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Permutations in competing growth processes and
balls-in-bins

Johannes Baumler, Tejas lyer

Abstract

Consider a model of N independent, increasing Ny-valued processes, with random,
independent waiting times between jumps. It is known that there is either an emergent
‘leader’, in which a single process possesses the maximal value for all sufficiently large
times, or every pair of processes alternates leadership infinitely often. We show that
in the latter regime, almost surely, one sees every possible permutation of rankings of
processes infinitely often. In the case that the waiting times are exponentially distributed,
this proves a conjecture from Spencer (appearing in a paper from Oliveira) on the ‘balls-
in-bins’ process with feedback [8, Conjecture 1].

1 Introduction

A natural model for the evolution of the wealth of entities over time is to consider competing
birth processes. One can consider a fixed, finite number of ‘agents’ with ‘values’ increasing in
steps, from j—1 to j after a random amount of time X;. In the case where the random variabes
(X;)jen are independent, and identically distributed across agents, in [5], the second author
showed that with probability zero or one, a single individual becomes the /eader, possessing
the maximum wealth for all sufficiently ‘large’ times. In addition, the author showed that, in
the regime of non-leadership, any two agents will fluctuate in order of value infinitely often.

This result was a generalisation of previous results in the literature [7, 8, 9] which dealt with the
case that the (X;) en are exponentially distributed random variables. Via a result commonly
termed ‘Rubin’s construction’ in the literature [3] (closely connected to the Arthreya-Karlin
embedding [1]), it is known that when the random variables are exponentially distributed, with
X; ~ Exp((f(j — 1)), the collection of values of agents in the system, as the values change,
behaves like the following discrete ‘balls-in-bins’ process with feedback: at each new time step,
a bin with m balls is selected with probability proportional to f(m) and a new ball is added
to the bin.

A natural conjecture is that, in the regime of non-leadership, given that we already know
that any pair of agents fluctuates in ordering of value infinitely often, one in fact sees any
possible permutation of ordered values of agents infinitely often. In the context of balls-in-bins
processes, this was conjectured by Spencer [8, Conjecture 1], stated in a paper from Oliveira.
In this paper, we show that these conjectures hold.

We note that the results presented here have implications beyond urn models, for example,
to the preferential attachment tree models analysed in [2, 11] in regimes where there is no
‘leader’ (coined persistent hubs in this context) - see Remark 1.3 further below.
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J. Baumler, T. lyer 2

1.1 Model description and main results

We consider a finite collection of Ny-valued growth processes with independent waiting times
between jumps. Suppose we have A > 2 agents labelled by the elements of [A] := {1,..., A}.
To each agent a € [A], we associate an identically distributed sequence of mutually indepen-
dent random variables (X ") ey, taking values in [0,00), such that the sequences (X;”)jen
are independent across different agents a € [A]. At each time ¢t > 0, each agent a € [A] has
a value v,(t) € Ny such that for each agent a € [A], its value v,: [0,00) — Ny increases over
time. The random variable X](-”) denotes the time taken for the value of agent a to increase
from j — 1 to j. Additionally, to each agent a € [A], we associate an initial value v\" € Ny.

Thus, given the value v/", for k € Ny we have

vy +k VNt k+1
va(t) = vl +k ifandonlyif > X <t< Y X\
j=vg+l j=vin+1

Note that if X{* > 0, then v,(0) = v\". We are interested in the vector of values of agents,
i.e., (Va(t)),epa)) @s time evolves.

Throughout this paper, for a random variable Y, we denote by Y* a random variable distributed

like Y —Y’, where Y’ is an i.i.d. copy of Y. We denote by (Xj)jEN a sequence of independent
random variables such that X7 is distributed like X — X?.
Our main result is the following:

Theorem 1.1. Suppose that the random series Z;O:I X3 diverges almost surely. Then, almost
surely, for any permutation : [A] — [A],

El(ti)z‘eN € [O, OO)N: limt; =00 and VieN Uﬁ(l)(ti) = Ur(2) (tz) = 2 Un(A) (tz)
1—0
As outlined in the introduction, via Rubin’s construction, the above theorem has implications
for balls-in-bins processes with feedback. We recall the definition of such processes: we are

given A bins, a feedback function f: Ny — (0,0), and an initial collection of balls in bins
(1a(0))qera) € N4, Then, recursively, for n € N:

1 A bin a € [A] is sampled with probability

f(ua(n — 1))
Zae[A] flua(n —1))°

2 We set uq(n) = uq(n — 1) + 1, whilst for a’ # a, we set uy(n) = uy(n —1).

Corollary 1.2 ([8, Conjecture 1]). Consider a balls-in-bins process (t,(1n))ac[a]nen, With feed-
back function f: Ny — (0, 00) such that

21
;}f@z — 0. (1.1)

Then, almost surely, for any permutation 7: [A] — [A], there exist infinitely many n € Ny
such that

Un(1) (1) = Ur(z)(n) = -+ = Un(a)(n).

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025



Permutations in competing growth processes and balls-in-bins 3

Remark 1.3. The result in Corollary 1.2 has implications for preferential attachment trees -
where nodes arrive one at a time and connect to an existing node with probability proportional
to a function f of their out-degree (the model considered in, for example, [2, 11]). In particular,
it shows that, if the function f satisfies (1.1), then, given any finite collection of nodes, one sees
any possible ordering of these nodes when ordered by degree infinitely often in the evolution
of the tree. Theorem 1.1 has a similar implication for the genealogical trees of CMJ branching
processes with independent increments (for example, the model considered in [6]), as long as
the random series Z;O:I X7 diverges almost surely, and the model is ‘non-explosive'.

2 Proofs of results

For the proof of Theorem 1.1, we first prove a modified version of the result — Proposition 2.1

below. In this modified version, we always assume that the initial values (va)ae[A] are all

identically zero, i.e.,
vy =0 forall ae[A]

We make this assumption for the rest of Sections 2.1 and 2.2. In Section 2.3, we use Propo-
sition 2.1 to prove Theorem 1.1.

Proposition 2.1. Suppose that the random series Z;’il X3 diverges almost surely and that
v™ =0 for all a € [A]. Then, almost surely, for any permutation 7: [A] — [A],

El(ti)ieN € [O, OO)N: limt; =00 and VieN Uw(1)(ti) = Ur(2) (tl) = 2 Un(A) (tl)
i
(2.1)

2.1 Proof of Proposition 2.1

We write S 4 for the symmetric group on [A]. For a permutation 7 : [A] — [A] and a collection
of integers (M,)qea], We define

= ((Ma)ae[A]) = 1 {Mﬂ(l) = Mw(g) R Mw(A)} .

Doy Moy = My = ... = My}

By definition, the normalising factor means that

2 Er (Ma)aeray) = 1.

TeS A

We will evaluate the function =, at the values (v4(t)),c4)- The following proposition shows

that the long-term behaviour of the expectation of = ( (v,(t))
time-shifts:

[A]) is not affected by initial

ac

Proposition 2.2. Let m € Sy and let M > 0. Then
1
iy s B (= (0 s - | =0

t—0 S yeeey SAE[O,M

As = ((Ua(t + Sa))ae[A]> < {ve)(t + sz1)) = ... = vr(a)(t + Sn(a)) }, the above proposi-
tion directly implies the following.

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025



J. Baumler, T. lyer 4

Corollary 2.3. Let m € Sy, let M >0, and let sy,...,54 € [0, M]. Then

B, PO+ 0e) 2 3 bt ) >

We defer the proof of Proposition 2.2 to Section 2.2, first using it to prove Proposition 2.1.
In what follows, we define 7,(n) to be the time taken for agent a € [A] to reach value n, i.e.

-1 X" ifneN

otherwise.

Ta(n) = inf {t > 0: va (1) > n} = {02

We also define the increasing sequence of o-algebras (F;):>o0 by

Fii=0(va(s): ae[A],s <t).

Proof of Proposition 2.1. It suffices to prove that almost surely, Equation (2.1) is satisfied for
the trivial permutation 7(7) = 4. This implies by symmetry that Equation (2.1) is almost surely
satisfied for any given permutation, and thus, taking the intersection over the finitely many
permutations possible, the result follows. Define the event &; by

Ei={vi(t) = va(t) = ... = valt)}.

We start with the following claim:

Claim 2.3.1. Forall 0 € [0, o0), there exists an Fp-measurable and almost surely finite random
variable Z such that

P (&|Fy) = almost surely.

L
4A
for all t = Z. In particular, for all 6 € [0, 0),

. 1

Proof. Let N = maxe[4) vo(f). Note that, since each of the values of X;* are almost surely
finite, maxqe[a] 7.(IV + 1) < oo almost surely. Therefore, let M be sufficiently large that

1
P JIN+1) < M|\Fyg) > =
(Q%T( ) }e> 5
Note that one can choose M measurable with respect to Fy, and M < oo almost surely.
Define w,(s) by

0
wa(5> = Z 1{322?,N+2X§“> :
j=N+2 -
The collection (wa(s)),epays50 i also a collection of competing birth processes, where A
agents have a value w,: [0,00) — Nj and the time taken for the value of agent a to go
from k to k + 1 is given by X, . Since Zsz+2 X, diverges almost surely, we can use
the results of Corollary 2.3 for (wa(s)),c[a),s50- In Particular, this implies that we can choose
Z > M sufficiently large such that

inf : P(wi(t+s1)=...=>walt + s4)|Fp) = SAl

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025



Permutations in competing growth processes and balls-in-bins 5

for all t = Z. The dependence on Fj in the above conditional probability comes from the
dependence of (w,(t + 54))acra] on N. Note that by definition v,(-) and w,(-) satisfy

Vo ($+ Ta(N 4+ 1)) = N + 1+ w,(s).

Since the o-algebra Fy does not contain any information about (X;-“) J=N+2a¢€ [A])
we see that for ¢ > Z one has

P (Eim|Fo) = P <m[&}4}§ Ta(N+1) < M,oi(t+ M) = ... > va(t + M)]}"g>
ae

— P (m%Ta(NJr )< Mw(t+M—-—7m(N+1))=...2walt+ M —74(N + 1))\]—“9)
ac

> inf[O M]IP’ (maXTa(N +1) < M,wi(t+s1)>...>walt+ SA)‘.FQ)
, ae

S1yeeey SA€E [A]
— (]P’ <m[5}4>327a(N+1)<M‘F9)> < inf P(wl(t+31)2...>wA(t+sA)’]—"9)>
a€e 51
1

1 1
5 3l — Ik almost surely,

=

where, in the second to last line, we use the conditional independence of the associated random
variables given Fy. [

Choose t; = 1. Given ti, by applying Equation (2.2) from Claim 2.3.1, we choose 5,1 = ¢+ 1
such that

1 1
P (IP’ (Etpar | Fir) < 4A!) <3

Since tx,1 =t + 1, this immediately implies that lim_,, tx = 0. Thus,

Z P (P (gtk+1 “Ek)) <L
k=1

so that the first Borel-Cantelli lemma implies

1
P (]P (Epir | F2) < Tl for infinitely many k € N) = 0.

Consequently,

P (i P (Eypy [ Fu) = oo) ~ 1.

k=1

Lévy's extension of the Borel-Cantelli lemma, see [12, Theorem 12.15, page 124], now implies
that

P (&, for infinitely many ke N) = 1,

completing the proof of Proposition 2.1. O]
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2.2 Proof of Proposition 2.2

A key tool for the proof of Proposition 2.2 is the inequality stated in Theorem 2.4 below.
This inequality gives quantitative bounds on the dispersion of random walks with independent
increments. For a real-valued random variable Y, we define

1
—SE [V’ 1y +P([Y] = N).

DY) = 5

and
QY;AN) :=supP(x <Y <z + ).

zeR
Theorem 2.4 is a known result from [10], slightly reformulated and simplified for our purpose:

Theorem 2.4 ([10, Theorem 2.14, page 64]). Let Yi,...,Y, be independent real-valued
random variables, and S, := > | Y;. Let A > 0 be given. Then, there exists an absolute

constant B > 0 such that
" ~1/2
Q(S,, \) <Z (Y3 A > .

We remark that Theorem 2.4 is proved by using analytic methods to bound the absolute
values of characteristic functions of the associated random variables. We also recall the well-
known criteria providing necessary and sufficient conditions for a series of independent random
variables to converge:

Theorem 2.5 (Kolmogorov three series theorem, e.g. [4, Theorem 2.5.8., page 85]). For a
sequence of mutually independent random variables (S;);en, let C > 0 be given. Then the
series Z;C:1 S; converges almost surely if and only if

0 a0 e ¢]
Z (191 > C) < oo, Z]E [Si1s,<c] <0, and ZVar (Si1}s,<c) < .

=1 j=1 j=1

Note that for the random series Z;’;l X7 and any A > 0 one has, by symmetry of the associated
random variables, that

E [X;ﬂ\xj\@] =0 and Var (X;II|X;|<,\> =E [(X;)2IL\X;\S/\] .

Thus the Kolmogorov three series theorem implies that Z;O:1 X7 diverges almost surely if and
only if, for any A > 0,
ee}
Y ID(X};N) = . (2.3)
j=1

Definition 2.6. For two real numbers a,b € R, we say that a function h : [a,b] — R is

unimodal if there exists ¢ € [a, b] such that h is non-decreasing on [a,t] and non-increasing
n [t,0].

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025



Permutations in competing growth processes and balls-in-bins 7

Lemma 2.7. Let h: R — [0, 1] be an increasing function, let s > 0, and let Y be a random
variable. Then

[E[A(Y +s)] =E[p(Y)]] < Q(Y:5). (2.4)
In particular, if h: [a,b] — [0, 1] is unimodal and P (Y € [a,b — s]) = 1, then
IE[AY +35)] —E[R(Y)]] <2Q(Y;s). (2.5)

Proof. We start with the proof of (2.4) when h is strictly increasing. Let v be a probability
measure on R such that v(A) = P(Y € A) for all open sets A < R. Fubini's Theorem implies
that

B[A(Y + )] - E[h(Y)] = [y + )~ hy)dv(y)

JJ Ln(y)<a<h(y+s)ydzdv(y) f fﬂ{h y)<a<h(y+s)ydv(y)dz. (2.6)

Since h is increasing, the set I, = {y: h(y) < h(y + s)} is an interval. Since h is also
strictly increasing, we can define

h*(z) =sup{yeR:h(y) <z} =inf{yeR:h(y) = x}.

If z € I, then h(z) < z and thus z < h*(z). Also, if z € I, then h(z + s) = z and thus
z+ s = h*(x), or equivalently z > h*(x) — s. Thus we see that I, < [h*(x) — s, h*(z)].
Inserting this into (2.6), we see that

E[h(Y + 5)] - J f Linyr<ochprondv(y) J f L e ce) oy di(y)de
_ LIIP(h*(x) <Y <h(2)de < L Qs $)dz < Q(Y+9).

This finishes the proof for the case where h is strictly increasing. When s > 0 and h is
increasing, but not necessarily strictly increasing, define the functions h. : R — [0, 1] by

1
1+e=
For each € > 0, the function h. : R — [0, 1] is strictly increasing. Thus, we can use the previous
argument for strictly-increasing functions to get that E[h.(Y + s)] — E[h(Y)] < Q(Y; s).
Passing € N\, 0, we see that

E[(Y +s)] — E[h(Y)] = lim (E[A(Y + 5)] — E[h(Y)]) < Q(Y:s).

eN\0

he(x) = (1 —¢e)h(x) + e

Here, we can safely interchange the expectation and the limit lim.\ by the theorem of
dominated convergence, since |h.|, |h| <1

The proof of (2.5) easily follows once we observe that every unimodal function A : [a,b] —
[0, 1] can be written as the difference of two increasing functions hy, hy : [a, b] — [0, 2]. Thus,
using (2.4), we get that

E[R(Y + ) = h(V)]| = [E [ (Y +5) = b (¥)] = E [ha(Y +5) — ha(¥)]

< max {E [hl (Y + S) hl (Y)] ,]E [hg(y + S) — Q(Y)]}

o {E [hl(y+ s) hl(Y)] = [hQ(Y+S) - hQ(Y)]} <20V

2 2 2 2
since hy/2 and hy/2 are increasing functions from [a, b] to [0, 1]. O

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025
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Proof of Proposition 2.2. Without loss of generality, we can assume that 7 : [A] — [A] is the
identity — all other cases follow by symmetry. Remember that we defined 7,(n) = 37, X
for n € N and a € [A]. Define the event A; by

A= ) {raln) <t}

ac[A]

By symmetry, and the fact that v" = 0 for all @ € [A], it follows that E [Z; (va(t)aera]) [A:] =
%. The following claim quantifies the influence of initial time-shifts on the vector of values

(ba (t))ae[A] :

Claim 2.7.1. Let n and t be such that P (A;) > Landlet sy,...,s4 = 0. Then

2

B[ (0ult + sa)actar) [ Ae] = B [Zx (taci)) [A4]] < 3 4Q (ra(m)ise) . (27)

ac[A]

To use Claim 2.7.1 to complete the proof of Proposition 2.2, let € € (0,1/2) be given. Since
Z;C:I X diverges almost surely, Equation (2.3) and Theorem 2.4 imply that we can fix n € N
sufficiently large that >} 4, 4@Q) (7a(n); M) < €. Given such a choice of n, choose t = ¢(n, ¢)
sufficiently large that P (A;) > 1 —e. Then

— 1
’E 5 (0t + sodeet)] — o
1 . L1
P (A [E[Es (0t + 5a)acty) [ 4] - A,‘ B (A B[22 (0 + su)ueia) | 45] —
1
< ‘]E [u7r (va(t + 54)ac[a ) ‘At] I +P .AC Z 4Q (1a(n); sq) + P (A7)
< 3 4Q (ru(n): M) + P (4) <
ag[A]
where we used that s1,...,54 € [0, M] in the second to last inequality. As ¢ € (0,1/2) was
arbitrary, this finishes the proof of Proposition 2.2. n

It remains to prove Claim 2.7.1.

Proof of Claim 2.7.1. Let (Y,)qca] be random variables with the distribution of (7,(1))aer]
conditioned on 4;. These random variables are still independent and identically distributed.
Further, they satisfy

Q(Ya;s) = supP (z < 75(n) <z + s|A4;) < sup
(2.8)
where we used PP (A;) > 1/2 for the last inequality. Define a new process (¥u(s)),c[4) by

0

77‘1(8): Z l{Ya‘i’Z;:nﬁ—ng('a)Ss}‘

i=n+1

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025



Permutations in competing growth processes and balls-in-bins 9

It directly follows that
E[Zx (va(t + Sa)aera) |Ai] = E [—'w ( ot + Sa))ae[A])] and
E [Zx (va(t)actar) [Ar] = B [Ex (B0 (t)acta)] -

Fix b € [A] and define the o-algebra G, by

G = 0 ((Ya)epap o) - (X(a))ae[A],i>n)'

For fixed (Y, X{) and (S4)axb, the random function

) e[AN{b} ( a€[A]i>n

xHE[ ((va(t—i-sa >‘gb,Yb—x}

only depends on t + s, — = and is unimodal on the domain [0, + s;]. To see the unimodality,
note that the values (,(t + s4)),., are measurable with respect to G, and that @(t + sp) is
non-increasing in Y, and measurable given Y, and G,. Thus, it suffices to show that

B B [ Ze (00t + 50))aepay ) | Balt + 50)) gy Bl + 50) = k|

is unimodal in k. Conditioned on (¥4(t + 54)),.;, and on (¢ + s;), we have that

E[Zx (Bt + 50)aetay) | Falt + 50)) g Bt + 55) = k|

= = (Bt + 50) T + FLumt) )

Thus, it suffices to show that for a collection of integers (4)qe[4] the function

B Zx (Talass + Flact) o)) (2.9)

is unimodal. Recall that we assume 7 (i) = i. The function defined in (2.9) is always zero when
the values (x,)qxp disallow the permutation to take place. When the values (z,),p allow the
permutation to take place:

B When b = 1, the function is increasing, since, once the ranking becomes possible,
i.e., when k = max,. x,, there are fewer permutations allowing the ranking for k >
maXeg-x1 Lq-

B Similarly, when b = A, the function defined in (2.9) is decreasing in k.

B When b e {2,...,A—1}, and 2,1 + 1 < a3, then the function defined in (2.9) is
zero for k < xp_1, non-decreasing on x,_1 < k < xp,1, decreases at x;,,1 and again at
ZTpy1 + 1, where it drops to zero.

B When b e {2,...,A— 1}, and |2p41 — xp—1] < 1, then the function defined in (2.9)
is zero for k ¢ {xy_1,2p+1} and positive for k € {zp_1, 2441}, which directly implies
unimodality.

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025



J. Baumler, T. lyer 10

So in particular, for fixed (Ya),crap ) - (Xi(a))ae[A] i~ and (84)ac[a], We can write

IE[E7r <(Ua<t+8a) ) G, V), = x] =g(t+s,—x), xe[0,t+sp],

where the function ¢ is unimodal on [0,¢ + s,]. We define (§a)a€[A] by 50 = Saliars)-
Since the random variable Y} is supported on [0,], for fixed (Ya)ucpap ey (Xi”)
and (Sq)aefa) (o}, Equation (2.4) implies that

‘E [Hw <(Ua(t + Sa ) ’gb:l [ (Ua(t + Sa ag[A ) |gb:|‘

= |E[g t+Sb—YE))— (t—Y3)|G]|

= [E[g(t + 55— (Yo + 1)) — gt + 5 — V3)|Go ]| < 2Q (Yo 5) -

Then, by Jensen's inequality, we get
‘E [E,r <(17a(t n Sa))ae[A]> — Zx (Balt + éa)ae[A])H
<E[[E |2 ((@alt + 50))acpar) = Zr (Fult + a)acar) |50 ]

(28

<2Q Yy [so]) < 4Q (n(n);sp)-
Applying this argument for all a € [A], by the triangle inequality,

E[Z0 (@t + 52))uepa)) = Ze (Fulbacta) || < Y 20 (Vaisa) < Y 4Q (raln)isa)
ac[A] ac[A]

ag[Al]i>n

which finishes the proof. O

2.3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1, assuming Proposition 2.1.

Proof of Theorem 1.1. Let (v))sea) € N5 with K = maxaepa) vy Let (X;”). scpa] D€

random variables as described in Theorem 1.1and let (Z,”). be i.i.d. random variables
i€[K],ae[A]
with

1
(a) _ = (@) _ = =
P(Z"=0)=P(Z"=1) =3

Define the random variables (Yi(‘”)

(2.10)

that are furthermore independent of (Xi(‘”)
by

ieN,ae[A]" i€N,ae[A]

v [ZOXP i<k
‘ X ifi > K
Define the processes (v4(t)),s, and (7a(t)).q by

a —U'n+ Z ]l{ X(“)<t} and

j=vir+1 =il 417

0
~ t) = Z ]].{ZZ:I Yi(“)st}‘
j=1

DOI 10.20347/WIAS.PREPRINT.3220 Berlin 2025



Permutations in competing growth processes and balls-in-bins 11

Note that (04(t)),e[a750 is @ collection of competing birth processes, each starting from the

common initial value 0, and that >~ (Yi(1> — Yf)) diverges almost surely. Proposition 2.1
thus implies that, almost surely, for any permutation 7: [A] — [A],

H(ti)ieN S [O, OO)Ni hm t;, = o0 and Vie N 1771—(1)(1?@) = 1771—(2) (tz) == ﬁﬂ(A) (tz)

1—0
(2.11)
Define the event Z by

in
Vg,

- N =0in () ) 120 -1,

ag[A] i=1 a€[A] i=vin+1

By the definition of (Zi(a))ie[K],ae[A] in Equation (2.10), we get that P(Z) = 2754 > 0.
Further, conditioned on the event Z we have that 0,(t) = v,(t) for all @ € [A] and ¢t > 0.
Since the event defined in Equation (2.11) holds almost surely, it still holds almost surely after
conditioning on Z. Thus, we get that, almost surely, for any permutation 7: [A] — [A],

El(ti)ieN € [O, OO)N: limt; =00 and VieN Uﬂ(l)(ti) = Ur(2) (tl) = - 2 Un(A) (ti),

1—00

which proves Theorem 1.1. O

2.4 Proof of Corollary 1.2

Proof of Corollary 1.2. Consider a collection of independent random variables (X;“))QG[A],jeN
such that each X" ~ Exp(f(j —1)). Then, if one sets vi := u,(0) for all a € [A], with

Ty o= inf{t > 0: Z Vo (t) = n+ 2 v;"},
ac[A] ac[A]

the processes (Vq(Ty)nenac[a] and (a(n))nen,ae[a] are equal in distribution — this is Rubin’s
construction, a consequence of properties of the exponential distribution. On the other hand,
the assumption (1.1) guarantees that the sum 230:1 X diverges almost surely (see, for exam-
ple, [5, Section 2.3]). This in turn implies that Z;il X" = oo almost surely, so that

lim 7,, = o
n->00 n )

whilst, since the waiting times X" are always finite almost surely, for each n € N we have
Tn < o0 almost surely.

By applying Theorem 1.1, almost surely, for any permutation 7 there exists a sequence (7).
such that lim; ., t7 = o and

VieN vr(t]) = ve(t7) = -+ = vr(a) ()

On the other hand, since the composition of values (v4(t)),c[4) Only changes at the times 7,
this implies that there exists a sequence of integer (n7);en with

(Va(Tar)ien)aea] = (Va(t7))ae(a],
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hence, for all i € N, almost surely

Vr(1)(Tag) = Vn(2) (Tug) 2 - = Vna) (Tap).

Therefore, if (us(1))nenacfa] is @ balls-in-bins process coupled to agree with (vq (7, )nen acfa],
almost surely, for all i e N

The result follows. O
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