,2
Γ

and ap : W
1,2
Γ → W−1,2

Γ .

Proposition 3.1 (See [39, 40]). There is a number q̂ > 2 (depending on Ω, ε, µp, µn and Γ) such that
for all q ∈ [2, q̂] the operators P0 : W

1,q
Γ → W−1,q

Γ , an : W 1,q
Γ → W−1,q

Γ , and ap : W
1,q
Γ → W−1,q

Γ

are homeomorphisms. Additionally, both an and ap generate analytic semigroups on W−1,q
Γ .

From now on, we fix a number q ∈]2,min(4, q̂)[ and define r = q
2
. We define operators which will

become useful later on.

Definition 3.3. For r defined as above, we introduce the operators

An : ψ 7→ anψ, ψ ∈ Dn := dom(An) :=
{
ψ ∈W 1,2

Γ : anψ ∈ Lr
}
, (3.1)

Ap : ψ 7→ apψ, ψ ∈ Dp := dom(Ap) :=
{
ψ ∈W 1,2

Γ : apψ ∈ Lr
}
. (3.2)

A : D → Lr, A :=

(
An 0
0 Ap

)
, D := dom(A) = Dn ⊕Dp ↪→ Lr. (3.3)

We observe that, if ψ ∈ Dn, then ν · (µnn∇ψ)|Γ = 0 and if ψ ∈ Dp, then ν · (µpp∇ψ)|Γ = 0 in
the sense of distributions.

Finally, we state assumptions on the boundary and initial conditions.

Assumption 3.2 (on the boundary data). We assume that we can extend the Dirichlet functions φD,
φn,D and φp,D, appearing in the boundary conditions (2.19d), to the whole domain Ω. Keeping the
same names, the functions φD, φn,D and φp,D ∈ W 1,q can be chosen to additionally satisfy

−∇ · ε∇φD = 0, −∇ · µn∇φn,D = 0, −∇ · µp∇φp,D = 0 in Ω. (3.4)

Assumption 3.3 (on the initial data). For the fixed q ∈]2,min(4, q̂)[, we assume that the initial values
φI
n and φI

p belong to W 1,q. Moreover, there is a θ ∈]1/2 + 1/q, 1[ such that for each of the initial
values φI

n and φI
p the differences φI

n − φn,D and φI
p − φp,D belong to the complex interpolation

spaces [Lr,Dn]θ and [Lr,Dp]θ respectively.

We notice that for all θ ∈]1/2 + 1/q, 1[ the spaces [Lr,Dn]θ, [Lr,Dp]θ, compactly embed into
W 1,q

Γ ↪→ L∞.

3.3 Estimates for the reaction terms

The recombination terms R and Rs in Equations (2.19b), (2.19c) and (2.19i) are expressed in terms
of densities n and p. However, we choose the potentials as fundamental dependent variables and set
φ := (φ, φn, φp), φ ∈ W 1,q. With a little abuse of notation, we will write R(φ), ε∗(φ) and αs(φ)
instead of R(n, p), ε∗(n, p) and αs(n, p), respectively.

Assumption 3.4. We assume that the functions R(φ), ε∗(φ) and αs(φ) are bounded, continuous,
and differentiable. Moreover, ε∗(φ) is bounded below by a positive constant.
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It is possible to characterize the smallest eigenvalue λ of the Helmholtz equation (2.19g) using the
Rayleigh quotient [31, Theorem 8.37].

Proposition 3.2. The principal eigenvalue λ of the Helmholtz equation (2.19g) satisfies the minimiza-
tion problem:

λ = min
Φ∈W 1,2

0
∥Φ∦=0

⟨∇Φ,∇Φ⟩ − ⟨ε∗Φ,Φ⟩
⟨Φ,Φ⟩

= min
Φ∈W 1,2

0
∥Φ∥=1

(⟨∇Φ,∇Φ⟩ − ⟨ε∗Φ,Φ⟩). (3.5)

The following result deals with the dependence of the principal eigenvalue λ < 0 and of the normalized
principal eigenfunction Φ > 0 on the function ε∗(φ). Let us denote by λ0 the principal eigenvalue
of the operator −∇2 in W 1,2

0 with homogeneous Dirichlet boundary conditions. It is known that λ0 is
strictly positive [30, §6.5, Theorem 1], [31, Theorem 8.38].

Proposition 3.3. For any bounded subsetM ofW 1,q and for anyφ ∈M , let ε∗(M) = inf
φ∈M

min
x∈Ω

ε∗(φ)

and ε∗(M) = sup
φ∈M

max
x∈Ω

ε∗(φ). If

ε∗(M) > λ0, (3.6)

then: (i) the principal eigenvalue of the Helmholtz equation (2.19g) is simple and satisfies

λ < 0; (3.7)

(ii) the corresponding eigenfunction can be uniquely chosen so that

Φ > 0 in Ω and ∥Φ∥ = 1; (3.8)

(iii) the eigenpair (λ,Φ) satisfies the estimates

ε∗(M)− λ0 ≤ −λ ≤ ε∗(M)− λ0, (3.9)

∥Φ∥2W 1,2
0

≤ 1 + λ0 + ε∗(M)− ε∗(M). (3.10)

Proof. Using Proposition 3.2, we have

λ = min
Φ∈W 1,2

0
∥Φ∥=1

(⟨∇Φ,∇Φ⟩ − ⟨ε∗Φ,Φ⟩)

≤ min
Φ∈W 1,2

0
∥Φ∥=1

⟨∇Φ,∇Φ⟩ − ε∗(M) = λ0 − ε∗(M),

which implies (3.7) and the first inequality in (3.9). In a similar way

λ ≥ min
Φ∈W 1,2

0
∥Φ∥=1

⟨∇Φ,∇Φ⟩ − ε∗(M) ≥ λ0 − ε∗(M),

which implies the second inequality in (3.9). Moreover, λ is simple because the elliptic operator is
self-adjoint and it has a positive eigenfunction Φ, [31, Theorem 8.38]. Finally, if Φ is the normalized
principal eigenfunction associated to λ, the minimum of the Rayleigh quotient is reached for Φ and we
have:

∥∇Φ∥2 = ⟨∇Φ,∇Φ⟩ = λ+ ⟨ε∗Φ,Φ⟩ ≤ λ0 − ε∗(M) + ε∗(M).

Recalling that ∥Φ∥ = 1, we can conclude that ∥Φ∥2W 1,2
0

= 1 + ∥∇Φ∥2, which yields (3.10).
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Lemma 3.1. Let M be any bounded subset of W 1,q, K0 :=

{
ε ∈ W 1,q | min

x∈Ω
ε(x) > λ0

}
, and

δ(M) = min
ε∈K0∩M

{λ2(ε)− λ1(ε)}, with λ1(ε) and λ2(ε), respectively, the first and second smallest

eigenvalue of the operator T (ε) = −∇2 − ε. Then for any ε1, ε2 ∈ K0 ∩M it holds

|λ(ε1)− λ(ε2)| ≤ ∥ε1 − ε2∥L∞

∥Φ(ε1)− Φ(ε2)∥ ≤ 1

δ(M)
∥ε1 − ε2∥L∞ .

Proof. Let ε1, ε2 ∈ K0 ∩M , and consider the family of operators

{T (θ) = T (ε1 + θ(ε2 − ε1)) ≡ T (ε1)− θ(ε2 − ε1)} θ∈[0,1].

Since T (θ) is holomorphic as a function of the real parameter θ extended to the complex unit disc
|θ| ≤ 1, we can use Kato’s result that ensures that both the leading eigenvalue λ(θ) and the corre-
sponding positive normalized eigenfunction Φ(θ) are holomorphic functions, in particular differentiable
[32]. The eigenpair (λ(θ),Φ(θ)) satisfies per definition the eigenvalue equation

(T (θ)− λ(θ))Φ(θ) = 0, (3.11)

with the constraint 〈
Φ(θ),Φ(θ)

〉
= 1. (3.12)

Notice that (λ(θ),Φ(θ))
∣∣
θ=0

= (λ(ε1),Φ(ε1)) and (λ(θ),Φ(θ))
∣∣
θ=1

= (λ(ε2),Φ(ε2)). We take
the derivative of equations (3.11) and (3.12) with respect to θ, obtaining

(T (θ)− λ(θ))Φ′(θ) = (ε2 − ε1 + λ′(θ))Φ(θ), (3.13)〈
Φ(θ),Φ′(θ)

〉
= 0. (3.14)

In particular we have Φ′(θ) ∈ span (Φ(θ))⊥. In order for equation (3.13) to have a solution Φ′(θ),
we need the solvability condition

λ′(θ) =
〈
Φ(θ), (ε1 − ε2)Φ(θ)

〉
. (3.15)

Then, the solution can be written in the form

Φ′(θ) =
∑
k≥2

(λk(θ)− λ(θ))−1
〈
Φk(θ), (ε2 − ε1 + λ′(θ))Φ(θ)

〉
Φk(θ)

=
∑
k≥2

(λk(θ)− λ(θ))−1
〈
Φk(θ), (ε2 − ε1)Φ(θ)

〉
Φk(θ), (3.16)

where {Φk(θ)}k∈N is a complete orthonormal basis of eigenfunctions, with Φ1(θ) = Φ(θ). Integrat-
ing Equation (3.15) over θ ∈ [0, 1], we get for some θ∗ ∈ (0, 1)

|λ(ε2)− λ(ε1)| = |λ(1)− λ(0)| =
∣∣∣∣∫ 1

0

λ′(θ)

∣∣∣∣ = ∣∣∣∣∫ 1

0

〈
Φ(θ), (ε1 − ε2)Φ(θ)

〉
dθ

∣∣∣∣
=
∣∣〈Φ(θ∗), (ε1 − ε2)Φ(θ∗)

〉∣∣ ≤ ∥ε1 − ε2∥L∞ .

Similarly, from Equation (3.16), we obtain for some other θ∗ ∈ (0, 1)

∥Φ(ε2)− Φ(ε1)∥ =

∥∥∥∥∥∑
k≥2

(λk(θ∗)− λ(θ∗))
−1Φk(θ∗)

〈
Φk(θ∗), (ε2 − ε1)Φ(θ∗)

〉∥∥∥∥∥ .
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Using Bessel’s inequality, we find

∥Φ(ε2)− Φ(ε1)∥ ≤ 1

|λ2(θ∗)− λ(θ∗)|
∥ε1 − ε2∥L∞ ≤ 1

δ(M)
∥ε1 − ε2∥L∞ ,

which concludes the proof.

Remark 3.1. The last result implies that the principal eigenpair (λ(ε∗),Φ(ε∗)) of the Helmholtz equa-
tion (−∇2 − ε∗)Φ = λΦ, can be viewed as a locally Lipschitz-continuous map

ε∗ 7→ (λ(ε∗),Φ(ε∗)).

Since ε∗ is a function of the potentials φ, this establishes a map

φ 7→ (λ(φ),Φ(φ)) := (λ(ε∗(φ)),Φ(ε∗(φ))).

Since ε∗ depends continuously on φ, the last map is also locally Lipschitz-continuous. Thus, the
stimulated recombination

Rs(φ) = αs(n(φ), p(φ))
|Φ(φ)|2√
−λ(φ)

in the van Roosbroeck equations has the same functional structure as the classical recombination
term R, in the sense that both recombination terms depend directly on the potentials φ.

Corollary 3.1. Let M be any bounded subset of W 1,q,

K∗ :=

{
φ ∈W 1,q | min

x∈Ω
ε∗(φ(x)) > λ0

}
,

and δ∗(M) = min
φ∈K∗∩M

{λ2(φ)− λ1(φ)}, with λ1(φ) and λ2(φ), respectively, the first and second

smallest eigenvalue of the operator −∇2 − ε∗(φ). Then for any φ1,φ2 ∈ K∗ ∩M it holds

|λ(φ1)− λ(φ2)| ≤ ∥φ1 −φ2∥L∞

∥Φ(φ1)− Φ(φ2)∥ ≤ 1

δ∗(M)
∥φ1 −φ2∥L∞ .

Next, we prove local Lipschitz continuity of the standard recombination term R and the stimulated
recombination term Rs in the following two lemmas.

Lemma 3.2. The semiconductor recombination term is a mapping R : W 1,q −→ Lr. Moreover, for
any bounded subset M ⊂ W 1,q there exists a constant cM , such that

∥R(φ1)−R(φ2)∥ Lr ≤ cM ∥φ1 −φ2∥W 1,q , for all φ1,φ2 ∈M. (3.17)

Proof. Let M be a bounded subset of W 1,q, such that ∥φ∥W 1,q ≤ CM for all φ ∈ M , for some
positive constantCM . Let φ1,φ2 ∈M , which implies that ∥φ1∥L∞ , ∥φ2∥L∞ ≤ CM , sinceW 1,q ↪→
L∞. We have

∥R(φ1)−R(φ2)∥ Lr = ∥∇φR(φ1 + θ(φ2 −φ1)) · (φ2 −φ1)∥ Lr

≤ ∥∇φR(φ1 + θ(φ2 −φ1))∥ Lq ∥φ2 −φ1∥ Lq

with θ = θ(x) ∈ [0, 1]. Since,

|φ1 + θ(φ2 −φ1)| ≤ (1− θ) ∥φ1∥ L∞ + θ ∥φ2∥ L∞ ≤ CM
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we conclude that (3.17) holds with

cM = max
|φ|≤CM

|∇φR(φ)| meas(Ω)1/q.

Lemma 3.3. The stimulated recombination term is a mapping Rs : W
1,q −→ Lr. Moreover, for any

bounded subset M ⊂ W 1,q there exists a constant cs,M , such that

∥Rs(φ1)−Rs(φ2)∥ Lr ≤ cs,M ∥φ1 −φ2∥W 1,q , for all φ1,φ2 ∈M. (3.18)

Proof. Let M be a bounded subset of W 1,q, such that ∥φ∥W 1,q ≤ CM for all φ ∈ M , for some
positive constantCM . Let φ1,φ2 ∈M , which implies that ∥φ1∥L∞ , ∥φ2∥L∞ ≤ CM , sinceW 1,q ↪→
L∞. We compute

∥Rs(φ1)−Rs(φ2)∥Lr =

∥∥∥∥αs(φ1)

β(φ1)
|Φ(φ1)|2 −

αs(φ2)

β(φ2)
|Φ(φ2)|2

∥∥∥∥
Lr

≤
∥∥∥∥ |Φ(φ1)|2

β(φ1)
(αs(φ1)− αs(φ2))

∥∥∥∥
Lr

+

∥∥∥∥αs(φ2)|Φ(φ1)|2
(

1

β(φ1)
− 1

β(φ2)

)∥∥∥∥
Lr

+

∥∥∥∥αs(φ2)

β(φ2)

(
|Φ(φ1)|2 − |Φ(φ2)|2

)∥∥∥∥
Lr

≤ ∥|Φ(φ1)|2∥L∞

β(φ1)
∥αs(φ1)− αs(φ2)∥Lr +

∥αs(φ2)∥Lq ∥|Φ(φ1)|2∥Lq

β(φ1)β(φ2)
|β(φ1)− β(φ2)|

+
∥αs(φ2)∥Lq

β(φ2)

∥∥|Φ(φ1)|2 − |Φ(φ2)|2
∥∥
Lq

We estimate these three terms separately. In the first term, the difference

∥αs(φ1)− αs(φ2)∥Lr

is bounded similarly to Lemma 3.18. In the second term, we use the fact that

|β(φ1)− β(φ2)| =
|λ(φ1)− λ(φ2)|
β(φ1) + β(φ2)

,

and for the the third term we use

∥|Φ(φ1)|2 − |Φ(φ2)|2∥Lq = ∥(Φ(φ1) + Φ(φ2))(Φ(φ1)− Φ(φ2)∥Lq

≤ ∥Φ(φ1) + Φ(φ2)∥L∞∥Φ(φ1)− Φ(φ2)∥Lq .

The proof is concluded by using Proposition 3.3, Lemma 3.1 and Corollary 3.1.

3.4 Formulation of the problem

In this section, we rewrite the problem in terms of the operators defined in Section 3.2 to be able to
introduce weak solutions. We start with the Poisson equation (2.19a), with boundary conditions (2.19d)
and (2.19e), with p, n : [0, T ] →W 1,q

Γ .

Assumption 3.5. We assume that the doping profile C is a bounded, measurable real function on Ω.
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Definition 3.4 (Weak solution of Poisson’s problem). Let n, p ∈ W−1,q
Γ be given. We say that φ is a

solution of Poisson’s equation (2.19a), if

φ = φD + φ̊, (3.19)

and φ̊ ∈ W 1,q
Γ is the unique solution of

P0φ̊ = C − n+ p. (3.20)

Definition 3.5 (Precise formulation of the problem). The van Roosbroeck-Helmholtz system (2.19)
admits a local in time solution, if there is a time T > 0, a triple φ = (φ, φn, φp), and a pair (λ,Φ),
such that

(φn(0), φp(0)) = (φI
n, φ

I
p) ∈W 1,q, (3.21)

φ̊ := φ− φD ∈ C([0, T ];W 1,q
Γ ) ∩ C1(]0, T [;W 1,q

Γ ), (3.22)

φ̊n := φn − φn,D ∈ C1(]0, T [;Lr) ∩ C(]0, T ],D) ∩ C([0, T ], [Lr,D]θ), (3.23)

φ̊p := φp − φp,D ∈ C1(]0, T [;Lr) ∩ C(]0, T ],D) ∩ C([0, T ], [Lr,D]θ), (3.24)

satisfy the Poisson equation and the continuity equations
P0(φ̊(t)) = C − n(t) + p(t), t ∈ [0, T ]

−n′(t) +∇ · jn(t) = R(φ(t)) +Rs(φ(t)), t ∈ [0, T ]

−p′(t)−∇ · jp(t) = R(φ(t)) +Rs(φ(t)), t ∈ [0, T ]

(3.25)

where the carrier densities and current densities are given by

n(t) = NcF(χn(t)), p(t) = NvF(χp(t)),

jn(t) = −µnn(t)∇φn(t), jp(t) = −µpp(t)∇φp(t),

χn(t) = φ(t)− φn(t)− Ec, χp(t) = φp(t)− φ(t) + Ev,

(3.26)

with the properties

n, p ∈ C([0, T ], L∞) ∩ C1(]0, T [, Lr]), (3.27)

jn, jp ∈ C([0, T ], Lq), (3.28)

∇ · jn,∇ · jp ∈ C(]0, T ], Lr), (3.29)

and (λ,Φ) = (λ(φ),Φ(φ)), defined in Remark 3.1, is the principal eigenpair of the Helmholtz
equation

(−∇2 − ε∗(φ))Φ = λΦ, (3.30)

with

Φ > 0 in Ω, ∥Φ∥ = 1. (3.31)

4 Reformulation as a quasi-linear parabolic system

Our aim is now to prove the existence of a solution of the Helmholtz-van-Roosbroeck system, shown
in Box 2, in the sense of Definition 3.5, extending the approach used in [7] for the van-Roosbroeck
system. The idea of the proof relies on solving first the Poisson equation for the electric potential φ,
as a function of the quasi-Fermi potentials φn, φp, and use this representation of φ in the continuity
equations, which can thus be written as a quasi-linear parabolic system. The idea of solving first
the nonlinear Poisson equation was originally introduced by Gummel in an iterative scheme for the
numerical solution of the van Roosbroeck system, known as Gummel’s map [41].
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4.1 The nonlinear Poisson equation

By using the constitutive relations for the carrier densities in the Poisson equation, we obtain the
nonlinear Poisson equation

P0φ̊ = C −NcF(zn + φ̊) +NvF(zp − φ̊),

with zn = φD − φn − Ec, zp = −φD + φp + Ev, where φ̊ is described in Section 3.4.

Theorem 4.1 (Theorem 5.3, [7]). The following statements are true.

1 For all f ∈ W−1,2
Γ and z = (zn, zp) ∈ L∞ the nonlinear Poisson equation

P0φ̊−NcF(zn + φ̊) +NvF(zp − φ̊) = f (4.1)

admits exactly one solution φ̊ with φ̊ ∈ W 1,2
Γ which we denote by L (f, z).

2 The maximal restriction of the operator from Equation (4.1) to the range space W−1,q
Γ has the

domain W 1,q
Γ . Moreover, if M is a bounded subset of W−1,q

Γ ⊕ L∞, then the set {L (f, z) :
(f, z) ∈M} is bounded in W 1,q

Γ .

3 The mapping L : W−1,q
Γ ⊕ L∞ → W 1,q

Γ is continuously differentiable.

4.2 Derivation of the quasi-linear system

We start by differentiating Poisson’s equation (2.19a) with respect to time

P0∂tφ̊ = ∂tp− ∂tn = −∇ · jp −∇ · jn

or

∂tφ := ∂tφ̊ = P−1
0 (−∇ · jp −∇ · jn).

Next, we use the constitutive relations for the carrier densities and insert the above expression for ∂tφ

∂tn = NcF ′(χn)(P−1
0 (−∇ · jn −∇ · jp)− ∂tφn)

∂tp = NvF ′(χp)(−P−1
0 (−∇ · jn −∇ · jp) + ∂tφp).

We then insert these expressions into the continuity equations for the currents

NcF ′(χn) (P−1
0 (−∇ · jn −∇ · jp)− ∂tφn)−∇ · jn = −(R +Rs)

NvF ′(χp) (−P−1
0 (−∇ · jn −∇ · jp) + ∂tφp) +∇ · jp = −(R +Rs).

Rewriting yields

∂tφn −
(
P−1

0 +
1

NcF ′(χn)

)
(−∇ · jn)− P−1

0 (−∇ · jp) =
R +Rs

NcF ′(χn)

∂tφp −
(
P−1

0 +
1

NvF ′(χp)

)
(−∇ · jp)− P−1

0 (−∇ · jn) = − R +Rs

NvF ′(χp)
.
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We can express both equations in vector-matrix form as follows

∂tΨ− (I + Z(φ))E(φ)∇ · J = Y(φ),

with

Ψ =

(
φn

φp

)
, Z(φ) =

(
P−1

0 NcF ′(χn) NvP−1
0 F ′(χp)

P−1
0 NcF ′(χn) NvP−1

0 F ′(χp)

)
(4.2)

E(φ) =

(
1

NcF ′(χn)
0

0 1
NvF ′(χp)

)
, ∇ · J =

(
−∇ · jn
−∇ · jp

)
, (4.3)

Y(φ) = E(φ)

(
1
−1

)
(R(φ) +Rs(φ)), (4.4)

χn = φ− φn − Ec, χp = φp − φ+ Ev, (4.5)

and I the identity matrix. It remains to express J in terms of Ψ as well because we want the operator
(I + Z)E to act on ∇Ψ instead of ∇ · J. We have −jn = nµn∇φn and −jp = pµp∇φp, so we
can write

∇ · J = ∇ ·G(φ)µ∇Ψ,

with

G(φ) =

(
NcF(χn) 0

0 NvF(χp)

)
, µ =

(
µn 0

0 µp

)
. (4.6)

Finally, we express φ̊ in terms of Ψ = (φn, φp)
T , using the solution of the nonlinear Poisson equation

and the operator L , as described in Theorem 4.1,

φ̊(Ψ) := L (C,−φn + φD − Ec, φp − φD + Ev). (4.7)

In this way, we get

∂tΨ− (I + Z(Ψ))E(Ψ)∇ ·G(Ψ)µ∇Ψ = Y(Ψ), (4.8)

with

Z(Ψ) := Z(φ̊(Ψ)+φD, φn, φp),

E(Ψ) := E(φ̊(Ψ)+φD, φn, φp),

G(Ψ) := G(φ̊(Ψ)+φD, φn, φp),

Y(Ψ) := Y(φ̊(Ψ)+φD, φn, φp).

Now, the equation (4.8) is of the form discussed in [35]. It should be complemented by the initial-
boundary conditions

Ψ(x, 0) = ΨI
0(x) :=

(
φI
n(x)
φI
p(x)

)
, in Ω, (4.9)

Ψ = ΨD :=

(
φn,D

φp,D

)
on D, ν · ∇Ψ :=

(
ν · ∇φn

ν · ∇φp

)
= 0 on Γ. (4.10)
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4.3 Solution of the quasi-linear parabolic system

In this section, we prove that Equation (4.8) admits a unique local in time solution by applying the
existence theorem in [35]. The assumptions of the theorem are summarized next.

Assumption 4.1. For any bounded set M ⊂ W 1,q there exist positive constants EM , GM , ZM and
YM such that the mappings

E : [0, T ]×W 1,q → L∞, G : [0, T ]×W 1,q → W 1,q

Z : [0, T ]×W 1,q → B∞(Lp), Y : [0, T ]×W 1,q → Lp (4.11)

satisfy the conditions

∥E(Ψ)− E(Ψ̌)∥L∞ ≤ EM∥Ψ− Ψ̌∥W 1,q ,

∥G(Ψ)−G(Ψ̌)∥W 1,q ≤ GM∥Ψ− Ψ̌∥W 1,q ,

∥Z(Ψ)− Z(Ψ̌)∥B∞(Lp) ≤ ZM∥Ψ− Ψ̌∥W 1,q ,

∥Y(Ψ)−Y(Ψ̌)∥Lp ≤ YM∥Ψ− Ψ̌∥W 1,q ,

for all Ψ, Ψ̌ ∈M , and the diagonal components of the matrices E and G satisfy

min
k=1,2

inf
Ψ∈M

ess inf
x∈Ω

Ekk(Ψ)(x) > 0,

min
k=1,2

inf
Ψ∈M

ess inf
x∈Ω

Gkk(Ψ)(x) > 0.

We define the notion of weak the solution of the equation (4.8), noting that −∇·G(Ψ)µ∇ = G(Ψ)A,
where A is defined in (3.3).

Definition 4.1. Let D be the space defined in (3.3) and V a Banach space such that D ↪→ V ↪→
W 1,q. We say the evolution equation (4.8), with initial condition Ψ(0) = ΨI ∈ W 1,q has a unique
local solution Ψ = ΨD + Ψ̊ with respect to V if ΨI −ΨD ∈ V implies the existence of a number
T > 0 such that the initial value problem

∂tΨ̊(t) + [I + Z(ΨD + Ψ̊)]E(ΨD + Ψ̊)G(ΨD + Ψ̊)AΨ̊(t) = Y(ΨD + Ψ̊) + J(Ψ̊), (4.12)

Ψ̊(0) = ΨI −ΨD, (4.13)

admits a unique solution

Ψ̊ ∈ C1(]0, T [, Lr) ∩ C(]0, T ],D) ∩ C([0, T ], V ). (4.14)

For Ψ̊ ∈ W 1,q
Γ the term J is given by

J(Ψ̊) := [I + Z(ΨD + Ψ̊)]E(ΨD + Ψ̊)∇ ·G(ΨD + Ψ̊)µ∇ΨD.

The following result was proven in [35].

Proposition 4.1. Let Assumption 4.1 be satisfied. For each γ ∈]1
2
+ 1

q
, 1[ the initial value problem for

our evolution equation (4.8), with initial value ΨI ∈ W 1,q has a unique local solution Ψ, in the sense
of Definition 4.1, with respect to the complex interpolation spaces V := [Lp,D]γ .
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To apply this result we need to verify that the Assumptions 4.1 hold for system (4.8).

Lemma 4.1. Let Assumptions 3.1, 3.4, 3.2, 3.3, 3.5 be satisfied. Then the mappings Z,E,G,Y,
satisfy Assumption 4.1.

Proof. In order to prove this result, we use the results in [7, Section 6] with a few adjustments, because
we consider a domain that does not contain oxide and the boundary conditions and the doping profile
do not vary with time. The Lipschitz continuity of the recombination terms R and Rs, which is needed
to prove the estimates for Y, is ensured by the Lemmas 3.2 and 3.3, under Assumption 3.4.

5 Main Result

In this section, we prove the main result of the paper, that is, local existence and uniqueness of the
van Roosbroeck-Helmholtz model, adjusting [7, Theorem 7.4].

Theorem 5.1. Under Assumptions 3.1, 3.4, 3.2, 3.3, 3.5, the van Roosbroeck-Helmholtz system (2.19)
admits a unique, local solution in time, in the sense of Definition 3.5.

Proof. The Lemma 4.1 ensures that Assumptions 4.1 hold. It follows that the quasi-linear parabolic
system (4.8) admits a unique solution Ψ = (φn, φp), local in time, in the sense of Definition 4.1. It
remains to show that this solution of the evolution equation (4.8) maps back to a solution of the original
equations for the semiconductor laser (2.19).

Recalling Remark 3.1 and Theorem 4.1, we introduce the functions

φ = φD + L (C,−φn + φD − Ec, φp − φD + Ev),

(λ,Φ) = (λ(φ),Φ(φ)), with φ = (φ, φn, φp).

We wish to prove that φ = (φ, φn, φp), (λ,Φ) is a solution of the van Roosbroeck-Helmholtz model
(2.19), in the sense of Definition 3.5. Conditions (3.23) and (3.24) are identical to (4.12), while (3.21)
follows from the properties of the operator L . The remaining properties (3.27), (3.28) and (3.29)
can be proven as in [7, Theorem 7.4]. Finally, the Helmholtz equation (3.30) with constraint (3.31) is
satisfied by construction.

6 Conclusion

We have established the local-in-time existence and uniqueness of weak solutions to a coupled
van Roosbroeck-Helmholtz system for semiconductor lasers under physically motivated assumptions.
Central to our analysis is the derivation of local Lipschitz bounds for the stimulated recombination
operator, which enable the application of the abstract theory of quasi-linear parabolic equations in
Banach spaces. This result provides the first rigorous mathematical foundation for a drift-diffusion-
Helmholtz model incorporating stimulated emission and thus offers a solid basis for further analytical
and numerical investigations of semiconductor laser dynamics. We point out that it is possible to incor-
porate additional modeling features such as oxide layers, spatially varying Robin or Neumann bound-
ary conditions, as well as time-dependent boundary data and doping profiles. A solid and physically
meaningful derivation of the present model will be the topic of future research.
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