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LeAP-SSN: A semismooth Newton method with global
convergence rates

Amal Alphonse, Pavel Dvurechensky, Ioannis P. A. Papadopoulos,
Clemens Sirotenko

Abstract

We propose LeAP-SSN (Levenberg–Marquardt Adaptive Proximal Semismooth Newton method),
a semismooth Newton-type method with a simple, parameter-free globalisation strategy that guar-
antees convergence from arbitrary starting points in nonconvex settings to stationary points,
and under a Polyak–Łojasiewicz condition, to a global minimum, in Hilbert spaces. The method
employs an adaptive Levenberg–Marquardt regularisation for the Newton steps, combined with
backtracking, and does not require knowledge of problem-specific constants. We establish global
nonasymptotic rates: O(1/k) for convex problems in terms of objective values, O(1/

√
k) under

nonconvexity in terms of subgradients, and linear convergence under a Polyak–Łojasiewicz condi-
tion. The algorithm achieves superlinear convergence under mild semismoothness and Dennis–
Moré or partial smoothness conditions, even for non-isolated minimisers. By combining strong
global guarantees with superlinear local rates in a fully parameter-agnostic framework, LeAP-
SSN bridges the gap between globally convergent algorithms and the fast asymptotics of New-
ton’s method. The practical efficiency of the method is illustrated on representative problems from
imaging, contact mechanics, and machine learning.

1 Introduction

In this paper, we consider the composite minimisation problem

min
x∈H

{F (x) := f(x) + ψ(x)}, (P)

where H is a Hilbert space, ψ : H → R is a potentially nonsmooth proper convex lower semicontinu-
ous function, and f ∈ C1,1(H;R) is a (possibly nonconvex) function such that the Fréchet derivative
f ′ is not necessarily smooth. In particular, we are interested in the setting when f ′ possesses some
semismoothness-like properties and our main goal is to propose a variant of the semismooth Newton
(SSN) method that enjoys both global convergence rate guarantees and local superlinear conver-
gence. Note that when ψ ≡ 0 and f ′ is semismooth, the optimality condition for (P) is given by the
nonlinear and nonsmooth equation f ′(x) = 0 with the semismooth operator f ′ : H → H∗.

The SSN method is a generalisation of the classical Newton method used for solving (systems of)
nonsmooth equations and for the minimisation of functions with non-Lipschitz second derivatives,
see for example the pioneering works [52, 22, 85, 86, 95, 49]. SSN methods are especially promi-
nent when solving infinite-dimensional problems, e.g., in PDE-constrained optimisation, due to their
mesh-independent and fast local convergence properties. There are recent theoretical results for the
method in the context of optimisation problems; these include local superlinear convergence under
(local) strong convexity or non-degeneracy and global asymptotic convergence for its variants with a
Levenberg–Marquardt regularisation and/or Armijo-type linesearch strategy [84, 83, 55, 73, 98]. At the
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same time, global convergence rates remain unknown for the SSN method and its variants, even in
the simpler setting where ψ ≡ 0. In this paper, we close this theoretical gap and propose a novel vari-
ant of the globalised SSN method which we abbreviate as LeAP-SSN (Levenberg–Marquardt Adaptive
Proximal Semismooth Newton, Algorithm 1) that combines the best of both worlds. Namely, it allows
us to prove global convergence rates in several settings, including the convex setting and a nonconvex
setting (with better rates under a Polyak–Łojasiewicz (PL) condition), and to prove superlinear conver-
gence under semismoothness and a Dennis–Moré-type condition. In addition, in finite dimensions, we
also prove that our algorithm identifies a C2-manifold in which eventually all iterates lie, and use this
and the theory of partial smoothness and active manifolds to prove superlinear convergence without
requiring a Dennis–Moré assumption. We conclude the paper with some numerical experiments.

Our work, in a sense, lies in the interface of research questions studied in the (PDE-constrained)
nonsmooth optimisation and (smooth) convex optimisation communities, and we hope that this paper
can start an avenue for other global convergence rate results for SSN and its variants.

1.1 Contributions

On a high level, for the problem (P), we propose a SSN-type algorithm LeAP-SSN (see Algorithm 1)
with guaranteed global convergence rates and local superlinear convergence. Our approach employs
proximal steps and a Levenberg–Marquardt globalisation strategy with backtracking inspired by [31],
that avoids relying on second-order semismoothness assumptions as required in [84, 83, 98]. Unlike
classical trust-region methods, our globalisation mechanism ensures a practical and simple implemen-
tation while retaining theoretical guarantees. In each iteration, our algorithm constructs a model F̃ of
the objective F combining a quadratic model of f , the functional ψ, and a quadratic regularisation.
Our main assumption on these subproblems, which holds even in some cases when F is nonconvex,
is that it is possible to find a stationary point of F̃ that does not increase F̃ , see Assumption 5 for a
formal statement. We also introduce a mild assumption on f ′, see Assumption 2, which is key to global
convergence rates, and which holds for a large class of functions and settings. Under Assumption 2,
we obtain a series of global and local nonasymptotic convergence rates:

(1) In the nonconvex case, we prove that the sequence (xk)k∈N generated by our algorithm from
arbitrary x0 ∈ domF satisfies1 min0≤i≤k−1∥F ′(xi+1)∥∗ = O(1/

√
k), see Theorem 4.1.

(2) If additionally F satisfies a Polyak–Łojasiewicz (PL) condition (see Assumption 3), we prove
that xk converges to a global solution x∗ of (P) with a linear rate from arbitrary x0 ∈ domF .
Moreover, F (xk)− F (x∗) converges to 0 linearly, see Theorem 4.4.

(3) If F is convex, we prove that for arbitrary x0 ∈ domF our algorithm guarantees F (xk)−F ∗ =
O(1/k), where F ∗ is the global minimal value in (P), see Theorem 4.9.

(4) If for some isolated local minimum x∗ in (P), Assumption 2 holds only locally around x∗, the PL
and quadratic growth (QG) conditions (see (53)) also hold locally around x∗, and the model F̃
is strongly convex, we prove that xk → x∗ and F (xk) − F (x∗) → 0 linearly provided that
x0 is sufficiently close to x∗, see Theorem 5.1. In other words, we prove that our algorithm has
local linear convergence.

When additionally f ′ has higher regularity and F is locally convex, we show that the above bounds

1Here and below ak = O(bk) means that there exists an explicit constant c such that ak ≤ cbk for all k ≥ 0.
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asymptotically improve. To be precise, the linear convergence in the above results improves to super-
linear in each of the following cases:

(5) If H is finite-dimensional and f is C2 (i.e., twice continuously differentiable) around x∗, see
Theorem 6.5.

(6) If f ′ is semismooth at x∗, and a Dennis–Moré-type condition is satisfied, see Theorem 6.10 and
Theorem 6.12.

(7) If f is C2 and convex, see Corollary 6.11.

(8) If H is finite-dimensional, f ′ is semismooth around x∗, F is partially smooth at x∗ relative
to a C2 manifold, and a non-degeneracy (or strict complementary) condition is satisfied, see
Theorem 6.19.

Thus, in particular, we obtain local superlinear convergence of our algorithm as for classical SSN, see
Theorem 6.12. The critical ingredient for these superlinear convergence results is to show that the
regularisation parameter adaptively chosen in the algorithm asymptotically goes to zero, meaning that
asymptotically, our method becomes classical SSN. As a result, we show that semismoothness allows
for obtaining stronger local and global asymptotic convergence properties. Our results are interesting
also in finite dimensions since they establish faster asymptotic convergence under higher regularity.
The above global results are summarised for convenience in Table 1. We highlight that, crucially, our

Assumption Global convergence rate

- O(1/
√
k) for mini≤k∥F ′(xi)∥∗

f ∈ C2, dim(H) < ∞, xk → x∗ O(1/
√
k) for mini≤k∥F ′(xi)∥∗

f convex O(1/k) for F (xk)
f convex, f ∈ C2, dim(H) < ∞, xk → x∗ O(1/k) for F (xk)
PL Linear for xk and F (xk)
PL, f ∈ C2, dim(H) < ∞, xk → x∗ Superlinear
PL, f ∈ C2, f convex Superlinear
PL, f semismooth, DM-type condition, F locally convex, H ⪰ 0 Superlinear
PL, f semsimooth, partial smoothness, F locally convex, H ⪰ 0 Superlinear

Table 1: High-level summary of our main results under Assumptions 1, 2 and 5.

algorithm achieves

■ superlinear convergence under the PL condition to non-isolated2 minima, whereas most
existing works guarantee superlinear convergence only under strong convexity at the limit point.
Convergence to non-isolated solutions is particularly relevant in applications such as inverse
problems, where non-isolated stationary points naturally arise (for instance, when the forward
operator is non-injective, as is common in e.g. medical image reconstruction). Local superlinear
convergence in such settings is an active area of research; see, e.g., [88] for recent results
in the smooth case. To the best of our knowledge, no existing work establishes superlinear
convergence to non-isolated solutions in the setting we consider.

2By a non-isolated minimiser, we mean a minimiser that we do not assume to be isolated.
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■ automatic strong convergence of the iterates in Hilbert spaces under a PL condition,
without requiring additional assumptions commonly found in the literature, such as compactness
or weak-to-strong continuity of f ′. While such results are expected based on prior works on the
Kurdyka–Łojasiewicz (KL) inequality (e.g., [7, 42]), these typically rely on non-vanishing step
sizes, i.e., they exclude the case λk → 0.

■ active manifold identification in finite time, that is, in finite dimensions, all iterates of our
algorithm eventually lie on a C2-manifold where we can harness partial smoothness and active
manifold theory to obtain automatic satisfaction of a Dennis–Moré-type (DM-type) condition in
an entirely nonsmooth setting and deduce superlinear convergence.

■ the obtainment of the above results without assuming Lipschitz Hessians, which is a
standard assumption made in the literature on global rates for second-order and quasi-Newton
methods (see the literature review in the next subsection).

■ adaptivity to parameters and function classes, in the sense that our method is agnostic to
knowledge about convexity, validity of the PL condition, semismoothness, etc., for the specific
problem being tackled.

We close this subsection by noting that we implement and apply LeAP-SSN to total variation image
restoration, support vector machine classification, and Signorini contact problems in Section 7. The
implementation is publicly available [3].

1.2 Related literature

Related work on globalisation of SSN. The globalisation of semismooth Newton methods is not a
new endeavour. Numerous works have focused on globalising both classical and nonsmooth Newton-
type methods, however, the majority of these approaches are restricted to the finite-dimensional set-
ting and typically rely on linesearch procedures to ensure global convergence without proving rates.
Though we are not aware of any existing approaches that establish global convergence rates for
semismooth Newton methods in our setting, let us briefly review the works most closely related to
ours.

(1) [84] (and the followup [83] with inexactness) proposes a similar regularised approach; however,
the analysis there relies on the notion of second-order semismoothness (which our work does
not need) and essentially requires F to be strongly convex to establish fast local convergence,
and does not establish global convergence rates.

(2) [2] includes an inexact globalised semismooth Newton method to tackle fixed-point equations
in Banach spaces with an emphasis on equations arising from the obstacle problem; the glob-
alisation there is via the Banach fixed point theorem. [98] addresses a strongly convex optimal
control problem and employs an Armijo-type line search strategy, and also uses second-order
semismoothness for its local superlinear result. Armijo linesearch methods have the advantage
of requiring only a single linear system solve per iteration, even during backtracking. Moreover,
it can be shown that full Newton steps are eventually accepted, leading to superlinear conver-
gence under semismoothness without requiring additional assumptions such as a Dennis–Moré
condition. Note that neither work establishes global rates.

(3) The work in [80] (see also [39, 27]) was among the first to globalise a semismooth Newton-
type method in a setting closely related to ours. They consider finite-dimensional problems
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of the form minx∈X f(x), where X is a polyhedron and ∇f is semismooth (also called an
SC1 function). Similar to our approach, their method employs a Levenberg–Marquardt–type
regularization of the (Newton) Hessian of the form ∇2

Nf(xk) + µkI , involving the Newton
derivative ∇2

Nf(xk). The choice of µk is not specified beyond the assumption µk → 0, and
they establish superlinear convergence under suitable regularity conditions.

(4) [55] and the recent book [73] present results on minimizingC1,1 functions f in finite dimensions,
closely related to the present work. They use a Levenberg–Marquardt–type scheme which, in-
stead of solving a regularised semismooth Newton system, tackles the inclusion −∇f(xk) ∈
(∂2f(xk)+µkI)[dk] to find the Newton direction dk, where ∂2f is the second-order subdiffer-
ential and µk = c∥∇f(xk)∥. This inclusion can sometimes be easier to solve than the semis-
mooth Newton equation [55]. Combined with an Armijo-type linesearch, they prove superlinear
convergence under semismoothness at the limit point, without Dennis–Moré–type conditions. A
notable difference is that µk → 0 follows automatically from their algorithm, while our method
needs extra smoothness to ensure this.

None of the above works obtain global convergence rates for their versions of SSN where applicable.
Moreover, they either consider the finite-dimensional or (strongly) convex setting, or utilise stronger
assumptions like second-order semismoothness.

Related work on global rates in the smooth, finite-dimensional setting. There is a vast literature
establishing global convergence rates for regularised Newton methods for finite-dimensional convex
and nonconvex optimisation problems, with the main assumption being that the Hessian is Lipschitz.
For the nonconvex setting the classical results are [78, 20], where global rates are obtained for con-
vex and nonconvex settings based on the cubic regularisation of the Newton method. The works [76,
72, 43, 19, 56] further improve the rates by proposing accelerated versions in the convex setting.
The Lipschitz Hessian condition was relaxed to a Hölder condition in [46, 47], where universal regu-
larised Newton methods (including accelerated versions) were proposed. The above methods mainly
use a regularisation of power greater than 2 in auxiliary subproblems in each iteration, which makes
this subproblem problematic to solve in practice. The most recent advances are based on the use of
quadratic regularisation akin to Levenberg–Marquardt, but with the regularisation parameter propor-
tional to some power of the gradient norm. In this avenue, global convergence rates are obtained in
the convex case for the Levenberg–Marquardt method in [71, 32] under a Lipschitz Hessian assump-
tion and in [31] under either Hölder Hessians or a third-order derivative assumption. All the above
papers focus on global rates in finite dimensions and either in the convex setting with Hölder Hessians
or in the nonconvex setting, but with Lipschitz Hessians. They also do not consider the behaviour of
their methods under any form of semismoothness. Despite the fact that these approaches are not
directly applicable in our setting of semismooth derivatives and infinite dimensions, our inspiration
largely comes from the paper [31] which introduces a universal Newton method that adapts to the
Hölder exponent of various smoothness classes automatically. Note that assuming Hölder or Lipschitz
Hessians is out of the question in our setting because it would imply, by a simple argument, that f ′ is
not only semismooth but differentiable.

Related work on Newton methods for non-strongly convex functions. Most works in the para-
graph above rely on local strong convexity to obtain superlinear convergence, but recent research has
focused on globalising Newton-type methods for nonconvex composite problems. In this setting, glob-
alisation typically relies on Hessian regularisation, as in the present work. A central trend is replacing
strong convexity with the Kurdyka–Łojasiewicz (KL) inequality, a generalisation of the PL condition
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[82], which enables fast convergence even to non-isolated stationary points. Foundational results by
Attouch et al. [6, 8, 7] established KL-based convergence for descent methods. The first Newton-type
extension [42] achieved linear convergence. In the convex case, Mordukhovich et al. [75] recently
obtained superlinear convergence under metric subregularity, closely related to PL-type inequalities.
Inspired by this line of work, Liu et al. [69, 68] analyse a related composite setting, which is nonconvex,
and establish superlinear convergence under the KL inequality and a local Hölder error bound, thereby
allowing for non-isolated minima. Kanzow et al. [28] extends [69] to a linesearch-free variant with a
similar analysis. To our knowledge, [99, 68] is the first to prove fast local convergence to non-isolated
stationary points in the PL/KL framework. Importantly, all of the above results are in finite dimensions
and rely critically on the Lipschitz continuity of the Hessian.

Related work on globalisation via trust regions. Trust-region methods are classical and highly
effective for smooth (C2) minimisation [25, 21]. In the setting of functions admitting a semismooth
Newton derivative, the majority of results concern the solution of semismooth equations coming from
the corresponding first order optimality system [96, 39], with recent advances providing guarantees
under the KL condition [79]. For minimisation of functions with Newton differentiable derivatives the
literature is still emerging with early work by Qi [87] and recent extensions to minimisation on manifolds
by Zhang et al. [103]. Overall, trust-region schemes are robust to negative curvature, naturally accom-
modate inexact subproblem solves, and obtain global convergence and local superlinear convergence
under different regularity assumptions, but are typically designed for finite-dimensional settings, de-
mand stronger assumptions and more elaborate implementations than our regularised Newton-type
globalisation. Moreover, the question of global rates remains open. Incorporating trust-region mecha-
nisms in the spirit of [10] may further enhance our method; we leave this to future work.

Summary. To conclude, to the best of our knowledge, no parameter-free globalisation strategy
for the minimisation of functions with Newton differentiable derivatives on Hilbert spaces exists that
achieves global sublinear rates together with a transition to superlinear convergence in the PL setting.
Our work closes this gap.

1.3 Organisation of the paper

The paper is organised as follows. In Section 2 we introduce basic notation and definitions, our main
assumptions and preliminary results. In Section 3, we formulate our algorithm LeAP-SSN and detail
some inequalities that come in use in the rest of the paper. We prove the above-mentioned global
convergence results, local linear convergence, and superlinear convergence results in Section 4, Sec-
tion 5, and Section 6, respectively. Finally, we conclude with some numerical experiments in Section 7.

2 Technical preliminaries

We start with some notation and necessary definitions. The dual to the space H is denoted by H∗.
We use ∥ · ∥ to denote the norm on H and ∥ · ∥∗ to denote the norm on H∗. We write ⟨g, x⟩ to denote
the duality pairing of g ∈ H∗ and x ∈ H. By R : H → H∗ we mean the Riesz map. For a point
x ∈ H and a closed set A ⊆ H, we denote dist(x,A) := infu∈A ∥x − u∥H. Given x ∈ H, we
set BR(x) := {u ∈ H : ∥x − u∥ ≤ R} to be the closed ball of radius R around x. For two points
x, y ∈ H, we denote [x, y] := {tx+(1− t)y : t ∈ [0, 1]}. For a functionG : H → R := R∪{∞},
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we denote its effective domain by domG := {x ∈ H : G(x) < +∞}. For the function F in (P) and
x0 ∈ domF , we denote the sublevel set of F as

F0 := {x ∈ domF : F (x) ≤ F (x0)}. (1)

For a proper convex function ψ : H → R, we denote by ∂ψ its convex subdifferential, i.e., for any
x ∈ domψ,

∂ψ(x) := {h ∈ H∗ : ψ(x)− ψ(y) ≤ ⟨h, x− y⟩, ∀y ∈ H}.
We also use ψ′(x) to denote an element of ∂ψ(x). For a function F : H → R, we denote by ∂̂F the
Fréchet subdifferential

∂̂F (x) :=

{
g ∈ H∗ : lim inf

u→x

F (u)− F (x)− ⟨g, u− x⟩
∥u− x∥ ≥ 0

}
.

The limiting (Mordukhovich) subdifferential ∂LF (x) at a point x ∈ dom(F ) is defined as the set
of elements p ∈ H∗ for which there exist sequences (xk)k∈N ⊂ H and (pk)k∈N ⊂ H∗ such that
pk ∈ ∂̂F (xk) for all k ∈ N and the following limits hold:

xk → x, pk
∗
⇀ p, F (xk) → F (x) as k → ∞.

Note that if F is convex, we have ∂LF (x) = ∂̂F (x) = ∂F (x) [57, Proposition 1.2].

For a function f : H → R that is C1 on dom f , i.e., continuously Fréchet differentiable, we denote by
f ′(x) ∈ H∗ its Fréchet derivative at x ∈ dom f .

Remark 2.1 (On the setting of (P)). If F = f + ψ with f continuously Fréchet differentiable and ψ
convex, the sum rule [74, Proposition 1.107 (ii)] yields, for all x ∈ dom(F ),

∂LF (x) = f ′(x) + ∂Lψ(x) = f ′(x) + ∂̂ψ(x) = ∂̂F (x).

In other words, the limiting subdifferential and the Fréchet subdifferential coincide in this setting. Thus,
throughout the paper, we write ∂F (x) for the limiting subdifferential, which coincides with the Fréchet
subdifferential in this setting. We also use F ′(x) to denote an element of ∂F (x).

Note that, by Fermat’s rule [74, Proposition 1.114], we have at a local minimum x̄ ∈ domψ that

0 ∈ ∂(f + ψ)(x̄) = f ′(x̄) + ∂ψ(x̄).

For a function f ∈ C1,1(dom f,R), i.e., f ∈ C1 and has Lipschitz Fréchet derivative, we say that
f ′ is Newton differentiable (or generalised differentiable) at a point x ∈ dom f if there exists an open
subset U ⊂ dom f with x ∈ U and a family of maps H : U → L(H,H∗) such that

lim
h∈H,h→0

∥f ′(x+ h)− f ′(x)−H(x+ h)h∥∗
∥h∥ = 0. (2)

(Note the difference to the Fréchet derivative, where H(x + h) above would instead be H(x).) We
also say that f ′ is Newton differentiable at x with respect to H . If f ′ is Newton differentiable for every
x ∈ U , we say that it is Newton differentiable on U . We slightly abuse notation and use H(x) to
denote the corresponding linear operator from H to H∗ which we call the Newton or generalised
derivative of f ′ at x. Finally, we adopt—by slight abuse of notation, but consistent with the convention
in finite-dimensional optimisation—the shorthand

H(x) ⪰ µI ⇐⇒
def

⟨(H(x)− µR)d, d⟩ ≥ 0 ∀d ∈ H, (3)

where µ ∈ R and, as before, R : H → H∗ denotes the Riesz map.
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Remark 2.2. A few words are in order regarding our definition of semismoothness.

■ To be as general as possible, we do not specify which particular generalised derivatives H(x)
are used in the above definition. For example, choosing a single-valued selection of Clarke’s
Jacobian as generalised derivativeH(x), we obtain the classical definition of semismooth func-
tions. Moreover, if f ′ is semismooth, every single-valued selection of Clarke’s Jacobian works as
H(x) in the above definition. Following a tradition [49, 52], we still use the word “semismooth-
ness"to denote that f ′ satisfies the above definition. Yet, we underline that our paper covers a
much more general setting of Newton differentiability that extends the notion of differentiability
even further than semismooth functions.

■ In some communities, Newton differentiability is often defined in terms of set-valued derivatives.
Indeed, a map T : X → Y is said to be Newton differentiable with Newton derivativeG : X ⇒
L(X, Y ) if

lim
h→0

sup
M∈G(x+h)

∥T (x+ h)− T (x)−Mh∥
∥h∥ = 0.

The definition of Newton derivative we use in our work amounts to taking a selection from the
set-valued G at each point. Thus, our Newton derivative can be viewed as an abuse of notation
where we pick a realisation of one of the elements of the set G at each point. In this sense, our
algorithm and results can handle set-valued derivatives.

We refer to [89] for a survey relating different notions of generalised derivatives.

2.1 Main assumptions

In this subsection, we present and discuss the main assumptions on the regularity of F in (P) that are
used to obtain our theoretical results. We emphasise that we do not need all assumptions in all results:
we will refer specifically to the assumptions that are needed in each result. However for convenience,
we introduce the important assumptions here.

The following structural assumption about problem (P) is used for all the results of this paper and thus
one should bear in mind that it is in effect throughout.

Assumption 1. (i) The function ψ : H → R is convex, proper, and lower semicontinuous.

(ii) The function f : H → R is continuously Fréchet differentiable on dom f .

(iii) The function F := f + ψ is bounded from below by the global minimal value F ∗ and has a
nonempty solution set S := {x∗ ∈ H : F (x∗) = F ∗}.

Note that, in general, we do not assume f and F to be convex. The next assumption is fundamental
and is used to prove global convergence rates of our algorithm.

Assumption 2. There exists a constant L ≥ 0 such that at any point x ∈ dom f it is possible to
evaluate a symmetric operator H(x) ∈ L(H,H∗) such that f ′ satisfies

∥f ′(y)− f ′(x)−H(x)(y − x)∥∗ ≤ L∥x− y∥ , ∀x, y ∈ dom f. (4)

We assumed symmetricity of H for simplicity, but the theory below would still work with relevant mod-
ifications (for example, H(x) in (9) would need to be replaced with 1

2
(H(x) + H(x)∗)). Let us give

some typical scenarios to illustrate the connection between H and f :
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LeAP-SSN: A semismooth Newton method with global convergence rates 9

■ If f is C2: the smooth case when f is twice continuously differentiable offers the natural choice
H = f ′′.

■ If f ′ is semismooth: if f ′ is semismooth or Newton differentiable, we can use its Newton
derivative as H .

■ The quasi-Newton setting: here an approximation H of the Hessian (or Newton derivative)
is used for implementation purposes. Typical assumptions in the literature include f ′′ being
Lipschitz continuous and constructing H positive semi-definite.

We remark that an assumption similar to Assumption 2 is made in [101, §4] in theC2 setting. Moreover,
it can be seen as a nonasymptotic counterpart of 0th-order semismoothness [50, Definition 2.6]. To
further motivate Assumption 2, note that the literature on the analysis of SSN and its variants often
requires (see e.g. [84, §1], [98, Assumption 1], [100, Assumption 3.6], [2, Assumption 2.2]) that the
operator H(x) is uniformly bounded, i.e., for some M > 0,

∥H(x)∥op := sup
h∈H,h̸=0

∥H(x)h∥∗
∥h∥ ≤M. (5)

As the next lemma shows, Assumption 2 follows from (5), and thus the former can be seen as a
relaxation of the latter.

Lemma 2.3. Let (5) hold.

(i) If f ′ is Lipschitz with constant L1, then, Assumption 2 holds with constant M + L1.

(ii) If f ′ is Newton differentiable with respect to H , then, Assumption 2 holds with constant 2M .

Proof. In case (ii), by [17, Proposition 2.3], it holds that f ′ is Lipschitz with constant L1 = M . The
rest of the proof follows by the triangle inequality:

∥f ′(y)− f ′(x)−H(x)(y − x)∥∗ ≤ ∥f ′(y)− f ′(x)∥∗+∥H(x)(y − x)∥∗ ≤ (L1+M)∥x− y∥ .

Finally, we also remark that many semismooth functions appearing in applications have bounded
Newton derivative and, hence, satisfy Assumption 2.

For some of the results, we use the following relaxation of strong convexity known as the Polyak–
Łojasiewicz (PL) condition/inequality, which does not even require F to be convex. We use it in two
contexts: sometimes globally for obtaining certain global convergence rates and locally for obtaining
local convergence rates. The assumption for our global results is formulated as follows.

Assumption 3. F satisfies the Polyak–Łojasiewicz (PL) condition on domF , i.e., for some µ > 0,

1

2µ
dist(0, ∂F (x))2 ≥ F (x)− min

x∈domF
F (x), ∀x ∈ domF. (6)

Originally introduced in [82], the PL inequality has since been widely employed to analyse the linear
convergence of first-order methods (see, e.g., [54]) and was later extended to nonsmooth and non-
convex settings under the broader framework of the Kurdyka–Łojasiewicz (KL) inequality, see [6, 8,
7] and the discussion in [13] for a historical account. Another relaxation of strong convexity that does
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not require F to be convex that we will use for one of our results on local convergence rates is the
quadratic growth (QG) condition µ

2
dist(x, S)2 ≤ F (x)−minx∈U F (x).

Previous works on local and global convergence of SSN and its variants either use a strong convexity
assumption [84, 98] or that the inverse of the Newton derivative is bounded from above [50, 96],
which is a similar assumption to strong convexity since in that case the minimum eigenvalue of the
Newton derivative is positive. For results on the relationship between strong convexity (SC), PL and
QG conditions, we refer to [67] where in finite dimensions it is shown that SC implies PL which in turn
implies QG for weakly convex functions and if additionally F is convex, PL and QG are equivalent
but still weaker than SC; to [5], where the same is shown in infinite dimensions but with ψ ≡ 0; to
[15] where the equivalence between PL and QG is established in infinite dimensions, but for convex
functions; to [53] where for nonconvex functions and infinite dimensions it is shown that PL implies
QG. Thus, our results are stronger than previously known since we use the weaker assumptions of PL
and QG instead of SC as in other works.

Our next assumption is on the semismoothness of f ′ that is used exclusively to prove superlinear
convergence of our algorithm.

Assumption 4. The Fréchet derivative f ′ is semismooth (i.e., Newton differentiable) at a local solution
x∗ to problem (P) with respect to H (see (2)).

We would like to underline that, despite Assumptions 2 and 3 being stated above as global assump-
tions, it is possible to prove some of our results by making these assumptions only locally on some
ball BR(x

∗) around a local solution x∗. These local counterparts of Assumptions 2 and 3 are simply
obtained via changing dom f and domF to BR(x

∗).

2.1.1 Further results related to Assumption 2

Let us briefly discuss some basic results related to Assumption 2. We first see how in some cases,
Assumption 2 and (5) are equivalent, cf. Lemma 2.3.

Lemma 2.4. Let dom f = H, and f ′ be Lipschitz with constant L1. If Assumption 2 holds, then, (5)
holds with constant L+ L1. In fact, in this case, Assumption 2 and (5) are equivalent.

Proof. Using Assumption 2 and the triangle inequality, we obtain ∥H(x)(y − x)∥∗ ≤ L∥x− y∥ +
∥f ′(y)− f ′(x)∥∗ . Taking y = x+ tz for arbitrary z, x ∈ H and t > 0, we further obtain

∥H(x)z∥∗ ≤ L∥z∥ +
∥f ′(x+ tz)− f ′(x)∥∗

t
.

Taking t = 1 and using the Lipschitz continuity of f ′, we directly obtain ∥H(x)z∥∗ ≤ (L + L1)∥z∥.
Hence (5) is satisfied with M = L + L1. The equivalence follows from Lemma 2.3, which gives the
reverse direction and that Assumption 2 holds with constant L =M + L1.

We will use the following basic lemma, which holds not only under Assumption 2, but also when the
inequality (4) from the assumption holds only on line segments. Below, recall the notation [x, y] :=
{tx+ (1− t)y : t ∈ [0, 1]}.

Lemma 2.5. Let x, y ∈ domf and suppose that

∥f ′(ỹ)− f ′(x̃)−H(x̃)(ỹ − x̃)∥∗ ≤ L∥x̃− ỹ∥ , ∀x̃, ỹ ∈ [x, y]. (7)
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LeAP-SSN: A semismooth Newton method with global convergence rates 11

Then, we have∣∣∣∣f(y)− [f(x) + ⟨f ′(x), y − x⟩+ 1

2
⟨H(x)(y − x), y − x⟩]

∣∣∣∣ ≤ L

2
∥x− y∥2 . (8)

Proof. Indeed, ∣∣∣∣f(y)− [f(x) + ⟨f ′(x), y − x⟩+ 1

2
⟨H(x)(y − x), y − x⟩]

∣∣∣∣
=

∣∣∣∣∫ 1

0

⟨f ′(x+ t(y − x))− f ′(x)− tH(x)(y − x), y − x⟩ dt
∣∣∣∣

≤
∫ 1

0

∥f ′(x+ t(y − x))− f ′(x)− tH(x)(y − x)∥∗ ∥y − x∥ dt
(7)
≤
∫ 1

0

tL∥y − x∥2 dt = L

2
∥x− y∥2 .

2.2 Regularised Newton step

Our algorithm relies on the proximal Levenberg–Marquardt Newton step defined for some x ∈ domF
and constant λ ≥ 0 as

x+(λ, x) := argmin
y∈H

F̃ (y; x, λ),

F̃ (y; x, λ) := f(x) + ⟨f ′(x), y − x⟩+ 1

2
⟨H(x)(y − x), y − x⟩+ λ

2
∥y − x∥2 + ψ(y).

(PN)

For brevity, if it is clear from the context, we use x+ for x+(λ, x). Our assumption about the properties
of a solution x+ to the above auxiliary problem is as follows. This assumption is in effect throughout
the rest of the paper.

Assumption 5. For all λ ≥ L (where L is from Assumption 2) and all x ∈ domF we can compute a
stationary point x+ = x+(λ; x) ∈ H of the model function F̃ (y; x, λ) in (PN) that satisfies:

−f ′(x)−H(x)(x+ − x)− λR(x+ − x) ∈ ∂ψ(x+) (first-order condition), (9)

F̃ (x+; x, λ) ≤ F̃ (x; x, λ) = F (x) (model nonincrease). (10)

Note that we do not require finding a global solution to (PN). Also, it should be possible to relax the
exact first-order condition (9) to allow for some inexactness, but we defer this to future research.

Remark 2.6. Let us briefly discuss some cases in which Assumption 5 holds.

■ If f is convex and H(x) ⪰ 0 for all x ∈ domF , then the minimisation problem in (PN) is
strongly convex for any λ > 0 and, hence, always admits a global unique minimiser x+ that
satisfies (9)–(10), independently of the constant L in Assumption 2. The global minimum can
either be found explicitly if ψ is simple or by some auxiliary algorithm for convex optimisation.
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■ If f is µ–weakly convex, i.e., f+(µ/2)∥·∥2 is convex, andH(x) ⪰ −µI for some µ ≥ 0 and
all x ∈ domF , then Assumption 5 still holds provided the constant L > 0 in Assumption 2
satisfies L ≥ µ since in this case the model F̃ (·; x, λ) is convex for all x ∈ domF and
λ ≥ L ≥ µ. Thus, again (PN) admits a global minimiser x+ that satisfies (9)–(10). The
condition µ ≤ L can always be satisfied since inequality (4) holds also for any L̃ ≥ L.

■ If the term 1
2
⟨H(x)(y − x), y − x⟩ in (PN) is nonconvex (and there is no such µ > 0 that

H(x) ⪰ −µI), but the non-regularised model F̃ (y; x, 0) is bounded from below for all x ∈
domF , then F̃ (y; x, λ) is bounded from below for any λ ≥ 0 and x ∈ domF . In this case,
one can run the proximal gradient method (cf. [12]) starting from x. This method is monotone
with respect to F̃ and guarantees finding an (approximate) stationary point, so we may expect
that both (9) and (10) also hold in this setting. The model F̃ (y; x, 0) is bounded from below, for
example, if domψ is compact or if ψ grows faster than quadratically as ∥x∥ → ∞.

■ Both conditions (9) and (10) are satisfied if F̃ (y; x, λ) satisfies the PL condition.

Note that this list is not exhaustive and there may be other situations where Assumption 5 is satisfied.

To reiterate, not only does Assumption 5 cover the convex setting often considered in other works,
but also many nonconvex settings. We note also that Assumption 5 is actually needed only on the
trajectory of the algorithm.

We next move to several technical results that characterise the properties of the step (PN). The first-
order condition (9) means that there exists ψ′(x+) ∈ ∂ψ(x+) such that

ψ′(x+) = −f ′(x)−H(x)(x+ − x)− λR(x+ − x). (11)

Thus, defining

F ′(x+) := f ′(x+) + ψ′(x+) = f ′(x+)− f ′(x)−H(x)(x+ − x)− λR(x+ − x), (12)

we immediately see that F ′(x+) ∈ ∂F (x+).
The following lemma gives us control over the length of the step via the subgradient norm at a point
x. It is essentially [31, Lemma 1], but we give a proof for completeness.

Lemma 2.7. Let x+ = x+(x, λ) be a stationary point of (PN), where H(x) ⪰ µI for some µ ∈ R.
Let also λ+ µ > 0. Then,

∥x+ − x∥ ≤ ∥F ′(x)∥∗
λ+ µ

. (13)

Proof. Rearranging the first-order optimality condition (11) and multiplying it by x+ − x, we have,
setting r = ∥x+ − x∥ ,

⟨H(x)(x+ − x), x+ − x⟩ = ⟨−ψ′(x+)− f ′(x), x+ − x⟩ − λr2.

Taking ψ′(x) ∈ ∂ψ(x), we have by the assumption of the lemma and the monotonicity of ∂ψ,

µr2 = µ∥x+ − x∥2≤⟨H(x)(x+ − x), x+ − x⟩ ≤ ⟨−ψ′(x)− f ′(x), x+ − x⟩ − λr2

≤ ∥ψ′(x) + f ′(x)∥∗ r − λr2.

Rearranging, dividing by r and λ+ µ > 0, we get (13).
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In the next result, we establish a sensitivity estimate of how the point x+(λ, x) varies for fixed x when
λ changes. This result will be fundamental for opening the path to show superlinear convergence.

Lemma 2.8. Let x ∈ dom f be such that H(x) ⪰ 0. Then, the following inequality holds for all
0 < λ ≤ λ′:

∥x+(λ, x)− x+(λ
′, x)∥ ≤ λ′ − λ

λ′
∥x− x+(λ, x)∥. (14)

Proof. We denote for brevity x+(λ) := x+(λ, x) and f̃(y) := f(x)+ ⟨f ′(x), y−x⟩+ 1
2
⟨H(x)(y−

x), y − x⟩. Setting y1 = x+(λ) and y2 = x+(λ
′), using (11), we have that

ψ′(y1) = −f̃ ′(y1)− λR(y1 − x), ψ′(y2) = −f̃ ′(y2)− λ′R(y2 − x),

where ψ′(y1) ∈ ∂ψ(y1) and ψ′(y2) ∈ ∂ψ(y2). Multiplying the first equality by y1 − y2, the second
by y2 − y1, and summing, we arrive at

⟨ψ′(y1)− ψ′(y2), y1 − y2⟩ = ⟨−f̃ ′(y1)− λR(y1 − x), y1 − y2⟩
+ ⟨f̃ ′(y2) + λ′R(y2 − x), y1 − y2⟩

= ⟨f̃ ′(y2) + λ′R(y2 − x)− f̃ ′(y1)− λR(y1 − x), y1 − y2⟩
= ⟨H(x)(y2 − y1) + λ′R(y2 − x)− λR(y1 − x), y1 − y2⟩,

where in the last equality we used that f̃ ′(y2) − f̃ ′(y1) = H(x)(y2 − y1). Rearranging, using
H(x) ⪰ 0 and the monotonicity of ∂ψ(x), we obtain

0 ≤ ⟨ψ′(y1)− ψ′(y2), y1 − y2⟩+ ⟨H(x)(y1 − y2), y1 − y2⟩
= ⟨λ′R(y2 − x)− λR(y1 − x), y1 − y2⟩
= ⟨λ′R(y2 − x)− λ′R(y1 − x) + λ′R(y1 − x)− λR(y1 − x), y1 − y2⟩
= −λ′∥y1 − y2∥2 + (λ′ − λ)⟨R(y1 − x), y1 − y2⟩
≤ −λ′∥y1 − y2∥2 + (λ′ − λ)∥y1 − x∥ ∥y1 − y2∥ ,

where for the last inequality we used Cauchy–Schwarz. Rearranging, we obtain (14) as desired.

The final result of this subsection will allow us to establish per-iteration decrease of F by our algorithm.

Lemma 2.9. Consider the update step (PN) and assume that there exists a function φ : R → R such
that

∥f ′(x+)− f ′(x)−H(x)(x+ − x)∥∗ ≤ φ(∥x− x+∥). (15)

Then,

⟨F ′(x+), x− x+⟩ ≥
1

2λ
∥F ′(x+)∥2∗ +

λ

2
∥x− x+∥2 −

φ(∥x− x+∥)2
2λ

. (16)

Proof. We have that

φ(∥x− x+∥)2
(15)
≥ ∥f ′(x+)− f ′(x)−H(x)(x+ − x)∥2∗

(12)
= ∥F ′(x+) + λR(x+ − x)∥2∗

= ∥F ′(x+)∥2∗ + 2λ⟨F ′(x+), x+ − x⟩+ λ2∥x− x+∥2 .

Dividing by 2λ and rearranging, we obtain the desired inequality (16).
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3 The proposed algorithm

In this section, we present LeAP-SSN — our Levenberg–Marquardt Adaptive Proximal Semismooth
Newton method. The algorithm is based on the regularised proximal step (PN) and in each iteration
we use a simple linesearch to adaptively find the regularisation parameter λ that guarantees sufficient
progress of the algorithm. The resulting algorithm is listed as Algorithm 1 below.

Algorithm 1 LeAP-SSN (Levenberg–Marquardt Adaptive Proximal Semismooth Newton method)

1: input: Parameters α ∈ (0, 1/2], β ∈ (0, (m − 1)/(2m)] for some m ≥ 1 (standard choice:
α = 1/2, β = 1/4, m = 2), x0 ∈ domF , ψ′(x0) ∈ ∂ψ(x0), and Λ0 > 0.

2: for k = 0, 1, . . . , do
3: for jk = 0, 1, . . ., do
4: Set λ = 2jkΛk.
5: Attempt to compute

x+ = argmin
y∈H

{
f(xk) + ⟨f ′(xk), y − xk⟩

+
1

2
⟨H(xk)(y − xk), y − xk⟩+

λ

2
∥y − xk∥2 + ψ(y)

} (17)

in the sense that x+ satisfies Assumption 5. If not possible, go to next iteration of loop
(Line 3).

6: Set ψ′(x+) = −f ′(xk)−H(xk)(x+ − xk)− λR(x+ − xk).
7: Set F ′(x+) = f ′(x+) + ψ′(x+).
8: if x+ satisfies the acceptance conditions

⟨F ′(x+), xk − x+⟩ ≥
α

λ
∥F ′(x+)∥2∗ and F (xk)− F (x+) ≥ βλ∥x+ − xk∥2 (18)

9: Set xk+1 = x+, λk = λ = 2jkΛk, Λk+1 = λk/2 = 2jkΛk/2.
10: Set ψ′(xk+1) = ψ′(x+), F ′(xk+1) = f ′(xk+1) + ψ′(xk+1).
11: break and go to next iteration of the outer loop (Line 2).
12: end if
13: end for
14: end for

Remark 3.1 (Solving (17)). Note that when ψ ≡ 0, (17) simplifies to computing

x+ = xk − (H(xk) + λR)−1f ′(xk).

In other words, potentially after a discretisation, one requires a single linear system solve. This x+
satisfies model nonincrease (10) under the various conditions discussed in Remark 2.6.

When ψ ̸= 0, x+ can be expressed via the proximal operator of ψ which in many cases is known
explicitly [23]. Alternatively, one may need to run a proximal gradient descent or another auxiliary
optimisation method to compute x+.

Remark 3.2 (The Riesz map and choice of norm). For many problems considered in the context
of finite-dimensional optimisation (like the example in Section 7.3), the Riesz map R is the identity
matrix R = I and ∥·∥ = ∥·∥∗ = ∥·∥ℓ2 are the Euclidean norm. However, in discretisations of infinite-
dimensional problems, the Riesz map often takes the form of a matrix A which is a combination of
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LeAP-SSN: A semismooth Newton method with global convergence rates 15

appropriate problem-dependent discretised operators. See Sections 7.1 and 7.2 for examples. In this
case one defines ∥·∥ = ∥·∥A and ∥·∥∗ = ∥·∥A−1 . This ensures the correct scaling of the solution
coefficient vectors to their respective representations as functions and often vastly improves solver
performance [93].

As we will show later, when proving superlinear convergence under semismoothness, we obtain λk →
0, which means that our algorithm in a sense automatically interpolates between regularised proximal
SSN and pure proximal SSN, and becomes closer to pure proximal SSN when k → ∞.

Our next goal is to show that the inner cycle to find an appropriate λk is finite . To that end, recall
that we use x+(λ, xk) to denote a solution to (PN) with x = xk and that solution satisfies (9)–(10) of
Assumption 5.

Lemma 3.3 (Acceptance and termination of the inner loop). Consider iteration k ≥ 0 of Algorithm 1
applied to (P). Let Assumptions 1 and 5 hold and suppose that the following inequality holds:

∥f ′(ỹ)− f ′(x̃)−H(x̃)(ỹ − x̃)∥∗ ≤ L∥x̃− ỹ∥ , ∀x̃, ỹ ∈ [xk, x+(λ, xk)], ∀λ ≥ 0. (19)

Pick m ≥ 1, 0 < α ≤ 1/2, and 0 < β ≤ (m − 1)/(2m). Then, if λk ≥ mL, both inequalities
in (18) hold, i.e., the acceptance conditions of the inner loop of Algorithm 1 holds and the inner loop
ends after a finite number of trials. Furthermore, we have

λk ≤ λ := max{2mL,Λ0}, Λk+1 ≤ λ/2, ∀k ≥ 0. (20)

Before we start the proof, let us remark that (19) is of course implied by Assumption 2. We formulated
the result with the localised version (19) because we will need it for our local convergence results in a
later section.

Proof of Lemma 3.3. By Assumption 5 (which is applicable since we assumed λk ≥ mL ≥ L), the
subproblem (PN) is well defined in the sense that it admits a stationary point satisfying (9)–(10). By the
assumption (19) we have that in particular, the inequality (15) holds with x+(λ, xk) and xk instead of
x+ and x respectively, and φ(r) = Lr. Thus, applying Lemma 2.9, we obtain, for any λ ≥ mL ≥ L,

⟨F ′(x+(λ, xk)), xk − x+(λ, xk)⟩
(16)
≥ 1

2λ
∥F ′(x+(λ, xk))∥2∗

+
λ

2
∥xk − x+(λ, xk)∥2 −

L2∥xk − x+(λ, xk)∥2
2λ

≥ 1

2λ
∥F ′(x+(λ, xk))∥2∗ ,

where in the last inequality we used that λ ≥ mL ≥ L. Thus, since λk = 2jkΛk is increasing when
jk is increasing, we obtain that the first inequality in (18) holds after a finite number of trials when
λk ≥ mL since α ≤ 1/2 by the assumptions of the lemma.

We now move to the second inequality in (18). By the assumption (19), we can apply Lemma 2.5 and

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025



A. Alphonse, P. Dvurechensky, I. P. A. Papadopoulos, C. Sirotenko 16

obtain, for any λ ≥ mL,

F (x+(λ, xk)) = f(x+(λ, xk)) + ψ(x+(λ, xk))
(8)
≤ f(xk) + ⟨f ′(xk), x+(λ, xk)− xk⟩

+
1

2
⟨H(xk)(x+(λ, xk)− xk), x+(λ, xk)− xk⟩

+
L

2
∥x+(λ, xk)− xk∥2 + ψ(x+(λ, xk))

(PN)
= F̃ (x+(λ, xk); xk, λ)−

λ

2
∥x+(λ, xk)− xk∥2 +

L

2
∥x+(λ, xk)− xk∥2

(10)
≤ F (xk) +

L− λ

2
∥x+(λ, xk)− xk∥2

L≤λ/m
≤ F (xk)−

m− 1

2m
λ∥x+(λ, xk)− xk∥2 .

Thus, since λk = 2jkΛk is increasing when jk is increasing, by rearranging the last inequality, we
obtain that the second inequality in (18) holds after a finite number of trials when λk ≥ mL since
β ≤ m−1

2m
by the assumptions of the lemma. Thus, both inequalities in (18) hold after a finite number

of trials, and the step of Algorithm 1 is well defined.

We now move to the proof of the first inequality in (20) by induction. Consider the base case, i.e.,
iteration k = 0. If j0 = 0, i.e., the acceptance condition holds for λ0 = Λ0, we have that λ0 ≤
max{2mL,Λ0} = λ. If j0 > 0, we in any case have that λ0 = Λ02

j0 ≤ 2mL since otherwise
λ0/2 > mL would have already been accepted by the arguments in the first part of this lemma.
Thus, again λ0 ≤ max{2mL,Λ0} = λ. Consider now iteration k > 0 and proceed in the same way.
If jk = 0, i.e., the acceptance condition holds for λk = Λk, we have by the induction hypothesis that
λk = Λk = λk−1/2 ≤ λ/2 ≤ λ. If jk > 0, we in any case have that λk ≤ 2mL since otherwise
the previous iterate already satisfies λk/2 > mL, which is sufficient for the acceptance conditions to
hold by the first part of this lemma. Thus, again λk ≤ λ. The second inequality in (20) just follows by
definition, since for any k ∈ N, Λk+1 = λk/2 ≤ λ/2.

3.1 Useful notation and inequalities

Before we move to the main results, we introduce some technical preliminaries which are used
throughout the rest of the paper. To simplify the derivations, we introduce the following notation for
k ≥ 0:

Fk := F (xk)− F ∗, rk := ∥xk − xk+1∥ , gk := ∥F ′(xk)∥∗ . (21)

Then, using the definition of the point xk+1 in Line 9 of Algorithm 1, the acceptance conditions (18)
can be written as

⟨F ′(xk+1), xk − xk+1⟩ ≥
α

λk
g2k+1, (22)

Fk − Fk+1 = F (xk)− F (xk+1) ≥ βλkr
2
k. (23)

We will use the following implications of the acceptance conditions (18).

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025



LeAP-SSN: A semismooth Newton method with global convergence rates 17

Lemma 3.4. Let, at iteration k ≥ 0 of Algorithm 1, acceptance criteria (18) hold. Then, we have

F ∗ ≤ F (xk+1) ≤ F (xk) or equivalently 0 ≤ Fk+1 ≤ Fk, (24)

∥F ′(xk+1)∥∗ ≤
λk
α
∥xk − xk+1∥ or equivalently gk+1 ≤

λkrk
α

, (25)

F (xk)− F (xk+1) ≥
βα2

λk
∥F ′(xk+1)∥2∗ or equivalently

Fk − Fk+1 = F (xk)− F (xk+1) ≥
βα2

λk
g2k+1.

(26)

Proof. The inequalities in (24) follow from (23), (21), and Assumption 1. Applying Cauchy–Schwarz
on the first inequality in (18) and using the definition of xk+1 in Line 9 of Algorithm 1 gives

α

λk
∥F ′(xk+1)∥∗ ≤ ∥xk − xk+1∥ ,

which together with (21) clearly implies (25). Further, after plugging the previous inequality into the
second inequality in (18) and using again the definition of xk+1 in Line 9 of Algorithm 1, we get

F (xk)− F (xk+1) ≥ βλk∥xk − xk+1∥2 ≥
βα2

λk
∥F ′(xk+1)∥2∗ ,

and (26) follows by (21).

Lemma 3.5. Given a set U ⊆ H, suppose there exists F ∗
U ∈ R such that F (x) ≥ F ∗

U for all x ∈ U .

(i) At iteration k ≥ 0 of Algorithm 1, let the PL inequality hold at xk ∈ U , i.e.,

1

2µ
dist(0, ∂F (xk))

2 ≥ F (xk)− F ∗
U . (27)

Then, we have

g2k := ∥F ′(xk)∥2∗ ≥ 2µ(F (xk)− F ∗
U). (28)

(ii) At iteration k + 1 ≥ 1 of Algorithm 1, let the assumption of the previous item hold and the
acceptance criteria (18) hold. Let in addition xk+2 ∈ U . Then, we have

r2k+1 ≤
λkr

2
k

α2βµ
, (29)

g2k+2 ≤
λk+1g

2
k+1

2α2βµ
. (30)

Proof. Since by construction F ′(xk) ∈ ∂F (xk), we have that

g2k
(21)
:= ∥F ′(xk)∥2∗ ≥ dist(0, ∂F (xk))

2
(27)
≥ 2µ(F (xk)− F ∗

U),

which is (28). By (23) at iteration k+1, inequality F (xk+2)−F ∗
U ≥ 0 (which follows from xk+2 ∈ U ),

inequality (28) at iteration k + 1, and inequality (25), we observe that

βλk+1r
2
k+1

(23)
≤ (F (xk+1)− F ∗

U)− (F (xk+2)− F ∗
U) ≤ F (xk+1)− F ∗

U

(28)
≤ g2k+1

2µ

(25)
≤ λ2kr

2
k

2α2µ
. (31)

Using that λk/2 = Λk+1 ≤ λk+1 by Line 9 of Algorithm 1, we obtain (29). To obtain (30), we use (25)
at iteration k + 1 as well as the first and the penultimate inequality in (31):

g2k+2

(25)
≤ λ2k+1

α2
r2k+1

(31)
≤ λ2k+1

α2

g2k+1

2βµλk+1

=
λk+1g

2
k+1

2α2βµ
.
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4 Global convergence rates

In this section, we obtain our main results on global nonasymptotic convergence rate results for Algo-
rithm 1 in various settings including under a PL condition and a convex setting. The main tool for these
results is Assumption 2.

4.1 Global O(1/
√
k) convergence rate for gradient norm

In this subsection, we focus on the setting where F in (P) is not necessarily convex (but Assumption 5
is satisfied). We show that under the global Assumption 2, Algorithm 1 has a global nonasymptotic
convergence rate O(1/

√
k) in terms of the minimal subgradient norm on the trajectory. The formal

result is as follows.

Theorem 4.1 (Global convergence rate). Let, for problem (P), Assumptions 1, 2 and 5 hold. Let also
(xk)k∈N be the iterates of Algorithm 1 with arbitrary starting point x0 ∈ domF . Then, the sequence
(xk)k∈N is well defined, (xk)k∈N ⊂ F0, i.e., the iterates of the algorithm stay in the sublevel set F0

(see (1)), and
∥F ′(xk)∥∗ → 0 as k → ∞.

Moreover, the following global nonasymptotic convergence rate holds:

min
0≤i≤k−1

∥F ′(xi+1)∥∗ ≤
√
max{2mL,Λ0}(F (x0)− F ∗)√

βα2k
, k ≥ 1. (32)

If in addition λk → 0 as k → ∞, we obtain that min0≤i≤k−1∥F ′(xi+1)∥∗ = O(1/
√
k). Finally, the

number of Newton steps (17) up to the end of iteration k does not exceed

k + 1 + log2max{1/2,mL/Λ0}.

Proof. Since Assumption 2 holds, we have by Lemma 3.3 that both inequalities in (18) hold in each
iteration k ≥ 0, i.e., the acceptance conditions of the inner loop of Algorithm 1 hold and the inner loop
ends after a finite number of trials. Thus, the sequence (xk)k∈N is well defined. From (24), it is clear
by induction that for all k ≥ 0, F (xk) ≤ F (x0) and, thus, (xk)k∈N ⊂ F0, where F0 is defined in (1).

Summing (26) from 0 to k − 1 and telescoping, using that F is bounded from below by F ∗ by As-
sumption 1, Lemma 3.3 and the notation gi+1 := ∥F ′(xi+1)∥∗ in (21), we obtain

F (x0)− F ∗ ≥ F (x0)− F (xk)
(26)
≥

k−1∑
i=0

βα2

λi
g2i+1

(20)
≥

k−1∑
i=0

βα2

λ
g2i+1 ≥

kβα2

λ
min

0≤i≤k−1
∥F ′(xi+1)∥2∗ .

First, observe that this chain of inequalities implies that for all k ≥ 0,
∑k−1

i=0 g
2
i+1 is bounded from

above. Thus, ∥F ′(xi)∥∗ = gi → 0 as i→ ∞. Second, recalling from (20) that λ = max{2mL,Λ0},
we immediately get (32). Now, suppose that λi → 0 as i → ∞. We also obtain from the above in-
equalities, by keeping λi, that

F (x0)− F ∗ ≥ βα2 min
0≤i≤k−1

g2i+1

k−1∑
i=0

1

λi
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and hence

min
0≤i≤k−1

g2i+1 ≤
F (x0)− F ∗

βα2

1∑k−1
i=0

1
λi

.

The inequality between arithmetic and geometric means (AM-GM) yields

k−1∑
i=0

1

λi
≥ k

(
k−1∏
i=0

1

λi

)1/k

,

whence

min
0≤i≤k−1

g2i+1 ≤
F (x0)− F ∗

βα2

1

k
(∏k−1

i=0
1
λi

)1/k =
F (x0)− F ∗

βα2

(∏k−1
i=0 λi

)1/k
k

,

and the right-hand side is O(1/k) because the geometric mean converges to zero. By taking the
square root, we deduce the O(1/

√
k) rate for min0≤i≤k−1∥F ′(xi+1)∥∗.

It remains to estimate the number of Newton steps (17). By Line 9 of Algorithm 1, we have for all k ≥ 0
that Λk+1 = 2jkΛk/2, or equivalently jk = 1+ log2

Λk+1

Λk
. Summing these equalities from 0 to k, we

obtain that the total number of Newton steps up to the end of iteration k is

Nk =
k∑
i=0

ji =
k∑
i=0

(
1 + log2

Λi+1

Λi

)
= k + 1 + log2

Λk+1

Λ0

(20)
≤ k + 1 + log2

λ

2Λ0

(20)
= k + 1 + log2max{1/2,mL/Λ0}.

Remark 4.2 (Choice of the parameters m,α, β). As one can see, the rate in (32) is proportional to√
m/(βα2) and the smaller this number, the better the rate. This means that α, β should be chosen

as large as possible. Recall from Lemma 3.3 that 0 < α ≤ 1/2, and 0 < β ≤ (m− 1)/(2m). Thus,
the optimal choice is α = 1/2, β = (m− 1)/(2m). This leads to

√
m/(βα2) =

√
8m2/(m− 1),

which is minimised at m∗ = 2. This, in turn, implies β = 1/4. This is the standard choice outlined in
the input of Algorithm 1.

We finish this subsection with a result establishing the stationarity of strong accumulation points of
the sequence (xk)k∈N of the iterates of Algorithm 1. By Theorem 4.1, we have (xk)k∈N ⊂ F0. If the
sublevel set F0 is bounded and the space H is finite-dimensional, then there exists a strong accu-
mulation point of (xk)k∈N. Unfortunately, if H is infinite-dimensional, only weak accumulation points
are guaranteed to exist. Following existing literature on nonconvex minimisation in Hilbert spaces [44,
84], we restrict ourselves here to strong accumulation points. The study of additional assumptions on
f , e.g., strong compactness of sublevel sets, that allow establishing stationarity of weak accumulation
points is left for future work.

Proposition 4.3 (Stationarity of strong accumulation points). Let, for problem (P), Assumptions 1, 2
and 5 hold. Then, all strong accumulation points of the sequence (xk)k∈N of the iterates of Algorithm 1
are stationary points of problem (P).
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Proof. Pick an accumulation point x̄ ∈ H and a subsequence such that xkl → x̄ as l → ∞. From
Theorem 4.1, we know that F ′(xk) → 0 as k → ∞. Thus, F ′(xkl) = f ′(xkl) + ψ′(xkl) → 0 as
l → ∞. Since f is continuously Fréchet differentiable, we have that f ′(xkl) → f ′(x̄). Consequently
ψ′(xkl) = (ψ′(xkl) + f ′(xkl)) − f ′(xkl) → −f ′(x̄). Since ψ is convex lsc, x 7→ ∂ψ(x) has a
closed graph and we deduce that −f ′(x̄) = liml→∞ ψ′(xkl) ∈ ∂ψ(x̄). Thus, equivalently, we have
that 0 ∈ ∂F (x̄) = f ′(x̄) + ∂ψ(x̄) and so x̄ is a stationary point.

4.2 Global linear convergence rate for objective and iterates under PL

In this subsection, we still assume that F in (P) may be nonconvex and Assumptions 2 and 5 hold.
Yet, we additionally make Assumption 3 that F satisfies the PL condition. This allows us to obtain a
global nonasymptotic linear convergence rate for Algorithm 1 for the objective functional values and
for the iterates. The formal result is as follows.

Theorem 4.4 (Global convergence rate, PL condition). Let, for problem (P), Assumptions 1 to 3 and 5
hold. Let also (xk)k∈N be the iterates of Algorithm 1 with arbitrary starting point x0 ∈ domF . Then,
the following statements hold.

(i) The objective values have the following global nonasymptotic linear convergence rate:

F (xk)− F ∗ ≤ exp

(
− 2βα2µ

2βα2µ+max{2mL,Λ0}
· k
)
· (F (x0)− F ∗), k ≥ 0. (33)

If in addition λk → 0 as k → ∞, then F (xk)− F ∗ converges to 0 superlinearly.

(ii) xk converges strongly to a global minimum x∗ and the convergence is global, nonasymptotic,
and linear:

∥xk − x∗∥ ≤ exp

(
− 2βα2µ

4βα2µ+ 2max{2mL,Λ0}
· (k − 2)

)
· 5
√
F (x0)− F ∗

αβµ1/2
, k ≥ 2.

(34)

If in addition λk → 0 as k → ∞, then xk converges to x∗ superlinearly.

(iii) The number of Newton steps (17) up to the end of iteration k does not exceed

k + 1 + log2max{1/2,mL/Λ0}.

Proof. Recall from (21) the notation for k ≥ 0

Fk := F (xk)− F ∗, rk := ∥xk − xk+1∥ , gk := ∥F ′(xk)∥∗ .

(i) From Theorem 4.1, we know that the sequence (xk)k∈N ⊂ F0 is well defined. We can apply the
PL condition Assumption 3 (and use that F ∗ is the global minimal value by Assumption 1) to get

Fk − Fk+1

(26)
≥ βα2

λk
g2k+1

(6)
≥ βα2

λk
· 2µFk+1.

Rearranging, we obtain

Fk+1 ≤
1

1 + 2βα2µ
λk

Fk =
λk

2βα2µ+ λk
Fk =

(
1− 2βα2µ

2βα2µ+ λk

)
Fk. (35)
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We immediately see that if λk → 0 as k → ∞, then 1 − 2βα2µ
2βα2µ+λk

→ 0 and we obtain superlinear

convergence. Using the upper bound λk ≤ λ from Lemma 3.3 (see (20)), we obtain(
1− 2βα2µ

2βα2µ+ λk

)
≤
(
1− 2βα2µ

2βα2µ+ λ

)
≤ exp

(
− 2βα2µ

2βα2µ+ λ

)
.

This, by induction gives, for any k ≥ 0,

F (xk)− F ∗ = Fk ≤ exp

(
− 2βα2µ

2βα2µ+ λ
· k
)
(F (x0)− F ∗), (36)

which is (33) since λ = max{2mL,Λ0} from (20).

(ii) By Lemma 3.5, (23), and (36), we observe, for all k ≥ 0,

r2k+1

(29)
≤ λkr

2
k

α2βµ

(23)
≤ 1

α2β2µ
(Fk − Fk+1)

(36)→ 0 as k → ∞. (37)

Thus, we have shown that rk → 0 as k → ∞.

Using the concavity of t 7→ t1/2, the fact that Fk ≥ Fk+1 ≥ 0 by (24), and inequality (23), we get, for
all k ≥ 0,

F
1/2
k − F

1/2
k+1 ≥

1

2F
1/2
k

(Fk − Fk+1)
(23)
≥ βλkr

2
k

2F
1/2
k

. (38)

Applying again the PL condition, we get g2k
(6)
≥ 2µFk. Further, by (25) at iteration k − 1 we have

gk ≤ λk−1

α
rk−1. Combining the last two observations with (38), we obtain

F
1/2
k − F

1/2
k+1

(6)
≥ βµ1/2λkr

2
k√

2gk

(25)
≥ αβµ1/2λkr

2
k√

2λk−1rk−1

.

By Line 9 of Algorithm 1 we have λk ≥ Λk = λk−1/2 and consequently

F
1/2
k − F

1/2
k+1 ≥

αβµ1/2r2k

2
√
2rk−1

. (39)

Rearranging (39) and using inequality 2
√
ab ≤ a+ b that holds for a, b ≥ 0, we get

rk ≤

√
2
√
2rk−1(F

1/2
k − F

1/2
k+1)

αβµ1/2
≤ rk−1

2
+

√
2(F

1/2
k − F

1/2
k+1)

αβµ1/2
.

Summing from l + 1 ≥ 1 to n ≥ l + 1 we obtain

n∑
k=l+1

rk ≤
1

2

n−1∑
k=l

rk +

√
2(F

1/2
l+1 − F

1/2
n+1)

αβµ1/2
.

Putting the sums on one side and using that rk ≥ 0, we obtain

1

2

n−1∑
k=l+1

rk ≤ rl +

√
2(F

1/2
l+1 − F

1/2
n+1)

αβµ1/2
→ 0 as l, n→ ∞, (40)
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where we used that rk → 0 by (37) and Fk → 0 by (36). Hence (xk)k∈N is a Cauchy sequence
and strongly converges to a point x∗ ∈ H, which by Proposition 4.3, is a stationary point. Further,
the functional F is a sum of continuously differentiable f and convex proper lower semicontinuous ψ.
Thus, F is lower semicontinuous, which implies

F ∗ (36)
= lim

k→∞
F (xk) = lim inf

k→∞
F (xk) ≥ F (x∗).

Therefore, x∗ is a global minimiser itself.

The linear convergence of (xk)k∈N is shown as follows. Fixing some l ≥ 0 and arbitrary n ≥ l + 2,
we obtain using the bound in (40) and the triangle inequality, that

∥xl+1 − xn∥ ≤
n−1∑
k=l+1

rk ≤ 2rl +
2
√
2(F

1/2
l+1 − F

1/2
n+1)

αβµ1/2
(41)

(37)
≤ 2

√
Fl−1 − Fl
α2β2µ

+
2
√
2(F

1/2
l+1 − F

1/2
n+1)

αβµ1/2
. (42)

Sending n→ ∞ in (42), we obtain

∥xl+1 − x∗∥
(42)
≤ 2

√
Fl−1 − Fl
α2β2µ

+
2
√
2F

1/2
l+1

αβµ1/2
≤
(
2

√
1

α2β2µ
+

2
√
2

αβµ1/2

)
F

1/2
l−1 ≤ 5F

1/2
l−1

αβµ1/2
,

where the penultimate inequality follows as Fl−1 − Fl ≤ Fl−1 and 0 ≤ Fl+1 ≤ Fl ≤ Fl−1 by (24).
Thus, the linear convergence of xl (34) follows since Fl converges to 0 linearly, see (36). In the same
way, superlinear convergence when λl → 0 as l → ∞ follows since Fl converges to 0 superlinearly
in that case, see (35).

(iii) Finally, the bound on the number of Newton steps follows from Theorem 4.1.

As we see from the above result, the additional assumption of the PL condition Assumption 3 allows us
to obtain quite strong results, including global strong nonasymptotic linear convergence of the iterates
to a global minimum and global nonasymptotic linear convergence of objective values. Observe also
that it would have sufficed to assume Assumption 3 only on F0 (instead of domF ) since by Theo-
rem 4.1 we know that (xk)k∈N ⊂ F0, but we formulated it as it is to simplify the presentation. We also
remark that we did not assume that F is convex.

We finish this subsection by a technical corollary of Theorem 4.4 that will be crucial later for the proof
of superlinear convergence of Algorithm 1. This result relates the distance to solution ∥xk − x∗∥ to
the distance between two consecutive iterates ∥xk+1−xk∥, which in general turns out to be important
for proving fast convergence of various algorithms, see, e.g., [35, 34]. A similar result was proved in
the recent work [84], but under strong convexity. In our setting, we considerably relax this assumption
by assuming that the PL condition holds instead of strong convexity.

Lemma 4.5. Let the assumptions of Theorem 4.4 hold. Then, there exist constants c1, c2 > 0 such
that, for all k ≥ 0,

∥xk+1 − x∗∥ ≤ c1∥xk+1 − xk∥ and ∥xk − x∗∥ ≤ c2∥xk+1 − xk∥. (43)

Proof. Since the assumptions of Theorem 4.4 hold, we know that xk → x∗ as k → ∞ and we can
use (41) which holds for any l ≥ 0 and n ≥ l + 2. Whence, changing in (41) l to k and sending
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n→ ∞, we have

∥xk+1 − x∗∥ ≤ 2rk +
2
√
2F

1/2
k+1

αβµ1/2
. (44)

By Assumption 3 and the bound λk ≤ λ from Lemma 3.3, we obtain

F
1/2
k+1

(21)
= (F (xk+1)− F ∗)1/2

(6)
≤ gk+1

(2µ)1/2

(25)
≤ λkrk
α(2µ)1/2

≤ λ

α(2µ)1/2
rk.

Combining this bound and (44) and recalling that, by (21), rk = ∥xk − xk+1∥, we have that the first

inequality in (43) holds with c1 = 2 + 2λ̄
α2βµ

. The triangle inequality then yields the second inequality
in (43) with c2 = 1 + c1.

4.3 Global O(1/k) convergence rate for objective under convexity

In this subsection, we focus on the setting where F in (P) is convex on its sublevel set F0 defined
in (1). This assumption allows us to improve some results of the previous subsections. In particular,
we obtain for Algorithm 1 a global nonasymptotic convergence rate O(1/k) for the objective residual
F (xk) − F ∗. Convexity also allows us to show that all weak accumulation points of the sequence
generated by Algorithm 1 are global minima.

First, we can improve the bound (26) in Lemma 3.4 by using convexity.

Lemma 4.6. Let at iteration k ≥ 0 of Algorithm 1 the acceptance condition (18) hold. Let also F be
convex between xk and xk+1, i.e., F (xk) ≥ F (xk+1) + ⟨F ′(xk+1), xk − xk+1⟩. Then, we have that

F (xk)− F (xk+1) ≥
α

λk
∥F ′(xk+1)∥2∗ or equivalently

Fk − Fk+1 = F (xk)− F (xk+1) ≥
α

λk
g2k+1.

(45)

Proof. Using convexity, the definition of xk+1 in Line 9 of Algorithm 1, and the first inequality in (18)

we obtain F (xk) − F (xk+1) ≥ ⟨F ′(xk+1), xk − xk+1⟩
(18)
≥ α

λk
∥F ′(xk+1)∥2∗ . The rest follows from

the notation (21).

Recall the definition (1) of the sublevel set F0 defined by the starting point x0. We assume it to be
bounded, i.e.,

D0 := sup
x,y∈F0

∥x− y∥ < +∞. (46)

By Theorem 4.1, we have that (xk)k∈N ⊂ F0 is well defined. This, together with convexity of F on F0

and the notation gk := ∥F ′(xk)∥∗ in (21) imply that, for any x̄ ∈ F0 and k ≥ 0, we have

F (xk)− F (x̄) ≤ ⟨F ′(xk), xk − x̄⟩ ≤ gk sup
x,y∈F0

∥x− y∥ = gkD0. (47)

As a direct consequence we obtain that weak accumulation points of (xk)k∈N are global minima.

Proposition 4.7 (Optimality of weak accumulation points). Let, for problem (P), Assumptions 1, 2
and 5 hold. Let additionally F have a bounded sublevel set F0 and be convex on F0. Then, all weak
accumulation points of the sequence (xk)k∈N of the iterates of Algorithm 1 are global minima of
problem (P).
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Proof. Note that since F0 is bounded and (xk)k∈N ⊂ F0, the set of weak accumulation points is not
empty. Pick an accumulation point x̄ ∈ H and a subsequence such that xkl ⇀ x̄ as l → ∞. By (47),
we conclude for any minimiser x∗ ∈ H,

F (xkl)− F (x∗) ≤ gklD0. (48)

By Theorem 4.1, we have that gk → 0 as k → ∞ and consequently, by (48), also

F (x∗) = lim
l→∞

F (xkl) = lim inf
l→∞

F (xkl) ≥ F (x̄)

by weak lower semicontinuity of the convex function F . Therefore, x̄ is itself a global minimiser.

Remark 4.8. If the minimiser is unique, we deduce weak convergence of the full sequence to the
unique minimiser.

We now present the main result of this subsection on the global nonasymptotic convergence rate of
Algorithm 1 when F is convex on F0.

Theorem 4.9 (Global convergence rate, convex case). Let, for problem (P), Assumptions 1, 2 and 5
hold. Let also (xk)k∈N be the iterates of Algorithm 1 with arbitrary starting point x0 ∈ domF . Let
additionally F have a bounded sublevel set F0 and be convex on F0. Then, the following global
nonasymptotic convergence rate holds:

F (xk)− F ∗ ≤ ∥F ′(x0)∥∗D0 exp

(
−k
4

)
+

2D2
0 max{2mL,Λ0}

αk
, k ≥ 0. (49)

If in addition λk → 0 as k → ∞, we obtain that F (xk) − F ∗ = O(1/k). Moreover, the number of
Newton steps (17) up to the end of iteration k does not exceed

k + 1 + log2max{1/2,mL/Λ0}.

Proof. From Theorem 4.1, we know that (xk)k∈N ⊂ F0 is well defined. Hence, we have the convexity
assumption at our disposal for the sequence (xk)k∈N, by assumption. This, in particular, means that
we can use inequalities (45) and (47) for all k ≥ 0.

The proof of the convergence rate is based on the per iteration decrease inequality (45) and follows the
same lines as in [31]. Recall from (21) that we denote gk := ∥F ′(xk)∥∗ and Fk := F (xk)−F ∗ ≥ 0.
We start with the following chain of inequalities for any iteration k ≥ 0

1

Fk+1

− 1

Fk
=
Fk − Fk+1

FkFk+1

(45)
≥ α

λkFkFk+1

g2k+1 =
α

λkFkFk+1

(
gk+1

gk

)2

g2k

(47)
≥ α

D2
0λkFkFk+1

(
gk+1

gk

)2

F 2
k ≥ α

D2
0λk

(
gk+1

gk

)2

,

where in the last step we used that, by (45), Fk ≥ Fk+1. Summing these inequalities for j from 0 to
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k − 1 and using the inequality between arithmetic and geometric means (AM-GM), we obtain

1

Fk
− 1

F0

≥ α

D2
0

k−1∑
j=0

1

λj

(
gj+1

gj

)2

≥ α

D2
0

k

(
k−1∏
j=0

1

λj

(
gj+1

gj

)2
)1/k

=
αk

D2
0

(
gk
g0

)2/k
(
k−1∏
j=0

1

λj

)1/k

(47)
≥ αk

D2
0

(
Fk
D0g0

)2/k
(
k−1∏
j=0

λj

)−1/k

=
αk

D2
0

(
D0g0
Fk

)−2/k
(
k−1∏
j=0

λj

)−1/k

=
αk

D2
0

exp

(
−2

k
ln

(
D0g0
Fk

))(k−1∏
j=0

λj

)−1/k

≥ αk

D2
0

(
1− 2

k
ln

(
D0g0
Fk

))(k−1∏
j=0

λj

)−1/k

,

where in the last step we used that exp(x) ≥ 1 + x. Consider two cases. If 2
k
ln
(
D0g0
Fk

)
≥ 1

2
, we

obtain Fk ≤ g0D0 exp
(
−k

4

)
. Otherwise, if 2

k
ln
(
D0g0
Fk

)
< 1

2
, we obtain

1

Fk
≥ αk

2D2
0

(
k−1∏
j=0

λj

)−1/k

⇐⇒ Fk ≤
2D2

0

αk

(
k−1∏
j=0

λj

)1/k

. (50)

Combining these two cases, we obtain

F (xk)− F ∗ = Fk ≤ g0D0 exp

(
−k
4

)
+

2D2
0

αk

(
k−1∏
j=0

λj

)1/k

.

Applying the bound λk ≤ λ̄ = max{2mL,Λ0} from Lemma 3.3, we obtain the convergence rate

result (49) since g0 := ∥F ′(x0)∥∗. Further, if λk → 0 as k → ∞, we obtain that
(∏k−1

j=0 λj

)1/k
→ 0

since λk ≥ 0 for k ≥ 0, and, hence, F (xk) − F ∗ = O(1/k). The bound on the number of Newton
steps is obtained in the same way as in Theorem 4.1.

Remark 4.10 (Choice of the parameters m,α, β). First, observe that the proof of the convergence
rate in (49) was based on (45), which in turn follows from the first inequality in (18) and convexity.
Thus, if it is known that F is convex, the second inequality in (18) can be omitted, and the algorithm
would simplify. This also means that in the convex case β can be chosen arbitrarily. Nevertheless, we
keep the second inequality in (18) to make the algorithm agnostic to the knowledge of whether the
problem is convex or not. Further, as one can see, the rate in (49) is proportional to m/α and the
smaller that number, the better the rate. This, in particular, means that α should be chosen as large
as possible and m should be as small as possible. Recall from Lemma 3.3 that 0 < α ≤ 1/2, and
1 ≤ m. Thus, the optimal choice in the convex case is α = 1/2,m = 1. Yet, the standard choice
α = 1/2,m = 2 also works.

We can show that the convexity of F also allows for improving the global nonasymptotic convergence
rate in terms of the minimal norm of the subgradient on the trajectory of Algorithm 1. Namely, in the
next result, we obtain an improved O(1/k) rate compared to O(1/

√
k) in Theorem 4.1.
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Theorem 4.11 (Global convergence rate for subgradients, convex case). Let assumptions of Theo-
rem 4.9 hold. Then, the following global nonasymptotic convergence rate holds:

min
i=k,...,2k

∥F ′(xi+1)∥∗ ≤ 2

√
max{2mL,Λ0}∥F ′(x0)∥∗D0

αk
exp

(
−k
8

)
+

4D0max{2mL,Λ0}
αk

, k ≥ 0.

(51)

Proof. The proof is an adaptation of [77] to our setting with a more complicated rate from (49). Sum-
ming (45) from k to 2k, recalling from (21) the notation gi+1 := ∥F ′(xi+1)∥∗, using (49), and the
bound λk ≤ λ from Lemma 3.3, we obtain

αk

λ
min

i=k,...,2k
∥F ′(xi+1)∥2∗

λk≤λ,(24)
≤ F (x2k+1)− F ∗ +

2k∑
i=k

αg2i+1

λi

(45)
≤ F (x2k+1)− F ∗ +

2k∑
i=k

(F (xi)− F (xi+1)) = F (xk)− F ∗

(49)
≤ g0D0 exp

(
−k
4

)
+

2D2
0 max{2mL,Λ0}

αk
.

Rearranging, using the inequality
√
a2 + b2 ≤ 2(a + b) for a, b ≥ 0, and recalling from (20) that

λ = max{2mL,Λ0}, we obtain (51).

Note that if in addition λk → 0 as k → ∞, the rate in the above result improves to O(1/k).

5 Local linear convergence

In this section, we return to the nonconvex setting and show local nonasymptotic linear convergence
of Algorithm 1 to a local minimum of problem (P) under local versions of Assumptions 2 and 3, and
a local QG condition. This result complements Theorem 4.4 in the sense that all the assumptions
are made locally on a ball around a local minimum, whereas in Theorem 4.4 we made for example
Assumption 2 globally on dom f . Our motivation for this result comes from the classical results on
SSN which make only local assumptions of semismoothness and non-degeneracy at a solution and
prove local superlinear convergence, see, e.g., Theorem 2.11 in [50]. The main result of this section
is that under similar assumptions, but in a more general setting, Algorithm 1 converges to a local
minimum. In the next section, we strengthen this result by showing that under additional assumptions
including semismoothness the convergence is actually superlinear, like in the classical theory.

In this section, we let x∗ be an isolated local minimum in problem (P). This means that there exists
some R > 0 such that

F (x) ≥ F (x∗), dist(x, S) = ∥x− x∗∥ , ∀x ∈ BR(x
∗). (52)

Theorem 5.1 (Local linear convergence). Let, for problem (P), Assumptions 1 and 5 hold. Let x∗

be an isolated local minimum in (P) with the local minimal value F (x∗) and let R be such that (52)
holds, Assumption 2 holds locally onBR(x

∗) (instead of dom f ), the PL condition Assumption 3 holds
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locally on BR(x
∗) (instead of domF ), H(x) ⪰ µI for some µ > 0 and for all x ∈ BR(x

∗), and the
quadratic growth (QG) condition holds locally on BR(x

∗), i.e.,

µ

2
dist(x, S)2 ≤ F (x)− F (x∗), ∀x ∈ BR(x

∗). (53)

Let also (xk)k∈N be the iterates of Algorithm 1 with starting point x0 ∈ domF . Then, there exists
∆ such that for any x0 ∈ BR(x

∗) with ∥F ′(x0)∥∗ ≤ ∆, xk converges to x∗ linearly and F (xk)
converges to F (x∗) linearly (explicit rates are given in the proof). If in addition λk → 0 as k → ∞,
the convergence is superlinear.

Proof. Define constants κ := λ
λ+2µβα2 < 1, c := 1+

√
λ

µβα2 , where λ is defined in Lemma 3.3 (see
(20)) and choose

0 < ∆ ≤ µR

1 + c
. (54)

Recall from (21) that gk := ∥F ′(xk)∥∗. We slightly abuse notation for the purpose of this proof and
define Fk := F (xk) − F (x∗), where F (x∗) is the minimal value of F on BR(x

∗), cf. with global
minimal value F ∗ in (21). We also note that the local PL condition on BR(x

∗) implies that whenever
xk ∈ BR(x

∗), we have that

F (xk)− F (x∗) ≤ 1

2µ
∥F ′(xk)∥2∗ . (55)

Let x0 ∈ BR(x
∗) be such that ∥F ′(x0)∥∗ ≤ ∆. We proceed by induction and prove that for k ≥ 0,

∥F ′(xk)∥∗ ≤ c∆, (56)

Fk = F (xk)− F (x∗) ≤ κk∆
2

2µ
, (57)

∥xk − x∗∥ ≤ κk/2∆

µ
. (58)

Since x0 ∈ BR(x
∗), we can apply the assumptions of the theorem to show that the base case holds.

Indeed, since c ≥ 1, we have that ∥F ′(x0)∥∗ ≤ ∆ ≤ c∆. Since x∗ is an isolated local minimum and
the QG condition holds, we have

µ

2
∥x0 − x∗∥2

(52),(53)
≤ F (x0)− F (x∗) = F0

(55)
≤ 1

2µ
∥F ′(x0)∥2∗ ≤

∆2

2µ
⇒ ∥x0 − x∗∥ ≤ ∆

µ
. (59)

Thus, (56), (57), (58) hold for k = 0.

We now proceed with the induction step. Let (56), (57), (58) hold. Note that (58), (54), and κ < 1 imply
that ∥xk − x∗∥ ≤ κk/2∆

µ
≤ R and, hence, xk ∈ BR(x

∗). Thus, by the assumption thatH(x) ⪰ µI

on BR(x
∗) with µ > 0, recalling the notation x+(λ, x) from (PN), we obtain from Lemma 2.7 that

∥x+(λ, xk)− xk∥
(13)
≤ ∥F ′(xk)∥∗

λ+ µ

(56)
≤ c∆

µ
, ∀λ ≥ 0.

This in combination with (58) and κ < 1 gives

∥x+(λ, xk)− x∗∥ ≤ ∥x+(λ, xk)− xk∥ + ∥xk − x∗∥ ≤ c∆

µ
+

∆

µ

(54)
≤ R, ∀λ ≥ 0.

Hence, for all λ ≥ 0, we have x+(λ, xk) ∈ BR(x
∗) and [xk, x+(λ, xk)] ⊂ BR(x

∗). By the as-
sumption that Assumption 2 holds on BR(x

∗), we observe that it holds also on [xk, x+(λ, xk)] for all
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λ ≥ 0. Thus, Lemma 3.3 applies. Whence, the next iterate xk+1 is well defined, we have λk ≤ λ by
inequality (20), and

Fk − Fk+1 = F (xk)− F (xk+1)
(26)
≥ βα2

λk
∥F ′(xk+1)∥2∗

λk≤λ≥ βα2

λ
∥F ′(xk+1)∥2∗ ≥ 0. (60)

Since xk+1 = x+(λk, xk) ∈ BR(x
∗), we can use the localised PL condition Assumption 3 at xk+1

and obtain

Fk − Fk+1

(60)
≥ βα2

λk
∥F ′(xk+1)∥2∗

(55)
≥ 2µβα2

λk
(F (xk+1)− F (x∗)) =

2µβα2

λk
Fk+1. (61)

Rearranging and using the QG condition, we obtain

µ

2
∥xk+1 − x∗∥2

(52),(53)
≤ F (xk+1)− F (x∗) = Fk+1

(61)
≤ Fk

1 + 2µβα2

λk

=
λkFk

λk + 2µβα2

λk≤λ,(57)
≤ λ

λ+ 2µβα2
κk∆

2

2µ
= κk+1∆

2

2µ
⇒ ∥xk+1 − x∗∥ ≤ κ(k+1)/2∆

µ
.

(62)

Thus, we obtain (57) and (58) for k + 1. Finally, we show (56) for k + 1 by contradiction. Assume the
opposite, i.e.,

gk+1

(21)
:= ∥F ′(xk+1)∥∗ > c∆. (63)

Since xk, xk+1 ∈ BR(x
∗), by the first inequality in (52), definition of Fk, Fk+1, and by induction from

(60), we have 0 ≤ Fk+1 ≤ Fk ≤ F0. Hence,

0 ≤ Fk+1

(60)
≤ Fk −

βα2

λ
g2k+1

Fk≤F0≤ F0 −
βα2

λ
g2k+1

(59),(63)
<

∆2

2µ
− βα2

λ
c2∆2

<
∆2

2µ
− βα2

λ
∆2

√ λ

µβα2

2

< 0,

which is a contradiction. Thus, we have (56) for k + 1.

We finish the proof by observing that (58) implies that xk → x∗ linearly:

∥xk − x∗∥ ≤
(
1− 2µβα2

λ+ 2µβα2

)k/2
R

1 + c

(20)
≤ exp

(
− 2βα2µ

4βα2µ+ 2max{2mL,Λ0}
· k
)
· R

1 + c
,

and that (57) implies F (xk) converges to F (x∗) linearly:

F (xk)− F (x∗) ≤
(
1− 2µβα2

λ+ 2µβα2

)k
µR2

2(1 + c)2

(20)
≤ exp

(
− 2βα2µ

βα2µ+max{2mL,Λ0}
· k
)
· µR2

2(1 + c)2
.

Moreover, from the first two inequalities and first two equalities in (62), we see that if λk → 0 as
k → ∞, the convergence of both xk and F (xk) is superlinear.

We remark that assuming QG condition (53), H(x) ≻ 0 on BR(x
∗) and that x∗ is an isolated

minimum may be considered as a price for making Assumption 2 only locally, cf. Theorem 4.4, where
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it is made globally. Indeed, we use those assumptions to guarantee that the iterates of the algorithm
stay in the ballBR(x

∗) where we can apply local Assumption 2. In future works, it would be interesting
to avoid these assumptions and prove local convergence based only on the PL condition in the spirit of
[42]. In particular, we hope that this will allow us to omit the assumption that x∗ is isolated, whose main
purpose currently is to establish the equality in (52) that allows for using the QG condition. In fact, we
expect that the QG condition follows from the assumed PL condition [53], however, we were not able
to find a proof of this statement needed for our precise setting. We also note that the assumption of
x∗ being an isolated minimum is, in a sense, standard since many existing papers use (local) strong
convexity, see e.g., [31, 32], or other assumptions [38] that imply that the convergence is established
to an isolated (local) minimum.

As already mentioned, our inspiration for the above result comes from the classical results on the local
convergence of SSN (with ψ ≡ 0), see, e.g., Theorem 2.11 in [50], where all the assumptions are
made locally. In particular, it is assumed that the generalised derivative H(x) is non-singular at x∗

and f ′ is semismooth at x∗. Since H(x) is non-singular at x∗ it is non-singular in some BR(x
∗) and

there is a µ > 0 that lower bounds the smallest eigenvalue of H(x). This justifies the assumption
H(x) ≻ 0 on BR(x

∗). Moreover, this means that f behaves like a strongly convex functional locally,
which implies both local PL and QG conditions. Thus, our setting is close to the classical one, yet we
allow for some nonconvexity.

We conclude this subsection with the following technical result, which is used in the proofs of su-
perlinear convergence in the next section. This result provides a relation of the distance to solution
∥xk − x∗∥ to the distance between two consecutive iterates ∥xk+1 − xk∥, analogous to Lemma 4.5,
but under local assumptions.

Lemma 5.2. Let assumptions of Theorem 5.1 hold. Then, there exist constants c1, c2 > 0 such that,
for all k ≥ 0,

∥xk+1 − x∗∥ ≤ c1∥xk − xk+1∥ and ∥xk − x∗∥ ≤ c2∥xk − xk+1∥ . (64)

Proof. As shown in the proof of Theorem 5.1, we have that xk ∈ BR(x
∗) for all k ≥ 0. Thus,

µ

2
∥xk+1 − x∗∥2

(52),(53)
≤ F (xk+1)− F (x∗)

(55)
≤ 1

2µ
∥F ′(xk+1)∥2∗ .

By (25) and the bound λk ≤ λ from Lemma 3.3, we have

∥F ′(xk+1)∥∗
(25)
≤ λk

α
∥xk − xk+1∥ ≤ λ

α
∥xk − xk+1∥ ,

which in combination with the previous inequality gives the first inequality in (64) with the constant
c1 =

λ
αµ

. The second inequality with c2 = 1 + c1 follows from the triangle inequality.

6 Superlinear convergence under higher regularity

In this section, based on the additional assumptions on the regularity of f ′, we further refine the
convergence rates established in previous sections. We start with several technical lemmas that are
used in what follows. Then, we show that if H is finite dimensional and f is twice continuously dif-
ferentiable, i.e., f ∈ C2, then in Algorithm 1 λk → 0 and the convergence rates proved in previous
sections asymptotically improve. After that, we move on to the main setting of the paper and consider
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the behaviour of Algorithm 1 under a semismoothness assumption, which allows us to obtain its su-
perlinear convergence. Finally, based on the active manifold identification framework, we show that
superlinear convergence can also occur when f is not locally C2, but instead satisfies a combination
of partial smoothness and semismoothness of the derivative. To simplify the proofs, we focus on the
setting when F is locally convex, but this assumption can be slightly relaxed; we defer the details to
future work.

6.1 Technical preliminaries

We start with several technical results that are crucial for establishing superlinear convergence of
Algorithm 1. The first one establishes several useful inequalities for x+(λ, xk).

Lemma 6.1. Consider iteration k ≥ 0 of Algorithm 1 and let 0 < λ < λk. Let H(xk) ⪰ 0 and, for
some constant c > 0, the following inequality hold:

∥xk+1 − x∗∥ ≤ c∥xk − xk+1∥ . (65)

Then, we have

∥x+(λ, xk)− x∗∥ ≤ (2c+ 1)λk − (1 + c)λ

λk
∥x+(λ, xk)− xk∥, (66)

∥xk − x∗∥ ≤ (2c+ 2)λk − (1 + c)λ

λk
∥x+(λ, xk)− xk∥. (67)

Before we start the proof, for the reader’s convenience we note that when λ is chosen as λk/2, the
constants in (66) and (67) are 1+3c

2
and 3+3c

2
respectively.

Proof of Lemma 6.1. Applying two times the triangle inequality and one time Lemma 2.8, recalling
from Line 9 of Algorithm 1 and (PN) that xk+1 = x+(λk, xk), we obtain

∥x+(λ, xk)− x∗∥ ≤ ∥x+(λ, xk)− xk+1∥+ ∥xk+1 − x∗∥
(65)
≤ ∥x+(λ, xk)− xk+1∥+ c∥xk+1 − xk∥
≤ ∥x+(λ, xk)− xk+1∥+ c(∥x+(λ, xk)− xk+1∥+ ∥x+(λ, xk)− xk∥)
= (1 + c)∥x+(λ, xk)− xk+1∥+ c∥x+(λ, xk)− xk∥)
(14)
≤ (1 + c)

λk − λ

λk
∥x+(λ, xk)− xk∥+ c∥x+(λ, xk)− xk∥,

which is (66). Applying once again the triangle inequality, we obtain (67):

∥xk − x∗∥ ≤ ∥xk − x+(λ, xk)∥ + ∥x+(λ, xk)− x∗∥
(66)
≤ ∥xk − x+(λ, xk)∥ +

(2c+ 1)λk − (1 + c)λ

λk
∥x+(λ, xk)− xk∥.

Note that the technical condition (65) is guaranteed by Lemma 4.5 or Lemma 5.2. The next result
establishes the convergence of non-accepted trial points x+(λk/2, xk) to x∗ when accepted points
xk converge to x∗.
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Lemma 6.2. Let (xk)k∈N be the iterates of Algorithm 1 and xk → x∗ as k → ∞. Let alsoH(xk) ⪰ 0
for sufficiently large k. Then, x+(λk/2, xk) → x∗ as k → ∞.

Proof. For any sufficiently large k and 0 < λ ≤ λk, by the triangle inequality, the definition xk+1 =
x+(λk, xk) in Line 9 of Algorithm 1 and (PN), and Lemma 2.8, we have

∥xk − x+(λ, xk)∥ ≤ ∥xk+1 − x+(λ, xk)∥+ ∥xk+1 − xk∥
(14)
≤ λk − λ

λk
∥xk − x+(λ, xk)∥+ ∥xk+1 − xk∥.

Rearranging, we obtain

∥xk − x+(λ, xk)∥ ≤ λk
λ
∥xk+1 − xk∥.

Now, utilising again the triangle inequality, we calculate

∥x+(λ, xk)− x∗∥ ≤ ∥x+(λ, xk)− xk∥+ ∥xk − x∗∥ ≤ λk
λ
∥xk+1 − xk∥+ ∥xk − x∗∥.

The claim follows by taking λ = λk/2, using the upper bound λk ≤ λ from Lemma 3.3, and taking
the limit.

The following result will be crucial to show that in Algorithm 1 λk → 0 when f has additional regularity.
On a high level, it can be interpreted as λk → 0 if the constant L in Assumption 2 goes to 0 around
the trajectory of Algorithm 1. It is, in some sense, natural to expect this from (20), and we now prove it
in rigour.

Lemma 6.3. Let F be locally convex around x∗. Let (xk)k∈N be the iterates of Algorithm 1 and
xk → x∗ as k → ∞. Let also H(xk) ⪰ 0 for sufficiently large k. If there exists a sequence
(εk)k∈N ⊂ R+ such that εk → 0 and, for sufficiently large k,

∥f ′(x+(λk/2, xk))− f ′(xk)−H(xk)(x+(λk/2, xk)− xk)∥∗
≤ εk∥xk − x+(λk/2, xk)∥ ,

(68)

then, we have λk → 0 as k → ∞.

Proof. For brevity, given an index k ≥ 0, we denote by xk,+ := x+(λk/2, xk) the solution of the aux-
iliary problem (PN) given current iterate xk and accepted regularisation parameter λk > 0. Moreover,
we set rk,+ := ∥xk − xk,+∥. By assumption, there exists K1 such that (68) holds for all k ≥ K1.
Thus, for any k ≥ K1, using (68), Lemma 2.9 with x = xk, x+ = xk,+, φ(r) = εkr, and λ = λk/2,
and that α ≤ 1/2, we obtain

⟨F ′(xk,+), xk − xk,+⟩
(16),(68)
≥ 1

λk
∥F ′(xk,+)∥2∗ +

(
λ2k − 4ε2k

4λk

)
r2k,+

≥ 2α

λk
∥F ′(xk,+)∥2∗ +

(
λ2k − 4ε2k

4λk

)
r2k,+. (69)

By the local convexity of F around x∗, there exists a ball BR(x
∗) such that F is convex on that

ball. Since by the assumptions of the lemma xk → x∗ and, for sufficiently large k, H(xk) ⪰ 0,
we have by Lemma 6.2 that xk,+ → x∗ as well. Thus, there exists K2 s.t. for all k ≥ K2, we

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025



A. Alphonse, P. Dvurechensky, I. P. A. Papadopoulos, C. Sirotenko 32

have xk, xk,+ ∈ BR(x
∗). Applying convexity of F on BR(x

∗), using that the first term on the right-
hand side in (69) is nonnegative, and adding and subtracting βλkr2k,+/2, we obtain from (69) for all
k ≥ max{K1, K2}

F (xk)− F (xk,+) ≥ ⟨F ′(xk,+), xk − xk,+⟩ ≥
βλkr

2
k,+

2
+

(
λ2k − 4ε2k − 2βλ2k

4λk

)
r2k,+

=
βλkr

2
k,+

2
+

(
(1− 2β)λ2k − 4ε2k

4λk

)
r2k,+. (70)

From now on, we assume k ≥ max{K1, K2}. From Line 9 of Algorithm 1, we know that λk = 2jkΛk
for some jk ≥ 0. Consider the two cases: when jk = 0 and when jk > 0. In the first case, i.e., when
jk = 0, acceptance occurs immediately in the first round of the inner loop. By Line 9 of Algorithm 1,
Λk = λk−1/2, and hence in this case λk = 2jkΛk = 20Λk = Λk = λk−1/2. In the second case,
i.e., when jk > 0, λk/2 must have been rejected. This implies that the candidate point x+ (λk/2, xk)
and candidate regularisation parameter λk/2 did not satisfy the acceptance conditions (18). Thus, we
have

⟨F ′(xk,+), xk − xk,+⟩ <
2α

λk
∥F ′(xk,+)∥2∗ or F (xk)− F (xk,+) <

βλkr
2
k,+

2
. (71)

If the first inequality in (71) holds, from (69) we must have λk ≤ 2εk since otherwise, we are led
to a contradiction. If the second inequality in (71) holds, then in the same way, (70) and the fact
β ≤ (m− 1)/(2m) < 1/2 (see Line 1 of Algorithm 1) imply that λk ≤ 2εk/

√
1− 2β. Thus, in both

cases we have λk ≤ max{2, 2/√1− 2β}εk. Combining this with the case jk = 0 and denoting
γ := max{2, 2/√1− 2β}, we have, for k ≥ max{K1, K2},

λk ≤
{
λk−1

2
, jk = 0,

γεk, jk > 0.

Now let us show that this implies λk → 0. Define I := {k ≥ 0 : jk > 0} = {k1 < k2 < . . . }. Thus
if k ∈ I , λk ≤ γεk, whereas if k ̸∈ I , we have λk ≤ λk−1/2. Now, if |I| < ∞, then for sufficiently
large k, we have λk ≤ λk−1/2 and hence λk → 0. So let us suppose that |I| = ∞. Fix δ > 0
and choose i0 such that γεk ≤ δ for all k ≥ ki0 . Take k ≥ ki0 . Then either k belongs to I or not. If
k ̸∈ I , there exists i ≥ i0 such that ki < k < ki+1 with ki, ki+1 ∈ I (recall {ki} from the definition
of I). Thus, we have

λk ≤
λki
2k−ki

≤ γεki
2k−ki

≤ γεki ≤ δ,

where we used that k − ki ≥ 0 and hence 2k−ki ≥ 1. On the other hand, if k ∈ I , we have that
k = ki for some i ≥ i0, and so λk ≤ γεk ≤ δ. In total, we infer λk ≤ δ for all k ≥ ki0 . Since δ > 0
was chosen arbitrarily, it follows that λk → 0 as k → ∞.

Remark 6.4. When F is globally convex, dim(H) <∞, and the minimiser x∗ is unique, then xk →
x∗ holds automatically in the above lemma.

6.2 Faster asymptotic rates in the finite-dimensional C2 setting

In this subsection, we present our first result on improved asymptotic rates of Algorithm 1 when H is
finite-dimensional and f possesses additional regularity. Namely, we assume that f ∈ C2, i.e., f is
twice continuously differentiable. The main idea is to prove that if xk → x∗ as k → ∞, then we also
have that λk → 0 as k → ∞. According to the results of the previous sections, the latter implies
faster asymptotic rates, including superlinear convergence.
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Theorem 6.5 (Improved asymptotic rates, finite dimensions, C2 case). Let, for problem (P), Assump-
tions 1 and 5 hold. Let dim(H) <∞, f be locally twice continuously differentiable and locally convex
around some point x∗, and H(x) := ∇2f(x). Let (xk)k∈N be the iterates of Algorithm 1. Then, the
following hold.

(i) If xk → x∗ as k → ∞, then we have that λk → 0 as k → ∞.

(ii) If the assumptions of Theorem 4.1 for the nonconvex setting hold and xk → x∗, then
min0≤i≤k−1∥F ′(xi+1)∥∗ = O(1/

√
k).

(iii) If the assumptions of Theorem 4.4 for the PL setting hold, then F (xk) − F ∗ converges to 0
superlinearly and xk converges to x∗ superlinearly, where x∗ is a global solution to (P).

(iv) If the assumptions of Theorem 4.9 for the convex setting hold and xk → x∗, thenF (xk)−F ∗ =
O(1/k).

(v) If the assumptions of Theorem 5.1 on local convergence hold, then xk converges to x∗ locally
superlinearly and F (xk) converges to F (x∗) locally superlinearly, where x∗ is a local solution
to (P).

Proof. (i) Again, given an index k ≥ 0, we denote by xk,+ := x+(λk/2, xk) (see (PN)). Since we
are in the finite dimensional setting, we write f ′ ≡ ∇f . We first show that

ωk :=
∥∇f(xk,+)−∇f(xk)−∇2f(xk)(xk,+ − xk)∥∗

∥xk,+ − xk∥
→ 0 as k → ∞. (72)

For this purpose, fix an arbitrary ε > 0. By assumption, there exists a ball BR(x
∗) on which ∇2f

exists and is continuous on BR(x
∗). Moreover, by local convexity and twice differentiability of f we

obtain H(x) := ∇2f(x) ⪰ 0 for all x ∈ BR(x
∗). In addition, using compactness of BR(x

∗) and the
Heine–Cantor theorem, we get that ∇2f is even uniformly continuous on BR(x

∗). The latter means
that there exists δ > 0 such that for every x, y ∈ BR(x

∗) with ∥x− y∥ ≤ δ, we have

∥∇2f(x)−∇2f(y)∥op ≤ ε.

As xk → x∗, there exist K1 such that k ≥ K1 implies xk ∈ BR(x
∗). This in turn implies that, for

k ≥ K1, H(xk) ⪰ 0. We conclude by Lemma 6.2 that xk,+ → x∗ as well. We further infer that
there is an index K2 ≥ K1 such that xk, xk,+ ∈ BR(x

∗) and ∥xk,+ − xk∥ ≤ δ for all k ≥ K2.
Consequently, we deduce from the fundamental theorem of calculus that, for all k ≥ K2,∥∥∇f(xk,+)−∇f(xk)−∇2f(xk)(xk,+ − xk)

∥∥
∗

=

∥∥∥∥∫ 1

0

(∇2f(xk + t(xk,+ − xk))−∇2f(xk))(xk,+ − xk) dt

∥∥∥∥
∗
≤ ε∥xk,+ − xk∥

as, clearly, for xt := xk + t(xk,+ − xk), we have xt ∈ BR(x
∗) and ∥xt − xk∥ ≤ ∥xk,+ − xk∥ ≤ δ

for any t ∈ (0, 1). Since the choice of ε > 0 was arbitrary, we infer (72). Since F is locally convex
around x∗, recalling that xk,+ = x+(λk/2, xk) and applying Lemma 6.3 with H(xk) = ∇2f(xk)
and εk = ωk, we get λk → 0.

(ii) The claim follows by item (i) above and Theorem 4.1.

(iii) The claim follows by item (i) above and Theorem 4.4, which guarantees also that xk → x∗, where
x∗ is a global solution to (P).

(iv) The claim follows by item (i) above and Theorem 4.9.

(v) The claim follows by item (i) above and Theorem 5.1, which guarantees also that xk → x∗, where
x∗ is a local solution to (P).
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6.3 Superlinear convergence under semismoothness

In this subsection, we present one of our main results on superlinear convergence of Algorithm 1 in the
semismooth setting, i.e., when Assumption 4 holds. This setting is less restrictive than the C2 setting
in the previous subsection. Yet, it still allows us to obtain superlinear convergence in the same spirit
as for classical SSN. Note that we again consider infinite-dimensional spaces H.

We start with the following result that establishes superlinear convergence if convergence itself is
already established. Recall that Theorem 4.4 for the PL setting guarantees global convergence and
Theorem 5.1 guarantees local convergence under PL and QG conditions. Thus, these results in com-
bination with the following proposition establish respectively global superlinear and local superlinear
convergence under semismoothness. As already mentioned, for simplicity we focus on the setting
when F is locally convex.

Proposition 6.6 (Superlinear convergence under semismoothness). Let, for problem (P), Assump-
tions 1 and 5 hold. Let x∗ be a local minimum in problem (P), F be locally convex around x∗, and the
semismoothness at x∗ Assumption 4 hold. Let (xk)k∈N be the iterates of Algorithm 1 and xk → x∗

as k → ∞. Assume also that, for sufficiently large k, H(xk) ⪰ 0, the PL condition (27) holds at xk
with F ∗

U = F (x∗), and there exists constants c1, c2 > 0 such that

∥xk+1 − x∗∥ ≤ c1∥xk − xk+1∥ and ∥xk − x∗∥ ≤ c2∥xk − xk+1∥ . (73)

Consider the following statements.

(i) The following Dennis–Moré-type (DM-type) condition holds (as k → ∞):

∥(H(x+(λk/2, xk))−H(xk))(x+(λk/2, xk)− x∗)∥∗ = O(∥x+(λk/2, xk)− xk∥). (74)

(ii) The following condition holds:

∥f ′(x+(λk/2, xk))− f ′(xk)−H(xk)(x+(λk/2, xk)− xk)∥∗
∥x+(λk/2, xk)− xk∥

→ 0 as k → ∞. (75)

(iii) The sequence of regularisation parameters goes to zero, i.e., λk → 0 as k → ∞.

(iv) The convergence xk → x∗ is superlinear, and in fact

∥xk+1 − x∗∥ ≤ 2c2λ
1/2
k√

α2βµ
∥xk − x∗∥ = O(∥xk − x∗∥) as k → ∞.

(v) The subgradients converge superlinearly to zero, and in fact

∥F ′(xk+1)∥∗ ≤
λ
1/2
k√
2αµ

∥F ′(xk)∥∗ = O(∥F ′(xk)∥∗) as k → ∞.

Then, we have the following relationship:

(i) ⇐⇒ (ii) =⇒ (iii) =⇒
{
(iv),

(v).

Proof. By the assumptions of the theorem, there exist a ball BR(x
∗) such that
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(1) F (x) ≥ F (x∗) for all x ∈ BR(x
∗);

(2) F is convex on BR(x
∗);

(3) By Assumption 4 of semismoothness at x∗ it holds that

∥f ′(x)− f ′(x∗)−H(x)(x− x∗)∥∗ = O(∥x− x∗∥), as x→ x∗. (76)

For clarity, given an index k ≥ 0, we again denote xk,+ := x+(λk/2, xk) (see (PN)). By the assump-
tions, we also have the following.

(4) There exists K0 such that for all k ≥ K0, we have H(xk) ⪰ 0.

(5) Combining the previous item with xk → x∗, we have by Lemma 6.2 that xk,+ → x∗ as well.
Thus, there exists K1 s.t. for all k ≥ K1, we have xk, xk,+ ∈ BR(x

∗) and, hence, we can use
local optimality, convexity, and semismoothness.

(6) There exists K2 such that for all k ≥ K2, the PL condition holds at xk, i.e., (27) holds with
F ∗
U = F (x∗). By the previous item, xk ∈ BR(x

∗) for all k ≥ K1. Also, we have F (x) ≥
F (x∗) for all x ∈ BR(x

∗). Taking U = BR(x
∗), F ∗

U = F (x∗) in Lemma 3.5 and combining
with these observations, we can apply Lemma 3.5 for any k ≥ max{K1, K2}.

(7) There exists K3 such that for all k ≥ K3 the inequalities (73) hold.

From now on, we consider arbitrary k ≥ max{K0, K1, K2, K3} so that we can apply all the above
seven items.

(i) =⇒ (ii): Thanks to the first inequality in (73) and H(xk) ⪰ 0, we can use Lemma 6.1 with
λ = λk/2 to obtain, recalling that xk,+ = x+(λk/2, xk),

∥xk,+ − x∗∥ ≤ a∥xk,+ − xk∥, ∥xk − x∗∥ ≤ b∥xk,+ − xk∥, (77)

where a, b > 0 are constants. Using these inequalities, by the triangle inequality, semismoothness at
x∗ (76), and the Dennis–Moré-type condition (74), we have

∥f ′(xk,+)− f ′(xk)−H(xk)(xk,+ − xk)∥∗
≤ ∥f ′(xk,+)− f ′(x∗)−H(xk,+)(xk,+ − x∗)∥∗
+ ∥f ′(xk)− f ′(x∗)−H(xk)(xk − x∗)∥∗
+ ∥(H(xk,+)−H(xk))(xk,+ − x∗)∥∗

(76),(74)
= O(∥xk,+ − x∗∥) + O(∥xk − x∗∥) + O(∥xk,+ − xk∥)
(77)
= O(∥xk,+ − xk∥),

which is (75).

(ii) =⇒ (i): Analogous to the decomposition above, we have

∥(H(xk,+)−H(xk))(xk,+ − x∗)∥∗ ≤ ∥f ′(xk,+)− f ′(x∗)−H(xk,+)(xk,+ − x∗)∥∗
+ ∥f ′(xk)− f ′(x∗)−H(xk)(xk − x∗)∥∗
+ ∥f ′(xk,+)− f ′(xk)−H(xk)(xk,+ − xk)∥∗

(76),(75)
= O(∥xk,+ − x∗∥) + O(∥xk − x∗∥) + O(∥xk,+ − xk∥)
(77)
= O(∥xk,+ − xk∥),

which is (74).
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(ii) =⇒ (iii): By the assumption of this item, there exists a sequence (εk)k∈N ⊂ R+ such that
εk → 0 and

∥f ′(x+(λk/2, xk))− f ′(xk)−H(xk)(x+(λk/2, xk)− xk)∥∗ ≤ εk∥xk − x+(λk/2, xk)∥ .

Thanks to local convexity of F and H(xk) ⪰ 0, we can use Lemma 6.3, which gives us that λk → 0.

(iii) =⇒ (iv): Due to the assumed PL condition at xk and the fact that F (x∗) ≤ F (xk), we can
apply Lemma 3.5 and obtain (29), where we recall from (21) the notation rk := ∥xk − xk+1∥. This
together with the second inequality in (73) at iteration k + 1 gives for some constants c1, c2 > 0

∥xk+1 − x∗∥
(73)
≤ c2∥xk+1 − xk+2∥ , ∥xk+1 − xk+2∥

(29)
≤ 1√

α2βµ
λ
1/2
k ∥xk − xk+1∥ .

Combining these two inequalities and using the triangle inequality, we deduce

∥xk+1 − x∗∥ ≤ c2√
α2βµ

λ
1/2
k ∥xk − xk+1∥ ≤ c2√

α2βµ
λ
1/2
k (∥xk+1 − x∗∥+ ∥xk − x∗∥).

Choosing K4 ≥ max{K0, K1, K2, K3} sufficiently large such that k ≥ K4 implies c2√
α2βµ

λ
1/2
k ≤

1
2
, we have

∥xk+1 − x∗∥ ≤ 2c2√
α2βµ

λ
1/2
k ∥xk − x∗∥, ∀k ≥ K4,

which implies the superlinear convergence of the iterates in (iv) as λk → 0 by assumption in this item.

(iii) =⇒ (v): By the local convexity, Lemma 4.6 applies and we can use (45). Due to the PL condition
and the fact that F (x∗) ≤ F (xk), we can also apply Lemma 3.5 and use (28). Using additionally that
F (x∗) ≤ F (xk+1), we finally obtain, recalling the notation gk := ∥F ′(xk)∥∗ from (21),

g2k+1

(45)
≤ λk

α
(F (xk)− F (xk+1)) =

λk
α
(F (xk)− F (x∗) + F (x∗)− F (xk+1))

(28)
≤ λk

2αµ
g2k.

Since λk → 0, we clearly have superlinear convergence of the subgradient norms. Note that due to
the local convexity, the above bound is tighter than the one that can be obtained from (30).

Proposition 6.6 shows that the semismoothness Assumption 4 and DM condition (74) are sufficient
for superlinear convergence of Algorithm 1. We consider (74) as a kind of Dennis–Moré condition,
referring to the celebrated Dennis–Moré theorem [29], which essentially gives a necessary and suf-
ficient condition for superlinear convergence of quasi-Newton methods for smooth functions (in the
nonsmooth setting, we refer to, e.g., [24, 33]). An interesting open question is to understand if (74) is
also necessary to obtain superlinear convergence in our setting. We also note that a similar condition
was used recently in [84, 83] to show superlinear convergence in the semismooth setting.

The next result provides a sufficient condition for (74) by showing that it is satisfied when H is contin-
uous.

Lemma 6.7. Let H be continuous at x∗. Let (xk)k∈N be the iterates of Algorithm 1 and xk → x∗ as
k → ∞. Let, for sufficiently large k, H(xk) ⪰ 0 and inequality (66) hold with λ = λk/2. Then the
Dennis–Moré-type condition (74) is satisfied.
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Proof. Again, given an index k ≥ 0, we denote by xk,+ := x+(λk/2, xk) (see (PN)). Then, by
Lemma 6.2, we have xk,+ → x∗ as k → ∞. This, together with triangle inequality and (66) gives us

∥(H(xk,+)−H(xk))(xk,+ − x∗)∥∗
∥xk,+ − xk∥

=
∥(H(xk,+)−H(x∗) +H(x∗)−H(xk))(xk,+ − x∗)∥∗

∥xk,+ − xk∥

≤
(∥H(xk,+)−H(x∗)∥op + ∥H(x∗)−H(xk)∥op)∥xk,+ − x∗∥

∥xk,+ − xk∥
(66)
≤ 1 + 3c

2
(∥H(xk,+)−H(x∗)∥op + ∥H(x∗)−H(xk)∥op) → 0,

where convergence holds by continuity of H at x∗ since both xk and xk,+ converge to x∗ as k →
∞.

Note that the inequality (66) is guaranteed, for example by Lemma 4.5 or Lemma 5.2 since they
guarantee (65).

Remark 6.8. It is possible to use the following condition instead of (74):

∥(H(x+(λk/2, xk))−H(xk))(x+(λk/2, xk)− x∗∥∗ = O(∥xk − x∗∥) as xk → x∗.

Yet, this requires additional technical steps using (77) to show the implication (i) =⇒ (ii). Also,
Lemma 6.7 would still go through with additional estimates, as done in the proof of [84, Proposition 8].

As we also showed in Proposition 6.6, the condition (75) is sufficient for superlinear convergence as
well. This condition can be interpreted as a kind of uniform semismoothness along the trajectory of
Algorithm 1.

Remark 6.9. It is possible to not assume local convexity of F in Proposition 6.6. The main place
where it is used is in the proof of Lemma 6.3 to show the inequality (70), which could also be shown
by using the same arguments as in Lemma 3.3 based on the model nonincrease condition (10). At
the same time, the assumption H(xk) ⪰ 0 is is crucial to show inequalities (77) by Lemma 6.1 and
is thus crucial to show superlinear convergence.

We finish this subsection by the main results that combine the convergence rate results of previous
sections with the result of Proposition 6.6. The first result is that in the PL setting local convexity,
semismoothness, and DM condition imply global superlinear convergence of Algorithm 1.

Theorem 6.10 (Global superlinear convergence). Let the assumptions of Theorem 4.4 hold. Let also
(xk)k∈N be the iterates of Algorithm 1 with arbitrary starting point x0 ∈ domF . Let additionally F
be locally convex around x∗, and the semismoothness at x∗ Assumption 4 hold, where x∗ is the limit
point of (xk)k∈N. Let also either the DM condition (74) or condition (75) hold. Let H(xk) ⪰ 0 for
sufficiently large k.

Then, x∗ is a global minimum and

xk → x∗ superlinearly, F (xk)−F ∗ → 0 superlinearly, ∥F ′(xk)∥∗ → 0 superlinearly as k → ∞.

Proof. Since the assumptions of Theorem 4.4 hold, we obtain xk → x∗ as k → ∞ where x∗ is a
global minimum, and, hence, is also a local minimum. From Theorem 4.4 we also inherit Assumption 5
and the PL inequality of Assumption 3 at any xk. Finally, inequalities (73) hold by Lemma 4.5. Thus,
all the assumptions of Proposition 6.6 hold and we have that λk → 0, which by Theorem 4.4 and item
(v) of Proposition 6.6 prove the claimed superlinear convergence.
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For convenience, let us state our result in the C2 convex case.

Corollary 6.11 (Global superlinear convergence, C2 case, convex setting, PL condition). Let, for
problem (P), Assumptions 1 to 3 hold, let f be C2 and convex, and set H = f ′′. Let also (xk)k∈N be
the iterates of Algorithm 1 with arbitrary starting point x0 ∈ domF .

Then, x∗ is a global minimum and

xk → x∗ superlinearly, F (xk)−F ∗ → 0 superlinearly, ∥F ′(xk)∥∗ → 0 superlinearly as k → ∞.

The following result is a counterpart in our setting of classical results on local superlinear convergence
of SSN, see, e.g., Theorem 2.11 in [50]. In particular, if all the assumptions are fullfilled locally around
a solution and the starting point of Algorithm 1 is sufficiently close to that solution, then the algorithm
converges superlinearly to that solution.

Theorem 6.12 (Local superlinear convergence). Let the assumptions of Theorem 5.1 hold. Let also
(xk)k∈N be the iterates of Algorithm 1 with a starting point x0 ∈ domF which is sufficiently close to
an isolated local minimum x∗ in problem (P). Let additionally F be locally convex around x∗, and the
semismoothness at x∗ Assumption 4 hold. Let also either DM condition (74) or condition (75) hold.

Then,

xk → x∗ superlinearly, F (xk)−F ∗ → 0 superlinearly, ∥F ′(xk)∥∗ → 0 superlinearly as k → ∞.

Proof. Since the assumptions of Theorem 5.1 hold, we obtain xk → x∗ as k → ∞ with x∗ being
a local minimum. From Theorem 5.1 we also inherit Assumption 5, the PL inequality of Assumption 3
at any xk, and H(xk) ⪰ 0 for any k. Finally, inequalities (73) hold by Lemma 5.2. Thus, all the
assumptions of Proposition 6.6 hold and we have that λk → 0, which by Theorem 5.1 and item (v) of
Proposition 6.6 prove the claimed superlinear convergence.

Remark 6.13 (On the assumption of H(x) ⪰ 0). Theorem 6.10 and Theorem 6.12 assume that
H(x) ⪰ 0 to show the transition to superlinear convergence. We would like to underline that this
assumption, without loss of generality, covers the setting of a more flexible assumption that

H(x) ⪰ µHI and ψ is µψ-strongly-convex,

i.e., ψ− µψ
2
∥·∥2 is convex, where µ = µH + µψ ≥ 0. A slightly stronger assumption with µ > 0 was

made, e.g., in [84]. Indeed, if µH < 0, we can consider the transformation

ψ̃ := ψ − µψ
2
∥ · ∥2, H̃(x) := H(x) + µψI.

This clearly implies that ψ̃ is convex and, since µH+µψ ≥ 0, also H̃(x) ⪰ 0. Moreover, as shown in
[84, Lemma 1], the algorithm with steps (PN) produces exactly the same iterates for the reformulated
problem. Thus, to improve the readability of the paper, we used the assumption H(x) ⪰ 0 for the
results on superlinear convergence and assume throughout the paper that ψ is convex, but bear in
mind that these results are valid also when H(x) has negative curvature and ψ is sufficiently strongly
convex. Moreover, our results also cover the opposite situation when ψ is weakly convex, i.e., µψ < 0,
but H(x) has sufficient positive curvature. These two scenarios were considered in [84] and both of
them are also covered by our framework thanks to the transformation above. We underline also that
the assumption H(x) ⪰ 0 is not used to prove our global convergence rate results in Section 4.
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6.4 Superlinear convergence via active manifold identification in the
finite-dimensional setting

In Proposition 6.6, we established that a transition to fast superlinear convergence can occur under
several conditions. A consequence of Lemma 6.7 is that the assumption f ∈ C2 implies the Dennis–
Moré condition (74) of Proposition 6.6 if H ≡ f ′′, and therefore also fast superlinear convergence of
the iterates. In this subsection, we go further by showing that superlinear convergence can also occur
when f is not locally C2, but instead satisfies a combination of partial smoothness and semismooth-
ness of the gradient. Specifically, in the finite-dimensional setting, we demonstrate that our algorithm
identifies an active manifold, along which the function behaves smoothly, and that this identification
enables rapid local convergence even when ∇f is not differentiable at the limit point x∗. For this
purpose, we utilise the above-mentioned notion of partial smoothness, which originates from the in-
fluential work [61], see also [60, 16, 36]. The key idea is to show that, under a partial smoothness
assumption, the iterates eventually lie on a smooth manifold along which the objective function F is
C2. This phenomenon has a rich history and forms a well-established part of variational analysis.
Partial smoothness has been employed in the analysis of first-order methods [66, 65], in applications
areas such as inverse problems [97] and variational inequalities [64], and more recently, it has found
use in the context of Newton-type algorithms [63, 11, 51]. While we do not aim to give a comprehen-
sive treatment of partial smoothness here, we refer the reader to the classical references [16, 62, 70]
and focus only on the aspects essential for our convergence analysis.

In this section we work in the finite-dimensional setting. Let H = Rn for some n ∈ N so that
F : Rn → R. We begin by recalling the definition of a C2 manifold in the context of embedded C2

submanifolds relevant to our analysis, see [14, Definition 2.1.1].

Definition 6.14 (C2-submanifold). Let d ≤ n. A subset M ⊂ Rn is called a d-dimensional C2-
submanifold of Rn if for every x ∈ M there exists an open neighbourhood Ux ⊂ Rn containing x
and a C2 map ψx : Ux → Rn such that ψx(Ux) ⊂ Rn is open, ψ is a C2–diffeomorphism onto its
image and

ψx(Ux ∩M) = ψx(Ux) ∩ Ed
where Ed is the d-dimensional linear subspace defined as Ed := {x ∈ Rn: xd+1 = . . . = xn = 0}.

We recall the following characterisation (see [14, Theorem 2.1.2] and the proof) of a C2–submanifold
which will be important in the forthcoming. The set M ⊂ Rn is a d-dimensional C2-submanifold of
Rn if and only if for every x ∈ M there is an open subset Ωx ⊂ Rd containing 0 ∈ Rd and an open
neighbourhood U ⊂ Rn of x in the topology of Rn and a C2 map

ϕx : Ωx → Rn (78)

that satisfies the following properties:

(i) ϕx : Ωx → Rn is C2, ϕ′(0) is injective and ϕx(0) = x (thus, ϕx is a C2 immersion around 0),

(ii) ϕx : Ωx → ϕx(Ωx) = U ∩ M is a homeomorphism with respect to the canonical subspace
topology on M,

(iii) ϕx can be chosen (after translation to ensure that ψx(x) = 0) in the explicit form

ϕx = ψ−1
x ◦ id : i−1

d (ψx(Ux ∩M))︸ ︷︷ ︸
:=Ωx

→ Ux ∩M, (79)
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where ψx : Ux → ψx(Ux) ⊂ Rn is the C2–diffeomorphism in Definition 6.14 and id : Rd →
Rn denotes the canonical embedding defined by id(x) = (x, 0) ∈ Ed ⊂ Rn. Note that (79)
makes sense as by Definition 6.14 we have ψx(Ux ∩ M) ⊂ Ed and therefore the inverse
i−1
d : Ed → Rd is well defined in (79).

The collection (ϕx(Ωx), ϕ
−1
x )x∈M forms an atlas of M in the usual sense of differential geometry, cf.

the proof of [14, Theorem 2.2.10.1]. We make the following assumption for the subsequent two results.

Assumption 6. Assume that

(i) The set M ⊂ Rn is a C2-submanifold,

(ii) ∇f |M is of class C1,

(iii) There exists anR > 0 such that ∇f is Newton differentiable onBR(x
∗) with Newton derivative

H and H is uniformly bounded on BR(x
∗).

Assumption 6 (iii) essentially asks for Assumption 4 to hold not only at x∗ but on BR(x
∗), and for the

Newton derivative to be bounded there in the sense of (5). Now, due to the first item of this assumption,
for every x ∈ M, if ϕx : Ωx → Rn is a C2 map of the form (78) mapping Ωx homeomorphically onto
ϕx(Ωx) ⊂ M, then the composition

∇f ◦ ϕx : Ωx → Rn

is of class C1.

The following lemma establishes a form of uniform semismoothness, which will be instrumental in
deriving the superlinear convergence of the algorithm via Proposition 6.6.

Lemma 6.15. Assume Assumption 6. Consider the local C2-immersion

ϕx∗ : Ωx∗ ⊂ Rd → M ⊂ Rn

as defined in (79). Then, there exists a radius r > 0 such that Br(0) ⊂ Ωx∗ and for every ε > 0,
there exists δ > 0 satisfying

∥∇f(ϕx∗(w))−∇f(ϕx∗(z))−H(ϕx∗(z))(ϕx∗(w)− ϕx∗(z))∥∗ ≤ ε∥ϕx∗(w)− ϕx∗(z)∥

for all w, z ∈ Br(0) with ∥w − z∥ ≤ δ.

Proof. Without loss of generality, with Ux∗ as in Definition 6.14, we may assume that

BR(x
∗) ⊂ Ux∗ ,

otherwiseR can be reduced if necessary (this is possible since Ux∗ is open and contains x∗). To show
the statement of the lemma, we fix an arbitrary ε > 0. Since Ωx∗ is an open neighbourhood of 0 ∈ Rd

and ϕx∗ is continuous, there exists r > 0 such that

Br(0) ⊂ Ωx∗ and ϕx∗(Br(0)) ⊂ BR(x
∗) ⊂ Ux∗ .

By Assumption 6 (ii), the gradient ∇f is of class C1 on the manifold M, hence we have that ∇f ◦
ϕx∗ : Ωx∗ ⊂ Rd → Rn is of class C1 with Fréchet derivative (∇f ◦ ϕx∗)′ : Ωx∗ → L(Rd,Rn)
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and also by the characterisation above, the mapping ϕx∗ : Ωx∗ → Rn is C2 with Fréchet derivative
ϕ′
x∗ : Ωx∗ → L(Rd,Rn). In particular the derivatives ϕ′

x∗ and (∇f ◦ϕx∗)′ are continuous overBr(0)
and therefore by the Heine–Cantor theorem, even uniformly continuous. Hence, as in Theorem 6.5,
we find a δ > 0 such that w, z ∈ Br(0) and ∥w − z∥ ≤ δ implies

∥(∇f ◦ ϕx∗)′(z)− (∇f ◦ ϕx∗)′(w)∥∗ ≤ ε and ∥ϕ′
x∗(z)− ϕ′

x∗(w)∥ ≤ ε.

By the fundamental theorem of calculus we conclude that

∥∇f(ϕx∗(w))−∇f(ϕx∗(z))− (∇f ◦ ϕx∗)′(z)(w − z)∥∗ ≤ ε∥w − z∥, (80)

∥ϕx∗(w)− ϕx∗(z)− ϕ′
x∗(z)(w − z)∥ ≤ ε∥w − z∥. (81)

Using the Newton differentiability of ∇f ,

(∇f ◦ ϕx∗)′(v) = H(ϕx∗(v))ϕ
′
x∗(v) for all v ∈ int(Br(0)),

by the chain rule3 for Newton differentiable functions [96, Proposition 3.8], which is applicable, since
for given v ∈ int(Br(0)) the set ϕx∗(int(Br(0))) is an open environment of ϕx∗(v) contained inside
BR(x

∗) where the Newton derivative H(·) is uniformly bounded by the constant M > 0, and also
ϕ′
x∗(·) is uniformly bounded on int(Br(0)) (by its continuity on the compact set Br(0)) which is an

open neighbourhood of v ∈ int(Br(0)) by choice. Thus we have

∥∇f(ϕx∗(w))−∇f(ϕx∗(z))−H(ϕx∗(z))ϕ
′
x∗(z)(w − z)∥∗ ≤ ε∥w − z∥

for w, z ∈ int(Br(0)) with ∥w − z∥ ≤ δ. Consequently we deduce by (80), (81), and the triangle
inequality,

∥∇f(ϕx∗(w))−∇f(ϕx∗(z))−H(ϕx∗(z))(ϕx∗(w)− ϕx∗(z))∥∗
≤ ∥∇f(ϕx∗(w))−∇f(ϕx∗(z))−H(ϕx∗(z))ϕ

′
x∗(z)(w − z)∥∗

+ ∥H(ϕx∗(z))ϕ
′
x∗(z)(w − z)−H(ϕx∗(z))(ϕx∗(w)− ϕx∗(z))∥∗

≤ ε∥w − z∥+ ∥H(ϕx∗(z))∥op∥ϕx∗(w)− ϕx∗(z)− ϕ′
x∗(z)(w − z)∥

≤ (1 +M) ε∥w − z∥. (82)

Recall that we used the explicit form (79), that ensures ϕx∗ = ψ−1
x∗ ◦ id : Ωx∗ → Rn with the C2–

diffeomorphism ψx∗ from Definition 6.14. In particular, ψx∗ has a bounded first derivative on the com-
pact set ϕx∗(int(Br(0))) ⊂ Ux ⊂ Rn, and is therefore Lipschitz continuous. We conclude that
the map ϕ−1

x∗ = i−1
d ◦ ψx∗ : ϕx∗(int(Br(0))) ⊂ M → Rd is Lipschitz continuous, as the map

i−1
d : Ed ⊂ Rn → Rd is 1-Lipschitz (note again that i−1

d ◦ ψx∗ is well defined in this setting as
ψx∗(x) ⊂ Ed for x ∈ ϕx∗(int(Br(0))) ⊂ M). In particular we find L > 0 such that

∥w − z∥ = ∥ϕ−1
x∗ (ϕx∗(w))− ϕ−1

x∗ (ϕx∗(z))∥ ≤ L∥ϕx∗(w)− ϕx∗(z)∥

for all w, z ∈ int(Br(0)). Eventually we deduce from the previous observations and (82), that

∥∇f(ϕx∗(w))−∇f(ϕx∗(z))−H(ϕx∗(z))(ϕx∗(w)− ϕx∗(z))∥∗ ≤ (1 +M)Lε∥ϕx∗(w)− ϕx∗(z)∥.

By rescaling ε > 0 and shrinking r (to obtain the result on the closed ball), the assertion follows.

3To be more precise, the left-hand side above is a Frechét derivative, which is equal to the Newton derivative as the
former exists, then we apply the chain rule for Newton differentiable functions to get the right-hand side.
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Proposition 6.16. Let (xk)k∈N be the iterates of Algorithm 1 and xk → x∗ as k → ∞. Let also
H(xk) ⪰ 0 for sufficiently large k and suppose that xk ∈ M and x+(λk/2, xk) ∈ M for sufficiently
large k. Assume also Assumption 6. Then, we have that

∥∇f(x+(λk/2, xk))−∇f(xk)−H(xk)(x+(λk/2, xk)− xk)∥∗
∥x+(λk/2, xk)− xk∥

→ 0 as k → ∞ (83)

and hence, λk → 0 as k → ∞.

Proof. We follow the argument in Theorem 6.5, denoting again xk,+ := x+ (λk/2, xk). We first
show that (83) holds. For this purpose fix an arbitrary ε > 0 and note that, due to Lemma 6.2 the
convergence of xk → x∗ also implies xk,+ → x∗. Now consider the limit point x∗ and the associated
immersion ϕx∗ : Ωx∗ → Rn from (79). Employing Lemma 6.15, we find a δ > 0 and radius r > 0
such that w, z ∈ Br(0) and ∥z − w∥ ≤ δ implies

∥∇f(ϕx∗(w))−∇f(ϕx∗(z))−H(ϕx∗(z))(ϕx∗(w)− ϕx∗(z))∥∗ ≤ ε∥ϕx∗(w)− ϕx∗(z)∥. (84)

Recall that ϕx∗ : Ωx∗ → ϕx∗(Ωx∗) is a homeomorphism, and consequently ϕx∗(Br(0)) ⊂ M is
a neighbourhood (in the topology of M) of ϕx∗(0) = x∗. From this and the facts that xk,+ → x∗

and xk, xk,+ ∈ M for k ≥ k0 for some k0 ∈ N, we infer that there is a possibly larger index
k1 ≥ k0 such that xk, xk,+ ∈ ϕx∗(Br(0)) for all k ≥ k1. For those k, by injectivity of ϕx∗ , we may
set wk := ϕ−1

x∗ (xk) and wk,+ := ϕ−1
x∗ (xk,+). Then by construction, we have wk, wk,+ ∈ Br(0) and

by continuity of ϕ−1
x∗ we deduce wk → 0 and wk,+ → 0. Thus, by possibly enlarging k1, we also have

∥wk − wk,+∥ ≤ δ for all k ≥ k1. These observations combined with (84) eventually lead to

∥∇f(xk,+)−∇f(xk)−H(xk)(xk,+ − xk)∥∗
= ∥∇f(ϕx∗(wk,+))−∇f(ϕx∗(wk))−H(ϕx∗(wk))(ϕx∗(wk,+)− ϕx∗(wk))∥∗
≤ ε∥ϕx∗(wk,+)− ϕx∗(wk)∥ = ε∥xk,+ − xk∥.

for all k ≥ k1. As ε > 0 was arbitrary, we infer (83). Now we can apply Lemma 6.3 with εk set as the
left-hand side of (83) to get λk → 0 as k → ∞.

To apply this result and ensure superlinear convergence, it is essential that all iterates as well as the
limit point eventually lie on a C2 manifold — commonly referred to as the active manifold. This is pre-
cisely where the concept of partial smoothness becomes central. We begin with several foundational
definitions, following [60]. Let C be a non-empty convex set. The subspace parallel to C is defined as

par C := aff C − x for any x ∈ C,

where aff C denotes the affine hull (or affine span) of C . The expression par C yields a linear
subspace that is parallel to the affine set aff C , and is independent of the particular choice of x ∈ C .

Definition 6.17 (Partial smoothness). We say that a function g : Rn → R is C2-partly smooth at x̄
relative to S if S is a C2-smooth manifold around x̄ and

(i) (restricted smoothness) g|S is C2 around x̄,

(ii) (regularity) in a neighbourhood of x̄ in S , g is subdifferentially regular and has a subgradient,

(iii) (normal sharpness) NS(x̄) = par ∂g(x̄) where NS(x̄) means the normal space to S at x̄,

(iv) (subgradient continuity) the map ∂g is continuous at x̄ relative to S .
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The normal sharpness condition essentially encodes that the function g, which is C2-smooth around
x̄ on the manifold, must change drastically along directions that are normal to S . Indeed, another
characterisation [70, Definition 1.3] of the normal sharpness condition is that the function t 7→ g(x̄+
td) is not differentiable at t = 0 for any d ∈ NS(x̄). An example of a partially smooth function is
g(x) = ∥x∥ℓ1 , which is partially smooth at x̄ relative to the manifold S = {x ∈ Rn : Ix ⊆ Ix̄} where
the notation Ix := {i ∈ N : xi ̸= 0}. For more examples we refer to e.g. [65, §5.1] and [70].

We first show that our algorithm LeAP-SSN identifies the active manifold in finite time. For this purpose
and for later use, we introduce the next assumption.

Assumption 7. Assume that

(i) F is C2-partially smooth at a stationary point x∗ relative to the C2-smooth manifold M ⊂ Rn,

(ii) The following non-degeneracy condition holds:

0 ∈ ri ∂F (x∗),

where ri means the relative interior.

The non-degeneracy condition in Assumption 7 (ii) is also referred to as strict complementarity. These
assumptions are standard4 in the literature, see e.g. [45], [70, Assumption 1.5]. In addition, Proposi-
tion 6.18 suggests designing an algorithm that switches once finite identification has taken place to
utilise the smooth structure, as considered for example in [59].

Proposition 6.18 (Finite time identification). Let (xk)k∈N be the iterates of Algorithm 1, xk → x∗ and
F (xk) → F (x∗) as k → ∞, where x∗ is a global minimum. Assume also Assumption 7. Then, we
have that xk ∈ M for sufficiently large k.

If, in addition,H(xk) ⪰ 0 for sufficiently large k, the PL condition Assumption 3 holds, ∇f is Lipschitz
on int(BR(x

∗)) with constant L1, and H is uniformly bounded (in the sense of (5)) on BR(x
∗), we

also have x+(λk/2, xk) ∈ M for sufficiently large k.

Proof. First observe that F is prox-regular since it is the sum of a continuously Fréchet differentiable
function and a convex function, see [90, Exercise 13.35]. From Theorem 4.1, we know that F ′(xk) →
0 as k → ∞. This implies that dist(0, ∂F (xk)) ≤ ∥F ′(xk)∥∗ → 0, and applying [60, Theorem
4.10] we get that xk ∈ M for large enough k.

To prove the second claim, let us for simplicity denote xk,+ := x+(λk/2, xk). By Lemma 6.2 (which
is applicable since H(xk) ⪰ 0 for sufficiently large k), we have that xk,+ → x∗. This means that
there exist K1 such that for all k ≥ K1, we have xk, xk,+ ∈ int(BR(x

∗)). Using the Lipschitzness
of ∇f on int(BR(x

∗)), the boundedness of H on BR(x
∗), and boundedness of λk by Lemma 3.3,

we obtain

dist(0, ∂F (xk,+)) ≤ ∥F ′(xk,+)∥∗
(12),(20)
≤ (L1 +M)∥xk,+ − xk∥ +

λ̄

2
∥xk,+ − xk∥ → 0 as k → ∞.

Using this and the PL condition Assumption 3, we also obtain F (xk,+) → F (x∗). Applying again [60,
Theorem 4.10] we get that x+(λk/2, xk) ∈ M for large enough k.

4One could explore the possibility to weaken the strict complementarity condition, see [40], however a full examination
and treatment of these topics is far beyond the scope of this work.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025



A. Alphonse, P. Dvurechensky, I. P. A. Papadopoulos, C. Sirotenko 44

We are now in a position to state and prove the main theorem of this section, which is the sister result
of Theorem 6.10.

Theorem 6.19 (Global superlinear convergence under partial smoothness). Let, for problem (P), As-
sumptions 1 to 3 and 5 hold. Let also (xk)k∈N be the iterates of Algorithm 1 with arbitrary starting
point x0 ∈ domF . Let additionally Assumptions 6 and 7 hold. Assume also that F is locally convex
around x∗ and that H(xk) ⪰ 0 for sufficiently large k.

Then, x∗ is a global minimum and

xk → x∗ superlinearly, F (xk)−F ∗ → 0 superlinearly, ∥F ′(xk)∥∗ → 0 superlinearly as k → ∞.

Proof. Note that we are in the regime of Theorem 4.4. Also, thanks to Assumption 6 (iii), by [17,
Proposition 2.3] we have that ∇f is Lipschitz on int(BR(x

∗)), so the full result of Proposition 6.18
is available. The theorem now follows from collecting the implications of Theorem 4.4 (which gives
xk → x∗, F (xk) → F (x∗), and that x∗ is a global minimum), and in turn Proposition 6.18 (which
gives xk, x+(λk/2, xk) ∈ M for sufficiently large k) and Proposition 6.16 (which gives λk → 0) and
applying Proposition 6.6.

Remark 6.20. In particular, under the conditions of the above result, we see that the DM condition
(74) is satisfied. Indeed, we proved in Proposition 6.16 the condition (75), which is equivalent to the
DM condition (74) as shown in Proposition 6.6.

For the result of Theorem 6.19, the fact that we need ∇f |M to be C1 from Assumption 6 (ii) is incon-
venient since in combination with the normal sharpness condition in Assumption 7 (i), it means that we
require ψ to be non-zero and to provide the active manifold M on which we need ∇f to be C1. This
is because we always assume f ∈ C1 and hence f cannot satisfy the normal sharpness condition
(unlessNM(x∗) = ∅) on a submanifold as f is differentiable everywhere on its domain. However, our
algorithm identifies the manifold irrespective of whether ∇f |M is C1 or not. Nevertheless, we hope
future work can excise this assumption.

6.4.1 Example

In order to build intuition and gain a geometric understanding, we discuss the results of this subsection
through a small academic example, postponing more realistic applications to future work. For this
purpose we define F : R2 → R via F (x) = f(x) + ψ(x) where for x = (x1, x2)

f(x1, x2) = ∥x∥2 +max(0, x1)
2, ψ(x1, x2) = |x1|.

We directly observe that f : R2 → R is globally C1,1(R2,R), with gradient

∇f(x1, x2) =
[
2x1 + 2max(0, x1)

2x2

]
.

Clearly, the function ∇f : R2 → R2 is Newton differentiable with Newton derivative H(x) ∈ R2×2

defined by

H(x) =

[
2 + 2χ[0,+∞)(x1) 0

0 2

]
,

where the notation χA : H → R denotes the characteristic function on the set A, i.e., χA(x) = 1
if x ∈ A and χA(x) = 0 if x ̸∈ A. We have H(x) ⪰ 0 and H(x) is globally bounded in the
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Figure 1: Depiction of the function F : R2 → R as described in the example in Section 6.4.1.
In panel (a), the manifold M is shown in green along with the minimiser x∗ = (0, 0). Panel (b)
illustrates the C2 behaviour of F when restricted to the manifold. Panel (c) highlights the sharpness
of the function along the normal direction NM(x∗).

sense of (5). We further observe that the function F is strongly convex as the sum of a convex and the
strongly convex function ∥ · ∥2 on R2. Strong convexity implies that it satisfies the global PL condition
Assumption 3 and has the global unique minimiser x∗ = (0, 0). Note that it is not possible to find a ball
BR(x

∗) such that f isC2 onBR(x
∗) and therefore the results of Theorem 6.5 and Lemma 6.7 (which

is used to verify the Dennis–Moré condition, in order to apply Proposition 6.6) are not applicable. Now
consider the subdifferential of F at x∗: we directly obtain by the sum rule

∂F (x∗) = [−1, 1]× {0}. (85)

Given the global solution x∗, we may set M := {0} × (−1, 1). Then F is C2-partly smooth at x∗

relative to M. To see this, we argue as follows. First, Definition 6.17 (i) is immediate as we see that F
is C2 and ∇f is C1 on M:

F |M(x) = x22, and ∇f |M(x1, x2) =

[
0
2x2

]
.

Moreover, F is convex and therefore subdifferentially regular, i.e., Definition 6.17 (ii) is satisfied. More-
over NM(x∗) = R × {0} = par ∂F (x∗) according to (85), giving Definition 6.17 (iii). To show
continuity of ∂F at x∗ relative to M, according to [61, Note 2.9 (b)] it is enough to show that for
any sequence xk ∈ M with xk → x∗ and any v∗ ∈ ∂F (x∗) there is a sequence of subgradients
vk ∈ ∂F (xk) with vk → v∗ (here we note that again by the sum rule, for x = (0, x2) belonging
to M, ∂F (x) = [−1, 1] × {2x2}). This is easy to prove: for given xk = (0, xk,2) ∈ M and
v∗ = (v∗1, 0) for some v∗1 ∈ [−1, 1] (every v∗ ∈ ∂F (x∗) is of this form by construction), we simply
set vk = (v∗1, 2xk,2) ∈ ∂F (xk) and deduce vk → v∗ as xk → x∗. Consequently also Defini-
tion 6.17 (iv) holds. Eventually in order to apply Theorem 6.19, we need to show non-degeneracy, i.e.
0 ∈ ri ∂F (x∗). Recalling ∂F (x∗) = [−1, 1] × {0} and aff(∂F (x∗)) = R × {0} and using the
definition of the relative interior,

ri ∂F (x∗) = {v ∈ [−1, 1]× {0} : ∃ε > 0 s.t. int(Bε(v)) ∩ aff(∂F (x∗)) ⊆ ∂F (x∗)}
= (−1, 1)× {0}.

Hence 0 ∈ ri ∂F (x∗) and we may apply Theorem 6.19 to obtain superlinear convergence of our
method on this problem.
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7 Numerical Experiments

Data availability. Software to generate all the tables and figures in this section may be found at [3]. The
specific version used in this paper is archived on Zenodo [4]. The implementation is written in Python.
The first two examples utilise the Firedrake library [48] to implement the finite element discretisations
as well as PETSc [9] for its sparse linear algebra routines. The final example adapts code found in the
super-newton library [30].

In the first two examples, we assume Ω ⊂ R2 to be a bounded and convex domain. As is standard, we
denote the Lebesgue spaces by Lp(Ω), p ∈ [1,∞] and write W s,p(Ω), s ≥ 0, p ∈ [1,∞] to denote
the Sobolev spaces [1]. We define the Sobolev Hilbert spaces as Hs(Ω) := W s,2(Ω). We denote
the space of compactly supported smooth functions by C∞

c (Ω). For a vector-valued function v : Ω →
R2 where each component lives in the space Hs(Ω) (or C∞

c (Ω)), we say that v ∈ Hs(Ω;R2)
(respectively C∞

c (Ω;R2)).

7.1 A contact problem via a Moreau–Yosida regularisation

We consider a Signorini contact problem [41] where a partially clamped linearly elastic beam, de-
formed by gravity, must lie above a nontrivial obstacle. In particular we fix a rectangular domain
Ω = (0, 5)× (0, 1) and seek a displacement u : Ω → R2 that satisfies

min
u∈H1(Ω;R2)

∫
Ω

µL|ε(u)|2 +
λL
2
| div(u)|2 − g · u dx, (86a)

u = (0, 0)⊤ on ΓD = {(x, y) ∈ ∂Ω : x = 0 or x = 5}, (86b)

(u− φ) · nu ≥ 0 on ΓS = {(x, y) ∈ ∂Ω : y = 0}. (86c)

Here µL = 76.92 and λL = 115.38 are the Lamé coefficients, ε(u) = (∇u + (∇u)⊤)/2 denotes
the symmetrised gradient, g = (0,−10)⊤ is the body force due to gravity, and the Dirichlet boundary
condition, (86b), models an elastic beam that is clamped on both the left- and right-hand side. Inequal-
ity (86c) models the Signorini (non-penetration) condition at the bottom of the beam enforcing that the
beam must lie above a rigid body with the shape (0, 5)× (0, 1/4) under the deformation

φ(x, y) = (0,−1/2− 2 sin(πx)/5)⊤. (86d)

Finally nu denotes the outward normal of the deformed elastic body as given by

nu =
(I +∇u)−⊤ñ

|(I +∇u)−⊤ñ| where ñ = (0,−1)⊤ and I is the 2× 2 identity matrix. (86e)

The pointwise constraint can be difficult to enforce directly. Hence, the constraint is relaxed and we
include a nonsmooth Moreau–Yosida regularisation to the formulation. For a given penalisation pa-
rameter γ > 0, the relaxed problem seeks uγ : Ω → R2 satisfying

uγ = argmin
v∈H1(Ω;R2)

F (v) subject to v = (0, 0)⊤ on ΓD,

F (v) =

∫
Ω

µL|ε(v)|2 +
λL
2
| div(v)|2 − g · v dx+ γ

2

∫
ΓS

max(0, (v − φ) · nv)2 ds.
(87)

Thus we fix ψ ≡ 0 in (P). We mesh the domain into 24,000 simplices and discretise (87) with a
continuous piecewise linear finite element method for u resulting in 24,682 degrees of freedom [37,
Ch. 7.4]. A discretised approximate solution, when γ = 106, is plotted in Figure 2a.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025



LeAP-SSN: A semismooth Newton method with global convergence rates 47

In order to minimise the violation of the non-penetration condition, we wish to consider a large penali-
sation parameter γ. However, the larger the penalty, the more difficult the problem becomes to solve.
In particular a Newton method, even coupled with a linesearch, will struggle to converge within 200
iterations. This effect is demonstrated in Figure 2b where we compare Algorithm 1 against a Newton
solver without a linesearch, with an ℓ2-minimising linesearch [18, Alg. 2] (ℓ2-Newton) and with a back-
tracking linesearch [92, Ch. 6.3] (backtracking Newton). From a zero initial guess, we found that even
for γ-values as low as 103, the Newton solver failed to converge. The backtracking and ℓ2-Newton
solvers were more robust, achieving convergence up to γ = 104 and γ = 103, respectively, but failing
once γ ≥ 105. By contrast, Algorithm 1 successfully converged up until γ = 106.

(a) Approximate solution when γ = 106.

γ

Solver 103 104 105 106 107

Algorithm 1 23 41 81 185 -

Newton - - - - -

ℓ2-Newton 63 - - - -

Backtracking Newton 70 149 - - -

(b) Solver iteration counts.

Figure 2: Results for the contact problem of Section 7.1. (Left) The discretised solution to the relaxed
Signorini problem (87) with γ = 106. The colourmap indicates the magnitude of the stress in the
elastic beam and the obstacle is plotted in grey. (Right) The number of linear system solves (including
those leading to rejected updates in Algorithm 1) to reach a residual vector ℓ2-norm (∥F ′∥ℓ2) of 10−8

for increasing values of γ. The solvers are initialised at a zero initial guess u = (0, 0)⊤ for each
penalty parameter γ. A dashed line indicates a failure to converge within 200 linear system solves.
We choose the parameters α = 1/2, β = 1/4 and Λ0 = 1 for Algorithm 1 and use the H1-norm,
∥u∥2 = ∥u∥2L2(Ω) + ∥∇u∥2L2(Ω), for the primal space norm and its corresponding discrete dual norm
for ∥ · ∥∗.

In Figure 3 we plot the reduction in the objective against the iteration number k. For γ = 106, we
include the theoretical global convergence rate predicted by (50), where α = 1/2 and we estimate
D0 by D0 ≈ maxi{∥u∗ − ui∥H1(Ω)} = ∥u∗∥H1(Ω). This gives us the estimate F (uk) − F ∗ ≤
4k−1(Πk−1

j=0λj)
1/k∥u∗∥2H1(Ω). For this example, we see that the algorithm performs orders of magni-

tude better than what is theoretically guaranteed. We also observe eventual local superlinear conver-
gence for all values of γ.

7.2 Total variation image restoration

In this example we consider an image restoration problem. The domain is the unit square Ω = (0, 1)2

and we are given a polluted image represented by a function ω := g + ση for some g : Ω → [0, 1],
σ > 0, and normally distributed noise η ∼ N (0, 1). Our goal is to recover an approximation to
the original image represented by g. One approach is to consider an optimisation problem where the
minimiser is regularised by the total variation seminorm. In other words, we seek u : Ω → R that
minimises

min
u∈BV(Ω)

1

2
∥u− ω∥2L2(Ω) + δ|u|TV, (88)
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γ = 103

γ = 104

γ = 105
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4(Πk−1
j=0λj)

1/k‖u∗‖2
H1/k

Figure 3: The reduction in the difference between the current and final objective with increasing iter-
ation number k when using Algorithm 1 to minimise (87) for various choices of γ. We observe local
superlinear convergence. The dashed line indicates the theoretical global convergence rate when
γ = 106.

where |u|TV denotes the total variation of u,

|u|TV := sup

{∫
Ω

u div(v) dx : v ∈ C∞
c (Ω;R2), ∥v∥L∞(Ω) ≤ 1

}
,

and BV(Ω) denotes the space of functions of bounded variation [58]. Regularising u with its total
variation, as opposed to the H1-norm, is known to better reduce blurring and better preserve edges
[91, 58]. However, it is difficult to directly numerically tackle (88). Hence, we follow the approach
outlined in [58] and introduce the equivalent Fenchel predual problem which seeks p : Ω → R2

that minimises

min
p∈H0(div)

1

2
∥ div(p) + ω∥2L2(Ω) subject to − δ1 ≤ p ≤ δ1 a.e. in Ω, (89)

where 1 = (1, 1)⊤. Here H0(div) denotes the space

H0(div) := {p ∈ L2(Ω;R2) : div(p) ∈ L2(Ω), p · ñ = 0 on ∂Ω},

where ñ is the outward normal to ∂Ω. The minimisers u of (88) and p of (89) are then related by
u = div(p) + ω [58, Theorem 2.2].

To approximate the minimiser of (89), we first mesh the domain into 400 × 400 uniform quadrilateral
cells and employ a first-order H0(div)-conforming Raviart–Thomas (RT1) discretisation for p [37,
Chapter 14.5.2]. To enforce the pointwise box constraints, we regularise the problem with a nonsmooth
Moreau–Yosida regularisation with penalisation parameter γ > 0. We also include a broken H1-
smoothing term controlled by ϵ > 0. Altogether we seek ph : Ω → R2 that satisfies

ph = argmin
qh∈RT1

F (qh) subject to qh · ñ = 0 on ∂Ω,

where F (q) =
1

2
∥ div(q) + ω∥2L2(Ω)

+
γ

2
∥max(0, q − δ1)∥2L2(Ω) +

γ

2
∥min(0, q + δ1)∥2L2(Ω) + ϵ|q|2H1(Th).
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Here Th is the triangulation of the domain and |q|2H1(Th) :=
∑

K∈Th |∇q|2L2(K). Note that we set
ψ ≡ 0 in (P).

We now fix the model parameters δ = 10−4, ϵ = 10−1, and σ = 0.06. We pick g to be the piecewise
constant finite element projection of the Shepp–Logan phantom image [94]. We will consider various
choices for γ.

We plot the original and polluted images as well as the restoration in Figure 4a. We also provide the
approximate solutions’ peak signal-to-noise ratio (PSNR) as defined by PSNR(u) = 10 log10(|Ω| ·
∥u − g∥−2

L2(Ω)). As in the previous example, in Figure 4b we compare Algorithm 1 against a Newton

solver without a linesearch, with an ℓ2-minimising linesearch [18, Algorithm 2], and a backtracking
linesearch [92, Chapter 6.3] for a range of values of γ. We observe that the classical Newton method
is surprisingly effective requiring the fewest linear system solves when γ ≤ 106. However, it fails
to converge once γ = 107. The other three solves do converge. Aside from when γ = 104, back-
tracking Newton requires the largest number of iterations. Algorithm 1 and ℓ2-Newton have a similar
performance throughout.

(a) The original, polluted, and restored images.

γ

Solver 104 105 106 107

Algorithm 1 17 22 31 55

Newton 10 13 18 -

ℓ2-Newton 11 22 36 53

Backtracking Newton 10 33 74 127

(b) Solver iteration counts.

Figure 4: Results for the image restoration problem of Section 7.2 with parameters δ = 10−4, σ =
0.06, and ϵ = 10−1. (Left) The original (g), polluted (ω, PSNR: 27.97) and restored (u = div(p)+ω,
PSNR: 39.10) images when γ = 107. (Right) The number of linear system solves (including those
leading to rejected updates in Algorithm 1) to reach a residual vector ℓ2-norm (∥F ′∥ℓ2) of 10−8 for
increasing values of γ. We use the initial guess p = δ1 for each value of γ. Algorithm 1 is initialised
with α = β = 10−4 and Λ0 = 64. We use the norm ∥p∥2 = ∥p∥2L2(Ω) + ∥ div p∥2L2(Ω) + |p|2H1(Th)
for the primal space norm and its corresponding discrete dual norm for ∥ · ∥∗. A dashed line indicates
a failure to converge within 500 linear system solves.

7.3 Support Vector Machine classification

Our final example is a Support Vector Machine classification problem from the field of machine learning
[26]. Given a number of points x1, . . . , xℓ ∈ Rn for some ℓ, n ∈ N where each point xi is classified
into one of two groups denoted by yi ∈ {−1, 1}, i = 1, . . . , ℓ, the aim is to find an ω ∈ Rn and
b ∈ R that defines a hyperplane ω⊤x + b = 0 which separates the two groups. As in [102], given a
γ > 0, the L2-loss SVM model seeks (ω, b) ∈ Rn × R that minimises

F (ω, b) =
1

2
∥ω∥2ℓ2 + γ

ℓ∑
i=1

max(1− yi(ω
⊤xi + b), 0)2.

We visualise the solution to one data set where n = 2 and ℓ = 10, 000 in Figure 5a. In Figure 5b,
we test Algorithm 1 for ℓ = 10, 000 with n ∈ {2, 20, 200, 2000} and γ ∈ {10−4, 10−2, 1, 102, 104}.
The data xi and yi, i ∈ {1, . . . , ℓ} are generated by a reproducible classification problem generator
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from the Python package scikit-learn [81]. We observe that Algorithm 1 always converges for
the parameters we consider. More iterations are required as both n and γ become larger.

−4 −2 0 2
x1

−4

−3

−2

−1

0

1

2

3

x
2

(a) The data points and separating hyper-
plane.

n

γ 2 20 200 2000

10−4 5 4 7 10

10−2 6 10 18 21

100 7 21 24 30

102 8 27 31 36

104 9 34 37 43

(b) Solver iteration counts.

Figure 5: Results for the Support Vector Machine classification problem of Section 7.3. (Left) Plot
of the data points xℓ ∈ R2 and the separating line ω⊤x + b when n = 2 and γ = 102. A red
and blue dot indicates a value of yi = 1 and yi = −1, respectively. (Right) The number of linear
system solves (including those leading to rejected updates) for Algorithm 1 to reach a residual vector
ℓ2-norm (∥F ′∥ℓ2) of 10−6 for various values of γ and n. Algorithm 1 is initialised with α = β = 10−1,
Λ0 = 3γ · (∑ℓ

i=1 ∥xi∥2ℓ2)1/2, and (ω0, b0) = (1/2, 1/2). We use the Euclidean norm ∥z∥2 =
∥z∥2∗ = ∥z∥2ℓ2 for the primal and dual norms.

Conclusion

In this paper, we introduced our SSN-type algorithm LeAP-SSN (Algorithm 1) and showed that it pos-
sesses classical local superlinear convergence as well as global convergence rates and, in some
settings, accelerates to global superlinear convergence. Notably, these results are achieved with a
relaxation of the standard strong convexity assumption to a PL condition. A key to our global con-
vergence rates is Assumption 2, which is satisfied for a large class of semismooth functions. Another
important feature of our algorithm is its adaptivity not only to the parameters of the function class (such
as µ or L), but also to the class itself. In other words, we have one algorithm for all the considered
settings without requiring knowledge of whether the function is convex or not, whether it satisfies the
PL condition or not, nor whether the function is semismooth or not. We also explored how partial
smoothness and active manifold identification can be utilised in the nonsmooth context. We concluded
with some numerical experiments in both finite and infinite-dimensional contexts. We believe that this
paper is a good starting point for future research on algorithms that combine global convergence rates
that are well studied in the world of second-order methods for functions with Lipschitz Hessians and
improved asymptotic convergence rates well developed in the works on SSN-type methods.

References

[1] R. A. Adams. Sobolev spaces. New York: Academic Press, 1975. ISBN: 978-0-120-44150-1.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025



LeAP-SSN: A semismooth Newton method with global convergence rates 51

[2] A. Alphonse et al. “A Globalized Inexact Semismooth Newton Method for Nonsmooth Fixed-
point Equations involving Variational Inequalities”. In: arXiv e-prints, arXiv:2409.19637 (Sept.
2024), arXiv:2409.19637. DOI: 10 . 48550 / arXiv . 2409 . 19637. arXiv: 2409 .
19637 [math.NA].

[3] A. Alphonse et al. LeAP-SSN. Version 2025.0.1. 2025. URL: https://github.com/
amal-alphonse/leapssn.

[4] A. Alphonse et al. LeAP-SSN (Zenodo). Version 2025.0.1. 2025. DOI: 10.5281/zenodo.
16918760.

[5] V. Apidopoulos, N. Ginatta, and S. Villa. “Convergence rates for the heavy-ball continuous dy-
namics for non-convex optimization, under Polyak–Łojasiewicz condition”. In: Journal of Global
Optimization 84.3 (2022), pp. 563–589. ISSN: 1573-2916. DOI: 10.1007/s10898-022-
01164-w. URL: https://doi.org/10.1007/s10898-022-01164-w.

[6] H. Attouch and J. Bolte. “On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features”. In: Mathematical Programming 116.1 (2009), pp. 5–16.

[7] H. Attouch, J. Bolte, and B. F. Svaiter. “Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–
Seidel methods”. In: Mathematical programming 137.1 (2013), pp. 91–129.

[8] H. Attouch et al. “Proximal alternating minimization and projection methods for nonconvex
problems: An approach based on the Kurdyka-Łojasiewicz inequality”. In: Mathematics of op-
erations research 35.2 (2010), pp. 438–457.

[9] S. Balay et al. “PETSc users manual”. In: (2019).

[10] R. J. Baraldi and D. P. Kouri. “A proximal trust-region method for nonsmooth optimization
with inexact function and gradient evaluations”. In: Mathematical Programming 201.1 (2023),
pp. 559–598.

[11] G. Bareilles, F. Iutzeler, and J. Malick. “Newton acceleration on manifolds identified by proximal
gradient methods”. In: Mathematical Programming 200.1 (2023), pp. 37–70.

[12] A. Beck. First-order methods in optimization. SIAM, 2017.

[13] G Bento et al. Convergence of Descent Optimization Algorithms under Polyak-Lojasiewicz-
Kurdyka Conditions. 2025.

[14] M. Berger and B. Gostiaux. Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds,
Curves, and Surfaces. Vol. 115. Springer Science & Business Media, 2012.

[15] J. Bolte et al. “From error bounds to the complexity of first-order descent methods for convex
functions”. In: Mathematical Programming 165 (2017), pp. 471–507.

[16] J. Borwein and A. Lewis. Convex Analysis and Nonlinear Optimization: Theoryand Examples.
Springer, 2006.

[17] M. Brokate and M. Ulbrich. “Newton differentiability of convex functions in normed spaces
and of a class of operators”. In: SIAM J. Optim. 32.2 (2022), pp. 1265–1287. ISSN: 1052-
6234,1095-7189. DOI: 10.1137/21M1449531. URL: https://doi.org/10.
1137/21M1449531.

[18] P. R. Brune et al. “Composing scalable nonlinear algebraic solvers”. In: SIAM Review 57.4
(2015), pp. 535–565. DOI: 10.1137/130936725.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025

https://doi.org/10.48550/arXiv.2409.19637
https://arxiv.org/abs/2409.19637
https://arxiv.org/abs/2409.19637
https://github.com/amal-alphonse/leapssn
https://github.com/amal-alphonse/leapssn
https://doi.org/10.5281/zenodo.16918760
https://doi.org/10.5281/zenodo.16918760
https://doi.org/10.1007/s10898-022-01164-w
https://doi.org/10.1007/s10898-022-01164-w
https://doi.org/10.1007/s10898-022-01164-w
https://doi.org/10.1137/21M1449531
https://doi.org/10.1137/21M1449531
https://doi.org/10.1137/21M1449531
https://doi.org/10.1137/130936725


A. Alphonse, P. Dvurechensky, I. P. A. Papadopoulos, C. Sirotenko 52

[19] Y. Carmon et al. “Optimal and adaptive monteiro-svaiter acceleration”. In: Proceedings of the
36th International Conference on Neural Information Processing Systems. NIPS ’22. New Or-
leans, LA, USA: Curran Associates Inc., 2022. ISBN: 9781713871088.

[20] C. Cartis, N. I. Gould, and P. L. Toint. “Adaptive cubic regularisation methods for unconstrained
optimization. Part I: motivation, convergence and numerical results”. In: Mathematical Pro-
gramming 127.2 (2011), pp. 245–295.

[21] C. Cartis, N. I. Gould, and P. L. Toint. Evaluation Complexity of Algorithms for Nonconvex
Optimization: Theory, Computation and Perspectives. SIAM, 2022.

[22] X. Chen, Z. Nashed, and L. Qi. “Smoothing methods and semismooth methods for nondif-
ferentiable operator equations”. In: SIAM J. Numer. Anal. 38.4 (2000), pp. 1200–1216. ISSN:
0036-1429,1095-7170. DOI: 10.1137/S0036142999356719. URL: https://doi.
org/10.1137/S0036142999356719.

[23] G. Chierchia et al. The proximity operator repository. 2020. URL: http://proximity-
operator.net/download/guide.pdf.

[24] R. Cibulka, A Dontchev, and M. H. Geoffroy. “Inexact Newton Methods and Dennis–Moré The-
orems for Nonsmooth Generalized Equations”. In: SIAM Journal on Control and Optimization
53.2 (2015), pp. 1003–1019.

[25] A. R. Conn, N. I. Gould, and P. L. Toint. Trust region methods. SIAM, 2000.

[26] C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine learning 20.3 (1995), pp. 273–
297. DOI: 10.1007/BF00994018.

[27] Y. Cui and J.-S. Pang. Modern nonconvex nondifferentiable optimization. SIAM, 2021.

[28] S. vom Dahl and C. Kanzow. “An inexact regularized proximal Newton method without line
search”. In: Computational Optimization and Applications 89.3 (2024), pp. 585–624.

[29] J. E. Dennis Jr. and J. J. Moré. “A characterization of superlinear convergence and its ap-
plication to quasi-Newton methods”. In: Math. Comp. 28 (1974), pp. 549–560. ISSN: 0025-
5718,1088-6842. DOI: 10.2307/2005926. URL: https://doi.org/10.2307/
2005926.

[30] N. Doikov. super-newton. 2022. URL: https://github.com/doikov/super-
newton.

[31] N. Doikov, K. Mishchenko, and Y. Nesterov. “Super-universal regularized newton method”. In:
SIAM Journal on Optimization 34.1 (2024), pp. 27–56.

[32] N. Doikov and Y. Nesterov. “Gradient regularization of Newton method with Bregman dis-
tances”. In: Mathematical Programming 204.1 (2024), pp. 1–25. ISSN: 1436-4646. DOI: 10.
1007/s10107-023-01943-7. URL: https://doi.org/10.1007/s10107-
023-01943-7.

[33] A. L. Dontchev. “Generalizations of the Dennis-Moré theorem”. In: SIAM J. Optim. 22.3 (2012),
pp. 821–830. ISSN: 1052-6234,1095-7189. DOI: 10.1137/110833567. URL: https:
//doi.org/10.1137/110833567.

[34] D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis. “Nonsmooth optimization using Taylor-like mod-
els: error bounds, convergence, and termination criteria”. In: Math. Program. 185.1-2 (2021),
pp. 357–383. ISSN: 0025-5610,1436-4646. DOI: 10.1007/s10107-019-01432-w.
URL: https://doi.org/10.1007/s10107-019-01432-w.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025

https://doi.org/10.1137/S0036142999356719
https://doi.org/10.1137/S0036142999356719
https://doi.org/10.1137/S0036142999356719
http://proximity-operator.net/download/guide.pdf
http://proximity-operator.net/download/guide.pdf
https://doi.org/10.1007/BF00994018
https://doi.org/10.2307/2005926
https://doi.org/10.2307/2005926
https://doi.org/10.2307/2005926
https://github.com/doikov/super-newton
https://github.com/doikov/super-newton
https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1137/110833567
https://doi.org/10.1137/110833567
https://doi.org/10.1137/110833567
https://doi.org/10.1007/s10107-019-01432-w
https://doi.org/10.1007/s10107-019-01432-w


LeAP-SSN: A semismooth Newton method with global convergence rates 53

[35] D. Drusvyatskiy and A. S. Lewis. “Error bounds, quadratic growth, and linear convergence of
proximal methods”. In: Mathematics of Operations Research 43.3 (2018), pp. 919–948.

[36] D. Drusvyatskiy and A. S. Lewis. “Optimality, identifiability, and sensitivity”. In: Mathematical
Programming 147.1 (2014), pp. 467–498.

[37] A. Ern and J.-L. Guermond. Finite Elements I. Vol. 72. Springer, 2021. ISBN: 978-3-030-56340-
0. DOI: 10.1007/978-3-030-56341-7.

[38] F. Facchinei. “Minimization of SC1 functions and the Maratos effect”. In: Operations Research
Letters 17.3 (1995), pp. 131–137.

[39] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity
problems. Springer.

[40] J. Fadili, J. Malick, and G. Peyré. “Sensitivity analysis for mirror-stratifiable convex functions”.
In: SIAM J. Optim. 28.4 (2018), pp. 2975–3000. ISSN: 1052-6234,1095-7189. DOI:10.1137/
17M113825X. URL: https://doi.org/10.1137/17M113825X.

[41] G. Fichera. “Sul problema elastostatico di Signorini con ambigue condizioni al contorno”. In:
Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali,
34 (1963), pp. 138–142.

[42] P. Frankel, G. Garrigos, and J. Peypouquet. “Splitting methods with variable metric for Kurdyka–
Łojasiewicz functions and general convergence rates”. In: Journal of Optimization Theory and
Applications 165 (2015), pp. 874–900.

[43] A. Gasnikov et al. “Near Optimal Methods for Minimizing Convex Functions with Lipschitz p-th
Derivatives”. In: Proceedings of the Thirty-Second Conference on Learning Theory. Ed. by A.
Beygelzimer and D. Hsu. Vol. 99. Proceedings of Machine Learning Research. arXiv:1809.00382.
Phoenix, USA: PMLR, 2019, pp. 1392–1393. URL: http://proceedings.mlr.
press/v99/gasnikov19b.html.

[44] C. Geiersbach and T. Scarinci. “Stochastic proximal gradient methods for nonconvex problems
in Hilbert spaces”. In: Computational Optimization and Applications 78.3 (2021), pp. 705–740.
ISSN: 1573-2894. DOI: 10.1007/s10589-020-00259-y. URL: https://doi.
org/10.1007/s10589-020-00259-y.

[45] J.-J. Godeme. “Inertial Bregman Proximal Gradient under Partial Smoothness”. In: arXiv e-
prints, arXiv:2501.17542 (Jan. 2025), arXiv:2501.17542. DOI: 10.48550/arXiv.2501.
17542. arXiv: 2501.17542 [math.OC].

[46] G. N. Grapiglia and Y. Nesterov. “Regularized Newton Methods for Minimizing Functions with
Hölder Continuous Hessians”. In: SIAM Journal on Optimization 27.1 (2017), pp. 478–506.
DOI: 10.1137/16M1087801. eprint: https://doi.org/10.1137/16M1087801.
URL: https://doi.org/10.1137/16M1087801.

[47] G. N. Grapiglia and Y. Nesterov. “Accelerated Regularized Newton Methods for Minimizing
Composite Convex Functions”. In: SIAM Journal on Optimization 29.1 (2019), pp. 77–99. DOI:
10.1137/17M1142077. eprint: https://doi.org/10.1137/17M1142077.
URL: https://doi.org/10.1137/17M1142077.

[48] D. A. Ham et al. Firedrake User Manual. First. Imperial College London et al. May 2023. DOI:
10.25561/104839.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025

https://doi.org/10.1007/978-3-030-56341-7
https://doi.org/10.1137/17M113825X
https://doi.org/10.1137/17M113825X
https://doi.org/10.1137/17M113825X
http://proceedings.mlr.press/v99/gasnikov19b.html
http://proceedings.mlr.press/v99/gasnikov19b.html
https://doi.org/10.1007/s10589-020-00259-y
https://doi.org/10.1007/s10589-020-00259-y
https://doi.org/10.1007/s10589-020-00259-y
https://doi.org/10.48550/arXiv.2501.17542
https://doi.org/10.48550/arXiv.2501.17542
https://arxiv.org/abs/2501.17542
https://doi.org/10.1137/16M1087801
https://doi.org/10.1137/16M1087801
https://doi.org/10.1137/16M1087801
https://doi.org/10.1137/17M1142077
https://doi.org/10.1137/17M1142077
https://doi.org/10.1137/17M1142077
https://doi.org/10.25561/104839


A. Alphonse, P. Dvurechensky, I. P. A. Papadopoulos, C. Sirotenko 54

[49] M. Hintermüller, K. Ito, and K. Kunisch. “The primal-dual active set strategy as a semismooth
Newton method”. In: SIAM J. Optim. 13.3 (2002), pp. 865–888. ISSN: 1052-6234,1095-7189.
DOI: 10.1137/S1052623401383558. URL: https://doi.org/10.1137/
S1052623401383558.

[50] M. Hintermüller. Semismooth Newton methods and applications. URL: https://www.
math.uni-hamburg.de/home/hinze/Psfiles/Hintermueller_OWNotes.
pdf.

[51] J. Hu et al. “On the analysis of semismooth Newton-type methods for composite optimization”.
In: J. Sci. Comput. 103.2 (2025), Paper No. 59, 31. ISSN: 0885-7474,1573-7691. DOI: 10.
1007/s10915-025-02867-4. URL: https://doi.org/10.1007/s10915-
025-02867-4.

[52] K. Ito and K. Kunisch. “Semi-smooth Newton methods for variational inequalities of the first
kind”. In: M2AN Math. Model. Numer. Anal. 37.1 (2003), pp. 41–62. ISSN: 0764-583X,1290-
3841. DOI: 10.1051/m2an:2003021. URL: https://doi.org/10.1051/
m2an:2003021.

[53] Q. Jin. “On growth error bound conditions with an application to heavy ball method”. In: arXiv
preprint arXiv:2310.03947 (2023).

[54] H. Karimi, J. Nutini, and M. Schmidt. “Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition”. In: Joint European conference on machine
learning and knowledge discovery in databases. Springer. 2016, pp. 795–811.

[55] P. D. Khanh et al. “Globally convergent coderivative-based generalized Newton methods in
nonsmooth optimization”. In: Mathematical Programming 205.1 (2024), pp. 373–429.

[56] D. Kovalev and A. Gasnikov. “The first optimal acceleration of high-order methods in smooth
convex optimization”. In: Proceedings of the 36th International Conference on Neural Infor-
mation Processing Systems. NIPS ’22. New Orleans, LA, USA: Curran Associates Inc., 2022.
ISBN: 9781713871088.

[57] A. Y. Kruger. “On Fréchet subdifferentials”. In: vol. 116. 3. Optimization and related topics, 3.
2003, pp. 3325–3358. DOI: 10.1023/A:1023673105317. URL: https://doi.
org/10.1023/A:1023673105317.

[58] K. Kunisch and M. Hintermüller. “Total bounded variation regularization as a bilaterally con-
strained optimization problem”. In: SIAM Journal on Applied Mathematics 64.4 (2004), pp. 1311–
1333. DOI: 10.1137/S0036139903422784.

[59] C.-p. Lee. “Accelerating inexact successive quadratic approximation for regularized optimiza-
tion through manifold identification”. In: Math. Program. 201.1-2 (2023), pp. 599–633. ISSN:
0025-5610,1436-4646. DOI: 10.1007/s10107-022-01916-2. URL: https://
doi.org/10.1007/s10107-022-01916-2.

[60] A. S. Lewis and S. Zhang. “Partial smoothness, tilt stability, and generalized Hessians”. In:
SIAM J. Optim. 23.1 (2013), pp. 74–94. ISSN: 1052-6234,1095-7189. DOI: 10.1137/110852103.
URL: https://doi.org/10.1137/110852103.

[61] A. S. Lewis. “Active sets, nonsmoothness, and sensitivity”. In: SIAM Journal on Optimization
13.3 (2002), pp. 702–725.

[62] A. S. Lewis, J. Liang, and T. Tian. “Partial smoothness and constant rank”. In: SIAM Journal
on Optimization 32.1 (2022), pp. 276–291.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025

https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1137/S1052623401383558
https://www.math.uni-hamburg.de/home/hinze/Psfiles/Hintermueller_OWNotes.pdf
https://www.math.uni-hamburg.de/home/hinze/Psfiles/Hintermueller_OWNotes.pdf
https://www.math.uni-hamburg.de/home/hinze/Psfiles/Hintermueller_OWNotes.pdf
https://doi.org/10.1007/s10915-025-02867-4
https://doi.org/10.1007/s10915-025-02867-4
https://doi.org/10.1007/s10915-025-02867-4
https://doi.org/10.1007/s10915-025-02867-4
https://doi.org/10.1051/m2an:2003021
https://doi.org/10.1051/m2an:2003021
https://doi.org/10.1051/m2an:2003021
https://doi.org/10.1023/A:1023673105317
https://doi.org/10.1023/A:1023673105317
https://doi.org/10.1023/A:1023673105317
https://doi.org/10.1137/S0036139903422784
https://doi.org/10.1007/s10107-022-01916-2
https://doi.org/10.1007/s10107-022-01916-2
https://doi.org/10.1007/s10107-022-01916-2
https://doi.org/10.1137/110852103
https://doi.org/10.1137/110852103


LeAP-SSN: A semismooth Newton method with global convergence rates 55

[63] A. S. Lewis and M. L. Overton. “Nonsmooth optimization via quasi-Newton methods”. In: Math-
ematical Programming 141.1 (2013), pp. 135–163.

[64] A. S. Lewis and C. Wylie. “Active-set Newton methods and partial smoothness”. In: Math.
Oper. Res. 46.2 (2021), pp. 712–725. ISSN: 0364-765X,1526-5471. DOI: 10.1287/moor.
2020.1075. URL: https://doi.org/10.1287/moor.2020.1075.

[65] J. Liang, J. Fadili, and G. Peyré. “Activity identification and local linear convergence of forward–
backward-type methods”. In: SIAM Journal on Optimization 27.1 (2017), pp. 408–437.

[66] J. Liang, J. M. Fadili, and G. Peyré. “Local linear convergence of forward–backward under
partial smoothness”. In: Advances in neural information processing systems 27 (2014).

[67] F.-Y. Liao, L. Ding, and Y. Zheng. “Error bounds, PL condition, and quadratic growth for weakly
convex functions, and linear convergences of proximal point methods”. In: 6th Annual Learning
for Dynamics & Control Conference. arXiv:2312.16775. PMLR. 2024, pp. 993–1005.

[68] R. Liu, S. Pan, and Y. Qian. “An Inexact-Order Regularized Proximal Newton Method for Non-
convex Composite Optimization”. In: SIAM Journal on Optimization 35.2 (2025), pp. 959–988.

[69] R. Liu et al. “An inexact regularized proximal Newton method for nonconvex and nonsmooth
optimization”. In: Computational Optimization and Applications 88.2 (2024), pp. 603–641.

[70] S. A. Miller and J. Malick. “Newton methods for nonsmooth convex minimization: connections
among-Lagrangian, Riemannian Newton and SQP methods”. In: Mathematical programming
104.2 (2005), pp. 609–633.

[71] K. Mishchenko. “Regularized Newton Method with Global O(1/k2) Convergence”. In: SIAM
Journal on Optimization 33.3 (2023), pp. 1440–1462. DOI: 10 . 1137 / 22M1488752.
eprint: https://doi.org/10.1137/22M1488752. URL: https://doi.
org/10.1137/22M1488752.

[72] R. Monteiro and B. Svaiter. “An Accelerated Hybrid Proximal Extragradient Method for Convex
Optimization and Its Implications to Second-Order Methods”. In: SIAM Journal on Optimization
23.2 (2013), pp. 1092–1125. DOI: 10.1137/110833786. eprint: https://doi.
org/10.1137/110833786. URL: https://doi.org/10.1137/110833786.

[73] B. S. Mordukhovich. Second-order variational analysis in optimization, variational stability, and
control: theory, algorithms, applications. Springer Nature, 2024.

[74] B. S. Mordukhovich. Variational analysis and generalized differentiation. I. Vol. 330. Grundlehren
der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Ba-
sic theory. Springer-Verlag, Berlin, 2006, pp. xxii+579.

[75] B. S. Mordukhovich et al. “A globally convergent proximal Newton-type method in nonsmooth
convex optimization”. In: Mathematical Programming 198.1 (2023), pp. 899–936.

[76] Y. Nesterov. “Accelerating the cubic regularization of Newton’s method on convex problems”.
In: Mathematical Programming 112.1 (2008), pp. 159–181. ISSN: 1436-4646. DOI: 10.1007/
s10107-006-0089-x. URL: https://doi.org/10.1007/s10107-006-
0089-x.

[77] Y. Nesterov. How to make the gradients small. Optima, 88:10–11. 2012. URL: https://
www.mathopt.org/Optima-Issues/optima88.pdf.

[78] Y. Nesterov and B. T. Polyak. “Cubic regularization of Newton method and its global perfor-
mance”. In: Mathematical programming 108.1 (2006), pp. 177–205.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025

https://doi.org/10.1287/moor.2020.1075
https://doi.org/10.1287/moor.2020.1075
https://doi.org/10.1287/moor.2020.1075
https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/110833786
https://doi.org/10.1137/110833786
https://doi.org/10.1137/110833786
https://doi.org/10.1137/110833786
https://doi.org/10.1007/s10107-006-0089-x
https://doi.org/10.1007/s10107-006-0089-x
https://doi.org/10.1007/s10107-006-0089-x
https://doi.org/10.1007/s10107-006-0089-x
https://www.mathopt.org/Optima-Issues/optima88.pdf
https://www.mathopt.org/Optima-Issues/optima88.pdf


A. Alphonse, P. Dvurechensky, I. P. A. Papadopoulos, C. Sirotenko 56

[79] W. Ouyang and A. Milzarek. “A trust region-type normal map-based semismooth Newton
method for nonsmooth nonconvex composite optimization: W. Ouyang, A. Milzarek”. In: Math-
ematical Programming 212.1 (2025), pp. 389–435.

[80] J.-S. Pang and L. Qi. “A globally convergent Newton method for convex SC1 minimization
problems”. In: Journal of Optimization Theory and Applications 85.3 (1995), pp. 633–648.

[81] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830.

[82] B. T. Polyak. “Gradient methods for minimizing functionals”. In: Zhurnal vychislitel’noi matem-
atiki i matematicheskoi fiziki 3.4 (1963), pp. 643–653.

[83] B. Pötzl, A. Schiela, and P. Jaap. “Inexact proximal Newton methods in Hilbert spaces”. In:
Computational Optimization and Applications 87.1 (2024), pp. 1–37.

[84] B. Pötzl, A. Schiela, and P. Jaap. “Second order semi-smooth Proximal Newton methods in
Hilbert spaces”. In: Computational Optimization and Applications 82.2 (2022), pp. 465–498.

[85] L. Q. Qi. “Convergence analysis of some algorithms for solving nonsmooth equations”. In:
Math. Oper. Res. 18.1 (1993), pp. 227–244. ISSN: 0364-765X,1526-5471. DOI: 10.1287/
moor.18.1.227. URL: https://doi.org/10.1287/moor.18.1.227.

[86] L. Q. Qi and J. Sun. “A nonsmooth version of Newton’s method”. In: Math. Programming 58.3
(1993), pp. 353–367. ISSN: 0025-5610,1436-4646. DOI: 10.1007/BF01581275. URL:
https://doi.org/10.1007/BF01581275.

[87] L. Qi. “Trust region algorithms for solving nonsmooth equations”. In: SIAM Journal on Opti-
mization 5.1 (1995), pp. 219–230.

[88] Q. Rebjock and N. Boumal. “Fast convergence to non-isolated minima: four equivalent condi-
tions for c 2 functions”. In: Mathematical Programming (2024), pp. 1–49.

[89] H. Rickmann, R. Herzog, and E. Herberg. “Global Convergence of Semismooth Newton Meth-
ods for Quadratic Problems”. In: GAMM Archive for Students 7.1 (2025), p. 16. DOI: 10.
14464/gammas.v7i1.810. URL: https://www.bibliothek.tu-chemnitz.
de/ojs/index.php/GAMMAS/article/view/810.

[90] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Vol. 317. Grundlehren der mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 1998, pp. xiv+733. ISBN: 3-540-62772-3. DOI: 10.1007/978-3-642-02431-3.
URL: https://doi.org/10.1007/978-3-642-02431-3.

[91] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based noise removal algorithms”.
In: Physica D: nonlinear phenomena 60.1-4 (1992), pp. 259–268. DOI: 10.1016/0167-
2789(92)90242-F.

[92] R. B. Schnabel and J. E. Dennis. Numerical methods for unconstrained optimization and non-
linear equations. SIAM, 1996. ISBN: 978-0-89871-364-0. DOI:10.1137/1.9781611971200.

[93] T. Schwedes et al. Mesh dependence in PDE-constrained optimisation. Springer, 2017. DOI:
10.1007/978-3-319-59483-5.

[94] L. A. Shepp and B. F. Logan. “The Fourier reconstruction of a head section”. In: IEEE Transac-
tions on nuclear science 21.3 (1974), pp. 21–43. DOI: 10.1109/TNS.1974.6499235.

[95] M. Ulbrich. “Semismooth Newton methods for operator equations in function spaces”. In:
SIAM J. Optim. 13.3 (2002), pp. 805–842. ISSN: 1052-6234,1095-7189. DOI: 10.1137/
S1052623400371569. URL: https://doi.org/10.1137/S1052623400371569.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025

https://doi.org/10.1287/moor.18.1.227
https://doi.org/10.1287/moor.18.1.227
https://doi.org/10.1287/moor.18.1.227
https://doi.org/10.1007/BF01581275
https://doi.org/10.1007/BF01581275
https://doi.org/10.14464/gammas.v7i1.810
https://doi.org/10.14464/gammas.v7i1.810
https://www.bibliothek.tu-chemnitz.de/ojs/index.php/GAMMAS/article/view/810
https://www.bibliothek.tu-chemnitz.de/ojs/index.php/GAMMAS/article/view/810
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1007/978-3-319-59483-5
https://doi.org/10.1109/TNS.1974.6499235
https://doi.org/10.1137/S1052623400371569
https://doi.org/10.1137/S1052623400371569
https://doi.org/10.1137/S1052623400371569


LeAP-SSN: A semismooth Newton method with global convergence rates 57

[96] M. Ulbrich. Semismooth Newton methods for variational inequalities and constrained optimiza-
tion problems in function spaces. Vol. 11. MOS-SIAM Series on Optimization. Society for In-
dustrial and Applied Mathematics (SIAM), 2011, pp. xiv+308. ISBN: 978-1-611970-68-5. DOI:
10.1137/1.9781611970692. URL: https://doi.org/10.1137/1.
9781611970692.

[97] S. Vaiter, G. Peyré, and J. Fadili. “Model consistency of partly smooth regularizers”. In: IEEE
Transactions on Information Theory 64.3 (2017), pp. 1725–1737.

[98] D. Wachsmuth. “A globalized inexact semismooth Newton for strongly convex optimal control
problems”. In: arXiv preprint arXiv:2503.21612 (2025).

[99] S. Wang, J. Fadili, and P. Ochs. “Convergence rates of regularized quasi-Newton methods
without strong convexity”. In: arXiv preprint arXiv:2506.00521 (2025).

[100] X. Xiao et al. “A regularized semi-smooth Newton method with projection steps for composite
convex programs”. In: J. Sci. Comput. 76.1 (2018), pp. 364–389. ISSN: 0885-7474,1573-7691.
DOI: 10.1007/s10915-017-0624-3. URL: https://doi.org/10.1007/
s10915-017-0624-3.

[101] Y. Yamakawa and N. Yamashita. “Convergence analysis of a regularized Newton method with
generalized regularization terms for unconstrained convex optimization problems”. In: Appl.
Math. Comput. 491 (2025), Paper No. 129219, 13. ISSN: 0096-3003,1873-5649. DOI: 10.
1016/j.amc.2024.129219. URL: https://doi.org/10.1016/j.amc.
2024.129219.

[102] J. Yin and Q. Li. “A semismooth Newton method for support vector classification and re-
gression”. In: Computational Optimization and Applications 73.2 (2019), pp. 477–508. DOI:
10.1007/s10589-019-00075-z.

[103] C. Zhang et al. “Riemannian trust region methods for SC1 minimization”. In: J. Sci. Comput.
101.2 (2024), Paper No. 32, 37. ISSN: 0885-7474,1573-7691. DOI: 10.1007/s10915-
024-02664-5. URL: https://doi.org/10.1007/s10915-024-02664-5.

DOI 10.20347/WIAS.PREPRINT.3217 Berlin 2025

https://doi.org/10.1137/1.9781611970692
https://doi.org/10.1137/1.9781611970692
https://doi.org/10.1137/1.9781611970692
https://doi.org/10.1007/s10915-017-0624-3
https://doi.org/10.1007/s10915-017-0624-3
https://doi.org/10.1007/s10915-017-0624-3
https://doi.org/10.1016/j.amc.2024.129219
https://doi.org/10.1016/j.amc.2024.129219
https://doi.org/10.1016/j.amc.2024.129219
https://doi.org/10.1016/j.amc.2024.129219
https://doi.org/10.1007/s10589-019-00075-z
https://doi.org/10.1007/s10915-024-02664-5
https://doi.org/10.1007/s10915-024-02664-5
https://doi.org/10.1007/s10915-024-02664-5

	Introduction
	Contributions
	Related literature
	Organisation of the paper

	Technical preliminaries
	Main assumptions
	Further results related to Assumption 2

	Regularised Newton step

	The proposed algorithm
	Useful notation and inequalities

	Global convergence rates
	Global O(1/sqrt(k)) convergence rate for gradient norm
	Global linear convergence rate for objective and iterates under PL
	Global O(1/k) convergence rate for objective under convexity

	Local linear convergence
	Superlinear convergence under higher regularity
	Technical preliminaries
	Faster asymptotic rates in the finite-dimensional C^2 setting
	Superlinear convergence under semismoothness
	Superlinear convergence via active manifold identification in the finite-dimensional setting
	Example


	Numerical Experiments
	A contact problem via a Moreau–Yosida regularisation
	Total variation image restoration
	Support Vector Machine classification


