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Low-frequency fluctuations in semiconductor lasers with delayed
optical feedback

Mindaugas Radziunas, Deborah M. Kane

Abstract

Low-frequency fluctuations in a semiconductor laser with optical feedback system are an-
alyzed with a traveling wave model, and the concepts of instantaneous and compound cavity
modes. Compound-cavity mode curves, including their height and width characteristics in the
frequency/carrier-density-offset plane, provide good estimates of parameter ranges where low-
frequency fluctuations occur. These ranges cover a larger part of the parameter space than is
commonly realized.

Research on the semiconductor laser (SL) with delayed optical feedback (SLDOF), both experimental
and theoretical, has been key to nonlinear laser dynamics studies over several decades [1, 2, 3]. In
this setup, the reinjection from the external cavity (EC), Fi, is defined by the emitted field, Fe, which is
delayed by the EC round-trip time τ and scaled by the complex feedback factor κeiφ (Fig. 1). Within
this broad field, study of low frequency fluctuations (LFFs), mostly near the threshold current Ith of the
free running SL and with optical feedback near the coherence collapse boundary, have been prolific
(e.g. [4, 5, 6, 7]). The foci have been mostly scoping LFF regimes and understanding their origin as
due to deterministic chaos or stochastic drivers.

LFFs manifest as sudden, quasi-periodic changes in chaotic operating states and a slow return to
prior conditions. LFF frequencies (νlff ) lie well below those of the system’s intrinsic oscillations. These
include the solitary-laser resonance (SLR) beat frequency νsl (hundreds of GHz, linked to the SL diode
cavity round-trip time τ0), the relaxation-oscillation frequency νro (tied to carrier-photon dynamics and
pump current, typically a few GHz well above Ith), and the compound-cavity mode (CCM) spacing
frequency νec ≈ τ−1 (sub-GHz for the long cavity case here). A 2013 review [3] summarized the key
insights into LFFs in SLDOFs known at that time. Until then, it was difficult to measure the chaotic,
fast-timescale (tens of picoseconds) component of the dynamics, as real-time detection was typically
limited to bandwidths below 100 MHz. Thus, only the slower LFFs were accessible in real time, while
spectral measurements were used to probe the higher-frequency behavior. These constraints likely
led to LFFs being reported as a regime of operation, which is appropriate when LFFs dominate the
radiofrequency (RF) spectrum obtained from fully time-resolved power measurement. LFF regimes
have been defined as those where the low-frequency peak in the RF spectrum exceeds other com-
ponents by at least 10 dB [8]. However, LFFs can exist without producing a distinct low-frequency
RF-peak, and they occur over a much larger parameter range than is commonly appreciated. Some
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Figure 1: Schematic of a SLDOF, consisting of the SL and the EC.

studies examined LFFs in SLDOFs operating well above Ith and under strong optical feedback. LFFs
were experimentally observed between the coherence collapse and the single-frequency regions [9].
At higher injection currents, I � Ith, a transition from power dropouts to jump-ups was reported.
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Another system with filtered optical feedback was used to study LFFs [10] for κ ≤ 0.12 and I ≤ 8Ith.
LFFs with power dropouts, jump-ups, and none of them were found. Jump-ups were prevalent, and
the results were similar to [9]. A study of a quantum-dot (QD)-based SLDOF [11] stated that LFFs
at high I and κ differed from those in quantum-well (QW)-based systems “because LFF dynamics
appear only for small injection currents close to the lasing threshold” for QWs. While QD-system LFFs
may indeed differ, the reason is different. This misconception has clear historical roots but should be
corrected.

Our traveling wave (TW) model-based studies [12, 13] of a Fabry–Perot SLDOF, experimentally inves-
tigated in [14], revealed a strong low-frequency RF peak – a clear signature of LFFs. In [15], the LFF
regimes were analyzed using an advanced mode-analysis technique that enabled time–frequency rep-
resentations of LFF events and explained the resonances observed in spectral representations. In this
letter, we employ mode analysis to quickly predict the feedback ranges that support LFFs, eliminating
the need for time- and memory-intensive simulations.

Below we explore the TW model, defining the spatiotemporal evolution of the slowly varying complex
field vector-function Ψ(z, t) and the real carrier density distribution N(z, t):

− i∂tΨ(z, t) = H(β(N, εP ))Ψ + Fsp(z, t), z ∈ SL ∪ EC, (1a)

d

dt
N(z, t) = N (I,N,Ψ), z ∈ SL. (1b)

The matrix operatorH depends on the complex propagation factor β, includes the spatial derivatives
∂z, and incorporates reflection–transmission conditions set by the rear- and front-facet and the EC
mirror reflectivities rr, rf , and rec (see Fig. 1). Assuming β is constant in the EC, (1a) yields the
relation E−(l+, t) = κeiϕE+(l+, t − τ) linking the reinjected and emitted fields E−(l+, t) = Fi

and E+(l+, t) = Fe, evaluated just beyond the SL front facet (z = l+). Here, E+ and E− are
forward- and back-propagating components of Ψ. Within the SL, β depends on N(z, t) and the local
photon density P (z, t) ∝ |E+|2 + |E−|2, with ε denoting the nonlinear gain compression factor. A
linear dependence of β on N is used, with its real and imaginary parts linked through the linewidth
enhancement factor αH = 3.5. We set ϕ = 0, rf =

√
0.05, l = 0.3 mm, and τ = 4.5 ns. A detailed

formulation of the TW model and all remaining parameters can be found in [15] and Appendix. The
SLDOF system modeled is close to one for which a comprehensive output power time series dataset
exists to facilitate connection with experiment [14].

As a first look at the system’s LFF dynamics, Fig. 2 compares simulations at low bias (I ≈ Ith) and
moderate feedback (κ = 0.02), with those at higher bias (I ≈ 2.2 Ith) and strong feedback (κ = 0.2).
Most LFF studies in SLDOF systems focus on conditions similar to the former case, I . Ith [4, 5],
where the feedback reduces the effective threshold, enabling sustained lasing and inducing LFFs.
These manifest as abrupt drops in emitted power |Fe(t)|2 and spatially averaged field power P̄ (t),
blue traces in Figs. 2(a,c), consistent with experimental observations [4, 5, 6, 7, 3]. Intrinsic oscillations
at frequencies ν � νlff obscure the field power time traces in time-domain calculations. We apply
low-pass filters (LPFs) to reveal the underlying slow dynamics, as shown in Figs. 2(a,c). Filtering only
νsl ≈ 130 GHz oscillations with a 30 GHz LPF (red curves) provides a moderate amplitude reduction
in long-time span representations (left part of the diagrams). Applying a 0.2 GHz LPF (black curves)
removes even the CCM-beating oscillations (νec ≈ 0.22 GHz), clearly revealing LFF power drops.

Identifying LFF power changes becomes more difficult if operating well-above-threshold, as shown in
Figs. 2(b,d) for I ≈ 2.2 Ith. First, the spatially averaged (thus unmeasurable) power levels during and
just before the LFF event, when the SLDOF operates close to the maximal gain mode (MGM) [15],
are less distinguishable. As shown by the black curves in Figs. 2(c) and (d), P̄lff/P̄mg ≈ 0.13 and
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Figure 2: LFFs in an SLDOF operating at (I, κ) = (25 mA, 0.02) (left) and (55 mA, 0.2) (right).
Time traces of the emitted (a,b) and spatially-averaged field intensities (c,d) without (blue) and after a
30 GHz LPF (red) or a 0.2 GHz LPF (black); and the spatially-averaged carrier density (e,f).

0.78, respectively. Second, LFF events can manifest as sudden power jumps rather than drops in the
(measurable) emitted field power, see the black curve in Fig. 2(b). This emission enhancement under
reduced feedback [13] is available in spatially distributed models and is expected experimentally. It is
difficult to achieve in the Lang-Kobayashi (LK) models [16]. In simulations, LFFs show up clearly in
carrier density time traces. Figs. 2(e,f) show sudden rises in spatially-averaged carrier density N̄(t).
t′ to t′′ is the climb time to reach the solitary-SL threshold density Nsl initiating the νro-frequency os-
cillations around that level within one delay period τ . Both depend on I . Subsequently, N̄(t) gradually
relaxes toward the MGM level Nmg, where new LFF events can occur.

Figure 3: RF (a) and optical (b) spectrum mappings of the SLDOF for I = 55 mA and an increased
κ, color-coded on a dB scale. Insets: spectra with a log-scale frequency axis (left) and an extended
wavelength range (right) for κ = 0.15.

Spectral representations offer an alternative for detecting LFFs. Parts of the simulated RF and optical
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spectra for up-tuned κ are shown in Figs. 3(a) and (b), respectively. Approximate LFF ranges are
marked by vertical white bars. For each κ, we calculated 1.5µs transients, analyzed the last 1µs,
and increased κ by 0.001. LFFs manifest as strong (red) peaks in the RF spectra (panel (a)) at sub-
0.1 GHz frequencies. In optical spectra (panel (b)), LFFs are indicated by a broadened peak reaching
the MGM wavelength, λmg, where the system resides much of the time, and a sharper peak at the
SLR, λsl, activated during brief LFF events. When undamped, these two peaks recur near multiple
SLRs, see inset in panel (b).

To gain deeper insight into the LFF mechanism, we analyze the instantaneous modes – pairs of com-
plex eigenfrequencies Ω and eigenvectors Θ(z) that, for a fixed β(z, t) at a given time t, solve the
spectral problem induced by operator H. Expanding the field in terms of time-varying normalized
eigenvectors Θk(z; β(z, t)) yields ODEs for the complex mode amplitudes fk(t) [15]. Mode cou-
pling terms scale with dN̄

dt
(alternating in sign with time) and with the inverse of the mode frequency

separation, which is typically limited by τ/2π. This coupling is usually weak, such that <Ω and =Ω
reliably describe each mode’s instantaneous optical frequency and amplification or damping rate, even
in the presence of other undamped modes. Only a few instantaneous modes, when being close to the
exceptional point, can have a reduced frequency separation and experience large short-time coupling.

When Ω is real, the mode is neither damped nor amplified and may define a steady state, or CCM
of the SLDOF. These states are typically well approximated by the CCMs of a simplified TW model
obtained by neglecting gain dispersion and nonlinear compression (ε = 0), replacing N(z, t) with its
spatial average N̄(t), and averaging (1b) [17, 15]. In contrast to the general case, the real pairs (Ω, N̄)
obtained from the reduced field equations, or their offsets (∆Ω,∆N̄) from a SLR (ωsl, Nsl), are suffi-
cient to determine the steady states [17]. For fixed κ, CCM curves, analogs of the external-cavity-mode
(ECM) ellipses of the LK model, are defined in (<∆Ω,∆N̄) domain by ∆ω = (∆ωmg/∆Nmg)∆N̄±
W (∆N̄)

2
mod 2π

τ0
. The curve width W (∆N̄) and MGM positions (∆ωmg,∆Nmg) are given analyt-

ically [15], while later used curve height H(∆ω) must be found numerically. Each curve contains
individual CCMs separated in frequency by about 2π/τ . For more details on instantaneous modes,
CCM curves, and available formulas see Appendix.

Fig. 4 shows parts of CCM curves near a single SLR (black box) for several κ. In contrast to the
LK-model, the curves surround or bypass multiple SLRs. Instantaneous modes inside (gray shading
for κ = 0.15) or outside the loops have negative or positive =Ω (i.e., damping). Except for an ex-
ceptional mode (EM), <Ω varies weakly with N̄ , maintaining a spacing of about τ−1 to its neighbors.
Amplification is strongest when (<Ω, N̄) lies near the loop diagonal, with maximal gain for regular
modes slightly above the SLR. Each regular mode defines two CCMs, (ωs, N̄s) and (ω?s , N̄

?
s ), with

similar frequencies on the lower and upper loop branches. The two states are analogs of the “mode”
(node-type) and the “antimode” (saddle-type) ECMs of the LK model. An example of a node-type CCM
induced by a regular mode is the MGM (black up-triangle). In contrast, the EM follows the thin dotted
line with =Ω decreasing along its path. Below Nsl, the EM at ∼ 48 GHz behaves like a regular mode
and defines a node-type CCM (ωem, Nem) (black down-triangle), with ωem only slightly above ωsl.
Unlike regular modes, the EM does not form a dual CCM: once N̄ exceeds N̄sl, it bypasses nearby
located complex Ω of another mode and continues along the CCM loop’s diagonal (see Fig. 3(b) in
[15] for more details). For N̄ & Nsl, the EM’s complex frequency can approach those of neighboring
modes, leading to strong short-time coupling and intensity exchange between them.

The EM-induced CCMs have ∆ωem ≈ 0. By neglecting ∆ωem, we can relate the CCM curve’s height
estimates at two frequency offsets, H ′ = H(−W (∆Nem)) and H ′′ = H(∆ωmg) (green and red
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Figure 4: Three main modes (dots) near a single SLR during the LFF event in the <Ω/N̄ domain with
a color-coding of the time instants. Insets show corresponding time-traces of those mode amplitudes
and N̄(t), colored by mode frequencies. Solid: CCM curves for selected κ. Green/red: curves at the
minimal and maximal κ where LFFs are expected. Thick vertical bars: expected initiation of LFFs by
fluctuating N̄ with maximal overshoot ∆N . Box and triangles: special modes.

vertical bars for κ = K′ and K′′ in Fig. 4) by{
W (∆Nem) + 2(∆ωmg/∆Nmg)∆Nem = 0

2(∆ωmg/∆Nmg)(∆Nem +H ′) = W (∆Nem −H ′)
, (2a)

2(∆ωmg/∆Nmg)H ′′∆ωmg = W
(
H ′′ + ∆Nmg

)
. (2b)

When defined,H(∆ωs, κ) ≈ N̄?
s − N̄s, increases with both κ and ωs ∈ [ωmg, ωsl]. In contrast to the

LK model, it is undefined if κ significantly exceeds |rf | and dual “antimodes” do not exist.

Within the LK-model framework [5, 6], LFFs are explained by chaotic trajectories crossing the stable
manifold of an antimode (ω?s , N̄?

s ), which triggers a rapid excursion along the unstable manifold to high
carrier densities, accompanied by sudden power drops. Large time lags between LFF events arise
from the slow relaxation back towards the MGM, where the trajectory may again cross an antimode’s
stable manifold. Our TW modeling confirms this scenario, though we do not construct CCM manifolds
explicitly. To explain the LFFs, we use Figs. 2(c-f) and Fig. 4 (case κ = 0.15, represented by the
colored dots, black CCM curve, and insets). A typical LFF consists of the following stages:

(i) Just before the LFF event, the EM and neighboring modes are damped, while N̄(t) and <Ω of
the main modes are close to (ωs, N̄s) (and the MGM) on the lower part of the CCM curve, see black
dots and up-triangle in Fig. 4. In Figs. 2(e,f) rightside, N̄ (t) oscillates just above the red horizontal line,
Nmg.

(ii) A fluctuating N̄(t) exceeds N̄?
s of the dual CCM on the upper CCM loop, see Fig. 4 and the light

blue line at the instant t′ in Figs. 2(e,f) rightside, initiating damping of the ωs-modes.
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M. Radziunas, D. M. Kane 6

(iii) The still dominant ωs-modes are damped, P̄ decays, and N̄ grows, until it reaches and exceeds
Nsl, see Figs. 2(c-f) within the time interval [t′, t′′]. To see a power drop, inspect the blue or red curves
in panel (d). The dominance of the ωs-modes during this transition is indicated by the black (up to 4 ns)
dots in Fig. 4 and the violet (about 17 GHz) dots in the insets.

(iv) Increasing N̄ amplifies modes with <Ω > ωs. However, it is the EM and its neighbors with the
smallest=Ω that experience the largest growth over a short time window and start to dominate shortly
after N̄ exceeds Nsl. Fig. 4 shows this with the first appearance of dark dots near the SLR and the
switch between violet and red colors in the insets. From that point on, the fields entering the EC are
primarily determined by ωem-modes.

(v) For about τ -time slot, N̄(t) and the main mode frequencies remain close to those of the SLR,
see oscillations of N̄(t) around the black line behind t′′ in Figs. 2(e,f). ωem-modes grow (red dots at
[4, 8] ns in the top inset of Fig. 4), sharing their intensity due to the large contributions from Kk,l.

(vi) The ωem-modes-determined reinjected fields, mainly, force the reduction of N̄(t) toward Nem,
orange line in Figs. 2(e,f). This drop implies the amplification of lower-frequency modes (dots at about
36 GHz in Fig. 4). The ωem-modes remain important for another τ -order time slot (see the switches
between the red and green color dots within [15, 20] ns in the insets of Fig. 4).

(vii) The previous step is repeated with the updated frequency of the reinjected field leading to a
further reduction of N̄ and the dominating frequencies. The evolution of dots (as indicated by their
time calibrated color) in Fig. 4 and its insets shows involvement of modes with decaying frequencies
until ωs-modes dominate again and a new LFF event can be realized.

Thus, to initiate an LFF event once the ωs-modes dominate, the following must hold: (A) ωem-modes
are damped; (B) fluctuating N̄(t) reaches and crosses the N̄?

s level; and (C) as N̄ rises to Nsl and
beyond, ωs-modes are damped while ωem-modes are amplified. To formalize these requirements, we
define the maximal overshoot ∆N = maxt,r N̄(t) − N̄r of N̄(t) when ωr-modes dominate (the
trajectory fluctuates around the CCMs (ωr, N̄r)) and the system is before or well after an LFF event.
The conditions (A)-(C) for initiating the LFF at (ωs, N̄s) read as

N̄s + ∆N ≤ Nem, ∆N ≥ H(∆ωs), ωmg ≤ ωs < ωsl (3a)

⇒ ∆ωmg ≤ −W (∆Nem) ⇒ H ′′ ≤ ∆N ≤ H ′. (3b)

The first and second conditions in (3a) ensure (A) during N̄ fluctuations and (B), respectively. Con-
dition (C), requiring a nonempty gap between N̄?

s and Nsl, follows directly from (3a). Assuming ∆N

remains nearly constant during the chaotic regime for all κ, and recalling that H ′ and H ′′ increase
with κ, the last relation in (3b) yields the feedback range K′(∆N) ≤ κ ≤ K′′(∆N) that supports
LFFs. To find K′ and K′′, we substitute H ′ and H ′′ in (2a) and (2b) with ∆N and solve them for κ.
For example, for ∆N = 0.047 · 1024/m3 and standard parameters (depicted by bullet I in Fig. 5), we
obtain K′ ≈ 0.082 and K′′ ≈ 0.212, which define the thick green and red CCM curves in Fig. 4. The
corresponding vertical bars in the same figure represent H ′(K′) and H ′′(K′′) (both equal to ∆N )
where LFF events can be initiated.

The color maps in Fig. 5 show K′ and K′′ as functions of |rf |2 and αH, estimated using the same
∆N . Within white regions at low αH Eqs. (3a) or (3b) can not be resolved or conditions (3b) are
violated. The upper LFF border K′′ increases with both |rf |2 and αH. The lower border K′ exhibits
more complex behavior. While it increases with |rf |2, its minimum for given ∆N and fixed |rf |2 occurs
at αH ≈ 2.5. The K′ and K′′ estimates at bullet I define the thick vertical white bars in Fig. 3, which
accurately mark regions with large sub-0.1 GHz peaks in RF spectra and distinct peaks at λsl in optical
spectra. An SLDOF operated at higher injection currents, as modeled here, is preferable for obtaining
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Figure 5: LFF region κ-border estimates K′ (a) and K′′ (b) as functions of parameters |rf |2 and αH

for ∆N = 0.047 · 1024/m3.

more complex chaos at a given optical feedback level in the coherence collapse regime [14, 13]. The
onset of LFFs reduces this complexity. Thus, a high value of K′ is desirable. Fig. 5(a) shows, that a
desired setup should have an enhanced front facet reflection, (e.g., |rf |2 > 0.15) and αH ≈ 2.5,
which should guarantee that K′ > 0.15.

Figure 6: Mappings of the RF-spectra for increased κ, color-coded on a dB scale, for cases II-V from
Fig. 5. |rf |2 = 0.05 and αH = 4.5 (a) or 3 (b); αH = 3.5 and |rf |2 = 0.1 (c) or 0.02 (d).

To confirm our estimates, we simulated system performance with increasing κ using |rf |2 and αH from
cases II-V in Fig. 5. The resulting RF-spectral maps are shown in Fig. 6, with the vertical white lines
representing LFF border estimates from Fig. 5. These estimates properly predict the LFF regions,
indicated by high-intensity peaks below 0.1 GHz. Slight deviations between calculated and estimated
LFF ranges could be due to usage of the same ∆N (which should grow with I/Ith) in all our examples.
I/Ith is about 2.21 for cases I, II, and III, but 2.34 for case IV and 2.07 for case V, which is consistent
with under- and over-estimation of the LFF ranges in Figs. 6(c) and (d), respectively.
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M. Radziunas, D. M. Kane 8

In conclusion, we analyzed the LFF regime of the SLDOF using the TW model and mode analysis.
This approach provides a fast way to estimate LFF region boundaries, useful for designing SLDOF
systems with broadband chaos. LFFs are much more prevalent than is commonly acknowledged.

Appendix

Below we define the traveling-wave model employed in our simulations, list the standard parameters
used, and present the formulas and methods for computing instantaneous optical modes, compound
cavity modes (CCMs), and CCM curves in the optical frequency–average carrier density domain.

Traveling wave model

The 1(space) + 1(time)-dimensional traveling wave (TW) model [18, 15] is based on the TW equations
for the slowly varying complex counterpropagating optical fields E+(z, t) and E−(z, t) in a Fabry-
Perot (FP) semiconductor laser (SL), defined for z ∈ (0, l):(

ng

c
∂t ± ∂z

)
E±(z, t) = −iβ(z, t)E±(z, t) + F±sp. (4)

Here, c is the speed of light in vacuum and F±sp represent Langevin noise sources. At the rear (z = 0)
and front (z = l) facets of the diode, the fields satisfy reflection-reinjection boundary conditions,

E+(0, t) = −r∗rE−(0, t),

(
Fe(t)
E−(l, t)

)
=

(
tf −r∗f
rf tf

)(
E+(l, t)
Fi(t)

)
, tf =

√
1− |rf |2,

(5)
where Fe and Fi denote the emitted and reinjected fields just behind the front facet of the SL, respec-
tively. For the considered SLDOF system, we further assume that these fields are related by

Fi(t) = κeiϕFe(t− τ), (6)

where κ and ϕ represent the amplitude and phase of the fraction of the emitted field that is reinjected,
and the delay time τ corresponds to the external cavity (EC) roundtrip time. The field propagation
in the EC, z ∈ (l, l + L), with L = cτ

2ng
denoting the EC length, can also be described by (4). To

satisfy (6), we identify the forward and backward fields at the SL-facing side of the EC, z = l+, with
the emitted and injected fields, (E+(l+, t), E−(l+, t)) = (Fe(t), Fi(t)). Within the EC, we assume
β = 0, ng = 1, and define the external mirror reflectivity rec, which relates the couterpropagating
field components via E−(l + L, t) = recE

+(l + L, t), as κeiϕ.

Within the SL, z ∈ (0, l), the complex field propagation factor β(z, t) in (4) is defined by

β(z, t) = β0(z, t)− iD
2
, β0(z, t) = igT−α0

2
− αHg

′(N(z,t)−Ntr)
2

, gT = g′(N(z,t)−Ntr)
1+εP (z,t)

. (7)

It depends on the carrier density N(z, t) and, via the total gain function gT , on local photon density
P (z, t) = |E+|2 + |E−|2. The linear operator D in (7) describes Lorentzian-shaped material gain
dispersion [18],

DE± = ḡ(E± − p±),
λ2

0

2πc
d
dt
p± = γ̄

2
(E± − p±)− iλ̄p±, (8)
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where p+(z, t) and p−(z, t) are the complex linear polarization functions, enabling a straightforward
inclusion of frequency dependence in the time-domain model [18]. In the EC, we assume ḡ = 0.
Finally, the evolution of N is governed by the rate equation [18],

d
dt
N(z, t) = 1

qlσ

(
I +

U ′F
Rs

(N̄ −N)
)
− N

τN
− c

ng
< ∑
ν=±

Eν∗ ·
(
gT (N,P )−D

)
Eν . (9)

Here, µ̄ denotes the spatial average of a spatially distributed function µ(z) over the SL, and q is
the electron charge. In the simplified model, which neglects gain compression and dispersion and
relies on the spatially averaged carrier density N̄(t), the propagation factor β is uniform along the SL
(z ∈ (0, L)) and the carrier dynamics is governed by a single ODE:

β(z, t) ≡ β̄(t) = i (1+iαH)g′(N̄(t)−Ntr)−α0

2
, d

dt
N̄(t) = I

qlσ
− N̄(t)

τN
− c

ng
g′(N̄(t)−Ntr)P̄ (t).

(10)

The meanings of the model parameters not mentioned before are listed in Table 1 and discussed in
detail in [18]. With minor exceptions, all parameter values are identical to those used in [12, 15], and
most were adapted from [19].

Table 1: Model parameters and their values

notation meaning value
λ0 central wavelength 830 nm
τ field roundtrip time in the EC 4.5 ns
l length of the SL diode 300µm
rr rear facet (z = −l) reflectivity

√
0.95

rf front facet (z = 0) reflectivity
√

0.05
ng group velocity factor 3.7
g′ differential gain 1.036 · 10−20 m2

Ntr transparency carrier density 1024 m−3

α0 field losses in the diode 60 cm−1

σ crosssection of the active region 5µm×0.1µm
τN carrier lifetime 2 ns
ḡ height of the Lorentzian-shaped material gain 100 cm−1

γ̄ full width at half maximum of Lorentzian 30 nm
λ̄ detuning of the material gain peak wavelength 0 nm
Rs series resistance 1 Ω
U ′F derivative of the Fermi level separation 3.5 · 10−26 Vm3

I injection current 55 mA
αH linewidth enhancement factor 3.5
ε nonlinear gain compression 10−23 m3

κ fraction of the reinjected field amplitude [0, 0.35]
ϕ reinjected field phase shift 0
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Instantaneous optical modes

The field equations (4)-(8) for z ∈ SL ∪ EC can be written in operator form,

−i∂tΨ(z, t) = H(∂z, β(N, εP ))Ψ + Fsp(z, t), z ∈ (0, l) ∪ (l, l + L), where

H =


c
ng

(i∂z − β0 + iḡ
2

) 0 − c
ng

iḡ
2

0

0 c
ng

(−i∂z − β0 + iḡ
2

) 0 − c
ng

iḡ
2

−i γ̄
2

2πc
λ2

0
0 (i γ̄

2
− λ̄)2πc

λ2
0

0

0 −i γ̄
2

2πc
λ2

0
0 (i γ̄

2
− λ̄)2πc

λ2
0

 ,

Ψ(z, t) =
(
E+, E−, p+, p−

)T
, Fsp(z, t) =

(−ic
ng
F+

sp,
−ic
ng
F−sp, 0, 0

)T
.

(11)

Once the propagation factor β is fixed, substituting the Ansatz Ψ(z, t) = Θ(z)eiΩt into (11) and
neglecting the Fsp term yields a spectral problem with respect to the complex eigenfrequency Ω and
the nontrivial eigenvector Θ(z) = (Θ+

E,Θ
−
E,Θ

+
p ,Θ

−
p )T :

ΩΦ(z) = H(∂z, β)Θ(z) ⇒
{
∂zΘ

±
E(z) = ∓i[β0 + Ωng

c
− iḡµ(Ω)

2
]Θ±E

Θ±p (z) = [1− µ(Ω)]Θ±E(z)
,

where µ(Ω) =
i[Ω+(2πc/λ2

0)λ̄]

(πc/λ2
0)γ̄+i[Ω+(2πc/λ2

0)λ̄]
,

(12)

and the first two components of the vector-function Θ(z) satisfy the boundary-interface conditions

ζ1(0) = −r∗r ζ2(0), ζ2(l + L) = recζ1(l + L),

(
ζ1(l+)
ζ2(l)

)
=

(
tf −r∗f
rf tf

)(
ζ1(l)
ζ2(l+)

)
. (13)

For each Ω, the eigenvector components Θ±E can be propagated along the SL and EC using ana-
lytically derived transfer matrices. By relating the values of Θ±E at the boundaries of these regions
and applying the reflection-transmission conditions, we construct a complex characteristic equation
[18, 20, 21] with respect to the complex eigenfrequencies Ω:

G(β̄0,Ω)+1

G(β̄0,Ω)+|rf |2 = −κeiϕ−iΩτ

rf
, where G(β̄0,Ω) = rfr

∗
r e
−i[2β̄0l−iḡµ(Ω)l+Ωτ0], τ0 = 2lng

c
. (14)

Once Ω is found, the eigenvector components Θ±E(z) are reconstructed using the transfer matrices,(
Θ+
E

Θ−E

)
(z′′) =

(
e−iβ̃(Ω,z′,z′′) 0

0 eiβ̃(Ω,z′,z′′)

)(
Θ+
E

Θ−E

)
(z′),

β̃(Ω, z′, z′′) =
∫ z′′
z′
β0(z)dz + (Ωng

c
− iḡµ(Ω)

2
)(z′′ − z′), z′, z′′ ∈ SL or EC,

(15)

while Θ±p (z) follows from (12). After defining a scalar product

(ξ, ζ) =
∑4

j=1 ng

∫ l
0
ξ∗j (z)ζj(z)dz +

∫ l+L
l

ξ∗j (z)ζj(z)dz, (16)

for four-component vector-functions ξ(z) and ζ(z), satisfying the boundary-interface conditions

ξ2(0) = −rrξ1(0), ξ1(l + L) = r∗ecξ2(l + L),

(
ξ2(l+)
ξ1(l)

)
=

(
tf −rf

r∗f tf

)(
ξ2(l)
ξ1(l+)

)
(17)

and (13), respectively, we construct the adjoint operatorH† such that (ξ,Hζ) = (H†ξ, ζ):

H† =


c
ng

(i∂z − β∗0 − iḡ
2

) 0 i γ̄
2

2πc
λ2

0
0

0 c
ng

(−i∂z − β∗0 − iḡ
2

) 0 i γ̄
2

2πc
λ2

0
c
ng

iḡ
2

0 −(i γ̄
2

+ λ̄)2πc
λ2

0
0

0 c
ng

iḡ
2

0 −(i γ̄
2

+ λ̄)2πc
λ2

0

 . (18)
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Each mode (Ω,Θ(z)) has a corresponding adjoint counterpart, satisfying

H†Θ† = Ω∗Θ†, where Θ†(z) =
(

Θ−∗E ,Θ+∗
E ,

ḡλ2
0

2ngγ̄π
Θ−∗p ,

ḡλ2
0

2ngγ̄π
Θ+∗
p

)T
(19)

fulfills (17). For two modes with Ωl 6= Ωk, the eigenvectors Θl and Θ†k are orthogonal, (Θ†k,Θl) = 0.
Except at mode degeneracies [22], also known as exceptional points (EPs) [23], where the algebraic
multiplicity of a mode exceeds its geometric multiplicity and both (14) and

E(β̄0,Ω) = (G(β̄0,Ω) + 1)2 − τ0
τ

[
1 +

(cḡ/2ng)(πc/λ2
0)γ̄

[(πc/λ2
0)γ̄+i[Ω+(2πc/λ2

0)λ̄]]2

] t2f κeiϕ−iΩτ
rf

G(β̄0,Ω) = 0 (20)

are satisfied, the self-product (Θ†,Θ) remains nonzero. Since τ0
τ
� 1 in our case, EPs can occur only

when G(β̄0,Ω) ≈ −1. The sets {Θk(z)} and {Θ†k(z)}, evaluated for the time-dependent distribution
β(z, t) obtained during TW model simulations, can then be used to expand the calculated optical field
into modal components [20]:

Ψ(z, t) =
∑

k fk(t)Θk(z; β(z, t)), fk(t) =
(Θ†k(z),Ψ(z,t))

(Θ†k(z),Θk(z))
. (21)

The complex mode amplitudes fk(t) and instantaneous mode frequencies Ωk(β(z, t)) can be used
for time-frequency domain representations of the dynamical states [20] in general, and for explain-
ing low-frequency fluctuations [15] in particular. Near an EP, two nearly-degenerated eigenvectors in
the mode expansion can be replaced by their properly scaled sum and difference (or by generalized
eigenvectors when operating exactly at the EP) [24]. Applying the mode expansion technique to the
field equations (11) yields a system of ODEs [20],

d
dt
fk = iΩkfk +

∑
lKk,l(β,Ωk,Ωl)fl + ζ

(k)
sp , Kk,l = − (Θ†k,

d
dt

Θl)

(Θ†k,Θk)
, ζ

(k)
sp = i

(Θ†k,Fsp)

(Θ†k,Θk)
, (22)

governing the evolution of the mode amplitudes fk. In the simplified model, the mode coupling terms
are given by Kk,l = K̃k,l(N̄ ,Ωk,Ωl)

d
dt
N̄ , where K̃k,l = −(Θ†k,

dΘl
dN̄

)/(Θ†k,Θk), and are available
analytically [21]. If the eigenvectors are normalized such that Θ+

E(l+) = 1 (so that fk in (21) represent
mode contributions to the emitted field), these expressions can be written as

K̄k,l(N̄ ,Ωk,Ωl) =


t2f g
′l(1+iαH)G(N̄,Ωk)(G(N̄,Ωk)+1)3((τ+τ0)G(N̄,Ωk)+(τ−τ0)|rf |2)

2τ(G(N̄,Ωk)+|rf |2)2E2(N̄,Ωk)
k = l

− t2f g
′l(1+iαH)(G(N̄,Ωk)+1)

√
G(N̄,Ωk)G(N̄,Ωl) sinc

(Ωk−Ωl)τ0
2

i(G(N̄,Ωl)+|rf |2)E(N̄,Ωk)(Ωk−Ωl)τ
k 6= l

. (23)

Another normalization, which assumes (Θ†k,Θk) = 1, allows to nullify the K̄k,k terms in (22). Inde-
pendently of normalization, the complex coupling factors K̄k,l, which are inversely proportional to the
mode frequency separation (typically approximated by (2π/τ) and its multiples) and the EP-defining
function E , are generally moderate or small. Consequently, <Ω and =Ω usually provide a good rep-
resentation of a mode’s instantaneous relative optical frequency and its damping or amplification rate,
even in the presence of other undamped modes. The coupling factors K̄k,l become significant only
when |Ωk − Ωl| � 1 and |E| � 1, i.e., in the vicinity of an EP.

Compound cavity modes

When Ω = ω ∈ R, i.e., =Ω = 0, the instantaneous mode defines the steady state, or compound
cavity mode (CCM). For the general TW model, finding CCMs is nontrivial, as it requires constructing
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the spatially distributed functions β(z), P (z), and N(z) that satisfy the stationary (9) [17]. In the
simplified TW model, the situation is much simpler: β(z) in (10) is a linear function of the real scalar
N̄ , such that the complex characteristic function in (14) depends only on N̄ , the complex Ω, and
the model parameters. Thus, (14) alone determines the CCM-defining pairs (N̄ , ω). For κ = 0 (the
solitary SL without feedback), (14) implies

G(Nsl, ωsl) = −1 ⇒ Nsl = Ntr + α0l−ln |rfrr|
g′l

, ωsl = arg(−rfr∗r )+αH(α0l−ln |rfrr|)
τ0

mod 2π
τ0
,
(24)

where the uniqueNsl is the threshold carrier density, while the multiple ωsl are Fabry-Perot resonance
frequencies separated by (2π/τ0).

A fast method to find CCMs in the<Ω/N̄ domain has been discussed, e.g., in [20, 18, 17]. It is based
on separately considering the real amplitudes and phases of the terms on both sides of (14). After
introduction of the carrier density and frequency offsets, ∆N̄ = N̄ − Nsl and ∆ω = ω − ωsl, the
resulting conditions can be written as

|rf | |e
g′l∆N̄ei(αHg

′l∆N̄−∆ωτ0)−1|
|eg′l∆N̄ei(αHg

′l∆N̄−∆ωτ0)−|rf |2|
= κ,

(ωslτ + π + arg rf) + ∆ωτ + arg e(1+iαH)g′l∆N̄−i∆ωτ0−1

e(1+iαH)g′l∆N̄−i∆ωτ0−|rf |2
= ϕ mod 2π.

(25)

Here, κ and ϕ are expressed explicitly as functions of ∆ω and ∆N̄ . For fixed κ, the first relation in
(25) defines pairs (∆ω,∆N̄) of CCMs lying along ϕ-parametrized curves. Alternatively, for fixed ϕ,
the second relation defines κ-parametrized CCM curves. Within a bounded ∆ω/∆N̄ domain, these
curves can be traced using continuation techniques [17], and their intersections specify the CCM
positions. For the present SLDOF system, the first condition in (25) allows deriving explicit formulas
for ϕ-parametrized, fixed-κ CCM curves [15]:

∆ω = αHg
′l

τ0
∆N̄ ± 1

2
W (∆N̄) mod 2π

τ0
, where

W (∆N̄) = 2
τ0

arccos cosh(g′l∆N̄)−κ2 cosh(g′l∆N̄−ln |rf |2)
1−κ2 .

(26)

Here, W (∆N̄) denotes the width of the CCM-curve in the <Ω/N̄ domain at the given "height"∆N̄ .
The minima of these curves, whereW vanishes, define the position of the maximal-gain mode (MGM)
(∆ωmg,∆Nmg) on the CCM-curve [15]:

∆ωmg = −αH

τ0
ln
(1+κ/|rf |

1+κ|rf |
)
, ∆Nmg = τ0∆ωmg

αHg′l
. (27)

We note that (26) and (27) completely ignore the length of the EC (the formulas are independent on τ ).
Consequently, for short compound cavities (see, e.g., [20, 18]), the MGM defined at a fixed feedback
phase ϕ can be significantly shifted relative to the one predicted by (27). In such short cavities, the
feedback phase ϕ plays a crucial role in determining the system dynamics. This is not a concern for
the long external cavity system modeled in the associated manuscript.
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