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Some notes on the Hellinger distance and
various Fisher-Rao distances

Alexander Mielke

Abstract

These expository notes introduce the Hellinger distance on the set of all measures and the
induced Fisher-Rao distances for subsets of measures, such as probability measures or Gaussian
measures. The historical background is highlighted and the relations and the distinct features of
the two distances are discussed. Moreover, we provide a dynamic characterization of absolutely
continuous curves in the Hellinger spaces in terms of the growth equation, which replaces the
continuity equation in the theory of optimal transport.

1 Introduction

The initial motivation for writing this mainly expository notes was the question what are the origin of the
names “Hellinger distance” and “Fisher-Rao distance”. Hence, we will introduce these two concepts,
which are indeed closely related, in simple terms and explain the historical developments that go
back to Hellinger [Hel07, Hel09] and Kakutani [Kak48] for the Hellinger distance and to Fisher [Fis21]
and Rao [Rao45] for the Fisher-Rao distance. Unfortunately, these names are sometimes mixed up
and these notes provide a guideline for distinguishing the two objects such that future mathematical
discussion can made more precise by avoiding unnecessary confusion.

A second goal arises from the recent interest in gradient flows in the Hellinger space (e.g. [CH∗24,
MiZ25]) and in the combination of the Wasserstein distance and the Hellinger distance in the trans-
port growth distance called Hellinger-Kantorovich distance in [LMS16, LMS18] and and Wasserstein-
Fisher-Rao distance in [CP∗18a, CP∗18b]. While there is a large body of work in characterizing ab-
solutely continuous curves in the Wasserstein space via the dynamic theory of Benamou-Brenier
[BeB00] and Otto [Ott01] using the continuity equation, there is no counterpart available for the abso-
lutely continuous curves in the Hellinger space. In principle, the corresponding theory can be extracted
from the analysis of the Hellinger-Kantorovich theory in [LMS18], but this would lead to a huge and in-
scrutable overhead. In Section 2.3 we provide a short and mathematically complete characterization,
which shows the relations between the metric derivative and the growth equation, which replaces the
continuity equation.

The Hellinger distance He(µ0, µ1) between arbitrary measures µ0, µ1 ∈ M(Ω) on a measure space
Ω are is defined by

He(µ0, µ1)
2 = σ2

∫
Ω

((dµ1

dλ

)1/2−(dµ0

dλ

)1/2)2

dλ = σ2
(
µ0(Ω)+µ1(Ω)−2

√
µ0µ1 (Ω)

)
, (1.1)

where λ ∈ M(Ω) is any measure such that µ0 ≪ λ and µ1 ≪ λ, and dµj

dλ
∈ L1(Ω, λ) denotes

the Radon-Nikodym derivative. Here we have introduced a scaling factor σ > 0 into the definition
because in various places in the literature different factors are chosen. We keep the factor throughout
to facility the comparison with the literature, but it is also helpful to understand the structure better.
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A. Mielke 2

The definition of He goes back to Kakutani [Kak48] and was chosen to honor the contribution of
Hellinger in [Hel07, Hel09] which showed how to define the Hellinger integral

√
µ0µ1(B) =

∫
B

(dµ0

dλ

dµ1

dλ

)1/2
dλ for measurable B ⊂ Ω, (1.2)

much before the introduction of Radon-Nikodym derivatives. Thus, the geometric mean
√
µ0µ1 is

again a well-defined measure in M(Ω). Moreover, [Kak48] showed that for every λ ∈ M(Ω) the
Hilbert space L2(Ω, λ) can be isometrically embedded into (M(Ω),He) via the mapping L2(Ω, λ) ∋
g 7→ √

g λ ∈ M(Ω). This embedding immediately shows that the Hellinger distance is even a
geodesic distance in the sense that for every pair (µ0, µ1) there exists a unique constant-speed
geodesic curve given by

γHe
µ0→µ1

(s) = (1−s)2µ0 + s2µ1 + 2(s−s2)
√
µ0µ1

= (1−s)µ0 + sµ1 − (s−s2)
1

σ2
He(µ0, µ1)

2 for s ∈ [0, 1].
(1.3)

Moreover, one can define a pseudo-Riemannian structure on M(Ω) given by the quadratic form of
Hellinger type (see (2.23) in the historical remarks in Section 2.8)

gµ(ν1, ν2) =


σ2

4

∫
Ω

dν1
dµ

dν2
dµ

dµ if ν1, ν2 ≪ µ,

∞ else.
(1.4)

In Theorem 2.2 we provide the mathematically connection of gµ with the metric speed in (M(Ω),He).
Moreover, we refer to [AJ∗15, BBM16] for a proof of the uniqueness of this Riemannian metric under
diffeomorphisms.

The above Riemannian structure was indeed introduced by Fisher in [Fis21] when studying finite-
dimensional parameterized families of measures. Considering the family

S =
{
f(p; ·) ∈ L1(Rn) ∩P(Rn)

∣∣ p ∈ D ⊂ Rm
}

Then, the Fisher information metric is defined via the matrix F(p) ∈ Rm×m
≥0 given by

a · F(p)b := σ2

4

∫
Rn

Dp log
(
f(p, x)

)
[a] Dp log

(
f(p, x)

)
[b] f(p, x) dx

=
σ2

4

∫
Rn

Dpf(p, x)[a] Dpf(p, x)[b]

f(p, x)
dx

= −σ2

4

∫
Rm

D2
p log

(
f(p, x)

)
[a, b] f(p, x) dx

(1.5)

The Fisher-Rao distance was introduced in [Rao45] and is defined as the distance on D induced by
the metric tensor F, namely

FRS(p0, p1) := inf
{ ∫ 1

0

(
p′(s)·F(p(s))p′)s)

)1/2
ds

∣∣∣ p ∈ C1([0, 1];D), p(0) = p0, p(1) = p1

}
.

The strength of the Fisher-Rao distance is that it does not depend on the particular choice of the pas-
teurization, but only on the subset S ⊂ M(Ω). Thus, we will FRS

(
f(p0, ·)dx, f(p1, ·)dx)

)
instead

of FRS(p0, p1).
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Some notes on the Hellinger distance and various Fisher-Rao distances 3

The above construction is not restricted to finite dimensional submanifolds, but can be generalized
to more general subsets S of M(Ω). Indeed, FRS : S×S → [0,∞] can be understood as the
intrinsic length or distance in S induced from (M(Ω),He). For this, we consider continuous paths
γ : [0, 1] → S , define their intrinsic length LHe(γ), see (3.1), and then define the Fisher-Rao distance
in S by

FRS(µ0, µ1) := inf
{
LHe(γ)

∣∣∣ γ ∈ C0([0, 1];S), γ(0) = µ0, γ(1) = µ1)
}
.

Of course choosing S = M(Ω), i.e., the space of all measures, we have FRM(Ω) = He, and this
is the reason why sometimes the Hellinger distance is called Fisher-Rao distance. However, it is bet-
ter to distinguished the refined concept of Fisher-Rao distances FRS which depends on the chosen
submanifold or subset S of the set of all measures M(Ω).

In general, one has FRS(µ0, µ1) ≥ He(µ0, µ1) where equality holds only in exceptional cases,
namely, if the Hellinger geodesic, as given in (1.3), totally lies in S . In case that S is a smooth subman-
ifold the local Fisher-Riemann metric is simply the restriction of the quadratic form (1.4) of Hellinger
type, one can expect local closeness of He and FRS , i.e.

He(µ0, µ1)
2 ≤ FRS(µ0, µ1)

2 ≤ He(µ0, µ1)
2 +O

(
He(µ0, µ1)

3
)

as He(µ0, µ1) → 0.

Already the restriction of He to the probability measures in P(Ω) leads to a new distance, namely the
Bhattacharya distance [Bha42, Rao45]

Bh(µ0, µ1) = 2σ arcsin
( 1
2σ He(µ0, µ1)

)
.

We refer to Section 3.2 for more details and emphasize that σ > 0 appears nonlinearly.

The plan of the paper is as follows. In Section 2 we present basic properties of the Hellinger distance
such its the geodesic curves, the embedding property into a Hilbert spaces (showing that the geometry
is flat), and the behavior under pushforwards. Moreover, we present some historical remarks about
Hellinger’s contribution and the development of the name “Hellinger distance”. The only mathematically
new part of these notes are the short and self-contained characterization of absolutely continuous
curves in (M(Ω),He) using metric speed and the growth equation, see Theorem 2.2.

In Section 3 we discuss the abstract definition of the Fisher-Rao distance for general subsets S ⊂
M(Ω). After treating the most important example S = P(Ω) leading to the Bhattacharya distance,
we show how the Fisher-Rao distance on a set P ⊂ P(Ω) can be used to construct the Fisher-Rao
distance on the cone S = [0,∞[P ⊂ M(Ω) in Theorem 3.2. This is a general construction (see
e.g. [BBI01] for general geodesic spaces, where the involvement of the scaling parameter σ > 0
is nontrivial. In Section 3.4 we show that the Fisher-Rao distance for product probability measures
satisfies FR2

P1⊗P2
= FR2

P1
+ FR2

P2
.

Section 4 is devoted to simple examples, namely Strans containing all translations of a measure on
Rn, the family SPoiss of multivariate Poisson distributions on Nd

0, and the family Sexp of exponential
distributions on (R≥0)

n. Finally, in Section 4.4 we discuss the known results on the Fisher-Rao dis-
tance on SGauss, the set of Gaussian distributions on Rd: only for d = 1 an explicit formula is known,
and for d ≥ 2 only partial results are available.

2 Properties of the Hellinger distance

As in [Kak48] we start from a measure space (Ω,A), i.e. A is a σ-algebra over the set Ω. By M(Ω)
we denote the set of all (non-negative) finite measures on (Ω,A), i.e. countably additive set functions.
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A. Mielke 4

The subset of probability measures is denoted by P(Ω) =
{
µ ∈ M(Ω)

∣∣ µ(Ω) = 1
}

.

2.1 Hellinger’s integral

As mentioned above the Hellinger distance relies on the the so-called Hellinger integral, which is the
geometric mean of two measures µ0, µ1 ∈ M(Ω). In modern terms the measure

√
µ0µ1 ∈ M(Ω)

is defined by the Radon-Nikodym derivative via

√
µ0µ1 =

(dµ0

dλ

)1/2(dµ1

dλ

)1/2

λ for every λ ≫ µ0, µ1. (2.1)

The geometric mean can also be defined by partitions as follows

√
µ0µ1(A) = inf

{ ∑
i∈I

µ0(Ai)
1/2µ1(Ai)

1/2
∣∣∣ A =

⋃
i∈I

Ai, Ai ∩ Aj = ∅ for i ̸= j
}
. (2.2)

Using that (r, s) 7→ (rs)1/2 is concave, it is easy to see that refining partitions of a set A leads to a
smaller value (use

√
θi+θj

√
νi+νj ≥

√
θi
√
νi +

√
θj
√
νj). The historical Section 2.8 will explain

how this construction is related to Hellinger’s work in [Hel07, Hel09].

Remark 2.1 (Kolmogorov and Hellinger integrals) More generally, for a positively one-homogeneous
concave functionφ : [0,∞[N → [0,∞[ and measures µ1, .., µn ∈ M(Ω) the measureφ(µ1, µ1, .., µn) ∈
M(Ω) can be defined by an infimum over partitions as in (2.2). The Kolmogorov integral of g ∈
L∞(Ω) is then defined as

∫
Ω
gdφ(µ1, µ1, .., µn), see [Kol30]. In particular, using ϕα(r, s) = rαs1−α

with α ∈ [0, 1] and two measures µ0, µ1 ∈ M(Ω), one can define the measures ϕα(µ0, µ1) ∈
M(Ω) and the so-called α-Hellinger integral

∫
Ω
gdϕα(µ0, µ1) for g ∈ L∞(Ω).

2.2 The topology of (M(Ω),He)

The topology induced by He on M(Ω) is the norm topology induced by the total variation

∥µ1−µ0∥TV =

∫
Ω

∣∣dµ1

dλ
− dµ0

dλ

∣∣ dλ for µ0, µ1 dλ.

However, we see that the total variation norm scales one-homogeneous with the mass, while the
Hellinger distance scales homogeneous of degree 1/2:

∥rµ1−rµ0∥TV = r∥µ1−µ0∥TV and He(rµ0, rµ1) = r1/2 He(µ0, µ1)

for r ≥ 0 and µ0, µ1 ∈ M(Ω). This is reflected in the lower and upper estimate of the total variation
norm, namely

∥µ1−µ0∥TV ≥ 1

σ2
He(µ0, µ1)

2, (2.3a)

∥µ1−µ0∥TV ≤
√

2(µ0(Ω)+µ1(Ω))
1

σ
He(µ0, µ1). (2.3b)

To see this, choose λ = µ0+µ1 and write µ0 =
(
1
2
− x

)
λ and µ1 =

(
1
2
+ x)λ with x(ω) ∈ [−1

2
, 1
2
]

λ-a.e. Using the elementary estimates

2x2 ≤ 1−
√
1−4x2 ≤ 2|x| for |x| ≤ 1/2, (2.4)
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Some notes on the Hellinger distance and various Fisher-Rao distances 5

the first estimate follows from

∥µ1−µ0∥TV =

∫
Ω

2|x| dλ ≥
∫
Ω

(
1−

√
1−4x2

)
dλ =

1

σ2
He(µ0, µ1)

2.

The second estimate follows via an application of Cauchy-Schwarz’ estimate:

∥µ1−µ0∥2TV =

(∫
Ω

2|x| dλ
)2

≤
∫
Ω

2 dλ

∫
Ω

2x2 dλ

≤ 2
(
µ0(Ω)+µ1(Ω)

) ∫
Ω

(
1−

√
1−4x2

)
dλ =

2

σ2

(
µ0(Ω)+µ1(Ω)

)
He(µ0, µ1)

2.

2.3 Absolutely continuous curves, metric speed and the continuity equation
in (M(Ω),He)

In this subsection we use the abstract theory developed in [AGS05, Sec. 1.1] for a general metric
space (M,D). For p ∈ [1,∞], a curve γ : [0, 1] → M is called is p-absolutely continuous if there
exists g ∈ Lp([0, 1]) such that D(γ(r), γ(t)) ≤

∫ t

r
g(s) ds for all 0 ≤ r < t ≤ 1. Every rectifiable

curve can be reparametrized to a Lipschitz curve (i.e. p = ∞), so we see that the optimal p depends
on the parametrization.

In [AGS05, Thm. 1.1.2] it is shown that the metric speed

lim
h↘0

1

h
D
(
γ(s), γ(s+h)

)
:= |γ̇|D(s)

exists a.e. in [0, 1], and that D(γ(r), γ(t)) ≤
∫ t

r
|γ̇|D(s) ds.

The aim of this subsection is to characterize the metric speed and relate it properly to Hellinger’s
quadratic form. The theory is developed in analogy to [AGS05, Ch. 8], however our case of the
Hellinger distance is considerably simpler than the case of the Otto-Wasserstein theory developed
there. The new ingredient is the so-called generalized continuity equation, which should rather be
called a growth equation (GE) here. Given a curve µ : [s0, s1] → M(Ω); s 7→ µs we define the
measure µ[0,1] on Q := [0, 1]×Ω via∫

Q

h(s, ω) dµ[0,1](s, ω) :=

∫
[0,1]

∫
Ω

h(s, ω) dµs(ω) ds.

For a growth-rate function ξ ∈ L1(Q;µ[0,1]) we say that the pair (µ, ξ) is a weak solution of the
growth equation ∂sµs = ξsµs if∫

Q

(
η′(s)1A(ω) + ξ(s, ω)η(s)1A(ω)

)
dµ[0,1](s, ω) for all η ∈ C1

c(]s0, s1[) and A ∈ A. (2.5)

In some respects, the present theory is much simpler than the corresponding theory for the Otto-
Wasserstein case developed in [AGS05, Ch. 8]; however that are new complications because of the
change of support of the measures. From the equation ∂sµs = ξsµs one would naively guess that the
solution can be written as µ(s) = exp

( ∫ s

0
ξ(r, ·) dr

)
µ(0), but that cannot be true in case where

µ(0) and µ(1) have different support. For instance, choosing ω0 ̸= ω1 in Ω and considering the curve

µ(s) = a0(s)δω0 + θa1(s)δω2 with θ ≥ 0, a0(s) = (1−s)γ0 and a1(s) = sγ1 ,

DOI 10.20347/WIAS.PREPRINT.3222 Berlin 2025



A. Mielke 6

we have µ(j) = θjδωj
(Dirac measure) for j = 1, 2. Moreover, the growth equation is satisfied by

(µ, ξ) if ξ(s, ωj) = a′j(s)/aj(s). Moreover, for min{γ0, γ1} > 1+p we have

∫
Q

|ξ|p dµI =

∫ 1

0

1∑
j=0

θj|a′j|p/a
p−1
j ds =

1∑
j=0

θj
γp
j

γj−1−p
< ∞.

We also note that for the given growth-rate function ξ and the given initial condition µ(0) = δω there
are infinitely many solution pairs (µ, ξ) for the growth equation (2.5), because θ ≥ 0 is arbitrary.

For simplicity, we restrict to the natural case p = 2.

Theorem 2.2 (A) If µ : [s0, s1] → M(Ω) is 2-absolutely continuous in (M(Ω),He), then there
exists ξ ∈ L2([s0, s1]×Ω) such that (µ, ξ) solve the growth equation (2.5) and and the metric speed
satisfies

|µ̇|He(s) =
σ

2
∥ξs∥L2(Ω,µs

=
σ

2

(∫
Ω

ξ(s, ω)2 dµs(ω)

)1/2

a.e. on [0, 1]. (2.6)

(B) Vice versa, if µ : [s0, s1] → M(Ω) is a continuous curve, ξ ∈ L2([s0, s1]×Ω, µ[s0,s1]), and
(µ, ξ) solves (2.5), then µ is 2-absolutely continuous in (M(Ω),He) and (2.6) holds.

Before going into the proof of the result we emphasize that relation (2.6) features Hellinger’s quadratic
form (1.4). From (the weak form of) the) growth equation ∂sµs = ξsµs we have

ξs =
d(∂sµs)

dµs

and (2.6) means
(
|µ̇|He(s)

)2
=

σ2

4

∫
Ω

(d(∂sµs)

dµs

)2

dµs = gµs

(
∂sµs, ∂sµs

)
.

Proof. To simplify notation we only consider the case [s0, s1] = [0, 1] =: I .

Proof of part (A): We proceed in analogy to [AGS05, Thm. 8.3.1].

For simplicity, we set V := L2(Q;µI) where Q = I×Ω and µI = µ[0,1]. Moreover, we define the
dense subset

V =
{
(t, ω) 7→

n∑
i=1

ηi(t)1Ai
(ω)

∣∣ n ∈ N, ηi ∈ C1(I), ηi(0) = 0 = ηi(1), Ai ∈ A
}
.

On V we define the linear mapping L : V → R via

Lφ = −
∫
Q

∂sφ(s, ω) dµI(s, ω) = −
∫
I

∫
Ω

∂sφ(s, ω) dµs(ω) ds.

We now want to show that L can be extended continuously on all of V . We define S ⊂ [0, 1] to be
the set of those s where |µ̇|He(s) exist. Then, for all measurable and bounded g : Ω → R we have

(
⟨g, µs+h⟩ − ⟨g, µs⟩

)
=

∫
Ω

g(1−2θh) dλh where λh = µs+h + µs,

γs = θhλh, and γs+h = (1−θh)λh. Using Cauchy-Schwarz’ estimate and (2.4) we find

1

h

∣∣⟨g, µs+h⟩ − ⟨g, µs⟩
∣∣ ≤ ∥∥g∥L2(Ω,λh)

√
2

σ

He(µs, µs+h)

h
.

DOI 10.20347/WIAS.PREPRINT.3222 Berlin 2025



Some notes on the Hellinger distance and various Fisher-Rao distances 7

We now assume s ∈ S and use that λh → 2µs (by strong continuity of t 7→ µt. Thus we have

lim sup
h↘0

1

h

∣∣⟨g, µs+h⟩ − ⟨g, µs⟩
∣∣ ≤ ∥∥g∥L2(Ω,µs)

2

σ
|µ̇|He(s). (2.7)

Now we consider a general φ ∈ V and extend it (continuously!) by 0. Moreover, extend s 7→ µ(s) by
µ(1) for s ≥ 1. Then, we have∫

Q

∂sφ dµI = lim
h↘0

∫
Q

1

h

(
φ(s, ω)−φ(s−h, , ω)

)
dµI

= lim
h↘0

(∫
I

⟨φs, µs⟩−⟨φs, µs+h⟩
h

ds− 1

h

∫ h

0

⟨φs−h, µs⟩ ds+
1

h

∫ 1

1−h

⟨φs, µs+h⟩
)
.

Because φ0 = 0 = φ1 the last two terms vanish with h ↘ 0. Hence, together with (2.7), we find∣∣L(φ)∣∣ = ∣∣∣∣ ∫
Q

∂sφ dµI

∣∣∣∣ ≤ ∫
I

∥∥φs

∥∥
L2(Ω,µs)

2

σ
|µ̇|He(s) ds. (2.8)

By assumption s 7→ |µ̇|He(s) lies in L2(I), hence L can be extended continuously to V . By Riesz’
representation theorem for the Hilbert space V , there exists ξ ∈ V such that L(φ) =

∫
Q
ξφ dµI ,

but this shows that (µ, ξ) solve the growth equation (2.5).

Moreover, take η = 1[s0,s1], then using (2.8) we find∫ s1

s0

∫
Ω

ξ2s dµs ds =

∫
Q

ηξ2 dµI = L(ηξ)
(2.8)
≤ 2

σ

∫
Q

η∥ξs∥L2(Ω,µs)|µ̇|He(s) ds

≤ 2

σ

(∫ s1

s0

∫
Ω

ξ2s dµs ds

)1/2(∫ s1

s0

(
|µ̇|He(s)

)2
ds

)1/2

.

Since s0 and s1 with 0 ≤ s0 < s1 ≤ 1 are arbitrary we conclude∫
Ω

ξ2s dµs ≤
4

σ2

(
|µ̇|He(s)

)2
for a.a. s ∈ [0, 1].

Thus, we have established (2.6) with “≥” instead of “=”. The opposite inequality will be shown via part
(B).

Proof of part (B): The measure µI ∈ (Q) has two disintegration with respect to Q = I×Ω, namely
into dµi = dµs(ω) ds and dµI = dνω(s) dµ(ω), where µ ∈ M(Ω) and νω ∈ P([0, 1]) for
µ-a.a. ω ∈ Ω. Here µ(A) = µI(I×A) or µ =

∫ 1

0
γs ds (Bochner integral). From ξ ∈ L2(Q;µI) we

have ξω := ξ(·, ω) ∈ L2([0, 1], νω) µ-a.e. in Ω. Testing weak growth equation (2.5) with φ(s, ω) =
η(s)1A(ω) we find∫

A

∫
I

(
η′(s) + ξ(s, ω) dνω(s) dµ(ω) = 0 for all η ∈ C1

0([0, 1]) and A ∈ A.

As A ∈ A is arbitrary, we conclude(
∀ η ∈ C1

0([0, 1]) :

∫
I

(
η′(s) + ξω(s)

)
dνω(s) = 0

)
µ-a.e. in Ω.

Thus, we have reduced the problem in M(Ω) to a pointwise problem scalar problem.
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From ξω ∈ L2([0, 1], νω) we see that ζω := ξωνω is a signed measure on [0, 1] and we have ∂sνω =
ζω in the distributional sense. Hence, νω is absolutely continuous with respect to ds with νω = nω ds
and nω ∈ BV([0, 1]). Inserting this once again into the weak equation we find nω ∈ W1,1([0, 1])
with n′

ω(s) = ξω(s)nω(s) a.e. in [0, 1].

Omitting the subscript for the moment, we set h(s) =
√

n(s) ≥ 0 and find 2hh′ = ξh2, which
implies either h = 0 or h′ = 1

2
ξh. Since h(s) = 0 and h ≥ 0 imply h′(s) = 0 a.e., we obtain

h′(s)2 =
1

4
ξ(s)2h(s) =

1

4
ξ(s)2n(s) a.e. in [0, 1].

Thus, we have

(√
nω(1)−

√
nω(0)

)2
=

(
h(1)−h(0)

)2
=

(∫
I

h′(s) ds

)2

≤
∫
I

(
h′(s)

)2
ds =

∫
I

1

4
ξω(s)

2nω(s) ds

(2.9)

Noting that dµs = nω(s)µ we can integrate the this estimate and arrive at

He(µ0, µ1)
2 = σ2

∫
Ω

(
√

nω(1)−
√

nω(0)
)2

dµ(ω) ≤ σ2

4

∫
Ω

∫
I

ξ2ωnω ds dµ

=
σ2

4

∫
I

g(s)2 ds with g(s) := ∥ξs∥L2(Ω,γs).

(2.10)

The same estimate can be done on each subinterval [r, t] ⊂ [0, T ] giving

He(µr, µt) ≤
σ

2
(t−r)

(
1

t−r

∫
[r,t]

g(s)2 ds

)1/2

.

where the factors (t−r) disappear because the interval [0, 1] in (2.10) needs to be rescaled to [r, t].
Defining the partition points si = r + i(t−r)/N for i = 0, 1, . . . , N and the piecewise constant
function

GN(s) =
N∑
i=1

1

si−si−1

∫ si

si−1

g(r)2 dr 1[si−1,si](s)

we find GN → g2 in L2([r, t]) and
√
GN → g in L2([0, 1]). With this we have

He(µr, µt) ≤
N∑
i=1

He(µsi−1
, µsi) ≤

σ

2

N∑
i=1

(si−si−1)
√
GN(si−1/2)

=
σ

2

∫ t

r

√
GN(s) ds →

σ

2

∫ t

r

g(s) ds for N → ∞.

This shows that µ : [0, 1] → M(Ω) is 2-absolutely continuous and |µ̇|He(s) ≤ σ
2
g(s) a.e. in [0, 1],

which is the “≤” part of (2.6).

With this Theorem 2.2 is established.
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Some notes on the Hellinger distance and various Fisher-Rao distances 9

2.4 Geodesics curves

According to [Kak48] (using the choice σ = 1) the Hellinger distance is given by

He(µ0, µ1)
2 = σ2

(
µ0(Ω) + µ1(Ω)− 2

√
µ0µ1(Ω)

)
.

One importance starting point of this paper is that this distance is a geodesic distance. For each pair
(µ0, µ1) ∈ M(Ω)2 there exists a unique constant-speed geodesic (simply called geodesic in the
sequel), i.e. a curve γ : [0, 1] → M(Ω) such that

γ(0) = µ0, γ(1) = µ1, He
(
γ(s), γ(t)

)
= |s−t|He(µ0, µ1) for all s, t ∈ [0, 1].

This geodesic is given by

γHe
µ0→µ1

(s) =
((

(1−s)
(dµ0

dλ

)1/2
+ s

(dµ1

dλ

)1/2)2

λ

= (1−s)2µ0 + s2µ1 + 2(s−s2)
√
µ0µ1

= (1−s)µ0 + sµ1 − (s−s2) 1
σ2He(µ0, µ1)

2 for s ∈ [0, 1],

where λ ∈ M(Ω) is arbitrary as long as µ0, µ1 ≪ λ.

The growth equation along a geodesic can also be given explicitly, namely

∂sγ
He
µ0→µ1

(s) = ξ(s, ·)γHe
µ0→µ1

(s) with ξ(s, ω) =
2 (f1(ω)− f0(ω)

(1−s)f0(ω) + sf1(ω)
, (2.11a)

where fj =
(
dµj/ dλ

)1/2
. Note that ξ satisfies the equation

∂sξ(s, ω) +
1

2
ξ(s, ω)2 = 0. (2.11b)

which is completely independent of µ0 and µ1. The system (2.11) form the geodesic equations,
which are a special case of the equations for the Hellinger-Kantorovich geodesics derived in [LMS16,
Eqn. (5.1)] and [LMS18, Eqn. (8.72)].

An important feature is that along the geodesics the total mass of the measure is exactly quadratic,
namely

γHe
µ0→µ1

(s)(Ω) = (1−s)2µ0(s) + s2µ1(Ω) + 2(s−s2)
√
µ0µ1(Ω)

= (1−s)µ0(Ω) + sµ1(Ω)− (s−s2) 1
σ2He(µ0, µ1)

2.
(2.12)

In particular, one can define a Hellinger average by taking the midpoint of the geodesics:

AHe(µ0, µ1) := γHe
µ0→µ1

(1/2) =
1

4
µ0 +

1

4
µ1 +

1

2

√
µ0µ1. (2.13)

2.5 Properties similar to Hilbert-space geometry

The last form of the geodesic already indicates that (M(Ω),He) is somehow related to the positive
cone in the Hilbert space L2(Ω, λ). However, here the measure λ depends on the measures µj that
are relevant for the current construction. This embedding is already included in [Kak48, Sec. 4], see
Remark 2.3.
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µ0 µ1

µ2

µA

Figure 2.1: A visualization of the parallelogram
identity in (M(Ω),He) where all edges (full lines)
are geodesics, while the broken lines contain
curves that may lead to signed measures lying in
L2(Ω, λ). The center of the parallelogram is µA =
AHe(µ1, µ2).

(H1) We have a counterpart to the parallelogram identity for all µ0, µ1, µ2 ∈ M(Ω):

2He(µ0, µ1)
2 + 2He(µ0, µ2)

2 = He(µ1, µ2)
2 + 4He

(
µ0, A

He(µ1, µ2)
)2
, (2.14)

where A denotes the average defined in (2.13). See Figure 2.1 for a visualization.

(H2) A second instance occurs when looking at the squared distance along geodesic curves. For every
three points µ0, µ1, η ∈ M(Ω) we have geodesic 2-convexity as well as geodesic 2-concavity, i.e.
for all s ∈ [0, 1] we have

He
(
γHe
µ0→µ1

(s), η
)2

= (1−s)He(µ0, η)
2 + sHe(µ1, η)

2 − 2
s−s2

2
He(µ0, µ1)

2. (2.15)

(H3) Finally, we may define angles between geodesics emanating from a point µ0. Setting γj(s) =
γHe
µ0→µj

(s) for j = 1, 2 the angle between geodesics is defined in the sense of geodesic spaces (see
[BBI01, LaM19]) via

∢(γ1, γ2) := arccos
(

lim
s,t ↘ 0

He(µ0, γ1(s))
2+He(µ0, γ2(t))

2−He(γ1(s), γ2(t))
2

2He(µ0, γ1(s))He(µ0, γ2(t))

)
∈ [0, π]

whenever it exists. Exploiting the quadratic formula (2.15) a straightforward calculation shows that the
fraction in the above definition is indeed constant (as in Hilbert spaces) and we find

∢(γ1, γ2) = arccos
(He(µ0, µ1)

2+He(µ0, µ2)
2−He(µ1, µ2)

2

2He(µ0, µ1)He(µ0, µ2)

)
. (2.16)

Clearly this is the same formula as in planar geometry, which is valid in all Hilbert spaces.

Remark 2.3 (Embedding into Euclidean space) The observation that certain subsets of M(Ω) can
be embedded into a Euclidean (Hilbert) space was crucial for the work in [Kak48]. There Section 4 is
entitled “Embedding into Euclidean space”. Moreover, the introduction contains the following text:

The results of this paper were much amplified and the arguments used below much
simplified, thanks to certain suggestions kindly made by Professor John von Neumann.
In particular, the introduction of inner product and isometric embedding of M(Ω) into a
general Euclidean space, as well as the indication of relationship of this paper with earlier
works of E. Hellinger, as are discussed in §4, are due to Professor J. von Neumann. For
all these I wish to express my heartiest thanks.

Indeed, given any λ ∈ M(Ω) the subspace L1(Ω, λ) ⊂ M(Ω) equipped with the Hellinger distance
can be embedded isometrically into the Hilbert space L2(Ω, λ) via the mapping gλ 7→ √

g λ (using
the normalization σ = 1).
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2.6 Hellinger distance for product measures

Already the paper [Kak48] shows that the Hellinger integral is very useful when studying product
measures. Assuming Ω = Ω1×Ω2 with associated σ-algebras we can consider measures ν1 ∈
M(Ω1) and ν2 ∈ M(Ω2) and define the product measure µ = ν1⊗ν2 as the unique measure
µ ∈ M(Ω) satisfying

ν1⊗ν2
(
A1×A2) = ν1(A1) ν2(A2).

It now follows easily from the definition of the Hellinger integral that it is compatible with the product
structure in the sense that √

(ν1⊗ν2) (η1⊗η2) =
√
µ1η1 ⊗

√
ν2η2. (2.17)

Indeed, this relation and its generalization to infinite product measures is the basis of the analysis in
[Kak48].

From this we can derive a corresponding formula for the Hellinger distance between two product
measures, namely

He
(
ν1⊗ν2, η1⊗η2

)2
= σ2

(
ν1ν2+η1η2

)
−σ2

2

(
ν1+η1− 1

σ2He(ν1, η1)
2
)(
ν2+η2− 1

σ2He(ν2, η2)
2
)
,

(2.18)
where we abbreviated νj = νj(Ωj) and ηj = ηj(Ωj). We see that the Hellinger distance of the
product measures can be expressed solely in therms of the total masses of the individual measures
and the Hellinger distances between the corresponding factors.

The above result takes a much simpler form if we restrict to probability measures ν1, η1 ∈ P(Ω1) and
ν2, η2 ∈ P(Ω2):

He
(
ν1⊗ν2, η1⊗η2

)2
= He(ν1, η1)

2 + He(ν2, η2)
2 − 1

2σ2He(ν1, η1)
2He(ν2, η2)

2. (2.19)

We already emphasize at this point that in general a geodesic curve between two product measures
does not stay a product measure any more. It is rather a convex combination of three product mea-
sures, namely

γHe
ν0⊗η0→ν1⊗η1

(s) = (1−s)2ν0⊗η0 + s2ν1⊗η1 + 2(s−s2)
√
ν0η0⊗

√
ν1η1.

To find the shortest connecting path consisting of product measures will be treated as a special case
of a Fisher-Rao distance in Section (3.4).

The case of product measures with more than two factors (as in [Kak48]) works analogously: For
νj, ηj ∈ P(Ωj) we have

1− 1
2σ2 He

( n
⊗
i=1

νi,
n
⊗
j=1

ηj
)2

=
√

(⊗νi)(⊗ηj)
( n
×
k=1

Ωk

)
=

n

Π
k=1

√
νkηk(Ωk) =

n

Π
k=1

(
1− 1

2σ2He(νk, ηk)
2
)
.

(2.20)

2.7 Invariance under pushforwards of the Hellinger distance

Considering two measure spaces (Ω,A) and (Σ,B) and a measurable mapping Φ : Ω → Σ, the
pushforward Φ#µ ∈ M(Σ) of µ is defined via

Φ#µ(B) := µ
(
Φ−1(B)

)
for all B ∈ B and µ ∈ M(Ω),
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where Φ−1(B) :=
{
x ∈ Ω

∣∣ Φ(x) ∈ B
}

⊂ A such that Φ does not need to be injective. See
[AGS05, Sec. 5.2] for this and further properties of pushforward measures.

Using the infimum characterization (2.2) of
√
µ0µ1 and comparing the admissible partitions for the

two sides we easily find

Φ#

(√
µ0µ1

)
(B) ≤

√
(Φ#µ0)(Φ#µ1)(B) for all B ∈ B.

Clearly, we have Φ#µj(Σ) = µj(Ω), hence we immediately find the monotonicity of the Hellinger
distance under pushforward, with equality if the operation can be reversed.

Lemma 2.4 (Hellinger distance and pushforward) For measure spaces (Ω,A) and (Σ,B) and a
measurable mapping Φ : Ω → Σ we have

∀µ0, µ1 ∈ M(Ω) : HeΣ
(
Φ#µ0,Φ#µ1

)
≤ HeΩ(µ0, µ1). (2.21)

If additionally Ψ is one-to-one with measurable inverse Ψ−1, then

∀µ0, µ1 ∈ M(Ω) : HeΣ
(
Ψ#µ0,Ψ#µ1

)
= HeΩ(µ0, µ1). (2.22)

In [BBM16] the case Σ = Ω being a smooth finite-dimensional manifold without boundary and di-
mension ≥ 2 is studied, and it is shown that the Hellinger distance (called Fisher-Rao metric there)
restricted to probability measures is the only “Riemannian distance” that has the invariance property
(2.22). There the theory is restricted to smooth densities (instead of measures) and diffeomorphisms.

In [BBM16, last parag.] it is shown that asking (2.22) only for smooth diffeomorphisms on Ω = S1

allows for more general distances D in P(Ω) than multiplies of He. Hence, it would be interesting to
know whether enforcing (2.22) also for general measurable homeomorphism rules out this pathology.
More generally, one might conjecture every distance D : P(Ω)×P(Ω) → [0,∞[ satisfying the
invariance (2.22) and the properties (H1), (H2), and (H3) in Section 2.5 is a multiple of He.

2.8 Historical remarks

In his dissertation [Hel07] and habilitation thesis [Hel09], Hellinger introduced integrals of the type∫ b

a
u(t)df1df2

dg
for functions u, f1, f2, g, h ∈ C0([a, b]) where additionally g and h are increasing and

satisfy
(
fj(t2)−fj(t1)

)2 ≤
(
g(t2)−g(t1)

)(
h(t2)−h(t1)

)
for all t1, t2 with a ≤ t1 < t2 ≤ b. In

modern terns using the Radon-Nikodým derivative, we would introduce a dominating measure λ ∈
([a, b]) and assume dfj = ϕj dλ, dg = γ dλ, and dh = η dλ with the restriction ϕ2

j ≤ γη. Then,
ϕ1ϕ2/γ ≤ η a.e. with respect to λ, and Hellinger’s integral can be interpreted in the form∫ b

a

u(t)
df1df2
dg

:=

∫ b

a

u(t)
ϕ1(t)ϕ2(t)

γ(t)
dλ(t). (2.23)

However, as Hellinger’s construction was much before the introduction of the Radon-Nikodým deriva-
tive, he used a convexity argument that is reminiscent to the concavity in the definition of

√
µ1µ2 in

(2.2): Restricting the integral in (2.23) to the case u ≡ 1 and f = f1 = f2 one shows that∫ b

a

df 2

dg
= lim

∆(Π)→0

∑
ti∈Π

(
f(ti)−f(ti−1)

)2
g(ti)−g(ti−1)

= sup
Π∈Part([a,b]

∑
ti∈Π

(
f(ti)−f(ti−1)

)2
g(ti)−g(ti−1)

,
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see [Hel09, §4, p. 234], because the discrete sum is increasing under refinements of the partitions Π
of the interval [a, b], by using the estimate(

f(ti)−f(ti−2)
)2

g(ti)−g(ti−2)
≤

(
f(ti)−f(ti−1)

)2
g(ti)−g(ti−1)

+

(
f(ti−1)−f(ti−2)

)2
g(ti−1)−g(ti−2)

.

In [Kol30] the argument was generalized to arbitrary measure spaces, defining so-called Kolmogorov
integrals by using the infimum construction, but an explicit reference of Hellinger’s work is given [Kol30,
p. 679], referring explicitly to [Hel09, p.234].

Using the modern tool of the Radon-Nikodým derivative, [Kak48, Eqn. (11)] introduces the so-called
Hellinger integral ρ(µ, ν) =

∫
Ω

√
µ(dω)ν(dω) and defines what is nowadays called the Hellinger

distance on probability measures via He(µ, ν) =
(
2−2ρ(µ, ν)

)1/2
.

Since the early 1960s, the name Hellinger distance is consistently used in probability theory and
statistics (see. e.g. [LeC70]), which was checked by a search of “Hellinger distance” in MathSciNet
in 2023, which led to more than 600 hits in abstracts or titles. In particular, Rao’s paper [RaV63, §3,
p. 304] introduces the Hellinger integral and the Hellinger distance explicitly by name.

The Fisher-Rao distance was popularized by [Rao45] as geodesic distance for the Fisher information
metric. It is interesting to see that the abstract version of the Fisher metric given in (1.4) is exactly of
the form of the Hellinger integrals (2.23) introduced already in [Hel09], however in a rather restrictive
setting.

3 Various Fisher-Rao distances

We first discuss the general construction of the Fisher-Rao distance FRS for general subset S ⊂
M(Ω) without direct reference to the local Fisher information metric gµ(ν1, ν2) defined in (1.4).

3.1 The general construction for subsets S ⊂ M(Ω)

Throughout, our subsets S will be path-connected, i.e. between any to points µ0, µ1 ∈ S there exists
a continuous path γ ∈ C0([0, 1];M(Ω)) with γ(s) ∈ S for all s ∈ [0, 1]. The intrinsic length of γ is
defined by

LHe(γ) = sup
{ N∑

i=1

He
(
γ(si), γ(si−1)

) ∣∣∣ N ∈ N, 0 = s0<s1<· · ·<sN−1<sN = 1
}
, (3.1)

and LHe(γ) < ∞ means that γ is rectifiable in (M(Ω),He). In that case, we can change the
parametrization with a monotone function t : [0, 1] → [0, 1] such that γ̃ = γ ◦ t has constant
speed, namely

He
(
γ̃(r), γ̃(s)

)
= He

(
γ(t(r)), γ(t(s))

)
= |r−s|LHe(γ) for all r, s ∈ [0, 1]. (3.2)

To see this, consider the function ℓ : [0, 1] → [0, 1] with ℓ(t) = LHe

(
γ|[0,t]

)
/LHe(γ), which is

continuous, non-decreasing and surjective. Now, we can choose any t : [0, 1] → [0, 1] such that
t ◦ ℓ = id[0,1], i.e. t(s) ∈ ℓ−1({s}). Using the metric derivative or speed) | ˙̃γ|He(s) as defined in
Section 2.3, one then has the relation

LHe(γ)
2 = LHe(γ̃)

2 = lim
N→∞

N∑
i=1

N He
(
γ̃(i/N), γ̃((i−1)/N)

)2
. (3.3)
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Using the length LHe, the Fisher-Rao distance FRS for the subset S is defined by

FRS(µ0, µ1) := inf
{
LHe(γ)

∣∣∣ γ ∈ C0([0, 1];S), γ(0) = µ0, γ(1) = µ1)
}

(3.4a)

= inf
{ ∫ 1

0

(
|γ̇|He(s)

)2
ds

∣∣∣ γ 2-absol. contin., γ(0) = µ0, γ(1) = µ1)
}
. (3.4b)

From the definition we immediately obtain the lower estimate

FRS(µ0, µ1) ≥ He(µ0, µ1) for all µ0, µ1 ∈ S, (3.5)

and equality can only hold if the geodesic curve γHe
µ0→µ1

(cf. (1.3)) is contained in S .

If S is a smooth manifold that is given by a parameter p ∈ D ⊂ X , where X is a Banach space (e.g.
Rm) in the form S =

{
µ̂(p)

∣∣ p ∈ D ⊂ X
}

, then the induced metric tensor, also called Fisher’s
information matrix. can be reconstructed via〈

Ĝ(p)v, v⟩ = lim
ε→0+

1

ε2
He

(
µ̂(p), µ̂(p+εv)

)2
(3.6)

3.2 Bhattacharya distance alias spherical Hellinger distance

The simplest and still very important submanifold in M(Ω) is the set of probability measures P(Ω) ⊂
M(Ω).

Since the Hellinger distance satisfies the general scaling property

He(r20µ0, r
2
1µ1)

2 = r0r1He(µ0, µ1)
2 + σ2(r20−r0r1)µ0(Ω) + σ2(r21−r0r1)µ1(Ω), (3.7)

we can interpret the set M(Ω) of all (non-negative) measures as a metric cone over the base space
P(Ω), in the sense of [BBI01, §3.6]. This general geometric construction implies that the induced
Fisher-Rao distance FRP on P(Ω), which is also called Bhattacharya distance Bh (cf. [Rao45]), as
well as the exact form of the geodesics can be given explicitly, see [LaM19, Sec. 2] for the details. In
the latter work this distance is called the spherical Hellinger distance because the base space P(Ω)
is called the spherical space of the cone. We obtain

Bh(ν0, ν1) = 2σ arcsin
( 1

2σ
He(ν0, ν1)

)
= σ arccos

(
1− 1

2σ2He(ν0, ν1)
2
)
,

Note that He takes values in [0, σ
√
2] (because νj(Ω) = 1), whereas Bh takes values in [0, σ π/2].

The maximum values are achieved if ν0 and ν1 are mutual singular such that
√
ν0ν1 = 0, e.g. for

Dirac measures νj = δωj
with ω0 ̸= ω1.

According to [LaM19, Thm. 2.7], the geodesics take the form

γBh
ν0→ν1

(s) = n(s)γHe
ν0→ν1

(t(s)) with t(s) =
sin(sδ)

sin
(
(1−s)δ

)
+ sin(sδ)

∈ [0, 1],

δ = 1
σ Bh(ν0, ν1) ∈ [0, π

2
], and n(s) =

(sin((1−s)δ
)
+ sin(sδ)

sin(δ)

)2 ∈ [1, 2].

Recalling γHe
ν0→ν1

(t)(Ω) = 1 − (t−t2) 1
σ2He(ν0, ν1)

2 = 1 − 2(t−t2)(1− cos δ) we indeed find
n(s)γHe

ν0→ν1
(t(s))(Ω) ≡ 1, i.e. γBh

ν0→ν1
(s) ∈ P(Ω).
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Of course, one can also go opposite and consider M(Ω) as a cone over P(Ω), i.e. M(Ω) =
[0,∞[P(Ω). Then, we have the relation

He(r20ν0, r
2
1ν1)

2 = r0r1He(ν0, ν1)
2 + σ2(r1−r0)

2 (3.8a)

= σ2
(
(r1−r0)

2 + 2r0r1
(
1− cos

( 1
σBh(ν0, ν1)

))
. (3.8b)

Remark 3.1 (Unique characterization) In [KL∗13] the question is studied whether Bh is the only
Riemannian distance (up to a positive scalar factor) on a finite-dimensional, smooth manifold that is
invariant under all pushforwards (cf. Section 2.7) with respect to smooth diffeomorphisms. It is shown
that this is true for dimension n ≥ 2 but it may fail for n = 1. It is unclear whether the pathology for
n = 1 disappears if pushforwards for all measurable homeomorphisms are considered.

3.3 General cones

A special property of the Hellinger distance is the scaling property (3.7) that suggests that the transition
between M(Ω) and P(Ω) can be seen as the transition between the cone CP ⊂ M(Ω) and its base
space P ⊂ P(Ω):

P ⊂ P(Ω) and CP := [0,∞[P :=
{
r2ν

∣∣ r ∈ [0,∞[, ν ∈ P
}
= S,

Here P is chosen arbitrarily such that (P ,FRP) is a length space. The following result gives an explicit
formula for FRS in terms of FRP . Whenever FRP(ν0, ν1) ≥ σπ we will find FRS(r

2
0ν0, r

2
1ν1) =

σ(r0 + r1) and the corresponding geodesic curve is given by

γS
r20ν0→r21ν1

(s) =

{ (
r0 − (r0+r1)s

)2
ν0 for s ∈ [0, r0/(r0+r1)],(

r0+r1)s− r0
)2
ν1 for s ∈ [r0/(r0+r1), 1].

For δ := 1
σ FRP(ν0, ν1) < π geodesics in S can be expressed by geodesics in P via

γS
r20ν0→r21ν1

(s) = r̂(s)2 γP
ν0→ν1

(
ζ(s)

)
with ζ(s) =

1

δ
arcsin

(
s
r1 sin δ

r̂(s)

)
and r̂(s)2 = (1−s)2r20 + s2r21 + 2(s−s2)r0r1 cosπ δ.

We refer to [LaM19, Sec. 2.3] for these formulas of the geodesics, while the formula for FRS given
below is from [BBI01, §3.6]. Here we give a sketch of an alternative proof using metric speeds.

Theorem 3.2 (Fisher-Rao distance on cones) If (P ,FRP) is a length space and S = CP ⊂
M(Ω), then (S,FRS) is a length space with

FRS(r
2
0ν0, r

2
1ν1)

2 = σ2
(
r20 + r21 − 2r0r1 cosπ

( 1
σFRP(ν0, ν1)

))
, (3.9)

where cosπ(r) = cos
(
min{|r|, π}

)
.

Sketch of proof. A curve s 7→ µ(s) = r(s)2ν(s) ∈ S ⊂ M(Ω) can having finite length has
a metric speed a.e. in [0, 1]. According to Theorem 2.2 we can calculate the speed via Hellinger’s
quadratic form (

|µ̇|He(s)
)2

=

∫
Ω

ξ2s dµs.
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A. Mielke 16

Similarly, we can calculate the metric speed of s 7→ ν(s) ∈ P ⊂ P(Ω). From (3.8a) we obtain

|µ̇|He(s)2 = lim
h↘

1

h2
He(µ(s), µ(s+h))2

= lim
h↘

1

h2

(
r(s+h)r(s)He(ν(s), ν(s+h))2 + σ2

(
r(s+h)− r(s)

)2)
= r(s)2|ν̇|He(s)2 +

(
r′(s)

)2
.

Since FRS(r
2
0ν0, r

2
1ν1)

2 is given of the infimum over∫ 1

0

|µ̇|He(s)2 ds =
∫ 1

0

(
r(s)2|ν̇|He(s)2 + σ2

(
r′(s)

)2)
ds

subject to the boundary conditions µ(j) = µJ = r2jνj for j = 0, 1, we see obtain

FRS(r
2
0ν0, r

2
1ν1)

2 = inf
{∫ 1

0

(
r2y2+(σr′)2

)
ds

∣∣∣ r(0) = r0, r(1) = r1,

∫ 1

0

yds = FRP(ν0, ν1)
}
.

This minimization problem has been analyzed explicitly by [LMS16, Thm. 2] for the case σ = 1 (if one
sets α = 1 and β = 4 there). A crucial point is to realize that ry = const along minimizers. The
case of general σ follows by scaling replacing y by σy, thus rescaling FRP by a factor σ, and pulling
out the factor σ2.

This yields the desired formula (3.9).

3.4 Product measures

In applications one is often interested in situations where the basic measure space is a product space,
viz. Ω = Ω1×Ω2. Given subsets S1 ⊂ M(Ω1) and S2 ⊂ M(Ω2) one is then interested in the
Fisher-Rao distance for the subset

S1 ⊗ S2 :=
{
µ1⊗µ2

∣∣ µ1 ∈ S1, µ2 ∈ S2

}
.

The natural question is whether FRS1⊗S2 can be expressed of estimated by FRS1 and FRS2 .

A positive and simple answer can be given in the case that Sj are contained in the probability mea-
sures P(Ωj).

Proposition 3.3 (Product probability measures) Assume that Pj ⊂ P(Ωj) and that FRPj
are fi-

nite for j = 1, 2, then we have

FRP1⊗P2(ν1⊗ν2, η1⊗η2)
2 = FRP1(ν1, η1)

2 + FRP2(ν2, η2)
2 for all νj, ηj ∈ P(Ωj). (3.10)

Proof. Since we are working with probability measures we can use the simple representation (2.19)
for the Hellinger distance of product measures. We first observe that He(νj, ηj)2 ≤ 2σ2 implies

1

2

(
He(ν1, η1)

2 + He(ν2, η2)
2
)
≤ He(ν1, η1)

2 + He(ν2, η2)
2 − 1

2σ2
He(ν1, η1)

2He(ν2, η2)
2

= He(ν1⊗η1, ν2, η2) ≤ He(ν1, η1)
2 + He(ν2, η2)

2.
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Some notes on the Hellinger distance and various Fisher-Rao distances 17

Hence the curve s 7→ µ(s) is rectifiable if and only if the two curves s 7→ νj(s) are rectifiable.

This allows us to calculate the metric speed for curves µ(s) = ν1(s)⊗ν2(s) as follows. For a.a.
s ∈ [0, 1] the three metric derivatives |µ̇|He, |ν̇1|He, and |ν̇2|He exists and for those points we have .

|µ̇|He(s)2 = lim
h↘0

1

h2
He

(
µ(s), µ(s+h)

)2
(2.19)
= lim

h↘0

1

h2

(
He

(
ν1(s), ν1(s+h)

)2
+ He

(
ν2(s), ν2(s+h)

)2
− 1

2σ2
He

(
ν1(s), ν1(s+h)

)2
He

(
ν2(s), ν2(s+h)

)2)
= lim

h↘0

1

h2
He

(
ν1(s), ν1(s+h)

)2
+ lim

h↘0

1

h2
He

(
ν2(s), ν2(s+h)

)2 − 0

= |ν̇1|He(s)2 + |ν̇2|He(s)2.

Thus, formula (3.10) follows immediately as calculating the Fisher-Rao distances via the characteriza-
tion in (3.4b).

This simple additive structure for the Fisher-Rao distance of product measures disappears if one
leaves the realm of probability measures. Relation (2.18) can be rewritten in the form

He
(
ν1⊗ν2, η1⊗η2

)2
= 1

2

(
ν2+η2

)
He(ν1, η1)

2 + 1
2

(
ν1+η1

)
He(ν2, η2)

2

+ σ2
(
ν1−η1

)(
ν2−η2

)
− 1

2σ2
He(ν1, η1)

2He(ν2, η2)
2,

(3.11)

where νj = νj(Ωj) and ηj = ηj(Ωj). Hence, for curves µ(s) = ν(s)⊗η(s) we obtain the metric
speed

|µ̇|2He = mη(s)|ν̇|2He +mν(s)|η̇|2He + σ2m′
ν(s)m

′
η(s)

with mµ(s) = νs(Ω) and mη(s) = ηs(Ω). Hence, there is a much stronger interaction between the
measures in S1 ⊂ M(Ω1) and those in S2 ⊂ M(Ω2), and in the general case an explicit form for
FRS1⊗S2 seems out of reach.

There is one case that can be treated, namely if S1 and S2 are cones over P1 and P2, respectively.
In this case, we have

S1⊗S2 = CP1⊗CP2 = CP1⊗P2 .

Thus, we can first apply Proposition 3.3 to obtain FRP1⊗P2 and afterwards invoke Theorem 3.2.

4 Classical families of probability distributions

As applications of the above theory we treat a few classical examples. For further applications we refer
to [May16].

4.1 Translations of a measure

As a first example we treat the case Ω = Rn, fix a µ ∈ (Rn), and using the diffeomorphisms
Φy : x 7→ x+y we define

Strans(µ) :=
{
Φy

#µ
∣∣ y ∈ Rn

}
.
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A. Mielke 18

Observe that Strans(µ) is not path connected if µ has a discrete part, because for Dirac measures we
have Φyδz = δz−y and He(δx1 , δx2) =

√
2 for x1 ̸= x2. If µ is absolutely continuous with respect

to the Lebesgue measure, Strans(µ) is path connected but the intrinsic length may still be infinite for
nontrivial curves. For this consider n = 1 and µ̃ = 1[0,1] dx giving the distances

He(Φy
#µ̃,Φ

z
#µ̃)

2 = σ2

∫
R

(
1[0,1](x−y)− 1[0,1](x−z)

)
dx = 2σ2min

{
|y−x|, 1

}
.

Hence, for every non-constant curve γ in Strans(µ̃) we have LHe(γ) = ∞, which implies
FRStrans(µ̃)(Φ

y
#µ̃,Φ

z
#µ̃) = ∞ for y ̸= z.

However, considering µ̂ = f dx with
√
f ∈ H1(Rd), it is straightforward to show that(

FRStrans(µ̂)(Φ
y
#µ̂,Φ

z
#µ̂)

)2
= (z−y) · A(z−y),

where the induced translation invariant Riemannian metric on the parameter space D = Rn is given
by

A :=

∫
Rd

σ2

f
∇f ⊗∇f dx =

∫
Rd

4σ2 ∇
√

f ⊗∇
√

f dx.

Clearly, the induced distance on Rn is translation invariant. If there are further symmetries (reflections
or rotations) of the measure µ = f dx they are reflected in the induced matrix A by applying Lemma
2.4.

4.2 Submanifold of Poisson measures on Nd
0

For Ω = Nd
0 the multivariate Poisson distribution πα for α ∈ [0,∞[d is given by (where n = (ni)i ∈

Nd
0)

πα

(
{n}

)
=

e−α αn

n!
with α =

d∑
i=1

αi, αn =
d∏

i=1

αni
i , and n! =

d∏
i=1

ni! .

The Hellinger distance between πα and πβ can easily calculated by observing that
√
παπβ is a multiple

of π 1
2
(α+β), giving

He(πα, πβ)
2 = 2σ2

(
1− eb(α,β)

)
with b(α, β) =

d∑
i=1

√
αiβi − αi+βi

2
= −1

2

d∑
i=1

(√
αi −

√
βi

)2
.

The Fisher metric tensor on the d-dimensional manifold

SPoiss(Nd
0) =

{
πα

∣∣ α ∈ [0,∞[d
}

is now most easily constructed by applying (3.6), giving

〈
GPoiss(α)v, v

〉
=

σ2

4

d∑
i=1

v2i
αi

.

With this, the associated Fisher-Rao distance for SPoiss(Nd
0) can be calculated explicitly and gives the

Hellinger distance on the positive orthant [0,∞[d = M({1, .., d}) of Rd, viz.

FRPoiss(πα, πβ)
2 = σ2

d∑
i=1

(√
αi −

√
βi

)2
.
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Some notes on the Hellinger distance and various Fisher-Rao distances 19

The sum structure of this formula is to be expected because the Poisson distributions are tensor
products of scalar Poisson distributions, such that Proposition 3.3 applies.

Surprisingly, as in the case of the Bhattacharya (a.k.a. spherical Hellinger distance), the Fisher-Rao
distance can be expressed in terms of the Hellinger distance itself, namely

FRPoiss(πα, πβ)
2 = −2σ2 log

(
1− 1

2σ2
He(πα, πβ)

2
)
≥ He(πα, πβ)

2.

Note that FRPoiss(πα, πβ) can become arbitrarily large, while He(πα, πβ) ∈ [0,
√
2σ].

4.3 Submanifold of exponential distributions

We now consider the caseΩ = [0,∞[n, the parameter spaceA = ]0,∞[n ⊂ Rn, and the probability
densities

εα(x) = p(α)e−α·x with p(α) =
n∏

i=1

αi.

The exponential submanifold is then given by

Sexp =
{
εα

∣∣ α ∈ A = ]0,∞[n ⊂ Rn
}
⊂ L1(Ω) ∩P(Ω).

Again the Hellinger distances are easily calculated in terms of the arithmetic mean a(α, β) = 1
2
(α+β) ∈

A and the geometric mean g(α, β) =
(√

αiβI

)
i
∈ A, namely

He(εα, εβ)
2 = 2σ2

(
1−

p
(
g(α, β)

)
p
(
a(α, β)

)) = 2σ2
(
1−

n∏
i=1

√
αiβi

1
2
(αi+βi)

)
.

The Fisher information matrix is easily obtained by using Fisher’s logarithmic derivative, namely

〈
Gexp(α)v, v

〉
=

σ2

4

∫
Ω

∣∣v·∇α log
(
εα(x)

)∣∣2εα(x) dx
=

σ2

4

∫
Ω

∣∣ n∑
i=1

vi(
1
αi

−xi)
∣∣2εα(x) dx =

σ2

4

n∑
k=1

( vk
αk

)2
.

Hence, the Fisher-Rao distance takes the form

FRexp(εα, εβ)
2 =

σ2

4

n∑
k=1

(
logαk − log βk

)2
=

σ2

4

n∑
k=1

(
log(αk/βk)

)2
.

Again the sum structure follows because the multivariate exponential distribution is the tensor product
of one-dimensional exponential distributions.

Moreover, we can use the scaling invariance of the exponential distributions under mappingsΦD(x) =
Dx with D = diag

(
δi)i=1,..,n. Using that ΦD

#εα = εDα we find the invariance FRexp(εα, εβ) =
FRexp(εDα, εDβ). This implies that FRexp(εα, εβ) can only depend on αk/βk.
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4.4 Gaussian distributions or multivariate normal distributions

The Fisher-Rao distance between Gaussian distributions was one of the motivation to introduce the
the concept of Fisher matrix and Fisher-Rao distance and the one-dimensional case (univariate normal
distributions) was already discussed in [Rao45]. For the general multivariate case, no explicit formula
is known so far, and estimating the Fisher-Rao distance between Gaussians from above or below is
an active field of research in the area of information geometry. We refer to [SPC15, PCS19, NiB19,
PSC20, Nie23] for some recent works in this direction.

Remark 4.1 The situation is different if the Hellinger distance is replaced by the Wasserstein distance,
because in the Otto-Wasserstein geometry the geodesic curves between Gaussians remains in the
class of Gaussians. This leads to the so-called Bures-Wasserstein distance, see e.g. [BJL19, KSS21,
LC∗22].

We consider the case Ω = Rd and use the standard representation of Gaussian measures Gm,Σ ∈
P(Rd) with density

pm,Σ(x) =
1√

det(2πΣ)
exp

(
− 1

2
(x−m) · Σ−1(x−m)

)
,

where m ∈ Rd is the mean and Σ ∈ Rd×d
spd is the symmetric and positive definite covariance matrix.

The Hellinger distance can be calculated easily as
√
Gm0,Σ0Gm1,Σ1 is a multiple of a Gaussian with

covariance 2(Σ−1
0 +Σ−1

1 )−1:

He(Gm0,Σ0 , Gm1,Σ1)
2 = 2σ2

(
1−

exp
(
− 1

4
(m1−m0) · (Σ−1

0 +Σ−1
1 )(m1−m0)

)(
detΣ0 detΣ1

)1/4(
det(1

2
Σ−1

0 +1
2
Σ−1

1 )
)1/2 )

.

One can check that this formula is invariant under pushforwards (in the sense of Section 2.7) under all
affine transformations Φ(x) = Ax + x∗ by noting that Φ#Gm,Σ = Gm,Σ

′ with m = Am + x∗ and

Σ = AΣA∗. For instance, the distance only depends on m1−m0. i.e. it is translation invariant.

Setting PGauss :=
{
Gm,Σ

∣∣ m ∈ Rd, Σ ∈ Rd×d
spd

}
and FRGauss = FRPGauss

, the invariance un-
der pushforwards with respect to affine transformations is sill true for FRGauss, see also [PSC20] or
“Property 1” in [Nie23, P. 4]. This is best seen by looking at the equation for the geodesic curves inside
PGauss. For this one calculates the Fisher information matrix; using the parameters (m,Σ) it takes the
form (

v

V

)
·GGauss(m,Σ)

(
v

V

)
= σ2

(
v · Σ−1v +

1

2
tr(Σ−1V Σ−1V )

)
. (4.1)

From this the geodesic equations for s 7→ (m(s),Σ(s)) can be derived by treating the inverse
quadratic form

H(m,Σ, ξ,Ξ) :=

(
ξ

Ξ

)
·KGauss(m,Σ)

(
ξ

Ξ

)
=

1

4σ2

(
ξ · Σξ + 2 tr(ΣΞΣξ)

)
as a Hamiltonian H , see [LM∗25, Sec. 4.1] for the details. Here ξ(s) ∈ Rd and Ξ(s) ∈ Rd×d

sym are the
dual variables corresponding to ξs = ξ(s, ·) ∈ L2(Ω, γs) in Theorem 2.2. After scaling the parameter
along the geodesic curves by the prefactor σ2/2, one arrives at

m′ = σ2

2
DξH(m,Σ, ξ,Ξ) = Σξ, Σ′ = σ2

2
DΞH(m,Σ, ξ,Ξ) = 2ΣΞΣ, (4.2a)

ξ′ = −σ2

2
DmH(m,Σ, ξ,Ξ) = 0, Ξ′ = −σ2

2
DΣH(m,Σ, ξ,Ξ) = −2ΞΣΞ− 1

2
ξ⊗ξ. (4.2b)
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The translation invariance is seen in the fact that H does not depend on m, which implies that ξ is a
constant along solutions by Noether’s theorem. Similarly, for all A ∈ GL(Rd) the mapping

(m,Σ, ξ,Ξ) 7→
(
Am,AΣA∗, A−∗ξ, A−∗ΞA−1

)
leaves the Hamiltonian invariant, and Noether’s theory leads to the conserved quantities

J = ΣΞ +
1

2
m⊗ξ ∈ Rd×d (no symmetry).

The (1+d+d2) conserved scalar quantities defined via H ∈ R1, µ ∈ Rd and J ∈ Rd×d are enough
to show that the geodesic curves can be found, see [CaO91] or [PSC20, Eqn. (15)]. However, know-
ing the geodesics means solving an initial-value problem, while calculating the Fisher-Rao distance
FRGauss

(
(m0,Σ0), (m1,Σ1)

)
means to solve a boundary-value problem.

The case d = 1, which was already treated in [Rao45], is by now classical and can be related to
hyperbolic geometry by introduction N =

√
2Σ and using the conservation laws

4Σ2Ξ2 + 2Σξ2 = h∗ = const, ξ = ξ∗, and 2Σξ +mξ = j∗

leads to the condition that (m,N) lies on the semi-circle(
m− j∗/ξ∗

)2
+N2 = h∗/ξ

2
∗ .

Another easy case occurs for ξ = ξ∗ = 0 ∈ Rd, where now d ∈ N∗ is general. This implies
m(s) = m0 = m1 and corresponds to Gaussians with the same center. From Σ′ = 2JΣ and
Ξ′ = −2ΞJ and the boundary conditionsΣ(i) = Σi for i = 0, 1, we obtain J = −1

2
log

(
Σ1Σ

−1
0

)
=

−1
2
Σ

1/2
0 log

(
Σ

−1/2
0 Σ1Σ

−1/2
0

)
Σ

−1/2
0 and find

Σ(s) = Σ
1/2
0

(
Σ

−1/2
0 Σ1Σ

−1/2
0

)s
Σ

1/2
0 .

A third case can be handled by using the cross-product theory of Section 3.4 and joining the two cases
from above, namely the case where m1−m0 is an eigenvector of Σ1 and Σ0. Using the invariance
under affine transformations (rotations suffice) we can assume m1−m0 = δe1. In that case, we can
find a solution of the Hamiltonian system in the form

m(s) = m0 + α(s)e1, Σ(s) =

(
γ(s) 0
0 Γ(s)

)
∈ R1×1⊗R(d−1)×(d−1). (4.3)

µ(s) = βe1, Ξ(s) =

(
ζ(s) 0
0 Π(s)

)
∈ R1×1⊗R(d−1)×(d−1).

For (α, γ) the one-dimensional theory applies, while for (Γ,Π) the theory with the same center 0 can
be used.

In these three cases the following results for FRGauss(Gm0,Σ0 , Gm1,Σ1) are obtained, see [PSC20].
To present the results in a unified way we use the function M : R≥×R> → R≥ with

M(∆,Λ) :=
√
2 log

(
1

8

(√
∆+ 2(Λ1/4+Λ−1/4)2 +

√
∆+ 2(Λ1/4−Λ−1/4)2

)2
)

which essentially arises from hyperbolic theory and satisfies M(0,Λ) = 2−1/2 |log Λ|, M(∆, 1) =√
∆+O(∆)∆→0, and M(∆, 1) =

√
2 log∆ +O(1)∆→∞.
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Theorem 4.2 (Fisher-Rao distance within Gaussians)

(A) In the one-dimensional case d = 1 we have the formula

d = 1 : FRGauss(Gm0,Σ0 , Gm1,Σ1) =
σ

2
M

(
(m1−m0)

2√
Σ0Σ1

,
Σ1

Σ0

)
. (4.4)

(B) In the case with the same center m1 = m0 and d ≥ 1 we have

d ≥ 1 : FRGauss(Gm0,Σ0 , Gm0,Σ1)
2 =

σ2

4

d∑
n=1

M(0,Λn)
2 =

σ2

2

d∑
n=1

(
log Λn

)2
, (4.5)

where Λn = λn(Σ
−1/2
0 Σ1Σ

−1/2
0 ) is the n-th eigenvalue of the symmetric matrix Σ−1/2

0 Σ1Σ
−1/2
0 .

(C) Let Λn > 0 be as in (B) and assume Σ−1
0 (m1−m0) = Λ0Σ

−1
1 (m1−m0), then,

FRGauss(Gm0,Σ0 , Gm1,Σ1)
2 =

σ2

4
M

(
|Σ−1/2

0 (m1−m0)| |Σ−1/2
1 (m1−m0)|,Λ1

)2

+
σ2

4

d∑
n=2

M(0,Λn)
2.

(4.6)

We refer to [PSC20, Sec. 2.1] and [Nie23, Sec. 1.2] and the references therein for the details of proofs
and the corresponding the calculations. The sum structure for FR2 on formulas (4.5) and (4.6) are
again consequences of the cross-product theory in Proposition 3.3 because the Gaussians can be
simultaneously transformed affinely to have the same eigenbasis.

However, we warn the reader that the general case cannot be handled by cross products in all the
cases that the initial and final Gaussian have the same product structure. The reason is that the
geodesic curves may lead the space of such product measures, see the discussion in [SPC15, PCS19,
PSC20]. In the present context this can be seen by looking at the geodesic equations (4.2) involving
the rank-one matrix ξ⊗ξ ∈ Rd×d

sym . A cross-product structure would mean that Σ(s) and Ξ(s) would
have the same block structure for all s ∈ [0, 1]. Then, this would also hold for ξ⊗ξ, but together with
the rank-one condition this implies that only one block can be non-trivial. This essentially explains the
condition in case (C) of the above theorem.
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