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Responsive dormancy of a spatial population among a
moving trap

Helia Shafigh, Leo Tyrpak

Abstract

In this paper, we study a spatial model for dormancy in a random environment via a
two-type branching random walk in continuous-time, where individuals switch between
dormant and active states depending on the current state of a fluctuating environment
(responsive switching). The branching mechanism is governed by the same random
environment, which is here taken to be a simple symmetric random walk. We will inter-
pret the presence of this random walk as a trap which attempts to kill the individuals
whenever it meets them. The responsive switching between the active and dormant
state is defined so that active individuals become dormant only when a trap is present
at their location and remain active otherwise. Conversely, dormant individuals can only
wake up once the environment becomes trap-free again.

We quantify the influence of dormancy on population survival by analyzing the long-
time asymptotics of the expected population size. The starting point for our mathemat-
ical considerations and proofs is the parabolic Anderson model via the Feynman-Kac
formula. Specifically, we investigate the quantitative role of dormancy by extending the
Parabolic Anderson model to a two-type random walk framework.

1 Introduction and main results

1.1 Biological Motivation

Dormancy is an evolutionary trait that has developed independently across various life forms
and is particularly common in microbial communities. To give a definition, we follow [BHS21]
and refer to dormancy as the ability of individuals to enter a reversible state of minimal
metabolic activity. The collection of all dormant individuals within a population is also often
called a seed-bank. Maintaining a seed bank reduces the reproduction rate but also de-
creases resource requirements, making dormancy a viable strategy under unfavourable en-
vironmental conditions. Initially studied in plants as a survival strategy (cf. [C66]), dormancy
is now recognized as a prevalent trait in microbial communities with significant evolutionary,
ecological, and pathogenic implications, serving as an efficient strategy to survive challeng-
ing environmental conditions, competitive pressure, or antibiotic treatment. However, it is at
the same time a costly trait whose maintenance requires energy and a sophisticated mecha-
nism for switching between active and dormant states. Moreover, the increased survival rate
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of dormant individuals must be weighed against their low reproductive activity. Despite its
costs, dormancy still seems to provide advantages in variable environments. For a recent
overview on biological dormancy and seed-banks we refer to [BHLWB21].

The existing stochastic models for dormancy can be roughly categorized into two approaches:
population genetics models and population dynamics models. The first approach assumes
a constant population size and focuses on the genealogical implications of seed banks,
whereas the second typically deals with individual-based modeling via branching process
theory. Following a brief example in the book [HJV07], a two-type branching process (with-
out migration) in a fluctuating random environment has been introduced in [BHS21], which
served as a motivation for this paper. In [BHS21], the authors discuss three switching strate-
gies between dormant and active types: stochastic (or: spontaneous; simultaneous) switch-
ing, responsive switching and anticipatory switching. In the latter two strategies, individuals
adapt to environmental fluctuations by choosing their state (dormant or active) based on en-
vironmental cues—for example, with increased reproduction during favourable phases and
a larger seed bank during unfavourable ones in the responsive strategy, and vice versa in
the anticipatory strategy. The stochastic strategy, in contrast, remains unaffected by environ-
mental changes.

1.2 Modelling Approach and Goals

The aim of this paper is to investigate the responsive switching strategy in order to quan-
titatively compare the long-term behaviour of populations with and without this dormancy
mechanism, in the case where the underlying environment is random and consists of a sin-
gle moving particle.

Inspired by the Galton-Watson process with dormancy introduced in [BHS21], a spatial
model for dormancy in a random environment was recently proposed in [S24], where the
effect of stochastic dormancy on population growth and survival on Zd is quantified via the
large-time asymptotics of the expected population size. The random environment driving the
population dynamics was modelled using three types of particle systems: a Bernoulli field
of immobile particles, a single moving particle, and a Poisson field of moving particles. This
framework was further extended in [S25] to incorporate the simple symmetric exclusion pro-
cess as the underlying random environment. To the best of our knowledge, other spatial
models of dormancy in random environments within the setting of population size models
are still absent from the literature. In particular, the responsive dormancy strategy has not
yet been addressed in the context of spatially structured populations.

1.3 Description of the Model

In our model, the population resides on Zd and consists of two different types i ∈ {0, 1} of
particles, where we refer to 0 as dormant and to 1 as active. Given random rates ξ+(x, t),
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Dormancy 3

ξ−(x, t) ≥ 0, which depend on space and time, we define η(x, i, t) to be the number of
particles at spatial point x ∈ Zd and state i at time t ≥ 0, which evolves over time according
to the following rules:

� at time t = 0, there is only one active particle in 0 ∈ Zd and all other sites are vacant;

� all particles act independently of each other;

� active particles become dormant at rate s1(ξ+ − ξ−) ≥ 0 and dormant particles
become active at rate s0(ξ+ − ξ−) ≥ 0;

� active particles split into two at rate ξ+ and die at rate ξ− ≥ 0;

� active particles jump to one of the neighbour sites with equal rate κ ≥ 0;

� dormant particles do not participate in branching, dying or migration.

By assumption, the initial condition is given by η(x, i, 0) = δ(0,1)(x, i). Let us define

η(t) :=
{
η(x, i, t) | (x, i) ∈ Zd

}
as configurations on NZd×{0,1}, representing the number

of particles in each point x ∈ Zd and state i ∈ {0, 1} at time t. Then η = (η(t))t≥0 is
a Markov process on NZd×{0,1}. However, as we will see later, we will use other methods
throughout the paper to describe our population, such that a further formalization of η shall
not be necessary. In the following, we abbreviate ξ(x, t) := ξ+(x, t) − ξ−(x, t) for the
balance between branching and dying and refer to ξ as the underlying random environment.
In the following, if we fix a realization of ξ, then we will denote by

u(x, i, t) := uξ(x, i, t) := E[η(x, i, t) | ξ] (1.1)

the expected number of particles in x ∈ Zd and state i ∈ {0, 1} at time t with initial
condition

u(x, i, 0) = δ(0,1)(x, i),

where the expectation is only taken over switching, branching and dying (i. e. over the evo-
lution of η for fixed ξ) and not over the random environment ξ. If we average over the envi-
ronment ξ as well, we use the following notation:

〈u(x, i, t)〉

as the annealed number of particles in x ∈ Zd and in state i ∈ {0, 1} at time t.

1.4 Choice of the Random Environment

Although one could, in principle, allow ξ to take both negative and positive values—corresponding
to death and branching of individuals, respectively—in this paper we restrict ourselves to a
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trapping random environment defined as follows. Y = (Y (t))t≥0 is a continuous-time sim-
ple symmetric random walk on Zd that starts in the origin and jumps at total rate 2dρ for
some ρ > 0. We then define ξ as a Markov process on {−γ, 0}Zd given by

ξ(x, t) = −γδY (t)(x), x ∈ Zd, t > 0,

where γ > 0 is fixed. In words, the environment contains a single moving particle; whenever
it occupies the same site as an individual, that individual is trapped and dies at rate γ > 0.

1.5 Main Result

Recall the number of particles u(x, i, t) in point x ∈ Zd and state i ∈ {0, 1} at time t,
as defined in (1.1). The quantity we are interested in at most in the current paper is the
annealed expected number of all particles

〈U(t)〉 :=
∑
x∈Zd

∑
i∈{0,1}

〈u(x, i, t)〉 , (1.2)

which turns into the annealed survival probability up to time t, if we start with one single
particle. Our main result reads:

Theorem 1.1. For all γ ∈ (0,∞) we have that

〈U(t)〉 =



2(
√
κ+ ρ+ s1C1,ρ,κ,s1)

γ
√
πt

(1 + o(1)), d = 1,

4(κ+ ρ)π + s1C2

γ log(t)
(1 + o(1)), d = 2,

1−
γ
(
Gd(0) + s1

2d(κ+ρ)

)
κ+ ρ+ γ

(
Gd(0) + s1Kd

2d(κ+ρ)

) , d ≥ 3

(1.3)

as t → ∞, where Gd(0) is the Green’s function of a random walk with total jump rate 2d,
C2 := C2,s1,ρ > 0 and Kd := Kd,s1,ρ > 0 are some positive constants depending on ρ
and s1, and

C1,ρ,κ,s1 =
1

√
κ+ ρ

(√
s21 + 4ρs1 − s1

) .
We note that the parameter s0 doesn’t appear in the main result, which at first sight might
seem surprising. We will comment more on this in 1.8.
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1.6 Related results

The parabolic Anderson model in the absence of switching has attracted considerable inter-
est in recent years and has been extensively studied for various random environments com-
prising interacting particle systems. For a comprehensive overview of recent developments
concerning the parabolic Anderson model, we refer the reader to [K16]. In this section, we
restrict our attention to those results concerning the parabolic Anderson model on Zd that
are most pertinent to and closely aligned with our framework. The setting of a random walk
in the presence of a single mobile trap has been investigated in [SW11]. In this context, the
random walk and the trap independently jump to neighboring lattice sites at rates κ and ρ,
respectively, and the walk is killed at rate γ whenever both particles occupy the same site. It
was shown in [SW11] that the survival probability of the random walk exhibits the following
asymptotic behavior:



2
√
ρ+ κ

γ
√
πt

(1 + o(1)), d = 1,

4π(ρ+ κ)

γ log(t)
(1 + o(1)), d = 2,

1− γGd(0)

ρ+ κ+ γGd(0)
, d ≥ 3,

(1.4)

for t → ∞ where Gd(0) denotes the Green’s function of a random walk with jump rate
2d evaluated at the origin. Accordingly, in dimensions d ∈ {1, 2}, the survival probability
decays in time, with a constant governed by the parameters ρ, κ, and γ. In contrast, for
d ≥ 3, the survival probability converges to a strictly positive limit in (0, 1), which additionally
depends on the expected total time the random walk spends at the origin, as encoded in the
Green’s function.

More recently, the parabolic Anderson model incorporating a stochastic dormancy strat-
egy—in which switching rates between active and dormant states are constant and inde-
pendent of the environment—has been studied in [S24] and [S25] for various specific real-
izations of the random environment ξ. Specifically, the annealed particle density 〈U(t)〉 has
been analyzed in the cases where ξ is given by (1) a Bernoulli field of static particles, (2) a
single moving particle, (3) a Poisson field of independently moving particles, and (4) the sim-
ple symmetric exclusion process. In the second case—featuring a single mobile trap, which
is most directly related to our setting—it has been demonstrated in [S24, Theorem 1.2] that
the annealed survival probability decays to zero for d ∈ 1, 2 as t → ∞, and satisfies the
asymptotic relation
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

2
√

(s0 + s1)(s0(ρ+ κ) + s1ρ)

s0γ
√
πt

(1 + o(1)), d = 1,

4π( s1
s0
ρ+ ρ+ κ))

γ log(t)
(1 + o(1)), d = 2,

1− γGd(0)

s0
s0+s1

(
ρ+ s0

s0+s1
κ
)

+ γGd(0)
, d ≥ 3

(1.5)

as t → ∞, where Gd is the Green’s function of a random walk with jump rate 2d. A com-
parison of the decay rates and prefactors in (1.4) and (1.5) reveals that the incorporation of
the stochastic dormancy strategy leads to an enhancement of the survival probability across
all spatial dimensions.

1.7 Relation to the Parabolic Anderson Model and the Feynman-Kac
formula

Consider a one-type branching random walk with exclusively active particles, evolving ac-
cording to the same dynamics as in our model, except for the switching mechanism, and
initiated by a single particle at the origin. It is a well-established result (proved in e.g. [GM90])
that the expected number of particles u(x, t) at spatial point x and time t solves the Parabolic
Anderson model

d
dt
u(x, t) = κ∆u(x, t) + ξ(x, t)u(x, t), t > 0, x ∈ Zd

u(x, 0) = δ0(x), x ∈ Zd,

where ∆ is the discrete Laplacian

∆f(x) :=
∑

y∈Zd,x∼y

[f(y)− f(x)]

acting on functions f : Zd → R. We note that this is a coupled system of ODE’s (u(x, .))x∈Zd
with random coefficients ξ(x, t). The parabolic Anderson model has been studied intensely
during the past years and a comprehensive overview of results can be found in [K16]. One
of the most powerful tools and often the starting point of the analysis of the PAM is the
Feynman-Kac formula

u(x, t) = EXx
[
exp

(∫ t

0

ξ(X(s), t− s) ds

)
δ0(X(t))

]
, (1.6)

where EXx denotes the expectation with respect to a continuous-time simple symmetric ran-
dom walk X with start in x and generator κ∆. In other words, the Feynman-Kac formula
asserts that the time evolution of all particles can be expressed as an expectation over one
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single particle moving around according to the same migration kernel and with a varying
mass, representing the population size. As we can see on the right hand-side of (1.6), the
mass of X changes exponentially depending on the random environment ξ. Now, since the
Feynman-Kac formula is a powerful tool for the study of the parabolic Anderson model, it is
natural to seek an analogous representation for our two-type branching model with switch-
ing. To this end, let Y = (Y (t))t≥0 be a continuous-time simple symmetric random walk on
Zd with jump rate 2dρ for a constant ρ > 0 and starting in the origin. For a fixed realization
of Y , we want to define a joint process (X,α) on Zd × {0, 1} with the following dynamics:
Whenever α is 1, the process X performs a simple symmetric random walk with total jump
rate 2dκ, and it stays still if α is 0. On the other hand, the dynamics of α is prescribed by
the trap Y as well as the walk X , in the sense that α may jump from 1 to 0 with rate s1,
whenever the trap Y and the walk X meet, and jump from 0 to 1 with rate s0, whenever X
is away from the trap. Further, recall the quantity u(x, i, t) defined in (1.1), which represents
the number of individuals of the population in spatial position x ∈ Zd, state i ∈ {0, 1} at
time t ≥ 0. Then, given a fixed realization of Y , the function u : Zd×{0, 1}× [0,∞)→ R
can be interpreted as the formal solution of the partial differential equation


d
dt
u(x, i, t) = iκ∆u(x, i, t) +Qu(x, i, t)− iγδY (t)(x)u(x, i, t), t > 0,

u(x, i, 0) = δ(0,1)(x, i).
(1.7)

Here, the operator Q is defined as

Qu(x, i, t) := si(x− Y (t))(u(x, 1− i, t)− u(x, i, t)),

and si(z) is defined as

s1(z) :=

{
s1, z = 0,
0, otherwise,

s0(z) :=

{
0, z = 0,
s0, otherwise,

for constant rates s0, s1 ≥ 0, and

∆u(x, i, t) :=
∑

y∈Zd,x∼y

[u(y, i, t)− u(x, i, t)]

(cf.[BYZ13]). Clearly, without Y the process (X,α) is not Markovian. However, as long as
we are only interested in the annealed quantity 〈u(x, i, t)〉 after averaging over Y as well, it
is sufficient to find a proper formulation for the dynamics of the triple (Y,X, α). To this end,
set Z := X − Y . Then we may describe the Markovian dynamics of (Y,X, α) by defining
the Markov process (Z, α) which has the generator

L̄f(z, i) =
∑
y∼z

(iκ+ ρ)(f(y, i)− f(z, i)) + si(z)(f(z, 1− i)− f(z, i))
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for z ∈ Zd, i, j ∈ {0, 1} and a test function f : Zd × {0, 1} → R. Then, we call
(Z, α) a regime-switching random walk (cf. [YZ10] for the continuous-space version) and
the corresponding Feynman-Kac formula reads

〈u(x, i, t)〉 = E(Z,α)
(x,i)

[
exp

(
−
∫ t

0

γα(s)δ0(Z(s)) ds

)
δ(0,1)(Z(t), α(t))

]
,

where E(Z,α)
(x,i) denotes the expectation over (Z, α) starting from (x, i) (cf. [BYZ13]). To obtain

the total number 〈U(t)〉 of particles at time t, we can sum over all states (x, i) and use a
time-reversal, yielding

〈U(t)〉 = E(Z,α)
(0,1)

[
exp

(
−γ
∫ t

0

δ(0,1)(Z(s), α(s)) ds

)]
, (1.8)

where E(Z,α)
(x,i) denotes the expectation with respect to the Markov process (Z, α) started in

(x, i). Thus, the study of the first moment of our two-type branching process can be reduced
to the analysis of only one particle with the same migration, branching and switching rates.
Note that, as we will only consider traps in this paper, the quantity (1.8) lies in [0, 1] in this
setting and represents the annealed survival probability of X up to time t.

1.8 Discussion

In this section, we analyse how the incorporation of a responsive dormancy strategy, as in-
troduced in our model, influences the long-time dynamics of the population. To begin, a direct
comparison between the known asymptotics (1.4) and our result (1.3) reveals that, across
all spatial dimensions, the inclusion of responsive dormancy increases the survival probabil-
ity relative to corresponding models without dormancy. In the one-dimensional setting, the
improvement due to dormancy is quantified by the additive term

s1

γ
√

(κρ)πt
(√

s21 + 4ρs1 − s1
) , (1.9)

which vanishes in the limit s1 → 0, thereby recovering the known asymptotics (1.4). A
straightforward calculation shows that this term is strictly increasing in s1, confirming that
the responsive strategy becomes increasingly beneficial with stronger dormancy. The more
subtle question, however, is how responsive dormancy compares to stochastic dormancy.
While both strategies yield identical asymptotic survival probabilities as s1 → 0 (converg-
ing to (1.4)), their large-s1 behaviour is different. In the stochastic case, the leading-order
prefactor becomes

2
√
ρs1
s0

, whereas for the responsive strategy we obtain s1
ρ
√
κ+ρ

. Comparing
these expressions shows that the responsive strategy yields a higher survival probability for
large s1 if and only if

s0 > 2ρ
3
2
√
κ+ ρ.
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We do not know of any heuristic explanation for this result. Thus, in one dimension, there is
a threshold behaviour governed by the interplay between the reactivation rate s0, the dor-
mancy intensity s1 and the motion parameters κ, ρ: the responsive strategy outperforms the
stochastic one when reactivation is sufficiently frequent relative to the underlying mobility
dynamics. A similar effect is also observed in two dimensions. Here, the survival probability
under the responsive strategy is enhanced by an additive term of the form s1C2

γ log(t)
, where C2

depends on s1 and ρ only. Although this additive term is always positive for s1 > 0 and van-
ishes for s1 = 0, yielding the known asymptotics (1.4) in this case, it is not immediately clear
whether the survival probability is monotonic in. To compare the responsive and stochastic
strategies, we have to compare the additive terms 4πs1ρ

s0
and s1C2 respectively, as seen from

(1.5) and (1.1) respectively, which yields a simple criterion: the responsive strategy provides
a higher survival probability if and only if

C2 >
4πρ

s0
.

Thus, the relative effectiveness of the two strategies depends on the magnitude of C2 ap-
pearing in (1.3), which is unfortunately not explicit. However some intuition is that the survival
probability in the responsive dormancy case does not depend on s0 whereas the survival
probability of stochastic strategy is worse when s0 is very large as that means individuals
leave dormancy very fast. For higher dimensions, a direct comparison of the asymptotic
survival probabilities from (1.3) and (1.4) leads to the inequality

Gd(0) + s1
2d(κ+ρ)

κ+ ρ+ γ
(
Gd(0) + s1Kd

2d(κ+ρ)

) < Gd(0)

κ+ ρ+ γGd(0)
, (1.10)

which holds for all s1 > 0. This confirms that the responsive strategy always improves
survival probability when dormancy is present. Furthermore, equality is achieved at s1 = 0,
as expected. The derivative of the left-hand side of (1.10) with respect to s1 is negative under
the condition

κ+ ρ < γGd(0)(Kd − 1)

implying that, in this parameter regime, the survival probability is strictly increasing in s1.
In addition, while both strategies yield identical long-time survival probabilities in the limit
s1 → 0, their behaviour as s1 → ∞ differs: While the stochastic survival probability tends
to zero, the responsive one converges to

1− 1

Kd

.

Hence, the responsive dormancy strategy consistently outperforms the stochastic one for
large dormancy intensities s1.

One interesting—and perhaps surprising—difference between our result and previous ones,
both without and with stochastic dormancy, is that, as seen from (1.1), the asymptotic sur-
vival probability in our model appears to be entirely independent of the reactivation rate
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s0, whereas s0 features explicitly in all asymptotic expressions derived in [S24]. This phe-
nomenon can be interpreted as follows: The key difference between the present model and
earlier results such as those in equation (1.5) lies in how the switching mechanism between
active and dormant states interacts with the environment. In previous work, the switching
rates s0 and s1 are constant and independent of the particle’s position relative to the trap.
As a result, particles may become active even while sitting directly on the trap, exposing
themselves to an immediate risk of death. In this setting, both s0 and s1 influence the over-
all survival probability, since they determine the average fraction of time a particle spends
in the active state — the only state in which it can both reproduce and die. Consequently,
the balance between activation and dormancy directly affects both the potential for popu-
lation growth and the likelihood of extinction, making both switching rates relevant to the
asymptotics of the survival probability. In contrast, the present model introduces a struc-
tured, environment-dependent switching mechanism: particles become dormant only when
located at the trap, and they can reactivate only when they are away from it. This spatial
constraint introduces a protective behaviour — particles automatically hide when in danger
and only reemerge in safe regions. As a result, the reactivation rate s0 has no direct impact
on the likelihood of survival, since activation never occurs in risky locations. Instead, only
the dormancy rate s1, which governs how efficiently particles avoid danger by entering the
dormant state, plays a role in the long-term asymptotics. Since dormant particles can not be
killed, and reactivation happens only away from the trap, the extinction dynamics are entirely
driven by the behaviour of the active particles, and the protective mechanism encoded in s1
determines the survival probability — leaving s0 absent from the final results.

1.9 Outline

The remainder of the paper is structured as follows. In Section 2, we derive a representation
of the survival probability based on the number of times the random walk is trapped while
the particle is in its active state. This representation is further related to the distribution
of the waiting times between successive trapping events, for which we establish a precise
asymptotic characterization. Section 3 is devoted to the proof of Theorem 1.1.

2 Preparatory Results

Before we proceed with the proof of Theorem 1.1, we first need some preparations:

2.1 Regeneration times

As the definition of the responsive model suggests, the dynamics of the process (Z, α) are
more complicated than in the case of the stochastic dormancy, so that our proof techniques
from [S24] are not applicable. Hence, we need to find a new way to analyze the asymptotics
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of the survival probability (1.8) for t → ∞. To this end, we will make use of renewal theory
by noting that, starting from (0, 1), every time the process (Z, α) comes back to (0, 1),
it regenerates in the sense that it forgets its past. Define the sequence of stopping times
(τn)n∈N by τ0 := 0 and

σn := inf {t ≥ τn−1 : (Z(t), α(t)) 6= (0, 1)} ,
τn := inf {t ≥ σn : (Z(t), α(t)) = (0, 1)} , n ∈ N, n ≥ 1.

Note: Define the time σn when we leave (0, 1).
If we let Zn = τn − τn−1, then random variable Z1, ..., Zn are independent and identically
distributed with some distribution function F , the inter-arrival distribution, and satisfy τn =∑n

i=1 Zi. Define the counting process (Nt)t≥0 by

Nt = |{n ≥ 1 : τn ≤ t}|, t > 0, (2.1)

Then

〈U(t)〉 = E

[
exp

(
−γ

Nt∑
i=1

Yi

)]
,

where Yi is the time spent at the state (0, 1) at the i-th visit. We note that Yi, i ≥ 1, are
independent and exponentially distributed with parameter 2d(κ+ ρ) + s1. Therefore,

〈U(t)〉 =
∑
n≥1

P[Nt = n]µn =: Gµ(t) (2.2)

for µ := 2d(κ+ρ)+s1
2d(κ+ρ)+s1+γ

. Hence, the study of the survival probability reduces to the study of

the counting process (Nt)t≥0. As a first step, we clarify the relation between the counting
process (Nt)t≥0 and the inter-arrival times Zn, n ∈ N, which exhibit dimension-dependent
behaviour. Our first lemma states the desired relation in the recurrent dimensions:

Lemma 2.1. Denote by

g(λ) =

∫ ∞
0

e−λtdg(t)

the Laplace-Stieltjes transform of a real-valued function g and by

ĝ(λ) =

∫ ∞
0

e−λtg(t)ds

its Laplace transform. Recall the distribution function F (t) = P(Z1 ≤ t) of Z1, as well as
Gµ defined in (2.2). Then, for all λ > 0,

Ĝµ(λ) =
µ

λ
· 1− λF (λ)

1− µλF (λ)
. (2.3)
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Proof. Conditioned on Z1, we have

Gµ(t) =
∑
n≥1

µn (P(Nt = n | Z1 > t)P(Z1 > t) + P(Nt = n | Z1 ≤ t)P(Z1 ≤ t)) .

On the event {Z1 > t} we have∑
n≥1

µnP(Nt = n | Z1 > t) = µP(Nt = 1 | Z1 > t) = µ,

as we then hit (0, 1) exactly once, namely in the starting point. However, on {Z1 ≤ t} we
restart the counting process at Z1 and so, given {Z1 ≤ t}, Nt is equal to 1 + Nt−Z1 in
distribution. Thus,∑

n≥1

µnP(Nt = n | Z1 ≤ t) = µ

∫ t

0

∑
n≥1

µnP(Nt−s = n)dF (s).

This leads to the recursion formula

Gµ(t) = µ(1− F (t)) + µ

∫ t

0

Gµ(t− s)dF (s).

Denoting f(s) := d
ds
F (s) and taking the Laplace transform on both sides, we obtain

Ĝµ(λ) =
µ

λ
− µF (λ) + µĜµ(λ)f̂(λ).

Noting that f̂(λ) = −F (0)+λF (λ) = λF (λ), and solving for Ĝµ(λ), we obtain the claim.
�

2.2 Distribution of Z1

As seen from the relation (2.3), the distribution function F of the inter-arrival time Z1 is
crucial for calculating the long-time asymptotics of the survival probability. Hence, in the next
step we aim to study the behaviour of Z1 in more detail. This will be done by decomposing
the random time Z1 into a sum of independent random variables. We begin with a heuristic
description of the decomposition. Suppose (Z, α) is at state (0, 1) and let A be the event
that the walk Z jumps away from 0, say to e1 without loss of generality, before transitioning
to the dormant state or being killed. The probability of this event is given by 2d(κ+ρ)

2d(κ+ρ)+s1
.

On the event A, the walk Z behaves like a simple symmetric random walk with total jump
rate 2d(κ + ρ), so that Z1 corresponds to the first hitting time of the origin by this walk,

when starting in e1. We will denote this first hitting time by R2d(κ+ρ)
e1,0

in the following. On the
complementary event Ac, the walk becomes dormant before making a jump. In this case,
the only possible transition is that Z moves away from 0, say to e1 w.l.o.g, according to
a simple symmetric random walk with jump total rate 2dρ. The process may then either
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return to the origin before becoming active again, initiating another excursion, or it may be
reactivated at a non-zero site. Consequently, there is a geometrically distributed number N
of independent excursions from 0 to 0 with jump rate 2dρ, each conditioned to complete
before the exponential waiting time until reactivation expires. In the following, we denote the
duration of the i-th such excurison by R2dρ,i

0,0 . Now, assume that the walk wakes up before
hitting 0 again, and denote by Y its location in the moment it gets active, which is a random
variable on Zd. From now on, Z performs a simple symmetric random walk with jump rate
2d(κ + ρ) before hitting 0 again. We denote by R2d(κ+ρ)

0,Y the random variable representing
the duration of this return time. This leads to the decomposition

Z1
d
=
(
E2d(κ+ρ)+s1 +R

2d(κ+ρ)
e1,0

)
1A+ (2.4)(

N∑
i=1

(
E2dρ+s1,i +R2dρ,i

e1,0

)
+ Es1 +R

2d(κ+ρ)
Y,0

)
1Ac , (2.5)

where we wrote Eβ for an exponential-distributed random variable with parameter β. Here
R2dρ,i
e1,0

are conditioned to be smaller than Es1 . Moreover, the exponential random variable
that appears just after that Es1 is conditioned to be smaller than an independent copy of
R2dρ
e1,0

, however the duration of that exponential random variable will not be important in the
following. This means that Y is the distribution of a continuous time random walk after Es1

time conditional on Es1 < R2dρ
e1,0

, but this conditioning is equivalent to conditioning Y on not
hitting 0. The advantage of this representation is that, since we are summing independent
random variables, it will be easier to extract the Laplace transform. In the following, we will
denote by

f(x, λ) := E
[
e−λR

2d(κ+ρ)
x,0

]
(2.6)

the Laplace transform of the hitting time of 0 by a simple symmetric random walk with total
jump rate 2d(κ + ρ) starting in x ∈ Zd, which exhibits dimension-dependent behaviour.
To simplify notation, we suppress the dependence on d in the abbreviation f(x, λ). The
following lemma quantifies the asymptotic behaviour of the Laplace transform of Z1 in terms
of the function f :

Lemma 2.2. Let EY denote the expectation with respect to the random variable Y . Then

E [exp(−λZ1)] =
2d(κ+ ρ)

s1 + 2d(κ+ ρ)
f(e1, λ) +

s1
s1 + 2d(κ+ ρ)

EY [f(Y, λ)] +O(λ)

as λ→ 0.

Proof. The proof relies on the representation (2.4). Taking the Laplace transform on both
sides, we obtain for the part including the event A that

E
[
e
−λ
(
E2d(κ+ρ)+s1+R

2d(κ+ρ)
e1,0

)
1A

]
=

2d(κ+ ρ)

2d(κ+ ρ) + s1

2d(κ+ ρ) + s1
2d(κ+ ρ) + s1 + λ

fe1(λ)

=
2d(κ+ ρ)

2d(κ+ ρ) + s1
fe1(λ) +O(λ)
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as λ → 0, since, as we will see in Lemma 2.4 and Lemma 2.5 for dimension 1 and 2
respectively, the highest order terms in dimension 1 and 2 are

√
λ and 1

log(1/λ)
respectively,

so that terms of order O(λ) are negligible. Regarding the term on the event Ac appearing
on the right hand-side of (2.4), we have

E
[
e
−λ
(∑N

i=1R
2dρ,i
0,0 +Es1+R

2d(κ+ρ)
Y,0

)
1Ac

]
=

s1
2d(κ+ ρ) + s1

E
[
e−λ

∑N
i=1R

2dρ,i
0,0

]
E
[
e−λE

s1
]
E
[
e−λR

2d(κ+ρ)
Y,0

]
,

where we note that E
[
e−λE

s1
]

= s1
s1+λ

= 1 + O(λ), λ → 0, so will not contribute to
the Laplace transform for small λ. Moreover, note that for a geometric-distributed random
variable G with density (1 − p)kp for k ≥ 0 and independent and identically distributed
random variables Xi we have

E

[
exp (−λ

G∑
i=1

Xi)

]
=

p

1− (1− p)E[exp (−λX1)]
.

Moreover,

E[exp(−λR2dρ
0,0 ) | R2dρ

0,0 ≤ Es0)] ≥ E[exp(−λEs0)] =
s0

s0 + λ

= 1− λ

s0
+ o(λ) = 1 +O(λ)

as λ→ 0, which together with the boundedness of the expectation by 1 gives

E[exp(−λR2dρ
0,0 ) | R2dρ

0,0 ≤ Es0)] = 1 +O(λ), λ→ 0.

Hence, conditioned on B := {R2dρ,i
0,0 ≤ Es0 for all i ≤ N},

E
[
e−λ

∑N
i=1R

2dρ,i
0,0 | B

]
=

P(R2dρ
0,0 > Es0)

1− P(R2dρ
0,0 ≤ Es0)E[e−λR

2dρ
0,0 | R2dρ

0,0 ≤ Es0 ]

=
P(R2dρ

0,0 > Es0)

1− P(R2dρ
0,0 ≤ Es0)(1 +O(λ))

= 1 +O(λ)

as λ → 0. Therefore, this term will not contribute at all, which matches the intuition, as we
are summing up a geometric number of random variables all conditioned to be smaller than
an exponential one. Combining all and noting that

E
[
exp(−λR2d(κ+ρ)

Y,0 )
]

= EY [f(Y, λ)],

where EY shall emphasise the expectation with respect to Y , we obtain the claim. �
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Note, that the asymptotic behaviour of f(e1, λ) is already known in the literature (see e. g.
[L96]) and satsifies

f(e1, λ) ∼

 1−
√

λ
κ+ρ

, d = 1,

1− π
log(1/λ)

, d = 2,
(2.7)

as λ→ 0. Due to its dimension dependent nature, distinct proof techniques are required for
each case. However, the following result, which holds in all dimensions, will play a key role
in our analysis:

Lemma 2.3. LetG be a geometric random variable with parameter p = s1
s1+2ρ

, X̃ a discrete-
time simple symmetric random walk starting in e1, and τ0 the first hitting time of the origin by
X̃ . Then, for any function h : Zd → [0,∞) which is harmonic on Zd \ {0},

EY [h(Y )] =
h(e1)

P(G < τ0)
. (2.8)

Proof. We first note that

PY (Y = y) = PX1 (XEs1 = y | Es1 < τ0) = PX̃1 (X̃G = y | G < τ0).

Indeed, by discretising time we obtain

PX1 (XEs1 = y | Es1 < τ0) = s1

∫ t

0

e−s1t
∞∑
n=0

PX̃1 (X̃n = y | τ0 > n)
(2ρt)n

n!
e−2ρtdt

= s1

∞∑
n=0

PX̃1 (X̃n = y | τ0 > n)
(2ρt)n

n!
· n!

(2ρ+ s1)n+1

=
∞∑
n=0

PX̃1 (X̃n = y | τ0 > n)

(
2ρ

2ρ+ s1

)n
s1

2ρ+ s1

= PX̃1 (X̃G = y | G < τ0).

Therefore, we will consider X̃ from now on instead of the continuous-time version, and write
Pe1 := PX̃e1 for its distribution starting from e1. Now, as h is a harmonic function for x 6= 0,

h(X̃n) is a non-negative martingale conditioned up to the first hitting time τ0 (on the event
{n < τ0}). More precisely, (h(X̃n∧τ0))n is a martingale w.r.t. to the canonical filtration of
the random walk X̃n and therefore,

Ee1 [h(X̃n∧τ0)] = h(e1), n ∈ N.

Thus,

E[h(X̃G)1{G<τ0}] =
∑
n≥0

P(G = n)Ee1 [h(X̃n)1{n<τ0}]

= h(e1)
∑
n≥0

P(G = n) = h(e1).
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Further, note that

E[h(Y )] = Ee1 [h(X̃G)|G < τ0] =
Ee1 [h(X̃G)1{G<τ0)}]

P(G < τ0)
.

�

One of the fruits of the previous lemma is the following result concerning the distribution of
Z1 in dimension d = 1:

Lemma 2.4. Let d = 1. Then

E[exp(−λZ1)] = 1− 2 (κ+ ρ+ s1C1,ρ,s1)
√
λ√

κ+ ρ(s1 + 2(κ+ ρ))
+O(λ), λ→ 0,

where C1,ρ,s1 = 1√
s21+4ρs1−s1

.

Proof. First, note that if we start in x and hit the origin for the first time at some instant, then
this first hitting time is the sum of the first hitting time of x − 1, and the first hitting time of
x − 2 restarting from x − 1, as well as the first hitting time of x − 3 restarting from x − 2
and so on, so that, due to the independence of all these steps,

R
2(κ+ρ)
x,0

d
=

|x|∑
i=1

Ri, (2.9)

whereRi, i = 1, · · · , |x|, are identital copies ofR2(κ+ρ)
1,0 . Consequently, f(x, λ) = f(1, λ)|x|.

Denoting by GY (s) = EY [sY ] the generating function of Y , we obtain

EY [f(Y, λ)] = EY [f(e1, λ)‖Y ‖] = GY (f(e1, λ)) (2.10)

= 1 + (f(e1, λ)− 1)G′Y (1) +O(λ)

= 1− G′Y (1)√
κ+ ρ

√
λ+O(λ), (2.11)

by Taylor approximation of GY around 1. Thus, we have to calculate G′Y (1) = E[Y ], which
was defined as the position of a random walk with jump rate 2ρ, starting from 1, after an
exponential time Es1 with parameter s1, and conditioned on not hitting 0 up to that time.
Applying Lemma 2.3 to the harmonic function h : Z+ → Z+, h(z) = z, yields

E[Y ] =
1

P(G < τ0)
.

where G is geometric random variable of parameter 2ρ
s1+2ρ

. Therefore,

P(G < τ0) = 1− E
[(

2ρ

s1 + 2ρ

)τ0]
=

√
s21 + 4ρs1 − s1

2ρ
,
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where in the last step we used a known identity for generating functions of first hitting times
in dimension d = 1. Thus,

E[Y ] =
2ρ√

s21 + 4ρs1 − s1

and by Lemma 2.2,

E[exp(−λZ1)] = 1− 2(κ+ ρ)

s1 + 2(κ+ ρ)

√
λ

κ+ ρ

− s1
s1 + 2(κ+ ρ)

2ρ
√
λ

√
κ+ ρ

(√
s21 + 4ρs1 − s1

) +O(λ)

= 1−
√
λ

2 (κ+ ρ+ s1
√
κ+ ρC1,ρ,κ,s1)√

κ+ ρ(s1 + 2(κ+ ρ))
+O(λ),

as λ→ 0. �

Next, we investigate the asymptotics of the return time Z1 in dimension d = 2:

Lemma 2.5. Let d = 2, q = 4ρ
s1+4ρ

, φ(k) := 1
2
(cos(k1) + cos(k2)), and

G2(x, λ) :=

∫
[−π,π]2

eik·x

λ+ 1− φ(k)

dk

(2π)2

the Green’s generating function, where the subscript 2 refers to the dimension. Then

E[exp(−λZ1)] = 1− π

(s1 + 4(κ+ ρ)) log(1/λ)

(
4(κ+ ρ) +

s1G2(0, q)

G2(0, 1) +G2(e1, q)

)
+O(λ),

as λ→ 0.

Proof. We will use many results and notations from [LL10, Chapter 4]. Note that f(x, λ)
solves the Poisson equation (∆x − λ)f(., λ) ≡ 0 on Z2 \ {0} with boundary condition
f(0, λ) = 1. Therefore, by uniqueness of bounded solutions to the Poisson equation, it has
the explicit representation f(x, λ) = Gλ(x)

Gλ(0)
. Let

a(x) =

∫
[−π,π]2

1− eik·x

1− φ(k)

dk

(2π)2
. (2.12)

Then G2(x, λ) = G2(0, λ)− a(x)− Eλ(x). Thus, f(x, λ) can be written as

f(x, λ) = 1− a(x)

G2(0, λ)
+

Eλ(x)

G2(0, λ)
. (2.13)
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As we will prove in the Appendix (Lemma A.2), we have

G2(0, λ) =
1

π
log(1/λ) +O(1), λ→ 0.

Moreover, by Lemma A.1 we know that E[Eλ(Y )] → 0, as λ → 0, since Y jumps only a
geometric number of times and so satisfies the hypothesis of finite variance. Taking expec-
tation with respect to Y in (2.13) and using the expansion of G(0, λ) and the convergence
of error Eλ(x) we obtain

E[f(Y, λ)] = 1− πE1[a(Y )]

log(1/λ)
+ o

(
1

log(1/λ)

)
, λ→ 0. (2.14)

Next, as a is a harmonic function for x 6= 0, Lemma 2.3 asserts that

E[a(Y )] =
a(e1)

P(G < τ0)
=

1

P(G < τ0)
, (2.15)

such that it only remains to determine P(G < τ0). Let

G
(0)
d (x− y, λ) : =

∑
n≥0

λnPx(X̃n = y, τ0 > n) (2.16)

denote the Green’s generating function of X̃ conditioned on not having hit 0. Then

P(G < τ0) = p
∑
n≥0

(1− p)nPe1(τ0 > n) = p
∑
n≥0

∑
y 6=0

(1− p)nPe1(X̃n = y, τ0 > n)

= p
∑
y 6=0

G
(0)
d (e1 − y, 1− p).

We decompose the generating Green’s function Gd(·, λ) into paths avoiding zero and paths
hitting zero. For the latter, we can split the first visit to 0 at some time k and restart from the
0 to obtain

Gd(x− y, λ) = G
(0)
d (x− y, λ) +

∑
k≥1

λkPx(τ0 = k)Gd(y, λ)

= G
(0)
d (x− y, λ) +Gd(y, λ)Ex[λτ01{τ0<∞}]

= G
(0)
d (x− y, λ) +Gd(y, λ)

Gd(x, λ)

Gd(0, λ)

and hence

G
(0)
d (x− y, λ) = Gd(x− y, λ)− Gd(x, λ)Gd(y, λ)

Gd(0, λ)
.
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This yields

P(G < τ0) = p
∑
y 6=0

(
Gd(e1 − y, 1− p)−

Gd(e1, 1− p)Gd(y, λ)

Gd(0, 1− p)

)
.

We note that for all x ∈ Z2,∑
y

G2(x− y, λ) =
∑
y

G2(y, λ) = G2(0, λ) =
1

1− λ

and therefore∑
y 6=0

G2(x− y, 1− p) =
1

1− (1− p)
−G2(x, 1− p) =

1

p
−G2(x, 1− p).

This yields

P(G < τ0) = p

(
1

p
−G2(e1, 1− p)−

G2(e1, 1− p)
G2(0, 1− p)

(
1

p
−G2(0, 1− p)

))
= 1− G2(e1, 1− p)

G2(0, 1− p)
.

The proof of the Lemma is finished after combining 2.15 and 2.14 and applying Lemma 2.2.
�

We continue with the investigation of the return time Z1 in transient dimensions d ≥ 3.
Due to transience, the right quantity to look at is no longer the Laplace transform of Z1,
but instead the probability P(Z1 = ∞) of never returning to the state (0, 1). The following
lemma is an analogous version of Lemma 2.2 for d ≥ 3:

Lemma 2.6. For d ≥ 3 we have

P(Z1 =∞) = 1−
2d(κ+ ρ)2 + s1

Gd(e1)Gd(0,q)
Gd(0,q)−Gd(e1,q)

(s1 + 2d(κ+ ρ))Gd(0)
,

where Gd(x) denotes the Green’s function

Gd(x) := EXx
[∫ ∞

0

δ0(X(s))ds

]
(2.17)

of a random walk X with jump rate 2d in 0 with start in x.

Proof. In a similar manner as in the proof of Lemma 2.2, using the decomposition (2.4), we
observe that

P(Z1 =∞) =
2d(κ+ ρ)

s1 + 2d(κ+ ρ)
P(R

2d(κ+ρ)
0,0 =∞)

+
s1

s1 + 2d(κ+ ρ)
EY [P(R

2d(κ+ρ)
Y,0 =∞)],
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where R2d(κ+ρ)
0,0 corresponds to the return time of the walk to the origin after starting in

origin, as on the event that Z moves away from 0 (say to e1) before getting dormant, the
exponential waiting time of jumping from 0 to e1 and the return time R2d(κ+ρ)

e1,0
add up to

R
2d(κ+ρ)
0,0 (in dimensions d = 1, 2 this exponential jump time was negligible, such that we

only considered R2d(κ+ρ)
e1,0

). Now, the probability P(R
2d(κ+ρ)
0,0 = ∞) of never hitting zero is

given by

P(R
2d(κ+ρ)
0,0 =∞) = 1− κ+ ρ

Gd(0)
,

(cf. [LL10]), as the dependence on the jump rate 2d(κ + ρ) cancels out in the quotient.
Consequently,

P(Z1 =∞) =
2d(κ+ ρ)

s1 + 2d(κ+ ρ)

(
1− κ+ ρ

Gd(0)

)
+

s1
s1 + 2d(κ+ ρ)

EY
[(

1− Gd(Y )

Gd(0)

)]
= 1− 2d(κ+ ρ)2 + s1EY [Gd(Y )]

(s1 + 2d(κ+ ρ))Gd(0)
.

Note that, as Gd is harmonic, Lemma 2.3 is applicable again and so

E[Gd(Y )] =
Gd(e1)

P(G < τ0)
=

Gd(e1)

1− Gd(e1,q)
Gd(0,q)

=
Gd(e1)Gd(0, q)

Gd(0, q)−Gd(e1, q)
.

This finishes the proof of the lemma. �

3 Proof of Theorem 1.1

We are now ready to prove our main result:

Proof of Theorem 1.1. For d = 1, by Lemma 2.4 we have that

1− λF (λ) = 1− E[e−λZ1 ] =
2
√
λ(κ+ ρ+ s1C1,ρ,s1)√
κ+ ρ(s1 + 2(κ+ ρ))

+O(λ), λ→ 0.

and

1− µλF (λ) = 1− µ+ µ
2
√
λ(κ+ ρ+ s1C1,ρ,s1)√
κ+ ρ(s1 + 2(κ+ ρ))

.

Plugging in µ = 2(κ+ρ)+s1
2(κ+ρ)+s1+γ

and applying Lemma 2.1 yields

Ĝµ(λ) =
2(κ+ ρ+

√
κ+ ρs1C1,ρ,κ,s1)

γ
√
λ(κ+ ρ) + 2λ(κ+ ρ+ s1C1,ρ,s1)

+O(λ)

=
2(
√
κ+ ρ+ s1C1,ρ,κ,s1)

γ
√
λ

+O(λ), λ→ 0.
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By a Tauberian theorem we obtain

〈U(t)〉 = Gµ(t) ∼ 2(κ+ ρ+ s1C1,ρ,s1)

γ
√
πt(κ+ ρ)

, t→∞.

In an analogous way, we find that for d = 2,

1− λF (λ) =
4(κ+ ρ)π + s1C2

(s1 + 4(κ+ ρ)) log(1/λ)
+O(λ),

with C2 := πG2(0,q)
G2(0,1)+G2(e1,q)

, and

1− µλF (λ) = 1− µ+ µ
4(κ+ ρ)π + s1C2

(s1 + 4(κ+ ρ)) log(1/λ)
.

Applying Lemma 2.1 and µ = 4(κ+ρ)+s1
4(κ+ρ)+s1+γ

, we obtain

Ĝµ(λ) ∼ µ(4π(κ+ ρ) + s1C2)

λ((1− µ)(s1 + 4(κ+ ρ)) log(1/λ) + µ(4(κ+ ρ) + s1C2)

∼ 4π(κ+ ρ) + s1C2

λ log(1/λ)γ
, λ→ 0.

Again, by a Tauberian theorem we obtain

〈U(t)〉 ∼ 4π(κ+ ρ) + s1C2

γ log(t)
, t→ 0.

Next, we deal with the case d ≥ 3. Denote by

G̃d(x, i) :=

∫ ∞
0

pd(x, i, t) dt

the Green’s function of the joint process (Z, α) in (x, i), which has the probabilistic repre-
sentation

G̃d(x, i) = E(Z,α)
(x,i)

[∫ ∞
0

δ(0,1)(Z(s), α(s)) ds

]
.

Hence, for all (x, i) ∈ Zd × {0, 1} the quantity

v(x, i) := lim
t→∞

v(x, i, t) = E(Z,α)
(x,i)

[
exp

(
−γ
∫ ∞
0

δ(0,1)(Z(s), α(s)) ds

)]
lies in (0, 1). Moreover, v solves the boundary value problem{

0 = (iκ+ ρ)∆v(x, i)− γδ(0,1)(x, i)v(x, i), (x, i) ∈ Zd × {0, 1},

1 = lim‖x‖→∞ v(x, i), i ∈ {0, 1},
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and can therefore be written as

v(0, 1) = 1− γ
∫ ∞
0

pd(0, 1, t)v(0, 1) dt = 1− γv(0, 1)G̃d(0, 1)

in point (0, 1), where pd denotes the transition density function of (Z, α). Solving for v(0, 1)
gives

v(0, 1) = 1− γG̃d(0, 1)

1 + γG̃d(0, 1)
. (3.1)

The survival probability converges therefore to a non-trivial limit in (0, 1) in all dimensions
d ≥ 3. Moreover, note that, G̃d(0, 1) can be expressed as 1 over the probability that Z ever
comes back to (0, 1) again, i.e.

G̃d(0, 1) =
1

P(Z1 <∞)
=

1

1− P(Z1 =∞)
=

(s1 + 2d(κ+ ρ))Gd(0)

2d(κ+ ρ)2 + s1
Gd(e1)Gd(0,q)

Gd(0,q)−Gd(e1,q)

,

(3.2)

by using Lemma 2.6 (observe that we obtain G̃d(0, 1) = Gd(0) for s1 = 0, such that this is
consistent with the case without dormancy). Plugging this into (3.1) yields

v(0, 1) = 1−
γ
(
Gd(0) + s1

2d(κ+ρ)

)
κ+ ρ+ γ

(
Gd(0) + s1Kd

2d(κ+ρ)

)
with Kd := Kd,s1,ρ defined as

Kd :=
Gd(e1)Gd(0, q)

Gd(0, q)−Gd(e1, q)
.

�

A Some auxiliary results

In this appendix we prove two results which we used in the proof of Lemma 2.5:

Lemma A.1. Abbreviate φ(k) := 1
2
(cos(k1) + cos(k2)) for k = (k1, k2) ∈ [−π, π]2 and

let

E(x, λ) :=

∫
[−π,π]2

(
1− eik·x

1 + λ− φ(k)
− 1− eik·x

1− φ(k)

)
dk

(2π)2
.

Then E[E(W,λ)]→ 0 as λ→ 0 for any random variable W with finite variance.
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Proof. Note that for every δ > 0,

E(x, λ) =

∫
[−π,π]2

−λ(1− eik·x)
(1 + λ− φ(k))(1− φ(k))

dk

(2π)2

=

∫
[−π,π]2\Bδ(0)

−λ(1− eik·x)
(1 + λ− φ(k))(1− φ(k))

dk

(2π)2

+

∫
Bδ(0)

−λ(1− eik·x + ik · x)

(1 + λ− φ(k))(1− φ(k))

dk

(2π)2

=: Kλ(δ, x) + Iλ(δ, x),

where in the second line we considered what happens in a ball of radius δ around 0, as well
as outside of that separately, as the point 0 is where there is a singularity in the integral. We
also added and subtracted ik · x in the second term Iλ(δ, x). Observe that for all δ > 0,

Kλ(δ, x) ≤ C1

(
1

1− cos(δ)

)2

λ,

for some constant C1 > 0 independent of λ and δ. To deal with Iλ(δ, x) we note that

λ

|1 + λ− φ(k)|
≤ 1

and (1 − eik·x + ik · x) ≤ |k|2|x|2 as well as cos(x) ≤ 1 − 1
4
x2 for sufficiently small x,

which implies 1− φ(k) ≥ 1
8
(k21 + k22). Therefore,∣∣∣∣1− eik·x + ik · x

1− φ(k)

∣∣∣∣ ≤ C2|x|2

for all (k1, k2) ∈ Bδ(0) and some constantC2 > 0, and thus, together with the last inequal-
ity, we have that Iλ(δ, x) ≤ C2|(Bδ(0)||x|2 ≤ C3δ

2|x|2 for some other constant C3 > 0.
This yields

E(x, λ) = Kλ(δ, x) + Iλ(δ, x) ≤ C4

(
λ

(
1

1− cos(δ)

)2

+ δ2|x|2
)

for some absolute constant C4 > 0, which is valid for all sufficiently small δ. Taking the
expectation with respect to W and noting that E[W 2] <∞ we get,

lim sup
λ→0

E[E(W,λ)] ≤ C4δ
2E[W 2].

Since this holds for all sufficiently small δ, taking δ → 0 gives the result. �

Next, we define the Green’s generating function of some point x ∈ Z as

G2(x, λ) :=

∫
[−π,π]2

eik·x

1 + λ− φ(k)

dk

(2π)2
,

where the subscript 2 refers to the dimension. The next lemma provides asymptotics for the
Green’s generating function at x = 0:
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Lemma A.2. We have that

G2(0, λ) =
1

π
log(1/λ) +O(1), λ→ 0.

Proof. For δ > 0 small enough we can decompose

G2(0, λ) =

∫
[−π,π]2\Bδ(0)

1

λ+ 1− φ(k)

dk

(2π)2
+

∫
Bδ(0)

1

λ+ 1
4
(k21 + k22)

dk

(2π)2

+

∫
Bδ(0)

1

λ+ 1− φ(k)
− 1

λ+ 1
4
(k21 + k22)

dk

(2π)2

We will show that for a fixed δ > 0, only the middle term will contribute to the asymptotics,
as λ → 0, and that the other terms will be of constant order. Concerning the first term, we
observe that the integrand and domain of integration are bounded as λ → 0. The last term
can be rewritten as

−1

2

∫
Bδ(0)

(1− cos(k1)− 1
2
k21) + (1− cos(k2)− 1

2
k22)

(λ+ 1− φ(k))(λ+ 1
4
(k21 + k22))

dk

(2π)2
, (A.1)

and by a Taylor approximation we have that |1 − cos(k1) − 1
2
k21| ≤ 1

24
k41 . Since we chose

δ > 0 small enough we have 1− cos(x) ≥ x2

4
for x ∈ Bδ(0) and so (A.1) is bounded by

C

∫
Bδ(0)

k41 + k42
(λ+ 1

8
(k21 + k22))(λ+ 1

4
(k21 + k22))

dk

(2π)2

for some absolute constant C > 0. This last expression is bounded as λ → 0. Next, a
computation in polar coordinates yields∫

Bδ(0)

1

λ+ 1
4
(k21 + k22)

dk

(2π)2
=

1

(2π)2

∫ 2π

0

∫ δ

0

r

λ+ r2

4

drdθ

=
1

π
log(1/λ) +

1

π
log(λ+

δ2

4
).

Since δ > 0 is fixed, the term 1
π

log(λ + δ2

4
) does not contribute to the asymptotics, which

completes the proof of our claim. �
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