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Permutations in competing growth processes and
balls-in-bins

Johannes Bäumler, Tejas Iyer

Abstract

Consider a model of N independent, increasing N0-valued processes, with random,
independent waiting times between jumps. It is known that there is either an emergent
‘leader’, in which a single process possesses the maximal value for all sufficiently large
times, or every pair of processes alternates leadership infinitely often. We show that
in the latter regime, almost surely, one sees every possible permutation of rankings of
processes infinitely often. In the case that the waiting times are exponentially distributed,
this proves a conjecture from Spencer (appearing in a paper from Oliveira) on the ‘balls-
in-bins’ process with feedback [8, Conjecture 1].

1 Introduction

A natural model for the evolution of the wealth of entities over time is to consider competing
birth processes. One can consider a fixed, finite number of ‘agents’ with ‘values’ increasing in
steps, from j´1 to j after a random amount of timeXj. In the case where the random variabes
pXjqjPN are independent, and identically distributed across agents, in [5], the second author
showed that with probability zero or one, a single individual becomes the leader, possessing
the maximum wealth for all sufficiently ‘large’ times. In addition, the author showed that, in
the regime of non-leadership, any two agents will fluctuate in order of value infinitely often.

This result was a generalisation of previous results in the literature [7, 8, 9] which dealt with the
case that the pXjqjPN are exponentially distributed random variables. Via a result commonly
termed ‘Rubin’s construction’ in the literature [3] (closely connected to the Arthreya-Karlin
embedding [1]), it is known that when the random variables are exponentially distributed, with
Xj „ Expppfpj ´ 1qq, the collection of values of agents in the system, as the values change,
behaves like the following discrete ‘balls-in-bins’ process with feedback: at each new time step,
a bin with m balls is selected with probability proportional to fpmq and a new ball is added
to the bin.

A natural conjecture is that, in the regime of non-leadership, given that we already know
that any pair of agents fluctuates in ordering of value infinitely often, one in fact sees any
possible permutation of ordered values of agents infinitely often. In the context of balls-in-bins
processes, this was conjectured by Spencer [8, Conjecture 1], stated in a paper from Oliveira.
In this paper, we show that these conjectures hold.

We note that the results presented here have implications beyond urn models, for example,
to the preferential attachment tree models analysed in [2, 11] in regimes where there is no
‘leader’ (coined persistent hubs in this context) - see Remark 1.3 further below.
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1.1 Model description and main results

We consider a finite collection of N0-valued growth processes with independent waiting times
between jumps. Suppose we have A ě 2 agents labelled by the elements of rAs :“ t1, . . . , Au.
To each agent a P rAs, we associate an identically distributed sequence of mutually indepen-
dent random variables pX paq

j qjPN, taking values in r0,8q, such that the sequences pX paq

j qjPN
are independent across different agents a P rAs. At each time t ě 0, each agent a P rAs has
a value vaptq P N0 such that for each agent a P rAs, its value va : r0,8q Ñ N0 increases over
time. The random variable X paq

j denotes the time taken for the value of agent a to increase
from j ´ 1 to j. Additionally, to each agent a P rAs, we associate an initial value vin

a P N0.
Thus, given the value vin

a , for k P N0 we have

vaptq “ vin
a ` k if and only if

vin
a`k
ÿ

j“vin
a`1

X paq

j ď t ă

vin
a`k`1
ÿ

j“vin
a`1

X paq

j .

Note that if X paq

1 ą 0, then vap0q “ vin
a . We are interested in the vector of values of agents,

i.e., pvaptqqaPrAs, as time evolves.

Throughout this paper, for a random variable Y , we denote by Y s a random variable distributed
like Y ´Y 1, where Y 1 is an i.i.d. copy of Y . We denote by

`

Xs
j

˘

jPN a sequence of independent
random variables such that Xs

j is distributed like X p1q
j ´X p2q

j .

Our main result is the following:

Theorem 1.1. Suppose that the random series
ř8

j“1 X
s
j diverges almost surely. Then, almost

surely, for any permutation π : rAs Ñ rAs,

DptiqiPN P r0,8qN : lim
iÑ8

ti “ 8 and @i P N vπp1qptiq ě vπp2qptiq ě ¨ ¨ ¨ ě vπpAqptiq.

As outlined in the introduction, via Rubin’s construction, the above theorem has implications
for balls-in-bins processes with feedback. We recall the definition of such processes: we are
given A bins, a feedback function f : N0 Ñ p0,8q, and an initial collection of balls in bins
puap0qqaPrAs P NA. Then, recursively, for n P N:

1 A bin a P rAs is sampled with probability

fpuapn´ 1qq
ř

aPrAs fpuapn´ 1qq .

2 We set uapnq “ uapn´ 1q ` 1, whilst for a1 ‰ a, we set ua1pnq “ ua1pn´ 1q.

Corollary 1.2 ([8, Conjecture 1]). Consider a balls-in-bins process puapnqqaPrAs,nPN0 with feed-
back function f : N0 Ñ p0,8q such that

8
ÿ

i“0

1
fpiq2

“ 8. (1.1)

Then, almost surely, for any permutation π : rAs Ñ rAs, there exist infinitely many n P N0
such that

uπp1qpnq ě uπp2qpnq ě ¨ ¨ ¨ ě uπpAqpnq.
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Permutations in competing growth processes and balls-in-bins 3

Remark 1.3. The result in Corollary 1.2 has implications for preferential attachment trees -
where nodes arrive one at a time and connect to an existing node with probability proportional
to a function f of their out-degree (the model considered in, for example, [2, 11]). In particular,
it shows that, if the function f satisfies (1.1), then, given any finite collection of nodes, one sees
any possible ordering of these nodes when ordered by degree infinitely often in the evolution
of the tree. Theorem 1.1 has a similar implication for the genealogical trees of CMJ branching
processes with independent increments (for example, the model considered in [6]), as long as
the random series

ř8

j“1 X
s
j diverges almost surely, and the model is ‘non-explosive’.

2 Proofs of results

For the proof of Theorem 1.1, we first prove a modified version of the result – Proposition 2.1
below. In this modified version, we always assume that the initial values pvin

a qaPrAs are all
identically zero, i.e.,

vin
a “ 0 for all a P rAs.

We make this assumption for the rest of Sections 2.1 and 2.2. In Section 2.3, we use Propo-
sition 2.1 to prove Theorem 1.1.

Proposition 2.1. Suppose that the random series
ř8

j“1 X
s
j diverges almost surely and that

vin
a “ 0 for all a P rAs. Then, almost surely, for any permutation π : rAs Ñ rAs,

DptiqiPN P r0,8qN : lim
iÑ8

ti “ 8 and @i P N vπp1qptiq ě vπp2qptiq ě ¨ ¨ ¨ ě vπpAqptiq.

(2.1)

2.1 Proof of Proposition 2.1

We write SA for the symmetric group on rAs. For a permutation π : rAs Ñ rAs and a collection
of integers pMaqaPrAs, we define

Ξπ

`

pMaqaPrAs
˘

“
1

ř

ρPSA
1
 

Mρp1q ěMρp2q ě . . . ěMρpAq

(1
 

Mπp1q ěMπp2q ě . . . ěMπpAq

(

.

By definition, the normalising factor means that
ÿ

πPSA

Ξπ

`

pMaqaPrAs
˘

“ 1.

We will evaluate the function Ξπ at the values pvaptqqaPrAs. The following proposition shows
that the long-term behaviour of the expectation of Ξπ

`

pvaptqqaPrAs
˘

is not affected by initial
time-shifts:

Proposition 2.2. Let π P SA and let M ą 0. Then

lim
tÑ8

sup
s1,...,sAPr0,Ms

ˇ

ˇ

ˇ

ˇ

E
”

Ξπ

´

pvapt` saqqaPrAs

¯ı

´
1
A!

ˇ

ˇ

ˇ

ˇ

“ 0.

As Ξπ

´

pvapt` saqqaPrAs

¯

ď 1
 

vπp1qpt` sπp1qq ě . . . ě vπpAqpt` sπpAqq
(

, the above proposi-
tion directly implies the following.
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Corollary 2.3. Let π P SA, let M ą 0, and let s1, . . . , sA P r0,M s. Then

lim inf
tÑ8

inf
s1,...,sAPr0,Ms

P
`

vπp1qpt` sπp1qq ě . . . ě vπpAqpt` sπpAqq
˘

ě
1
A! .

We defer the proof of Proposition 2.2 to Section 2.2, first using it to prove Proposition 2.1.
In what follows, we define τapnq to be the time taken for agent a P rAs to reach value n, i.e.

τapnq :“ inf
 

t ě 0: vaptqptq ě n
(

“

#

řn
j“1 X

paq

j if n P N
0 otherwise.

We also define the increasing sequence of σ-algebras pFtqtě0 by

Ft :“ σpvapsq : a P rAs, s ď tq.

Proof of Proposition 2.1. It suffices to prove that almost surely, Equation (2.1) is satisfied for
the trivial permutation πpiq ” i. This implies by symmetry that Equation (2.1) is almost surely
satisfied for any given permutation, and thus, taking the intersection over the finitely many
permutations possible, the result follows. Define the event Et by

Et :“ tv1ptq ě v2ptq ě . . . ě vAptqu .

We start with the following claim:
Claim 2.3.1. For all θ P r0,8q, there exists an Fθ-measurable and almost surely finite random
variable Z such that

P pEt|Fθq ě
1

4A! , almost surely.

for all t ě Z. In particular, for all θ P r0,8q,

lim
tÑ8

P
ˆ

P pEt|Fθq ă
1

4A!

˙

“ 0. (2.2)

Proof. Let N “ maxaPrAs vapθq. Note that, since each of the values of X paq

i are almost surely
finite, maxaPrAs τapN ` 1q ă 8 almost surely. Therefore, let M be sufficiently large that

P
ˆ

max
aPrAs

τapN ` 1q ďM
ˇ

ˇFθ

˙

ą
1
2 .

Note that one can choose M measurable with respect to Fθ, and M ă 8 almost surely.
Define wapsq by

wapsq “
8
ÿ

j“N`2
1
tsě

řj
i“N`2 X

paq
i u

.

The collection pwapsqqaPrAs,sě0 is also a collection of competing birth processes, where A
agents have a value wa : r0,8q Ñ N0 and the time taken for the value of agent a to go
from k to k ` 1 is given by X paq

N`2`k. Since
ř8

k“N`2 X
s
k diverges almost surely, we can use

the results of Corollary 2.3 for pwapsqqaPrAs,sě0. In particular, this implies that we can choose
Z ąM sufficiently large such that

inf
s1,...,sAPr0,Ms

P
`

w1pt` s1q ě . . . ě wApt` sAq
ˇ

ˇFθ

˘

ě
1

2A!

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025
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for all t ě Z. The dependence on Fθ in the above conditional probability comes from the
dependence of pwapt` sAqqaPrAs on N . Note that by definition vap¨q and wap¨q satisfy

va ps` τapN ` 1qq “ N ` 1` wapsq.

Since the σ-algebra Fθ does not contain any information about
`

X paq

j : j ě N ` 2, a P rAs
˘

,
we see that for t ą Z one has

P
`

Et`M
ˇ

ˇFθ

˘

ě P
ˆ

max
aPrAs

τapN ` 1q ăM, v1pt`Mq ě . . . ě vApt`Mq
ˇ

ˇFθ

˙

“ P
ˆ

max
aPrAs

τapN ` 1q ăM,w1pt`M ´ τ1pN ` 1qq ě . . . ě wApt`M ´ τApN ` 1qq
ˇ

ˇFθ

˙

ě inf
s1,...,sAPr0,Ms

P
ˆ

max
aPrAs

τapN ` 1q ăM,w1pt` s1q ě . . . ě wApt` sAq
ˇ

ˇFθ

˙

“

ˆ

P
ˆ

max
aPrAs

τapN ` 1q ăM
ˇ

ˇFθ

˙˙ˆ

inf
s1,...,sAPr0,Ms

P
`

w1pt` s1q ě . . . ě wApt` sAq
ˇ

ˇFθ

˘

˙

ě
1
2 ¨

1
2A! “

1
4A! , almost surely,

where, in the second to last line, we use the conditional independence of the associated random
variables given Fθ.

Choose t1 “ 1. Given tk, by applying Equation (2.2) from Claim 2.3.1, we choose tk`1 ě tk`1
such that

P
ˆ

P
`

Etk`1

ˇ

ˇFtk

˘

ă
1

4A!

˙

ă
1
k2 .

Since tk`1 ě tk ` 1, this immediately implies that limkÑ8 tk “ 8. Thus,

8
ÿ

k“1
P
`

P
`

Etk`1 |Ftk

˘˘

ă 8

so that the first Borel-Cantelli lemma implies

P
ˆ

P
`

Etk`1 |Ftk

˘

ă
1

4A! for infinitely many k P N
˙

“ 0.

Consequently,

P

˜

8
ÿ

k“1
P
`

Etk`1 |Ftk

˘

“ 8

¸

“ 1.

Lévy’s extension of the Borel-Cantelli lemma, see [12, Theorem 12.15, page 124], now implies
that

P pEtk for infinitely many k P Nq “ 1,

completing the proof of Proposition 2.1.

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025
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2.2 Proof of Proposition 2.2

A key tool for the proof of Proposition 2.2 is the inequality stated in Theorem 2.4 below.
This inequality gives quantitative bounds on the dispersion of random walks with independent
increments. For a real-valued random variable Y , we define

DpY ;λq :“ 1
λ2E

“

Y 21|Y |ďλ
‰

` P p|Y | ě λq .

and
QpY ;λq :“ sup

xPR
P px ď Y ď x` λq .

Theorem 2.4 is a known result from [10], slightly reformulated and simplified for our purpose:

Theorem 2.4 ([10, Theorem 2.14, page 64]). Let Y1, . . . , Yn be independent real-valued
random variables, and Sn :“

řn
i“1 Yi. Let λ ą 0 be given. Then, there exists an absolute

constant B ą 0 such that

QpSn, λq ď B

˜

n
ÿ

k“1
DpY s

k ;λq
¸´1{2

.

We remark that Theorem 2.4 is proved by using analytic methods to bound the absolute
values of characteristic functions of the associated random variables. We also recall the well-
known criteria providing necessary and sufficient conditions for a series of independent random
variables to converge:

Theorem 2.5 (Kolmogorov three series theorem, e.g. [4, Theorem 2.5.8., page 85]). For a
sequence of mutually independent random variables pSjqjPN, let C ą 0 be given. Then the
series

ř8

j“1 Sj converges almost surely if and only if

8
ÿ

j“1
P p|Sj| ą Cq ă 8,

8
ÿ

j“1
E
“

Sj1|Sj |ďC
‰

ă 8, and
8
ÿ

j“1
Var

`

Sj1|Sj |ďC
˘

ă 8.

Note that for the random series
ř8

j“1 X
s
j and any λ ą 0 one has, by symmetry of the associated

random variables, that

E
”

Xs
j1|Xs

j |ďλ

ı

“ 0 and Var
´

Xs
j1|Xs

j |ďλ

¯

“ E
”

pXs
j q

2
1|Xs

j |ďλ

ı

.

Thus the Kolmogorov three series theorem implies that
ř8

j“1 X
s
j diverges almost surely if and

only if, for any λ ą 0,
8
ÿ

j“1
DpXs

j ;λq “ 8. (2.3)

Definition 2.6. For two real numbers a, b P R, we say that a function h : ra, bs Ñ R is
unimodal if there exists t P ra, bs such that h is non-decreasing on ra, ts and non-increasing
on rt, bs.

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025
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Lemma 2.7. Let h : RÑ r0, 1s be an increasing function, let s ą 0, and let Y be a random
variable. Then

|E rhpY ` sqs ´ E rhpY qs| ď QpY ; sq. (2.4)
In particular, if h̃ : ra, bs Ñ r0, 1s is unimodal and P pY P ra, b´ ssq “ 1, then

ˇ

ˇE
“

h̃pY ` sq
‰

´ E
“

h̃pY q
‰
ˇ

ˇ ď 2QpY ; sq. (2.5)

Proof. We start with the proof of (2.4) when h is strictly increasing. Let ν be a probability
measure on R such that νpAq “ PpY P Aq for all open sets A Ă R. Fubini’s Theorem implies
that

E rhpY ` sqs ´ E rhpY qs “
ż

hpy ` sq ´ hpyqdνpyq

“

ż ż 1

0
1thpyqďxďhpy`squdxdνpyq “

ż 1

0

ż

1thpyqďxďhpy`squdνpyqdx. (2.6)

Since h is increasing, the set Ix :“ ty : hpyq ď x ď hpy ` squ is an interval. Since h is also
strictly increasing, we can define

h‹pxq “ sup ty P R : hpyq ď xu “ inf ty P R : hpyq ě xu .

If z P Ix, then hpzq ď x and thus z ď h‹pxq. Also, if z P Ix, then hpz ` sq ě x and thus
z ` s ě h‹pxq, or equivalently z ě h‹pxq ´ s. Thus we see that Ix Ď rh‹pxq ´ s, h‹pxqs.
Inserting this into (2.6), we see that

E rhpY ` sqs ´ E rhpY qs “
ż 1

0

ż

1thpyqďxďhpy`squdνpyqdx ď
ż 1

0

ż

1th‹pxq´sďyďh‹pxqudνpyqdx

“

ż 1

0
P ph‹pxq ´ s ď Y ď h‹pxqq dx ď

ż 1

0
QpY ; sqdx ď QpY ; sq.

This finishes the proof for the case where h is strictly increasing. When s ą 0 and h is
increasing, but not necessarily strictly increasing, define the functions hε : RÑ r0, 1s by

hεpxq “ p1´ εqhpxq ` ε
1

1` e´x .

For each ε ą 0, the function hε : RÑ r0, 1s is strictly increasing. Thus, we can use the previous
argument for strictly-increasing functions to get that E rhεpY ` sqs ´ E rhεpY qs ď QpY ; sq.
Passing εŒ 0, we see that

E rhpY ` sqs ´ E rhpY qs “ lim
εŒ0

pE rhεpY ` sqs ´ E rhεpY qsq ď QpY ; sq.

Here, we can safely interchange the expectation and the limit limεŒ0 by the theorem of
dominated convergence, since |hε|, |h| ď 1.

The proof of (2.5) easily follows once we observe that every unimodal function h̃ : ra, bs Ñ
r0, 1s can be written as the difference of two increasing functions h1, h2 : ra, bs Ñ r0, 2s. Thus,
using (2.4), we get that

ˇ

ˇE
“

h̃pY ` sq ´ h̃pY q
‰
ˇ

ˇ “ |E rh1pY ` sq ´ h1pY qs ´ E rh2pY ` sq ´ h2pY qs|

ď max tE rh1pY ` sq ´ h1pY qs ,E rh2pY ` sq ´ h2pY qsu

“ 2 max
"

E
„

h1pY ` sq

2 ´
h1pY q

2



,E
„

h2pY ` sq

2 ´
h2pY q

2

*

ď 2QpY ; sq,

since h1{2 and h2{2 are increasing functions from ra, bs to r0, 1s.

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025
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Proof of Proposition 2.2. Without loss of generality, we can assume that π : rAs Ñ rAs is the
identity – all other cases follow by symmetry. Remember that we defined τapnq “

řn
j“1 X

paq

j

for n P N and a P rAs. Define the event At by

At “
č

aPrAs

tτapnq ď tu .

By symmetry, and the fact that vin
a “ 0 for all a P rAs, it follows that E

“

Ξπ

`

vaptqaPrAs
˘
ˇ

ˇAt

‰

“
1
A! . The following claim quantifies the influence of initial time-shifts on the vector of values
pvaptqqaPrAs.

Claim 2.7.1. Let n and t be such that P pAtq ą
1
2 and let s1, . . . , sA ě 0. Then

ˇ

ˇE
“

Ξπ

`

vapt` saqaPrAs
˘
ˇ

ˇAt

‰

´ E
“

Ξπ

`

vaptqaPrAs
˘
ˇ

ˇAt

‰
ˇ

ˇ ď
ÿ

aPrAs

4Q pτapnq; saq . (2.7)

To use Claim 2.7.1 to complete the proof of Proposition 2.2, let ε P p0, 1{2q be given. Since
ř8

j“1 X
s
j diverges almost surely, Equation (2.3) and Theorem 2.4 imply that we can fix n P N

sufficiently large that
ř

aPrAs 4Q pτapnq;Mq ă ε. Given such a choice of n, choose t “ tpn, εq

sufficiently large that P pAtq ą 1´ ε. Then
ˇ

ˇ

ˇ

ˇ

E
“

Ξπ

`

vapt` saqaPrAs
˘‰

´
1
A!

ˇ

ˇ

ˇ

ˇ

“ P pAtq

ˇ

ˇ

ˇ

ˇ

E
“

Ξπ

`

vapt` saqaPrAs
˘
ˇ

ˇAt

‰

´
1
A!

ˇ

ˇ

ˇ

ˇ

` P pAc
tq

ˇ

ˇ

ˇ

ˇ

E
“

Ξπ

`

vapt` saqaPrAs
˘
ˇ

ˇAc
t

‰

´
1
A!

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

E
“

Ξπ

`

vapt` saqaPrAs
˘
ˇ

ˇAt

‰

´
1
A!

ˇ

ˇ

ˇ

ˇ

` P pAc
tq

(2.7)
ď

ÿ

aPrAs

4Q pτapnq; saq ` P pAc
tq

ď
ÿ

aPrAs

4Q pτapnq;Mq ` P pAc
tq ď 2ε,

where we used that s1, . . . , sA P r0,M s in the second to last inequality. As ε P p0, 1{2q was
arbitrary, this finishes the proof of Proposition 2.2.

It remains to prove Claim 2.7.1.

Proof of Claim 2.7.1. Let pYaqaPrAs be random variables with the distribution of pτapnqqaPrAs
conditioned on At. These random variables are still independent and identically distributed.
Further, they satisfy

QpYa; sq “ sup
x

P
`

x ď τapnq ď x` s
ˇ

ˇAt

˘

ď sup
x

P px ď τapnq ď x` sq

P pAtq
ď 2Q pτapnq; sq ,

(2.8)
where we used P pAtq ą 1{2 for the last inequality. Define a new process pṽapsqqaPrAs by

ṽapsq “
8
ÿ

i“n`1
1
tYa`

ři
j“n`1 X

paq
j ďsu

.

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025
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It directly follows that

E
“

Ξπ

`

vapt` saqaPrAs
˘ ˇ

ˇAt

‰

“ E
”

Ξπ

´

pṽapt` saqqaPrAs

¯ı

and

E
“

Ξπ

`

vaptqaPrAs
˘
ˇ

ˇAt

‰

“ E
“

Ξπ

`

ṽaptqaPrAs
˘‰

.

Fix b P rAs and define the σ-algebra Gb by

Gb “ σ
`

pYaqaPrAsztbu ,
`

X paq

i

˘

aPrAs,iąn

˘

.

For fixed pYaqaPrAsztbu ,
`

X paq

i

˘

aPrAs,iąn
and psaqa‰b, the random function

x ÞÑ E
”

Ξπ

´

pṽapt` saqqaPrAs

¯

ˇ

ˇGb, Yb “ x
ı

only depends on t` sb´ x and is unimodal on the domain r0, t` sbs. To see the unimodality,
note that the values pṽapt` saqqa‰b are measurable with respect to Gb and that ṽbpt ` sbq is
non-increasing in Yb and measurable given Yb and Gb. Thus, it suffices to show that

k ÞÑ E
”

Ξπ

´

pṽapt` saqqaPrAs

¯

ˇ

ˇ pṽapt` saqqa‰b , ṽbpt` sbq “ k
ı

is unimodal in k. Conditioned on pṽapt` saqqa‰b and on ṽbpt` sbq, we have that

E
”

Ξπ

´

pṽapt` saqqaPrAs

¯

ˇ

ˇ pṽapt` saqqa‰b , ṽbpt` sbq “ k
ı

“ Ξπ

´

pṽapt` saq1a‰b ` k1a“bqaPrAs

¯

.

Thus, it suffices to show that for a collection of integers pxaqaPrAs the function

k ÞÑ Ξπ

´

pxa1a‰b ` k1a“bqaPrAs

¯

(2.9)

is unimodal. Recall that we assume πpiq ” i. The function defined in (2.9) is always zero when
the values pxaqa‰b disallow the permutation to take place. When the values pxaqa‰b allow the
permutation to take place:

� When b “ 1, the function is increasing, since, once the ranking becomes possible,
i.e., when k “ maxa‰1 xa, there are fewer permutations allowing the ranking for k ą
maxa‰1 xa.

� Similarly, when b “ A, the function defined in (2.9) is decreasing in k.

� When b P t2, . . . , A ´ 1u, and xb´1 ` 1 ă xb`1 then the function defined in (2.9) is
zero for k ă xb´1, non-decreasing on xb´1 ď k ă xb`1, decreases at xb`1 and again at
xb`1 ` 1, where it drops to zero.

� When b P t2, . . . , A ´ 1u, and |xb`1 ´ xb´1| ď 1, then the function defined in (2.9)
is zero for k R txb´1, xb`1u and positive for k P txb´1, xb`1u, which directly implies
unimodality.
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So in particular, for fixed pYaqaPrAsztbu ,
`

X paq

i

˘

aPrAs,iąn
and psaqaPrAs, we can write

E
”

Ξπ

´

pṽapt` saqqaPrAs

¯

ˇ

ˇGb, Yb “ x
ı

“ gpt` sb ´ xq, x P r0, t` sbs,

where the function g is unimodal on r0, t ` sbs. We define ps̃aqaPrAs by s̃a “ sa1ta‰bu.
Since the random variable Yb is supported on r0, ts, for fixed pYaqaPrAsztbu ,

`

X paq

i

˘

aPrAs,iąn

and psaqaPrAsztbu, Equation (2.4) implies that
ˇ

ˇ

ˇ
E
”

Ξπ

´

pṽapt` saqqaPrAs

¯

ˇ

ˇGb
ı

´ E
“

Ξπ

`

ṽapt` s̃aqaPrAs
˘ ˇ

ˇGb
‰

ˇ

ˇ

ˇ

“
ˇ

ˇE
“

gpt` sb ´ Ybq ´ gpt´ Ybq
ˇ

ˇGb
‰ˇ

ˇ

“
ˇ

ˇE
“

gpt` sb ´ pYb ` sbqq ´ gpt` sb ´ Ybq
ˇ

ˇGb
‰ˇ

ˇ ď 2Q pYb; sbq .

Then, by Jensen’s inequality, we get
ˇ

ˇ

ˇ
E
”

Ξπ

´

pṽapt` saqqaPrAs

¯

´ Ξπ

`

ṽapt` s̃aqaPrAs
˘

ı
ˇ

ˇ

ˇ

ď E
”
ˇ

ˇ

ˇ
E
”

Ξπ

´

pṽapt` saqqaPrAs

¯

´ Ξπ

`

ṽapt` s̃aqaPrAs
˘ ˇ

ˇGb
ı
ˇ

ˇ

ˇ

ı

ď 2Q pYb; |sb|q
(2.8)
ď 4Q pτbpnq; sbq .

Applying this argument for all a P rAs, by the triangle inequality,
ˇ

ˇ

ˇ
E
”

Ξπ

´

pṽapt` saqqaPrAs

¯

´ Ξπ

`

ṽaptqaPrAs
˘

ı
ˇ

ˇ

ˇ
ď

ÿ

aPrAs

2Q pYa; saq ď
ÿ

aPrAs

4Q pτapnq; saq ,

which finishes the proof.

2.3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1, assuming Proposition 2.1.

Proof of Theorem 1.1. Let pvin
a qaPrAs P NrAs0 with K :“ maxaPrAs vin

a . Let
`

X paq

i

˘

iPN,aPrAs be
random variables as described in Theorem 1.1 and let

`

Zpaqi
˘

iPrKs,aPrAs
be i.i.d. random variables

with
P
`

Zpaqi “ 0
˘

“ P
`

Zpaqi “ 1
˘

“
1
2 (2.10)

that are furthermore independent of
`

X paq

i

˘

iPN,aPrAs. Define the random variables
`

Y paq

i

˘

iPN,aPrAs
by

Y paq

i “

#

Zpaqi X paq

i if i ď K

X paq

i if i ą K
.

Define the processes pvaptqqtě0 and pṽaptqqtě0 by

vaptq “ vin
a `

8
ÿ

j“vin
a`1

1"
řj

i“vin
a`1

X
paq
i ďt

* and

ṽaptq “
8
ÿ

j“1
1
t
řj
i“1 Y

paq
i ďtu

.
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Note that pṽaptqqaPrAs,tě0 is a collection of competing birth processes, each starting from the
common initial value 0, and that

ř8

i“1
`

Y p1q
i ´ Y p2q

i

˘

diverges almost surely. Proposition 2.1
thus implies that, almost surely, for any permutation π : rAs Ñ rAs,

DptiqiPN P r0,8qN : lim
iÑ8

ti “ 8 and @i P N ṽπp1qptiq ě ṽπp2qptiq ě ¨ ¨ ¨ ě ṽπpAqptiq.

(2.11)
Define the event I by

I “
č

aPrAs

vin
a
č

i“1

 

Zpaqi “ 0
(

X
č

aPrAs

K
č

i“vin
a`1

 

Zpaqi “ 1
(

.

By the definition of
`

Zpaqi
˘

iPrKs,aPrAs
in Equation (2.10), we get that P pIq “ 2´KA ą 0.

Further, conditioned on the event I we have that ṽaptq “ vaptq for all a P rAs and t ě 0.
Since the event defined in Equation (2.11) holds almost surely, it still holds almost surely after
conditioning on I. Thus, we get that, almost surely, for any permutation π : rAs Ñ rAs,

DptiqiPN P r0,8qN : lim
iÑ8

ti “ 8 and @i P N vπp1qptiq ě vπp2qptiq ě ¨ ¨ ¨ ě vπpAqptiq,

which proves Theorem 1.1.

2.4 Proof of Corollary 1.2

Proof of Corollary 1.2. Consider a collection of independent random variables pX paq

j qaPrAs,jPN
such that each X paq

j „ Exppfpj ´ 1qq. Then, if one sets vin
a :“ uap0q for all a P rAs, with

τn :“ inf
#

t ě 0:
ÿ

aPrAs

vaptq ě n`
ÿ

aPrAs

vin
a

+

,

the processes pvapτnqnPN,aPrAs and puapnqqnPN,aPrAs are equal in distribution – this is Rubin’s
construction, a consequence of properties of the exponential distribution. On the other hand,
the assumption (1.1) guarantees that the sum

ř8

j“1 X
s
j diverges almost surely (see, for exam-

ple, [5, Section 2.3]). This in turn implies that
ř8

j“1 X
p1q
j “ 8 almost surely, so that

lim
nÑ8

τn “ 8,

whilst, since the waiting times X p1q
i are always finite almost surely, for each n P N we have

τn ă 8 almost surely.

By applying Theorem 1.1, almost surely, for any permutation π there exists a sequence ptπi qiPN
such that limiÑ8 t

π
i “ 8 and

@i P N vπp1qpt
π
i q ě vπp2qpt

π
i q ě ¨ ¨ ¨ ě vπpAqpt

π
i q.

On the other hand, since the composition of values pvaptqqaPrAs only changes at the times τn,
this implies that there exists a sequence of integer pnπi qiPN with

pvapτnπi qiPNqaPrAs “ pvapt
π
i qqaPrAs,
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hence, for all i P N, almost surely

vπp1qpτnπi q ě vπp2qpτnπi q ě ¨ ¨ ¨ ě vπpAqpτnπi q.

Therefore, if puapnqqnPN,aPrAs is a balls-in-bins process coupled to agree with pvapτnqnPN,aPrAs,
almost surely, for all i P N

uπp1qpn
π
i q ě uπp2qpn

π
i q ě ¨ ¨ ¨ ě uπpAqpn

π
i q.

The result follows.
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