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Derivation of the Reissner–Mindlin model from nonlinear
elasticity

Tamara Fastovska, Janusz Ginster, Barbara Zwicknagl

Abstract

We discuss how the Reissner–Mindlin plate model can be derived from three-dimensional fi-
nite elasticity in terms ofΓ-convergence. The presence of transverse shear effects in the Reissner–
Mindlin model requires to scale different components of the three-dimensional elastic strain dif-
ferently. A main technical tool is then the combination of rigidity estimates for the deformation and
suitably averaged versions.

1 Introduction

The rigorous justification of simplified models for the elastic behaviour of thin bodies has a long stand-
ing history. In this paper, we follow the approach to derive static lower-dimensional models from three-
dimensional elasticity by means of Γ-convergence. The latter is a concept of convergence that -if
complemented by appropriate compactness properties- ensures convergence of (almost) minimizers
(see e.g. [7, 9]). The idea to use Γ-convergence in the context of dimension reduction in elasticity
dates back to [1, 13, 19, 20, 32], and since then, a large body of literature has been devoted to a
refined analysis in various settings (for recent overviews see e.g. [22, 27, 33]), including for instance
nonlinear bending models for shells as well as Kirchhoff-Love’s or von Kármán models for plates (see
e.g. [2, 4, 5, 13, 14, 17, 21, 30, 39] and the references therein) and models for beams or rods (see e.g.
[10, 11, 18, 25, 26, 29, 37, 38] and the references therein).

In the present work we address the question, whether it is possible to derive the Reissner–Mindlin plate
model ([23, 36]) from nonlinear elasticity. Before discussing the related literature let us briefly explain
the setting and the challenges. We denote by S ⊆ R2 the midsurface of a thin plate S×(−h/2, h/2),
and consider the energy functionals for linearized and nonlinear Reissner–Mindlin models, namely

J(ϕ, v) =
2∑
i=1

ai

∫
S

(ϕi + ∂iv)2dx1dx2 +
2∑

i,j=1

bij

∫
S

(∂iϕj + ∂jϕi)
2dx1dx2 (1)

and

I(u, ϕ, v) =
2∑
i=1

ai

∫
S

(ϕi + ∂iv)2dx1dx2 +
2∑

i,j=1

bij

∫
S

(∂iϕj + ∂jϕi)
2dx1dx2

+
2∑

i,j=1

cij

∫
S

(∂iuj + ∂jui +
1

2
∂ivj∂jvi)

2dx1dx2, (2)

where v(x1, x2) is the (renormalized) vertical displacement and ui(x1, x2) are the (renormalized) in-
plane displacements of the midsurface and ϕi(x1, x2) are the angles of deflection of the orthogonal
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T. Fastovska, J. Ginster, B. Zwicknagl 2

cross-sections of the plate. On S × (−h/2, h/2), this corresponds to a deformation of the form (we
use the notation x′ := (x1, x2))

yh(x′, x3) :=

(
x′

x3

)
+

(
hαu(x′)
hβv(x′)

)
+ x3

(
hγϕ(x′)

0

)
. (3)

The corresponding strain can be seen to be of the form

(∇yh)T (∇yh)

= Id+

(
2hα(∇′u)sym + 2x3h

γ(∇′ϕ)sym + h2β∇′v ⊗∇′v hγϕ+ hβ∇′v
(hγϕ+ hβ∇′v)T 0

)
+ h.o.t,

where h.o.t. stands for higher order terms. Hence, for an energy densityW that has the typical behav-
ior W (F ) ∼ |F TF − Id|2 close to SO(3) we find∫

S×(−h/2,h/2)

W (∇yh) dx (4)

∼h
∫
S

2
∣∣hγϕ+ hβ∇′v

∣∣2 +
h2γ+2

3
|(∇′ϕ)sym|2 + 4

∣∣∣∣hα(∇′u)sym +
1

2
h2β∇′v ⊗∇v

∣∣∣∣2 dx1 dx2.

Comparing with (1) and (2) we notice the following:

� it must hold γ = β and α = 2β;

� a renormalization of (4) by h2γ+3 will allow to obtain the term
∫
S
|(∇′ϕ)sym|2 dL2 in the limit

h→ 0 but necessarily forces ϕ = ∇′v, c.f., for example, [14];

� in order to derive all terms in (2) or (1) from our ansatz the elastic energy density has to weight
different entries of the elastic strain with different powers in h.

Taking into account the above considerations, we will derive (1) and (2) from an elastic energy that
weights different entries of the elastic strain differently. In our setting (see Section 1.1 for the precise
definitions) the derivation of (2) will be performed for β = γ > 1 whereas (1) will be derived for
γ = β = 1 and α = 2β = 2γ + 2 = 4.

Let us briefly discuss some related literature. Falach, Paroni, Podio-Guidugli and Tomasetti [12], [34,
35] used an anisotropic (transversely isotropic) linear three-dimensional energy containing second-
gradient terms. In fact, the idea was to consider for a given three-dimensional problem (the so-called
“real problem”) an approximation whose variational limit coincides with the variational limit of the “real
problem”. Another idea is to consider anisotropic elasticity and to scale the elastic constants in differ-
ent ways, which allows to avoid the inconsistency with the fact that for the Mindlin-Timoshenko-type
models the shear modulus cannot be "too large". However, the parent models in [12, 34] consider
linearized strains and the Saint Venant–Kirchhoff model for the strain energy, which does not cover
the case of nonlinear Lagrangian strains and important models such as neo-Hookean, Mooney-Rivlin,
Ogden, Fung etc. (see [31] and references therein). Another approach starting from isotropic, linear
elasticity with microrotations is presented in [28]. For further discussion of the challenges and related
literature we refer to the above references.

The rest of the paper is organized as follows: in Subsection 1.1 we set the main notation, state the
parent problem and formulate the main assumptions on the energy density and external forces, we
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Derivation of the Reissner–Mindlin model from nonlinear elasticity 3

also present an example of a nonlinear energy functional satisfying these assumptions. In Subsection
1.2 we formulate and discuss our main result. In Section 2 rigidity estimates for the displacement
gradient to the case of anisotropic elasticity are adjusted. In Section 3 we prove main results on Γ-
convergence of the three-dimensional problem to the Reissner–Mindlin energy functional in case of
the energy scaling of power greater than 4. Finally, Section 4 contains a Γ-convergence result in case
of the scaling of power 4.

1.1 Notation and setting.

Throughout the text, we denote by C generic constants that may change from expression to expres-
sion.
Let S ⊆ R2 be an open, bounded Lipschitz domain, and consider for h > 0 the (thin) domain

Ωh = S ×
(
−h

2
,
h

2

)
.

We will always assume that h ∈ (0, 1). For a deformationw ∈ W 1,2(Ωh;R3), we consider the elastic
energy

Eh1 (w) :=

∫
Ωh

W1(∇′w′(z)T∇′w′(z) +∇′w3(z)⊗∇′w3(z))dz + h2

∫
Ωh

W2(∇w(z))dz, (5)

where we use the notation x′ = (x1, x2), w′ = (w1, w2) and∇′w = w,1⊗e1 +w,2⊗e2. Here and
in the following,w,i denotes the i-th partial derivative ∂iw for i = 1, 2, 3, and similarly for second order
partial derivatives. For M = (mij)i,j=1...3 ∈ R3×3, we similarly set M ′ := (mij)i,j=1,2 ∈ R2×2.
Now, consider the fixed domain Ω = S × I , where I := (−1

2
, 1

2
) and introduce the change of

variables z(x) = (x1, x2,
x3
h

) and the rescaled deformation y : Ω → R3, y(x) = w(z(x)). It then
holds

∇w =

(
∇′y, 1

h
y,3

)
=: ∇hy

and

1

h
Eh(y) :=

∫
Ω

W1(∇′y′(x)T∇′y′(x) +∇′y3(x)⊗∇′y3(x))dx+ h2

∫
Ω

W2(∇hy(x))dx. (6)

Slightly abusing notation, we identify functions f : S → Rn with their trivial extensions f : Ω → Rn

given by f(x′, x3) := f(x′). We sometimes write u(x′) or u(x3) instead of u to point out on which
components the function depends.

Free energy densities. We will always impose (without further mentioning) that the following assump-
tions on the free energy densities Wi : R(i+1)×(i+1) → [0,∞], i = 1, 2 hold.

Assumption 1. There exist constants c0, c1, c2 > 0 such that

(A1) W2(QF ) = W2(F ) for all Q ∈ SO(3) and all F ∈ R3×3,

(A2) W1(Id) = minW1 = 0 = minW2 = W2(Q) for all Q ∈ SO(3),

(A3) W2(F ) ≥ c0 dist 2(F, SO(3)) for all F ∈ R3×3,
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T. Fastovska, J. Ginster, B. Zwicknagl 4

(A4) W1(F ′TF ′ + (f31, f32) ⊗ (f31, f32)) + c1|(f31, f32)|4 ≥ c2dist 2(F ′, SO(2)) for all F =
(fij) ∈ R3×3, and

(A5) W2 is twice continuously differentiable in a neighborhood of SO(3), and W1 is twice differen-
tiable in a neighbourhood of Id.

Let us briefly discuss an example of free energy densities W1 and W2 satisfying Assumption 1.

Example 1. We consider a special case of an orthotropic neo-Hookian strain energy (see e.g [3, 6,
40]). Precisely, for β > 0 we set W1 : R2×2 → [0,∞],

W1(C ′) :=

{
β [tr (C ′2)− 2 tr (C ′) + 2] if C ′ ∈ A
+∞ otherwise,

(7)

where

A :=
{
C ′ ∈ R2×2 : ∃F ∈ R3×3 s.t. detF ′ > 0 and C ′ = F ′TF ′ + (f31, f32)⊗ (f31, f32)

}
.

In addition, for λ, µ > 0, we set W2 : R3×3 → [0,∞],

W2(F ) :=

{
µ(tr(F TF )− 3)− µ ln det(F TF ) + λ(det(F TF )− 1)2 if detF > 0

+∞ otherwise.

We note that the assumption detF > 0 is related to non-interpenetrability of matter, and the assump-
tion detF ′ > 0 is typically satisfied in the case of infinitesimal planar strain.
Clearly, the functions W1 and W2 satisfy assumptions (A1) and (A5). To see that W1 satisfies (A2)
note that all C ′ ∈ A are symmetric, and hence, denoting the eigenvalues of C ′ by ν1 and ν2, we have

W1(C ′) = β
[
ν2

1 + ν2
2 − 2(ν1 + ν2) + 2

]
= β

[
(ν1 − 1)2 + (ν2 − 1)2

]
≥ 0

with equality if and only if ν1 = ν2 = 1.
To see the other properties, we note that the matrix F TF is symmetric and positive definite and hence
has three positive real eigenvalues that we denote by λ2

1, λ2
2 and λ2

3 with λi > 0 for i = 1, . . . , 3.
Then

W2(F TF ) ≥ µ(λ2
1 + λ2

2 + λ2
3 − 3)− µ(lnλ2

1 + lnλ2
2 + lnλ2

3) ≥ µ

3∑
i=1

(λ2
i − lnλ2

i − 1)

≥ µ

3∑
i=1

(λi − 1)2 = µ|
√
F TF − I|2 = µ dist 2(F, SO(3)),

where we used that lnλ2
i = 2 lnλi ≤ 2(λi − 1). This shows (A3) and the first part of (A2). Next, we

consider W1. For F ∈ R3×3, we have

W1

(
F ′TF ′ + (f31, f32)⊗ (f31, f32)

)
≥ β

[(
(f 2

11 + f 2
21 + f 2

31)2 + 2(f11f12 + f21f22 + f31f32)2 + (f 2
12 + f 2

22 + f 2
32)2
)

−2
(
f 2

11 + f 2
21 + f 2

31 + f 2
12 + f 2

22 + f 2
32

)
+ 2
]

≥ β
[
(f 2

11 + f 2
21 − 1)2 + 2(f11f12 + f21f22)2 + (f 2

12 + f 2
22 − 1)2

+f 4
31 + f 4

32 + 2f 2
31f

2
32 + 2(f 2

11 + f 2
21 − 1)f 2

31 + 2(f 2
12 + f 2

22 − 1)f 2
32

]
≥ c2|F ′TF ′ − I|2 − c1|(f31, f32)|4. (8)
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Derivation of the Reissner–Mindlin model from nonlinear elasticity 5

Let us briefly explain how the previous example arises in modelling (see e.g [3, 6, 40]). Orthotropic
materials are characterized by symmetry relations with respect to three orthogonal planes. The cor-
responding preferred directions are chosen as the intersections of these planes and are given by unit
vectors a, b and c. If the vectors a, b and c are oriented along the coordinate axes, we can introduce
the matrices

M1 =

 1 0 0
0 0 0
0 0 0

 , M2 =

 0 0 0
0 1 0
0 0 0


for structural tensors of the material, corresponding to the first two directions. With the notation F =
∇y, F ′ = ∇′y′, C = F TF , the orthotropic part has the form

W
(M1,M2)
1 (C) =

β
[

2∑
i=1

(trC2Mi − 2 trCMi + 1)

]
if detF ′ > 0

+∞ otherwise.

Since for C ′ = F ′TF ′ + (f31, f32)⊗ (f31, f32), there holds

trC ′2 = trC2(M1 +M2), trC ′ = trC(M1 +M2),

we find that W (M1,M2)
1 defined in this way coincides with (7).

Regularized functionals and constraints. We impose Dirichlet boundary conditions on admissible
deformations, and following [34], we consider for technical reasons regularized versions of (6). Pre-
cisely, we set Ih : W 1,2(Ω;R3)→ [0,∞],

Ih(y) :=



∫
Ω
W1

(
∇′y′(x)T∇′y′(x) +∇′y3(x)⊗∇′y3(x)

)
dx

+c1

∫
Ω

|∇′y3(x)|4dx+ h2
∫

Ω
W2(∇hy(x))dx

+ 1
hε

∫
Ω

|y′,33 (x)|2dx if y(x) = (x′, hx3) on ∂S × (0, 1),

+∞ otherwise

(9)

with some ε > 0. Here, the first expression is understood in the sense that it is +∞ if ∇′y3 6∈ L4

or y′,33 6∈ L2. We note that we impose the specific boundary condition on all of ∂S in (9) only for the
ease of notation. It can be easily relaxed to hold only on part of the boundary. We will point out during
the proof explicitly which parts require the boundary condition and which ones also hold without it.

Note that the last term in (9) coincides with the second-gradient term in the linear three-dimensional
functionals in [34].

Forces. To include forces fh ∈ L2(S;R3), we follow [14] and assume that the total force and the
total moment applied to the reference configuration is zero, i.e.∫

Ω

fhdx = 0,

∫
Ω

x ∧ fhdx = 0. (10)

We suppose that there is some α ∈ R such that

1

hα
fh ⇀ f in L2(S;R3) with f1 = f2 = 0, (11)
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T. Fastovska, J. Ginster, B. Zwicknagl 6

and denote the functional with forces by Jh : W 1,2(Ω;R3)→ (−∞,∞],

Jh(y) = Ih(y)−
∫
Ω

fh(x′) · y dx. (12)

1.2 Main results and discussion.

Our main result is the Γ-limit of the sequence of functionals (9) as h → 0. It turns out that the Γ-
limit has the form of the linearized Reissner–Mindlin energy (2), and coincides with the Γ-limit of (6).
Precisely, we have the following result.

Theorem 1.1. (i) Compactness and lower bound.
Suppose that σ ≥ 4. Let (yh)h>0 ⊆ W 1,2(Ω;R3) be such that

lim sup
h→0

1

hσ
Ih(yh) <∞. (13)

Then there exist Qh : S → SO(2), u ∈ W 1,2(S;R2), v ∈ W 1,2(S), and ϕ ∈ W 1,2(S;R2)
identified with the constant in x3-direction function ϕ ∈ W 1,2(Ω;R2) such that

uh ⇀ u in W 1,2(S;R2), where uh(x′) :=
1

hσ/2

∫
I

((
yh1 (x′, x3)
yh2 (x′, x3)

)
− x′

)
dx3,

(14)

vh ⇀ v in W 1,2(S), where vh(x′) :=
1

hσ/2−1

∫
I

yh3 (x′, x3) dx3, (15)

ϕh ⇀ ϕ in L2(Ω;R2), where ϕh(x′, x3) :=
1

hσ/2
(
QT
h∂3y

′(x′, x3)
)
, (16)

1

hσ/2
QT
h

∇′(yh)′ − ∫
I

∇′(yh)′dx3

⇀ x3∇′ϕ in L2(Ω;R2). (17)

Moreover, if σ > 4 set

Qi3(A) :=
∂2Wi(A)

∂A2
(Id)(A,A), i = 1, 2, and Q2

2(G̃) := min
c∈R
Q2

3

(
G̃+ ce3 ⊗ e3

)
.

Then we have

lim inf
h→0

1

hσ
Ih(yh) (18)

≥1

2

∫
S

Q2
2(G̃) dx′ +

1

2

∫
S

Q1
3(2 sym∇′u) dx′ +

1

6

∫
S

Q1
3(sym∇′ϕ) dx′

with

G̃(x′) :=

 0 0 ϕ1(x′) + ∂1v(x′)
0 0 ϕ2(x′) + ∂2v(x′)

ϕ1(x′) + ∂1v(x′) ϕ2(x′) + ∂2v(x′) 0

 . (19)
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Derivation of the Reissner–Mindlin model from nonlinear elasticity 7

(ii) Optimality of lower bound in the case σ > 4.
If u ∈ W 1,2(S;R2), v ∈ W 1,2(S), and ϕ ∈ W 1,2(S;R2), then there exists a recovery
sequence (ŷh)h>0 such that (14)–(17) hold and

lim inf
h→0

1

hσ
Ih(ŷh) (20)

=
1

2

∫
S

Q2
2(G̃)dx′ +

1

2

∫
S

Q1
3(2 sym∇′u)dx′ +

1

6

∫
S

Q1
3(sym∇′ϕ(x′))dx′.

As a corollary of Theorem 1.1 one can infer convergence of minimizers to minimizers of a linear
Reissner–Mindlin energy. Precisely, we have the following result.

Theorem 1.2. Suppose that σ > 4. Consider external forces (fh)h>0 such that (10) and (11) hold
with σ = 2α− 2. Let (yh)h>0 be a σ-minimizing sequence for (Jh)h>0, i.e.,

lim sup
h→0

1

hσ
(
Jh(yh)− inf Jh

)
= 0.

Then there exist Qh : S → SO(2), u ∈ W 1,2(S;R2), v ∈ W 1,2(S), and ϕ ∈ W 1,2(S;R2) such
that

∇hy
h → Id in L2(Ω;R3),

(14) holds with u = 0, and (15)–(16) hold up to a subsequence. Moreover, 0 ≥ inf Jh ≥ −Chσ and
the limit function (v, ϕ) minimizes the functional

J(v, ϕ) =
1

2

∫
S

Q2
2(G̃) dx′ +

1

6

∫
S

Q1
3(sym∇′ϕ(x′)) dx′ −

∫
S

f3(x′)v(x′) dx′

with G̃ defined in (19). Finally, limh→0
1
hσ
Jh(yh) = min J.

Let us briefly discuss the main difficulties in our analysis. Starting point is the seminal work in [14] and
[15]on dimension reduction in nonlinear elasticity. However, the scaling of the energy functional con-
sidered there yields a higher rigidity than we expect in the Reissner–Mindlin model. In particular, one
obtains relations between the angles of rotation of the cross-sections of the plate and the transversal
displacement of the mid surface (φ1, φ2) = −∇v. The Reissner–Mindlin model on the other hand
takes into account transverse shear effects, which contradict this relation.
To overcome this, we rescale parts of the energy differently. More precisely, if we denote the strain
matrix by S = (sij)i,j=1,2,3, we rescale the part depending on the upper part S ′ = (sij)i,j=1,2 by
hσ while the rest of the energy is rescaled by hσ−2. While this rescaling allows us to avoid unwanted
rigidity, it also leads to a lack of compactness. In case σ > 4, one can overcome this difficulty by
adding regularizing terms (see (9)), which vanish in the limit. Here we use Dirichlet-type boundary
conditions, which allow us to use Korn-type inequalities (see e.g. Proposition 1 [14]).
However, for the case σ = 4, we still experience the lack of compactness to perform the limit tran-
sition in the nonlinear term ∇′y3(x) ⊗ ∇′y3(x) in (9). The way to overcome this difficulty by adding
a second gradient term is discussed in Section 4 but the limit functional differs from the classical
Reissner–Mindlin energy.
The main steps in the proof are the following:

(a) Scaled rigidity estimates in thin domain. In a thin domain Ωh = S × (−h/2, h/2) we use
different rigidity estimates. We derive approximations of the scaled deformation gradient∇hy by

DOI 10.20347/WIAS.PREPRINT.3216 Berlin 2025



T. Fastovska, J. Ginster, B. Zwicknagl 8

a rotation Rh(x
′) in SO(3) depending on x′, the averaged with respect to the third component

2D gradient
∫
I

∇′y′dx3 by a rotation Qh(x
′) in SO(2) depending on x′ (see Theorem 2.2),

and ∇′y′ by a rotation Th(x) in SO(2) depending on x (see Theorem 2.7). In the first case
the approximation rate is hσ−2 and in the second and the third cases hσ. We also construct a
rotation Lh ∈ SO(3) associated with Qh

Lh =

 Qh 0
0

0 0 1

 .

(b) Scaling of deformations. Next we obtain the rates of convergence of rotations to the identity in
L2 and in any Lp for 2 < p < ∞ and normalize and scale in-plane and out-of-plane defor-
mations according to these estimates. We note that the scaling of the out-of-plane components
does not coincide with that introduced in [14].

(c) Convergence of scaled deformations. We prove weak convergence of scaled and averaged with
respect to the third component deformations. Using the boundary conditions we show that the
deformations converge to the same functions even without normalization.

(d) Identification of the limiting strain. We then estimate in L2 three approximate strain components
and find that their weak limits in L2 up to a subsequence have the following structures:

Gh :=
LTh∇hy

h − Id
h
σ
2
−1

⇀

 0 0 ϕ1(x′)
0 0 ϕ2(x′)

∂1v(x′) ∂2v(x′) G33(x).



symFh := sym

QT
h

∫
I

∇′(yh)′dx3 − Id

h
σ
2

⇀ sym∇′u(x′)

Kh :=

QT
h (∇′(yh)′ −

∫
I

∇′(yh)′dx3)

h
σ
2

⇀ x3∇′ϕ(x′).

(e) Γ-convergence. Using the Taylor’s expansion and this relations we obtain the lower bound
in Theorem 1.1. For the proof of the optimality of the lower bound we construct a recovering
sequence (136).

2 Geometric rigidity

To prove the results on the approximation of the deformation gradient by rotations we make use of the
celebrated Friesecke-James-Müller rigidity theorem:

Theorem 2.1 ([13]). Let U be a bounded Lipschitz domain in Rn, n ≥ 2 . There exists a constant
C(U) such that for each v ∈ W 1,2(U,Rn) there is an associated rotation R ∈ SO(n) satisfying

‖∇v −R‖L2(U) ≤ C(U)‖dist (∇v, SO(n)‖L2(U).

Remark 1. The constantC(U) in Theorem 2.1 can be chosen uniformly for a family of domains which
are Bilipschitz equivalent with controlled Lipschitz constant (see also [8, Section 5]). The constant
C(U) is invariant under dilations.
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Building on this estimate, we show the following result.

Theorem 2.2. Let S ⊆ R2 be a Lipschitz domain and Ω := S × (−1
2
, 1

2
). Let y ∈ W 1,2(Ω,R3) and

set

E1 :=

∫
Ω

dist 2(∇hy, SO(3))dx ≤ Ch2, and E2 :=

∫
Ω

dist 2(∇′y′, SO(2))dx ≤ Ch2. (21)

Then there exist mapsRh : S → SO(3), R̃h : S → R3×3,Qh : S → SO(2), and Q̃h : S → R2×2

such that |R̃h| ≤ C , |Q̃h| ≤ C and R̃h ∈ W 1,2(S,R3×3), Q̃h ∈ W 1,2(S,R2×2). Moreover,

‖∇hy(x′, x3)−Rh(x
′)‖2

L2(Ω) ≤ CE1, ‖R̃h(x
′)−Rh(x

′)‖2
L2(S) ≤ CE1, (22)

‖∇′R̃h(x
′)‖2

L2(S) ≤
C

h2
E1, ‖R̃h(x

′)−Rh(x
′)‖2

L∞(S) ≤
C

h2
E1, (23)

‖
∫
I

∇′y′(x)dx3 −Qh(x
′)‖2

L2(S) ≤ CE2, ‖Q̃h(x
′)−Qh(x

′)‖2
L2(S) ≤ CE2, (24)

‖∇′Q̃h(x
′)‖2

L2(S) ≤
C

h2
E2, and ‖Q̃h(x

′)−Qh(x
′)‖2

L∞(S) ≤
C

h2
E2. (25)

Proof. Estimates (22) and (23) can be derived as in [14, Theorem 6], so we omit the proof here.

Let U be an open subset in R2 and let K ⊂ U be compact and such that dist∞(K, ∂U) > 3h,
where dist∞ is the distance with respect to the norm ‖(x1, x2)‖∞ = max{|x1|, |x2|}. For each point
x′ ∈ K we consider the square

Sx′,h := x′ + (0, h)2

with lower left corner x′. Let ψ ∈ C∞c ((0, 1)2) be a standard mollifier, i.e. ψ ≥ 0 and
∫
Rn ψ = 1, and

set ψh(·) = h−2ψ(·/h). We set

F (x′, x3) := ∇′y′(x′, x3) and F̄ (x′) :=

∫
I

F (x′, x3)dx3 (26)

and consider the map

Q̂h(x
′) := (ψh ∗ F̄ )(x′) =

∫
Sx′,h

h−2ψ

(
x′ − z′

h

)∫
I

F (z′, z3)dz3dz
′.

Applying Theorem 2.1 to Sx′,h we obtain that for any fixed z3 ∈ I there exists a rotation Qx′,z3,h such
that ∫

Sx′,h

|F (z′, z3)−Qx′,z3,h|2dz′ ≤ C

∫
Sx′,h

dist 2(F (z′, z3), SO(2))dz′. (27)

Hence, by Hölder’s inequality and Fubini, we also obtain

∫
Sx′,h

∣∣∣∣∣∣
∫
I

F (z′, z3)dz3 −
∫
I

Qx′,z3,hdz3

∣∣∣∣∣∣
2

dz′

≤
∫
I

∫
Sx′,h

|F (z′, z3)−Qx′,z3,h|2dz′dz3 ≤ C

∫
Sx′,h×I

dist 2(F (z), SO(2))dz. (28)
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Consequently, using Hölder’s inequality and (28) we have∣∣∣∣∣∣Q̂h(x
′)−

∫
I

Qx′,z3,hdz3

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣
∫

Sx′,h

h−2ψ

(
x′ − z′

h

)∫
I

F (z′, z3)dz3dz
′ −

∫
Sx′,h

h−2ψ

(
x′ − z′

h

)∫
I

Qx′,z3,hdz3dz
′

∣∣∣∣∣∣∣
2

≤ C

h2

∫
Sx′,h

∣∣∣∣∣∣
∫
I

F (z′, z3)dz3 −
∫
I

Qx′,z3,hdz3

∣∣∣∣∣∣
2

dz′

≤ C

h2

∫
Sx′,h×I

dist 2(F (z), SO(2))dz. (29)

Since
∫
∇ψh = 0, for any point x̃′ ∈ Sx′,h we have from Hölder’s inequality and (28)∣∣∣∇Q̂h(x̃

′)
∣∣∣2

= h−6

∣∣∣∣∣∣∣
∫

Sx̃′,h

∇ψ
(
x̃′ − z′

h

)∫
I

F (z′, z3)dz3dz
′ −

∫
Sx̃′,h

∇ψ
(
x̃′ − z′

h

)∫
I

Qx′,z3,hdz3dz
′

∣∣∣∣∣∣∣
2

≤ C

h4

∫
Sx′,2h

∣∣∣∣∣∣
∫
I

F (z′, z3)dz3 −
∫
I

Qx′,z3,hdz3

∣∣∣∣∣∣
2

dz′

≤ C

h4

∫
Sx′,2h×I

dist 2(F (z), SO(2))dz, (30)

and integrating (30) over Sx′,h we find∫
Sx′,h

∣∣∣∇Q̂h(z
′)
∣∣∣2 dz′ ≤ C

h2

∫
Sx′,2h×I

dist 2(F (z), SO(2))dz. (31)

For any point x̃′ ∈ Sx′,h we have again using (28)∣∣∣Q̂h(x
′)− Q̂h(x̃

′)
∣∣∣2

≤

∣∣∣∣∣∣∣
∫

Sx′,h

h−2ψ

(
x′ − z′

h

)∫
I

F (z′, z3)dz3dz
′ −

∫
Sx̃′,h

h−2ψ

(
x̃′ − z′

h

)∫
I

F (z′, z3)dz3dz
′

∣∣∣∣∣∣∣
2

≤ C

∣∣∣∣∣∣∣
∫

Sx′,h

h−2ψ

(
x′ − z′

h

)∫
I

F (z′, z3)dz3dz
′ −

∫
Sx′,h

h−2ψ

(
x′ − z′

h

)∫
I

Qx′,z3,hdz3dz
′

∣∣∣∣∣∣∣
2
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+ C

∣∣∣∣∣∣∣
∫

Sx̃′,h

h−2ψ

(
x̃′ − z′

h

)∫
I

F (z′, z3)dz3dz
′ −

∫
Sx̃′,h

h−2ψ

(
x̃′ − z′

h

)∫
I

Qx′,z3,hdz3dz
′

∣∣∣∣∣∣∣
2

≤ C

h2

∫
Sx′,2h

∣∣∣∣∣∣
∫
I

F (z′, z3)dz3 −
∫
I

Qx′,z3,hdz3

∣∣∣∣∣∣
2

dz′

≤ C

h2

∫
Sx′,2h×I

dist 2(F (z), SO(2))dz. (32)

Combining (28), (29), and (32) we obtain

∫
Sx′,h

∣∣∣∣∣∣Q̂h(z
′)−

∫
I

F (z′, z3)dz3

∣∣∣∣∣∣
2

dz′

≤ C

( ∫
Sx′,h

∣∣∣Q̂h(z
′)− Q̂h(x

′)
∣∣∣2 dz′ + ∫

Sx′,h

∣∣∣∣∣∣Q̂h(x
′)−

∫
I

Qx′,z3,hdz3

∣∣∣∣∣∣
2

dz′

+

∫
Sx′,h

∣∣∣∣∣∣
∫
I

Qx′,z3,hdz3 −
∫
I

F (z′, z3)dz3

∣∣∣∣∣∣
2

dz′

)

≤ C

∫
Sx′,h×I

dist 2(F (z), SO(2))dz. (33)

Finally, setting g(ζ) := dist (Q̂h(x
′ + hζ), SO(2)) and taking into account (30), (33) we arrive at∫

(0,1)2
|g|2dζ + sup

(0,1)2
|∇′g|2

=

∫
Sx′,h

dist 2(Q̂h(z
′), SO(2))dz′ + sup

Sx′,h

|∇′dist (Q̂h(z
′), SO(2))|2

≤ C

( ∫
Sx′,h

|Q̂h(z
′)−

∫
I

F (z′, z3)dz3|2dz′ +
∫

Sx′,h

dist 2(

∫
I

F (z′, z3)dz3, SO(2))dz′

+ sup
Sx′,h

|∇′Q̂h(z
′)|2
)
≤ C

h2

∫
Sx′,2h×I

dist 2(F (z), SO(2))dz.

Consequently,

dist 2(Q̂h(x̃
′), SO(2)) ≤ sup

(0,1)2
|g|2 ≤ C(

∫
(0,1)2

|g|2dζ + sup
(0,1)2
|∇′g|2)

≤ C

h2

∫
Sx′,2h×I

dist 2(F (z), SO(2))dz, (34)
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and integrating (34) we obtain∫
Sx′,h

dist 2(Q̂h(x̃
′), SO(2))dx̃′ ≤ C

h2

∫
Sx′,h

∫
Sx′,2h×I

dist 2(F (z), SO(2))dzdx̃′

≤ C

∫
Sx′,h×I

dist 2(F (z), SO(2))dz. (35)

Now we consider a lattice of squares of size h in R2 and sum (31), (33) over all squares which intersect
K . This yields∫
K

|Q̂h(x
′)−

∫
I

F (x′, x3)dx3|2 + h2|∇′Q̂h(x
′)|2
 dx′ ≤ C

∫
U×I

dist 2(F (x), SO(2))dx. (36)

Following [14] we consider S to be locally the epigraph of a Lipschitz function, then arguing as in [14]
and applying the above estimates we get∫

K∩S

|Q̂h(x
′)−

∫
I

F (x′, x3)dx3|2 + h2|∇′Q̂h(x
′)|2
 dx′ (37)

≤C
∫
U×I

dist 2(F (x), SO(2))dx.

Since S is Lipschitz, its closure S̄ can be covered by a finite number of open cubes U0, ..., Ul, where
Ū0 ⊂ S. Denote Q̂i the maps constructed in previous steps for Ui and consider a partition of unity
corresponding to the cover {Ui}

ηi ∈ C∞0 (Ui), ηi ≥ 0,
l∑

i=0

ηi(x
′) = 1, ∀x′ ∈ S.

If we set

Q̃h =
l∑

i=0

ηiQ̂i (38)

then

Q̃h −
∫
I

Fdx3 =
l∑

i=0

ηi(Q̂i −
∫
I

Fdx3) and ∇′Q̃h =
l∑

i=0

ηi∇′Q̂i +
l∑

i=0

∇′ηi(Q̂i −
∫
I

Fdx3).

Consequently, applying (36) and (37) with Ki = supp ηi we obtain∫
S

|Q̃h(x
′)−

∫
I

F (x′, x3)dx3|2 + h2|∇′Q̃h(x
′)|2
 dx′ ≤ CE2. (39)

Note that this implies in particular that ‖∇′Q̃h(x
′)‖2

L2(S) ≤
C
h2
E2, which is the first part of assertion

of (24). From (34) we obtain

sup
S

dist 2(Q̃h(x
′), SO(2)) ≤ C

h2
sup
x′∈S

∫
(Bx′,c0h

∩S)×I

dist 2(∇′y(z), SO(2))dz ≤ C

h2
E2 ≤ C (40)

DOI 10.20347/WIAS.PREPRINT.3216 Berlin 2025



Derivation of the Reissner–Mindlin model from nonlinear elasticity 13

where c0 depends only on S. Note that this estimate implies in particular

‖Q̃h‖L∞(S) ≤ C. (41)

It follows from (35) that ∫
S

dist 2(Q̃h(x̃
′), SO(2))dx̃′ ≤ CE2. (42)

Now the rotation Qh can be obtained as projection of Q̃h onto SO(2). More precisely, since SO(2)
is a smooth manifold, there exists a tubular neighbourhood U of SO(2) such that the projection
π : U → SO(2) is smooth. In particular, there exists some δ > 0 such that for all M 6∈ U , there
holds dist (M,SO(2)) > δ. Let

π̃ : R2×2 → SO(2), π̃(M) :=

{
π(M) M ∈ U ,
Id M /∈ U ,

(43)

and set Qh := π̃ ◦Qh. If Q̃h(x
′) ∈ U then |Qh(x

′)− Q̃h(x
′)| = dist (Q̃h, SO(2)). If Q̃h(x

′) /∈ U
then dist (Q̃h(x

′), SO(2)) > δ, and with (41) we obtain |Qh(x
′)− Q̃h(x

′)| ≤ Cdist (Q̃h, SO(2)).
Consequently, with (40) we obtain

‖Qh(x
′)− Q̃h(x

′)‖2
L∞(S) = sup

S
|Qh(x

′)− Q̃h(x
′)|2 ≤ C sup

S
dist 2(Q̃h, SO(2)) ≤ C

h2
E2, (44)

which shows the second assertion of (25). Similarly, with (42) we deduce∫
S

|Qh(x
′)− Q̃h(x

′)|2dx′ ≤ C

∫
S

dist 2(Q̃h, SO(2))dx′ ≤ CE2, (45)

which is the second assertion of (24). Finally, combining (39) and (45) we obtain the first assertion of
(24). This concludes the proof of Theorem 2.2.

Remark 2. LetU1 andU2 be neighborhoods ofSO(3) andSO(2) such that the respective projections
onto SO(3) and SO(2) are smooth. If we assume thatEi ≤ Ch2+ε for some ε > 0 then (for h small
enough) we obtain from (23) and (25) that R̃h(x

′) ∈ U1 and Q̃(x′) ∈ U2. It follows that the the maps
Rh : S → SO(3) andQh : S → SO(2) which are obtained by projections onto SO(3) and SO(2),
respectively, are actually also in W 1,2, and it holds

‖∇′Rh(x
′)‖2

L2(S) ≤ ‖∇′R̃h(x
′)‖2

L2(S) ≤
C

h2
E1, (46)

‖∇′Qh(x
′)‖2

L2(S) ≤ ‖∇′Q̃h(x
′)‖2

L2(S) ≤
C

h2
E2. (47)

Thus in this case the estimates from Theorem 2.2 (more precisely the first assertions of (23) and (25))
hold for Rh and Qh directly.

Corollary 1. Under the assumptions of Theorem 2.2 there exists a constant rotation P ′h ∈ SO(2)
such that

‖
∫
I

∇′y′(x)dx3 − P ′h‖2
L2(S) ≤

C

h2
E2, and (48)

‖Qh(x
′)− P ′h‖2

Lp(S) ≤
C

h2
E2, 1 ≤ p <∞. (49)
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Proof. We use the notation from Theorem 2.2 and from (43) and define

P ′h = π̃

(
1

|S|

∫
S

Q̃h(x
′)dx′

)
.

It follows from Poincaré’s inequality that

‖Q̃h(x
′)− P ′h‖2

L2(S)

≤C

(∥∥∥∥π̃(Q̃h(x
′))− π̃

(
1

|S|

∫
S

Q̃h(x
′)dx′

)∥∥∥∥2

L2(S)

+
∥∥∥Q̃h(x

′)− π̃(Q̃h(x
′))
∥∥∥2

L2(S)

)

≤C
(
‖∇′Q̃h(x

′)‖2
L2(S) +

∫
S

dist 2(Q̃h(x
′), SO(2))dx′

)
≤ C

E2

h2
.

Hence by the Sobolev embedding, we have for 1 ≤ p <∞

‖Q̃h(x
′)− P ′h‖2

Lp(S) ≤C‖Q̃h(x
′)− P ′h‖2

W 1,2(S) ≤ C
(
‖Q̃h(x

′)− P ′h‖2
L2(S) + ‖∇′Q̃h(x

′)‖2
L2(S)

)
≤C
h2
E2,

where in the last step we used the first estimate in (25). Then (48) and (49) follow with (24), (25).

Now we define R′h as 2× 2 submatrix of the rotation matrix Rh, and the rotation Ph ∈ SO(3) via

Rh =

 R′h 0
0

0 0 1

 , and Ph :=

 P ′h 0
0

0 0 1

 . (50)

Corollary 2. Under the assumptions of Theorem 2.2 the constant rotationP ′h ∈ SO(2) from Corollary
1 satisfies

‖R′h(x′)− P ′h‖2
L2(S) ≤ C

(
E2

h2
+ E1

)
(51)

and

‖Rh
33 − 1‖2

L2(S) ≤ C

(
E2

h2
+ E1

)
. (52)

Proof. We obtain from (22) and Hölder’s inequality that

‖R′h(x′)−
∫
I

∇′y′(x)dx3‖2
L2(S) ≤

∫
S

∫
I

|R′h(x′)−∇′y′(x)|2 dx3dx
′,

and hence with (48), we deduce

‖R′h(x′)− P ′h‖2
L2(S) ≤C

‖R′h(x′)− ∫
I

∇′y′(x)dx3‖2
L2(S) + ‖

∫
I

∇′y′(x)dx3 − P ′h‖2
L2(S)


≤C

(
E2

h2
+ E1

)
,
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which completes the proof of (51).
We now turn to the proof of (52). We denote the entries of the matrices Rh and P ′h by Rh

ij and P h
ij ,

respectively. Since Rh and P ′h are rotations it holds for j = 1, 2 that

|Rh
j1|2 + |Rh

j2|2 + |Rh
j3|2 = 1 = |P h

j1|2 + |P h
j2|2.

Consequently, for j = 1, 2

|Rh
j3|2 = |P h

j1|2 − |Rh
j1|2 + |P h

j2|2 − |Rh
j2|2

= (|P h
j1|+ |Rh

j1|)(|P h
j1| − |Rh

j1|) + (|P h
j2|+ |Rh

j2|)(|P h
j2| − |Rh

j2|)
≤ C(|P h

j1|+ |Rh
j1|+ |P h

j2|+ |Rh
j2|)(|P h

j1 −Rh
j1|+ |P h

j2 −Rh
j2|).

Then, using a similar argument for R3j and Hölder’s inequality it follows from (51) that

‖Rh
j3‖2

L2(S) + ‖Rh
3j‖2

L2(S) ≤ C

√
E2

h2
+ E1, j = 1, 2. (53)

Next we use that

| detR′h − 1|
=| detR′h − detP ′h|
=|Rh

11R
h
22 −Rh

12R
h
21 − P h

11P
h
22 + P h

12P
h
21|

≤|Rh
11R

h
22 − P h

11R
h
22|+ |P h

11R
h
22 − P h

11P
h
22|+ |P h

12R
h
21 −Rh

12R
h
21|+ |P h

12P
h
21 − P h

12R
h
21|

≤(3|Rh|+ |P ′h|)|R′h − P ′h|. (54)

On the other hand, it holds

1 = detRh = Rh
33 detR′h −Rh

32(Rh
11R

h
23 −Rh

13R
h
21) +Rh

31(Rh
12R

h
23 −Rh

13R
h
22).

Therefore,

|Rh
33 − 1|2 ≤C

(
|Rh

33|2| detR′h − 1|2 + |Rh
32|2(|Rh

11|2 + |Rh
21|2)(|Rh

23|2 + |Rh
13|2)

+|Rh
31|2(|Rh

12|2 + |Rh
22|2)(|Rh

23|2 + |Rh
13|2)

)
. (55)

Hence, integrating and using |Rh
33| ≤ 1, (54), (55) and (53) we conclude

‖Rh
33 − 1‖2

L2(S) ≤ C

(
E2

h2
+ E1

)
, (56)

which concludes the proof of (52).

Let us now assume that Ih(yh) ≤ CEh, where

lim
h→0

Eh
h2

= 0.

Then it follows from the structure of the functional (9) and properties (A3), (A4) that E2 ≤ CEh
and E1 ≤ C Eh

h2
, where Ei are defined in (21). In order to normalize the functions yh, we prove the

following lemma, c.f. [14].
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Lemma 2.3. Let S ⊆ R2 be a Lipschitz domain and Ω = S × (−1
2
, 1

2
). Let a sequence yh satisfy

Ih(yh) ≤ CEh, where

lim
h→0

Eh
h2

= 0. (57)

Let assumptions (A3), (A4) be satisfied. Then there exist a rotation Bh ∈ SO(3) and ch ∈ R3 such
that the following assertions hold for Bh and the functions

ỹh := (Bh)
T (Ph)

T (yh − ch). (58)

The rotation Bh has the form Bh =

 B′h 0
0

0 0 1

,

|B′h − Id| ≤ Ch−1
√
Eh, (59)∫

Ω

(ỹh1,2 − ỹh2,1)dx = 0, and (60)

∫
Ω

ỹh −
(

x′

hx3

)
dx = 0. (61)

Proof. We suppose that h is small enough such that Eh
h
< 1. It is easy to see that (61) is satisfied

after a proper choice of the constants ch. We use the notation

ȳh = (Ph)
Tyh.

It follows from (48) with Hölder’s inequality and E2 ≤ CEh that∣∣∣∣∣∣ 1

|Ω|

∫
Ω

∇′y′hdx− Id

∣∣∣∣∣∣ ≤ C

√
Eh
h

. (62)

It remains to find θ ∈ (−π, π] such that the rotation Bh
′ ∈ SO(2),

Bh
′ =

(
cos θ − sin θ
sin θ cos θ

)
satisfies (59) and (60) . It follows from (62) that for h > 0 small enough∫

Ω

(ȳh1,1 + ȳh2,2)dx

2

≥C

1−

∫
Ω

(ȳh1,1 − 1)dx

2

−

∫
Ω

(ȳh2,2 − 1)dx

2 (63)

≥C
(

1− Eh
h2

)
> 0.

In case
∫
Ω

(ȳh1,2 − ȳh2,1)dx = 0, we can choose Bh
′ = Id. If this is not the case, in order to satisfy

property (60), we choose θ such that

cot θ =

∫
Ω

(ȳh1,1 + ȳh2,2)dx∫
Ω

(ȳh2,1 − ȳh1,2)dx
.
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Furthermore, using (62) and (63) we then obtain

| sin θ| =
√

1

1 + cot2 θ
≤ C

|
∫
Ω

(ȳh2,1 − ȳh1,2)dx|√(∫
Ω

(ȳh2,1 − ȳh1,2)dx

)2

+

(∫
Ω

(ȳh1,1 + ȳh2,2)dx

)2
≤ C

√
Eh
h

(64)

and

| cos θ − 1| =
∣∣∣∣ | cot θ|√

1 + cot2 θ
− 1

∣∣∣∣ ≤ C

(∫
Ω

(ȳh2,1 − ȳh1,2)dx

)2

(∫
Ω

(ȳh2,1 − ȳh1,2)dx

)2

+

(∫
Ω

(ȳh1,1 + ȳh2,2)dx

)2 (65)

≤ C
Eh
h2
.

Combining (64) and (65) we obtain (59).

Next, we define

Ũh(x′) =

∫
I

(
ỹh1
ỹh2

)
(x′, x3)− x′dx3 and V h(x′) =

∫
I

yh3dx3. (66)

Lemma 2.4. Let S ⊆ R2 be a Lipschitz domain and Ω = S × (−1
2
, 1

2
). Let yh be a sequence with

Ih(yh) ≤ CEh, where Eh satsifies (57). Let assumptions (A3) and (A4) be satisfied. Then there
exists ũ ∈ W 1,2(S;R2) such that up to a (non-relabeled) subsequence

ũh := min

{
1√
Eh

,
h2

Eh

}
Ũh ⇀ ũ in W 1,2(S;R2). (67)

Proof. We set Ã′h := h√
Eh

((B′h)
T (P ′h)

TQh − Id). Using (A4), (47) (49), and (59) we obtain

‖Ã′h‖2
W 1,2(S) ≤

Ch2

Eh
(‖∇′Qh‖2

L2(S) + ‖Qh − P ′h‖2
L2(S) + ‖B′h − Id‖2

L2(S)) ≤ C,

and thus by the Sobolev embedding

‖Ã′h‖Lp(S) ≤ C, ∀ 1 ≤ p <∞. (68)

Since

(Ã′h)
T Ã′h =

h2

Eh
(QT

hP
′
hB
′
h − Id)((B′h)

T (P ′h)
TQh − Id) = − h√

Eh
((Ã′h)

T + Ã′h)

= − h

2
√
Eh

sym Ã′h = − sym
h2

2Eh
((B′h)

T (P ′h)
TQh − Id)

we obtain from (68) with Hölder’s inequality that

h2

Eh
‖ sym((B′h)

T (P ′h)
TQh − Id)‖L2(S) ≤ C‖Ã′h‖2

L4(S) ≤ C. (69)
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Then, combining this with (24) we arrive at

‖ sym∇′Ũh‖L2(S)

=‖ sym

∫
I

∇′(ỹh)′dx3 − Id

 ‖L2(S)

≤‖ sym

∫
I

∇′(ỹh)′dx3 − (B′h)
T (P ′h)

TQh

 ‖L2(S) + ‖ sym((B′h)
T (P ′h)

TQh − Id)‖L2(S)

≤C(
√
Eh +

Eh
h2

).

Using Korn’s inequality and normalizations (61), (60) we infer the assertion of the lemma.

Now we consider

Uh(x′) :=

∫
I

(
yh1
yh2

)
(x′, x3)− x′dx3, (70)

and recall that the quantities P ′h,B′h andQh were introduced in Corollary 1, Lemma 2.3, and Theorem
2.2, respectively.

Lemma 2.5. Let a sequence yh satisfy the assumptions of Lemma 2.4. Then it holds

|P ′hB′h − Id|2 ≤ C max

(
E2
h

h4
, Eh

)
, (71)

|P ′h − Id|2 ≤ C
Eh
h2
, and (72)

‖Qh(x
′)− Id‖2

L2(S) ≤ C
Eh
h2
. (73)

Moreover, there exists u ∈ W 1,2(S;R2) such that up to a (non-relabeled) subsequence

uh := min

(
1√
Eh

,
h2

Eh

)
Uh ⇀ u in W 1,2(S;R2). (74)

Proof. The proof is similar to that presented in [21]. From (58) we infer the relation

y′h = P ′hB
′
h(ỹ

h)′ + (ch)′. (75)

It follows from (75) and the definitions of uh and ũh that

max(h−2Eh,
√
Eh)u

h = (P ′hB
′
h − Id)x′ + max(h−2Eh,

√
Eh)P

′
hB
′
hũ

h + (ch)′. (76)

Due to the Dirichlet boundary conditions of functions with finite energy we have that uh = 0 on ∂S.
Combining (67) and (76) and using the trace theorem we obtain

‖(P ′hB′h − Id)x′ + (ch)′‖2
L2(∂S) ≤ max(h−4E2

h, Eh)‖ũh‖2
L2(∂S)

≤ C max(h−4E2
h, Eh)‖ũh‖2

W 1,2(S) ≤ C max(h−4E2
h, Eh). (77)
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Without loss of generality we may assume∫
∂S

x′ dH1 = 0 and

∫
∂S

|x′|2 dH1 > 0.

For any P ∈ SO(2) a straightforward computation shows, c.f. [21],

2|(P − Id)x′|2 = |(P − Id)|2|x′|2. (78)

Therefore, (77) yields
|(ch)′| ≤ C max(h−2Eh,

√
Eh). (79)

This together with (77) and (78) gives (71). Collecting (71),(76), (79) we arrive at

‖∇′uh‖2
L2(S) ≤ C.

Taking into account the Dirichlet boundary conditions we obtain (74). Combining (59) and (71) we get
(72). Finally, (73) is a consequence of (49) and (72).

Lemma 2.6. Under the assumptions of Lemma 2.5 and (A3) it holds

‖ sym(Rh − Id)‖2
L2(S) ≤ C

Eh
h2

and (80)

‖∇hy
h − Id‖2

L2(Ω) ≤ C
Eh
h2
. (81)

Moreover, there exists v ∈ W 1,2(S) such that it holds up to a (non-relabeled) subsequence that

vh(x′) :=
h√
Eh

V h(x′) ⇀ v in W 1,2(S). (82)

Proof. Since Rh is a rotation we have for i = 1, 2

Rh
i1R

h
31 +Rh

i2R
h
32 +Rh

i3R
h
33 = 0.

Therefore,

Rh
21R

h
31 + (Rh

22 − 1)Rh
32 +Rh

23(Rh
33 − 1) = Rh

32 +Rh
23,

(Rh
11 − 1)Rh

31 +Rh
12R

h
32 +Rh

13(Rh
33 − 1) = Rh

31 +Rh
13.

Consequently, using (51), (52) and (72) we obtain

‖Rh
32 +Rh

23‖2
L2(S) ≤ ‖Rh

21‖2
L2(S)‖Rh

31‖2
L∞(S) + ‖(Rh

22 − 1)‖2
L2(S)‖Rh

32‖2
L∞(S)

+‖Rh
23‖2

L∞(S)‖(Rh
33 − 1)‖2

L2(S) ≤ C
Eh
h2
, (83)

‖Rh
31 +Rh

13‖2
L2(S) ≤ ‖(Rh

11 − 1)‖2
L2(S)‖Rh

31‖2
L∞(S) + ‖Rh

12‖2
L2(S)‖Rh

32‖2
L∞(S)

+‖Rh
13‖2

L∞(S)‖(Rh
33 − 1)‖2

L2(S) ≤ C
Eh
h2
. (84)

Then, it follows from (51) (56), (72), (83), (84) that

‖ sym(Rh − Id)‖2
L2(S) ≤ C(‖R′h − P ′h‖2

L2(S) + ‖P ′h − I‖2
L2(S)
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+‖Rh
31 +Rh

13‖2
L2(S) + ‖Rh

32 +Rh
23‖2

L2(S) + ‖(Rh
33 − 1)‖2

L2(S)) ≤ C
Eh
h2
.

Therefore, using (22) we obtain

‖ sym(∇hy
h − Id)‖2

L2(Ω) ≤ C(‖ sym(Rh − Id)‖2
L2(S)

+‖∇hy
h −Rh‖2

L2(Ω)) ≤ C
Eh
h2
.

Using the Dirichlet boundary conditions and Proposition 1 in [15] we obtain (81). Then (82) is a con-
sequence of (81).

Theorem 2.7. Suppose that S ∈ R2 is a Lipschitz domain and Ω = S × (−1
2
, 1

2
). Let yh be a

sequence such that Ih(yh) ≤ CEh, where Eh satisfies lim
h→0

Eh
h2

= 0. Then for any fixed x3 ∈ I and

h small enough there exists a map Th(x′, x3) : Ω→ SO(2) such that

‖∇′(yh)′(x)− Th(x)‖2
L2(Ω) ≤ CEh, (85)

‖Th(x′, x3)− Id‖2
Lp(Ω) ≤ C max

(
E

2
p

h ,
Eh
h2

)
, 2 ≤ p <∞. (86)

Proof. 1 First we prove that there exists a map T̃h(x′, x3) : Ω→ R2×2 such that

‖∇′(yh)′(x)− T̃h(x)‖2
L2(Ω) ≤ CEh, (87)

‖∇′T̃h(x′, x3)‖2
L2(Ω) ≤ C

Eh
h2
. (88)

As in the proof of Theorem 2.2 we consider an open subset U ⊆ R2 and K ⊆ U compact
such that dist∞(K, ∂U) > 3h. For each point x′ ∈ K we consider the square

Sx′,h = x′ + (0, h)2

with lower left corner x′ and define the map

T̂h(x
′, x3) =

∫
Sx′,h

h−2ψ

(
x′ − z′

h

)
F (z′, x3)dz′, (89)

where F is defined in (26) and ψ is a standard mollifier. We also use the notation ψh(·) =
h−2ψ(·/h). Using the Hölder’s inequality and the rotation Qx,x3,h defined in (27) we get∣∣∣T̂h(x′, x3)−Qx′,x3,h

∣∣∣2
=

∣∣∣∣∣∣∣
∫

Sx′,h

h−2ψ

(
x′ − z′

h

)
F (z′, x3)dz′ −

∫
Sx′,h

h−2ψ

(
x′ − z′

h

)
Qx′,x3,hdz

′

∣∣∣∣∣∣∣
2

≤C
h2

∫
Sx′,h

|F (z′, x3)−Qx′,x3,h|
2
dz′

≤C
h2

∫
Sx′,h

dist 2(F (z′, x3), SO(2))dz′. (90)
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Since
∫
∇ψh = 0, using (28) and Hölder’s inequality we find for any point x̃′ ∈ Sx′,h∣∣∣∇′T̂h(x̃′, x3)

∣∣∣2
=

∣∣∣∣∣∣∣
∫

Sx̃′,h

h−3(∇ψ)

(
x̃′ − z′

h

)
F (z′, x3)dz′ −

∫
Sx̃′,h

h−3(∇ψ)

(
x̃′ − z′

h

)
Qx′,x3,hdz

′

∣∣∣∣∣∣∣
2

≤C
h4

∫
Sx′,2h

|F (z′, x3)−Qx′,x3,h|
2
dz′

≤C
h4

∫
Sx′,2h

dist 2(F (z′, x3), SO(2))dz′. (91)

Integrating this inequality over Sx′,h × I yields∫
Sx′,h×I

∣∣∣∇′T̂h(z′, x3)
∣∣∣2 dz′dx3 ≤

C

h2

∫
Sx′,h×I

dist 2(F (z′, x3), SO(2))dz′dx3. (92)

For any point x̃′ ∈ Sx′,h we have∣∣∣T̂h(x′, x3)− T̂h(x̃′, x3)
∣∣∣2

≤

∣∣∣∣∣∣∣
∫

Sx′,h

h−2ψ

(
x′ − z′

h

)
F (z′, x3)dz′ −

∫
Sx̃′,h

h−2ψ

(
x̃′ − z′

h

)
F (z′, x3)dz′

∣∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣
∫

Sx′,h

h−2ψ

(
x′ − z′

h

)
F (z′, x3)dz′ −

∫
Sx′,h

h−2ψ

(
x′ − z′

h

)
Qx′,x3,hdz

′

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∫

Sx̃′,h

h−2ψ

(
x̃′ − z′

h

)
F (z′, x3)dz′ −

∫
Sx̃′,h

h−2ψ

(
x̃′ − z′

h

)
Qx′,x3,hdz

′

∣∣∣∣∣∣∣
2

≤C
h2

∫
Sx′,2h

|F (z′, x3)−Qx′,x3,h|
2
dz′

≤C
h2

∫
Sx′,2h

dist 2(F (z′, x3), SO(2))dz′. (93)

Combining this with (27) and (90) yields∫
Sx′,h

∣∣∣T̂h(z′, x3)− F (z′, z3)
∣∣∣2 dz′

≤
∫

Sx′,h

∣∣∣T̂h(z′, x3)− T̂h(x′, x3)
∣∣∣2 dz′ + ∫

Sx′,h

∣∣∣T̂h(x′, x3)−Qx′,x3,h

∣∣∣2 dz′
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+

∫
Sx′,h

|Qx′,x3,h − F (z′, x3)|2 dz′

≤C
∫

Sx′,h

dist 2(F (z′, x3), SO(2))dz′ (94)

Finally, setting g(ζ) = dist (T̂h(x
′ + hζ, x3), SO(2)) and taking into account (91), (94) we

come to ∫
(0,1)2

|g|2dζ + sup
(0,1)2
|∇′g|2 dz′

=

∫
Sx′,h

dist 2(T̂h(z
′, x3), SO(2))dz′ + sup

Sx′,h

|∇′dist (T̂h(z
′, x3), SO(2))|2

≤C
( ∫
Sx′,h

|T̂h(z′, x3)− F (z′, x3)|2dz′ +
∫

Sx′,h

dist 2(F (z′, x3), SO(2))dz′

+ sup
Sx′,h

|∇′T̂h(z′, x3)|2
)

≤C
h2

∫
Sx′,2h

dist 2(F (z′, x3), SO(2))dz′.

Consequently,

dist 2(T̂h(x̃
′, x3), SO(2)) ≤ sup

(0,1)2
|g|2 ≤ C(

∫
(0,1)2

|g|2dζ + sup
(0,1)2
|∇′g|2)

≤ C

h2

∫
Sx′,2h

dist 2(F (z′, x3), SO(2))dz′,

and thus∫
Sx′,h

dist 2(T̂h(x̃
′, x3), SO(2))dx̃′ ≤ C

h2

∫
Sx′,h

∫
Sx̃′,2h

dist 2(F (z′, x3), SO(2))dz′dx̃′

≤ C

h2

∫
Sx′,h

∫
Sx′,4h

dist 2(F (z′, x3), SO(2))dz′dx̃′

≤ C

∫
Sx′,h

dist 2(F (z′, x3), SO(2))dz′. (95)

Now we consider a square lattice of size h in R2 and sum the inequalities (92), (94) over all
squares which intersect K . This yields∫

K×I

(
|T̂h(x′, x3)− F (x′, x3)|2 + h2|∇′T̂h(x′, x3)|2

)
dx′dx3 (96)

≤C
∫
U×I

dist 2(F (x), SO(2))dx.
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Following [14] we consider S to be locally the epigraph of a Lipschitz function, then arguing as
in [14] and applying the above estimates we get∫

K∩S×I

(
|T̂h(x′, x3)− F (x′, x3)|2 + h2|∇′T̂h(x′, x3)|2

)
dx′dx3 (97)

≤C
∫
U×I

dist 2(F (x), SO(2))dx.

Since S is Lipschitz S̄ can be covered by a finite number of open sets U0, ..., Ul, where Ū0 ⊂
S. Denote T̂i the maps constructed in previous steps for Ti and consider a partition of unity
correspondent to the cover {Ti}

ηi ∈ C∞0 (Ui), ηi ≥ 0,
l∑

i=0

ηi(x
′) = 1, ∀x′ ∈ S.

If we set

T̃h =
l∑

i=0

ηiT̂i (98)

then

T̃h − F =
l∑

i=0

ηi(T̂i − F ), and ∇′T̃h =
l∑

i=0

ηi∇′T̂i +
l∑

i=0

∇′ηi(T̂i − F ).

Consequently, applying (96) and (97) with Ki = supp ηi we obtain∫
Ω

(
|T̃h(x′, x3)− F (x′, x3)|2 + h2|∇′T̃h(x′, x3)|2

)
dx ≤ CEh, (99)

which proves (87) and (88). It follows from (95) that∫
Ω

dist 2(T̃h(x
′, x3), SO(2))dx ≤ CEh,

and hence∫
Ω

|T̃h(x′, x3)|2dx ≤ C

∫
Ω

( inf
P∈SO(2)

|T̃h(x′, x3)− P |2 + 1) dx ≤ C(Eh + 1) ≤ C. (100)

2 Now the rotation Th can be obtained by projecting T̃h onto SO(2). Since SO(2) is a smooth
manifold, there exists a tubular neighborhood U of SO(2) such that the projection π : U →
SO(2) is smooth. Note that there exists a δ > 0 such that for all M 6∈ U there holds
dist (M,SO(2)) ≥ δ. We define

Th(x
′, x3) = π̃(T̃h(x

′, x3)) =

{
cπ(T̃h(x

′, x3)) if T̃h(x′, x3) ∈ U ,
Id if T̃h(x′, x3) /∈ U .

Then in case T̃h(x′, x3) ∈ U we have |Th(x′, x3)− T̃h(x′, x3)| = dist (T̃h(x
′, x3), SO(2)).

If T̃h(x′, x3) /∈ U then dist 2(T̃h(x
′, x3), SO(2))dx > δ2, and hence

|Th(x′, x3)− T̃h(x′, x3)|2 =|Id− T̃h(x′, x3)|2
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≤C(1 + dist2(Th(x
′, x3), SO(2)))

≤C
(

1

δ2
+ 1

)
dist2(Th(x

′, x3), SO(2)).

Integration over Ω then yields∫
Ω

|Th(x′, x3)− T̃h(x′, x3)|2dx ≤ C

∫
Ω

dist 2(T̃h(x
′, x3), SO(2))dx ≤ CEh,

which together with (87) gives (85).

3 Let Ω′ be any compact subset of Ω and |s| < dist (Ω′, ∂Ω). It follows from (89), integration by
parts and Hölder’s inequality that for any s > 0∣∣∣∣∣ T̂h(x′, x3 + s)− T̂h(x′, x3)

s

∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∫

Sx′,h

h−2ψ

(
x′ − z′

h

)
∇′(yh)′(z′, x3 + s)−∇′(yh)′(z′, x3)

s
dz′

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∫

Sx′,h

h−3∇′ψ
(
x′ − z′

h

)
(yh)′(z′, x3 + s)− (yh)′(z′, x3)

s
dz′

∣∣∣∣∣∣∣
2

≤Ch−4

∫
Sx′,h

∣∣∣∣(yh)′(z′, x3 + s)− (yh)′(z′, x3)

s

∣∣∣∣2 dz′. (101)

After integration of (101) over Sx′,h × I we obtain∫
Sx′,h×I

∣∣∣∣∣ T̂h(x′, x3 + s)− T̂h(x′, x3)

s

∣∣∣∣∣
2

dx

≤Ch−2

∫
Sx′,h×I

∣∣∣∣(yh)′(x′, x3 + s)− (yh)′(x′, x3)

s

∣∣∣∣2 dx.
Therefore, since Ω′ is arbitrary, we get for the map T̃h defined in (98) that∥∥∥∥∥ T̃h(x′, x3 + s)− T̃h(x′, x3)

s

∥∥∥∥∥
2

L2(Ω)

≤ C

h2

∥∥∥∥(yh)′(x′, x3 + s)− (yh)′(x′, x3)

s

∥∥∥∥2

L2(Ω)

.

Passing to the limit s→ 0 and using (81) we obtain

‖∂3T̃h(x
′, x3)‖2

L2(Ω) ≤
C

h2
‖∂3(yh)′(x′, x3)‖2

L2(Ω) ≤ C
Eh
h2
.

Combining this with (99) yields

‖∇T̃h(x′, x3)‖2
L2(Ω) ≤ C

Eh
h2
. (102)
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This implies that for the constant map S ′h = 1
|Ω|

∫
Ω

T̃h(x)dx we have

‖
∫
I

T̃h(x
′, x3)dx3 − S ′h‖2

L2(S) ≤C‖T̃h(x′, x3)− S ′h‖2
L2(Ω) (103)

≤C‖∇T̃h(x′, x3)‖2
L2(Ω) ≤ C

Eh
h2
.

Together with (24), (49) and (87) one may then derive

|S ′h − P ′h|2

≤C(‖S ′h −
∫
I

T̃h(x
′, x3)dx3‖2

L2(S) + ‖
∫
I

T̃h(x
′, x3)dx3 −

∫
I

∇′(yh)′(x)dx3‖2
L2(S)

+ ‖
∫
I

∇′(yh)′(x)dx3 −Qh(x
′)‖2

L2(S) + ‖Qh(x
′)− P ′h‖2

L2(S))

≤CEh
h2
. (104)

Combining this with (72), (103) implies

‖T̃h(x′, x3)− Id‖2
L2(Ω) ≤C(‖T̃h(x′, x3)− S ′h‖2

L2(Ω) + |S ′h − P ′h|2 + |P ′h − Id|2) (105)

≤CEh
h2
.

By the Sobolev embedding one may then derive from (102) and (105) for any 1 ≤ p <∞ that

‖T̃h(x′, x3)− Id‖2
Lp(Ω) ≤ C‖T̃h(x′, x3)− Id‖2

W 1,2(Ω) ≤ C
Eh
h2
. (106)

In case T̃h(x′, x3) /∈ U , it follows from the definition of the term Th(x
′, x3) that ‖Th(x′, x3)−

Id‖2
Lp(S) = 0. In case T̃h(x′, x3) ∈ U it holds

|Th(x′, x3)− T̃h(x′, x3)| = dist (T̃h(x
′, x3), SO(2)) < δ.

Hence, it holds for all 2 ≤ p <∞ that

|Th(x′, x3)− Id|p ≤ C
(

dist p(T̃h(x
′, x3), SO(2)) + |T̃ (x′, x3)− Id|p

)
.

Consequently, it follows for any 2 ≤ p <∞ and any x3 ∈ I
‖Th(x′, x3)− Id‖pLp(S)

≤C

∫
S

dist p(T̃h(x
′, x3), SO(2))dx′ + ‖T̃ (x′, x3)− Id‖pLp(S)

 .

Integrating this inequality over I with respect to x3 we infer

‖Th(x′, x3)− Id‖2
Lp(Ω)

≤C

∫
Ω

dist p(T̃h(x
′, x3), SO(2))dx

 2
p

+ C‖T̃h(x′, x3)− Id‖2
Lp(Ω)

≤C max

(
E

2
p

h ,
Eh
h2

)
. (107)
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3 Dimension reduction

We introduce the rotation

Lh =

 Qh 0
0

0 0 1

 . (108)

Lemma 3.1. Let S ∈ R2 be a Lipschitz domain and Ω = S × (−1
2
, 1

2
). Let yh be a sequence such

that Ih(yh) ≤ CEh, where

lim
h→0

Eh
h4

= 1 (109)

or

lim
h→0

Eh
h4

= 0. (110)

Then there exists G ∈ L2(Ω;R3×3) such that it holds up to a non-relabeled subsequence

Gh :=
LTh∇hy

h − Id
(Eh)1/2/h

⇀ G in L2(Ω;R3×3) as h→ 0. (111)

Moreover, G has the form

G =

 0 0 G31

0 0 G32

∂1v ∂2v G33


where G31 and G32 do not depend on x3.

Proof. 1. For h small enough and under assumption (109) or (110) one can infer from (22), (49), (51),
and (81) that

‖Gh‖2
L2(Ω)

≤C

∥∥∥∥∇′(yh)′ −Qh

(Eh)1/2/h

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ ∇′y3

(Eh)1/2/h

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ ∂3y
′

(Eh)1/2

∥∥∥∥2

L2(Ω)

+

∥∥∥∥∥ ∂3y3
h
− 1

(Eh)1/2/h

∥∥∥∥∥
2

L2(Ω)


≤C.

Therefore, (111) holds.

2. Let Ω′ be any compact subset of Ω and |s| < dist (Ω′, ∂Ω) and consider the difference quotients

Hh(x
′, x3) := s−1(Gh(x

′, x3 + s)−Gh(x
′, x3)).

Due to (111)

Hh ⇀ H = s−1(G(x′, x3 + s)−G(x′, x3)) in L2(Ω′;R3×3). (112)

On the other hand,

Hh = LTh
∇hy

h(x′, x3 + s)−∇hy
h(x′, x3)

s(Eh)1/2/h
.

It follows from (47) and (73) combined with the Sobolev embedding theorem that up to taking a sub-
sequence it holds for all 1 ≤ p <∞ that

Lh → Id in Lp(S;R3×3). (113)
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Therefore,

LhHh =
∇hy

h(x′, x3 + s)−∇hy
h(x′, x3)

s(Eh)1/2/h
⇀ H in L1(Ω′;R3×3). (114)

On the other hand,

LhHh =
∇hy

h(x′, x3 + s)−∇hy
h(x′, x3)

s(Eh)1/2/h

=

 h2

(Eh)1/2
∇′1
s

x3+s∫
x3

1

h
∂3y

h(x′, z)dz

∣∣∣∣ 1

(Eh)1/2

1

s

x3+s∫
x3

∂2
3y

h(x′, z)dz

 . (115)

By definition of Ih it holds
∫

Ω
1
hε
|∂2

3(yh)′|2 dz ≤ CEh and thus

1

(Eh)1/2
∂2

3y
′h(x′, z)→ (0, 0)T in L2(Ω′;R2).

Next, using (81) one deduces that

h2

(Eh)1/2
∇′ 1
h
∂3y

h(x′, z)→

 0 0
0 0
0 0

 in W−1,2(Ω′;R2×3).

Therefore, since Ω′ is arbitrary it follows from (113),(114) and (115) that all the entries of H are equal
to zero, except maybeH33, consequently, the entries ofG(x′, x3) do not depend on x3, except maybe
G33.

3. Now we notice that G′h =
QTh∇

′(yh)′−Id
(Eh)1/2/h

and that (111) yields∫
I

G′h(x
′, x3)dx3 ⇀

∫
I

G′(x′)dx3 = G′(x′), in L2(S;R2×2). (116)

Then, due to (24)∫
I

G′h(x
′, x3)dx3

=

∫
I

QT
h∇′(yh)′ − Id
(Eh)1/2/h

dx3 =

QT
h

∫
I

∇′(yh)′dx3 − Id

(Eh)1/2/h
→ 0 in L2(S;R2×2),

and therefore,

G′ =

(
0 0
0 0

)
.

Next, it holds for α = 1, 2∫
I

Gh
3αdx3 = h

∫
I

∂αy3/(Eh)
1/2dx3 = ∂αvh ⇀ ∂αv in L2(S),

which together with (116) gives G3α = ∂αv(x′).
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Remark 3. Let us denote

ϕhα(x′, x3) =
1

(Eh)1/2

(
QT
h∂3y

′(x′, x3)
)
α
⇀ ϕα(x′) = Gα3 in L2(S;R3×3).

Then

G =

 0 0 ϕ1(x′)
0 0 ϕ2(x′)

∂1v(x′) ∂2v(x′) G33(x)

 .

Lemma 3.2. Let the assumptions of Lemma 3.1 be satisfied. Then there exists F ∈ L2(Ω;R3×3)
such that it holds up to a non-relabeled subsequence

Fh :=

QT
h

∫
I

∇′(yh)′dx3 − Id

(Eh)1/2
⇀ F (x′) in L2(Ω;R3×3) (117)

as h→ 0 and
symFh ⇀ sym∇′u(x′) in L2(Ω;R3×3), (118)

where u is defined in (74).

Proof. It follows from (24) that

‖Fh‖2
L2(Ω) ≤ C

∥∥∥∥∥∥
∫
I

∇′(yh)′dx3 −Qh

(Eh)1/2

∥∥∥∥∥∥
2

L2(Ω)

≤ C,

which implies(117).

Now we rewrite Fh as

Fh =

∫
I

∇′(yh)′dx3 − Id

(Eh)1/2
− Qh − Id

(Eh)1/2
+ (Qh − Id)T

∫
I

∇′(yh)′dx3 −Qh

(Eh)1/2
(119)

and set Ah := Qh−Id
(Eh)1/4

. Using that Qh ∈ SO(2) we observe that

AThAh =
(Qh − Id)T

(Eh)1/4

(Qh − Id)

(Eh)1/4
= − 2

(Eh)1/4
symAh = −2 sym

(Qh − Id)

(Eh)1/2
. (120)

It follows from (47), (73) and the Sobolev embedding that

Ah → A in Lp(S;R2×2), 1 ≤ p <∞. (121)

Combining (121) with (120) we get

symAh → 0 in Lp(S;R2×2) 1 ≤ p <∞. (122)

Therefore, it follows from (121) and (122) that symA = 0. It remains to identify A12. It follows from
(24), (73) and (74) that

A12 = lim
h→0

(Eh)
1/4uh = 0 in Lp(S) 1 ≤ p <∞, (123)

DOI 10.20347/WIAS.PREPRINT.3216 Berlin 2025



Derivation of the Reissner–Mindlin model from nonlinear elasticity 29

which implies that A = 0. Then, (121) yields

sym
(Qh − Id)

(Eh)1/2
→ −A

2

2
= 0 in Lp(S;R2×2) 1 ≤ p <∞. (124)

Now we estimate the third term in (119). By (24) and (73) we have∥∥∥∥∥∥(Qh − Id)T

∫
I

∇′(yh)′dx3 −Qh

(Eh)1/2

∥∥∥∥∥∥
L1(Ω)

≤‖Qh − Id‖L2(Ω)

∥∥∥∥∥∥
∫
I

∇′(yh)′dx3 −Qh

(Eh)1/2

∥∥∥∥∥∥
L2(Ω)

≤ C

√
Eh
h
→ 0,

which together with (74), (124) and (117) yields (118).

Lemma 3.3. Let the assumptions of Lemma 3.1 be satisfied. Define the function K ∈ L2(Ω;R2×2)
as K(x′, x3) := x3∇′ϕ(x′) where ϕ is defined in (3). Then it holds up to to a non-relabeled subse-
quence as h→ 0

Kh :=

QT
h (∇′(yh)′ −

∫
I

∇′(yh)′dx3)

(Eh)1/2
⇀ K(x′, x3) in L2(Ω;R2×2). (125)

Proof. We use the Dirichlet boundary condition in combination with Korn’s inequality applied in the
two-dimensional domains S × {x3} to estimate

‖Kh‖ ≤C

∥∥∥∥∥∥
∇′(yh)′ −

∫
I

∇′(yh)′dx3

(Eh)1/2

∥∥∥∥∥∥
2

L2(Ω)

≤C

∥∥∥∥∥∥
sym(∇′(yh)′ −

∫
I

∇′(yh)′dx3)

(Eh)1/2

∥∥∥∥∥∥
2

L2(Ω)

≤C
∥∥∥∥∇′(yh)′ − Th(Eh)1/2

∥∥∥∥2

L2(Ω)

+ C

∥∥∥∥∥∥
sym(Th −

∫
I

Thdx3)

(Eh)1/2

∥∥∥∥∥∥
2

L2(Ω)

≤C
∥∥∥∥∇′(yh)′ − Th(Eh)1/2

∥∥∥∥2

L2(Ω)

+ C

∥∥∥∥sym(Th − Id)

(Eh)1/2

∥∥∥∥2

L2(Ω)

, (126)

where Th is the function from Theorem 2.7. The first term on the right-hand side is bounded due to
(85). Therfore, it is left to show that also the second term is bounded. We set C ′h := Th(x′,x3)−Id

(Eh)1/4
and

compute

(C ′h)
TC ′h =

Th(x
′, x3)T − Id
(Eh)1/4

· Th(x
′, x3)− Id

(Eh)1/4

= − 1

(Eh)1/4

(
Th(x

′, x3)T − Id
(Eh)1/4

+
Th(x

′, x3)− Id
(Eh)1/4

)
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= −2
1

(Eh)1/4
symC ′h.

Hence, we may estimate using (86) and Hölder’s inequality∥∥∥∥sym(Th − Id)

(Eh)1/2

∥∥∥∥2

L2(Ω)

≤
∥∥∥∥sym(Th − Id)

(Eh)1/4

∥∥∥∥4

L4(Ω)

≤ C max

{
1,
Eh
h4

}
≤ C.

Let now again Ω′ be any compact subset of Ω and |s| < dist (Ω′, ∂Ω). We introduce the difference
quotients

Mh(x
′, x3) := s−1(Kh(x

′, x3 + s)−Kh(x
′, x3)).

Due to (125)

Mh ⇀M = s−1(K(x′, x3 + s)−K(x′, x3)) in L2(Ω′;R2×2). (127)

On the other hand, we have by Remark 3

Mh = QT
h

∇′(yh)′(x′, x3 + s)−∇′(yh)′(x′, x3)

s(Eh)1/2

=
1

(Eh)1/2
∇′1
s
QT
h

x3+s∫
x3

∂3(yh)′(x′, z)dz ⇀ ∇′ϕ(x′) in W−1,2(Ω′;R2×2).

Since Ω′ is arbitrary, the claimed form of K follows.

Now we prove our main result.

Proof of Theorem 1.1. (i) Let Eh = hσ. It follows from Theorem 2.2, Lemmas 2.5, 2.6, 3.3 and
Remark 3 that there exist rotations Rh(x

′) : S → SO(3) and Qh(x
′) : S → SO(2) such

that

‖∇hy(x′, x3)−Rh(x
′)‖2

L2(Ω) ≤ Chσ−2, ‖∇′Rh(x
′)‖2

L2(S) ≤ Chσ−4,

‖
∫
I

∇′y′(x)dx3 −Qh(x
′)‖2

L2(S) ≤ Chσ, ‖∇′Qh(x
′)‖2

L2(S) ≤ Chσ−2.

We expand Wi around the identity, Wi(Id + A) = 1
2
Qi3(A) + ηi(A), where Qi3(A) =

∂2Wi(A)
∂A2 (Id)(A,A) and ηi(A)/|A|2 → 0 as |A| → 0. If now ωi(t) = sup

|A|≤t
|ηi(A)| we

have

Wi(Id+ A) ≥ 1

2
Qi3(A)− ωi(|A|). (128)

With the notation rh :=
yh3

(Eh)1/4
it follows from (A4) that

∇′rh ⊗∇′rh ⇀ b(x) in L2(Ω;R2×2). (129)

If σ > 4, then (81) yields
∇′rh → 0 in L2(Ω;R2), (130)
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and therefore,∇′rh ⊗∇′rh → 0 in L1(Ω;R2×2) and in view of (129)

∇′rh ⊗∇′rh ⇀ 0 in L2(Ω;R2×2), if σ > 4. (131)

We estimate

lim inf
h→0

1

Eh
Ih(yh)

≥ lim inf
h→0

(
1

Eh

∫
Ω

W1(∇′(yh)′TQhQ
T
h∇′(yh)′ +∇′yh3 ⊗∇′yh3 )dx

+
h2

Eh

∫
Ω

W2(LTh∇hy
h)dx

)

= lim inf
h→0

(
h2

Eh

∫
Ω

W2(Id+

√
Eh
h

Gh)dx

+
1

Eh

∫
Ω

W1((Id+
√
EhFh +

√
EhKh)

T (Id+
√
EhFh +

√
EhKh)

+
√
Eh∇′rh ⊗∇′rh)dx

)
= lim inf

h→0

(
h2

Eh

∫
Ω

W2(Id+

√
Eh
h

Gh)dx+
1

Eh

∫
Ω

W1((Id+ 2
√
Eh symFh

+2 sym
√
EhKh + EhF

T
h Fh + EhK

T
hKh + 2Eh sym(KT

h Fh)

+
√
Eh∇′rh ⊗∇′rh)dx

)
.

Let us define χh as a characteristic function of the set

Ωh =

{
x ∈ Ω :|Gh| ≤ 1/(Eh)

1/8, |Kh| ≤ 1/(Eh)
1/8, |Fh| ≤ 1/(Eh)

1/8,

|∇′rh| ≤ 1/(Eh)
1/8

}
.

Then χh is bounded and χh → 1 in L1(Ω), thus we have χhGh ⇀ G, χhKh ⇀ K , χhFh ⇀
F , χhrh ⊗ rh ⇀ b(x′) in L2(Ω;R2×2). Therefore,

lim inf
h→0

1

Eh
Ih(yh) (132)

≥ lim inf
h→0

(
h2

Eh

∫
Ω

χhW2(Id+

√
Eh
h

Gh)dx

+
1

Eh

∫
Ω

χhW1((Id+ 2
√
Eh symFh + 2 sym

√
EhKh

+EhF
T
h Fh + EhK

T
hKh + 2Eh sym(KT

h Fh) +
√
Eh∇′rh ⊗∇′rh)dx)

≥ lim inf
h→0

(∫
Ω

(χh
1

2
Q2

3(Gh)−
h2

Eh
χhω2(

√
Eh
h

Gh))dx
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+

∫
Ω

(χh
1

2
Q1

3((2 symFh + 2 symKh +∇′rh ⊗∇′rh)− CχhEh(|Fh|4 + |Kh|4)

− 1

Eh
χhω1(2

√
Eh symFh + 2

√
Eh symKh + EhF

T
h Fh + EhK

T
hKh

+2Eh sym(KT
h Fh) +

√
Eh∇′rh ⊗∇′rh))dx

)
. (133)

It is easy to see that whenever χh 6= 0,
√
Eh
h
|Gh| ≤

E
3/8
h

h
→ 0 and

h2

Eh
χhω2

(∣∣∣∣√Ehh Gh

∣∣∣∣) =
χhω2(|

√
Eh
h
Gh)|)

|
√
Eh
h
Gh|2

|Gh|2 → 0. (134)

Moreover,
Eh(|Fh|4 + |Kh|4) ≤

√
Eh → 0. (135)

If we denote

Uh =2 symFh + 2 symKh +
√
EhF

T
h Fh +

√
EhK

T
hKh + 2

√
Eh symKT

h Fh

+∇′rh ⊗∇′rh,

then

|
√
EhUh| = |2

√
Eh symFh + 2

√
Eh symKh + EhF

T
h Fh + EhK

T
hKh

+2Eh symKT
h Fh +

√
Eh∇′rh ⊗∇′rh| ≤ C(Eh)

1/4 → 0

and

1

Eh
χhω1

(∣∣∣√Eh symFh + 2
√
Eh symKh + EhF

T
h Fh + EhK

T
hKh

+2Eh symKT
h Fh +

√
Eh∇′rh ⊗∇′rh

∣∣∣)
≤ χh

ω1(|
√
EhUh|)

|
√
EhUh|2

(|2 symFh + 2 symKh +∇′rh ⊗∇′rh|2 +
√
Eh)→ 0,

which together with (132)–(135) yields (18) in the case σ > 4.

(ii) We assume that v, u and ϕ are smooth and consider

ŷh(x′, x3) :=

(
x′

hx3

)
+

(
hσ/2u(x′)
hσ/2−1v(x′)

)
+ x3

(
hσ/2ϕ(x′)

1/2hσ/2L(G̃)

)
, (136)

where c = L(G̃) is the element which realizes the minimum ofQ2
2, i.e.

Q2
2(G̃) = Q2

3(G̃+ ce3 ⊗ e3)).

Then

∇hŷ
h =

(
Id+ hσ/2∇′u+ x3h

σ/2∇′ϕ hσ/2−1ϕ

hσ/2−1∇′v 1 + 1/2hσ/2−1L(G̃)

)
+

(
o(hσ/2) o(hσ/2−1)
o(hσ/2−1) o(hσ/2−1)

)
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and

(∇hŷ
h)T∇hŷ

h =

(
Id+ 2hσ/2 sym∇′u+ 2x3h

σ/2 sym∇′ϕ hσ/2−1(ϕ+∇′v)

hσ/2−1(ϕ+∇′v) 1 + hσ/2−1L(G̃))

)
+

(
o(hσ/2) o(hσ/2−1)
o(hσ/2−1) o(hσ/2−1)

)
.

Finally, using the Taylor expansion we obtain

1

hσ
Ih → 1

2

∫
Ω

Q2
2(G̃)dx′ +

1

2

∫
S

Q1
3(2 sym∇′u)dx′ +

1

6

∫
S

Q1
3(sym∇′ϕ(x′))dx′.

For general u, ϕ, v ∈ W 1,2(S) the assertion follows by suitable smooth approximations.

Using Theorem 1.1 and arguing as in [14, Theorem 2] one can prove Theorem 1.2 .

4 The case σ = 4.

In case σ = 4 there is a lack of compactness for the sequence vh. Due to this fact, it seems impossible
to perform a limit transition in the nonlinear term∇′rh⊗∇′rh. This creates obstacles in the derivation
of a Γ-limit via v, u andϕ. In this case we begin with the energy functionals containing second gradient
terms (see, e.g. [24])

Ih2 (y) =

∫
Ω

W1(∇′y′(x)T∇′y′(x) +∇′y3 ⊗∇′y3(x))dx+ h2

∫
Ω

W2(∇hy(x))dx

+lh2

∫
Ω

|∇2
hy(x)|2dx+ c1

∫
Ω

|∇′y3(x)|4dx.

Theorem 4.1. Suppose that the assumptions of Theorem 1.1 are satisfied.

(i) (Compactness and lower bound)
If

lim sup
h→0

1

h4
Ih2 (yh) <∞, (137)

then properties (14)–(17) are satisfied with σ = 4. Moreover,

(vh)(x′) =
1

h

∫
I

yh3dx3 ⇀ v in W 2,2(S), (138)

and

lim inf
h→0

1

hσ
Ih2 (yh) ≥

1

2

∫
S

Q2
2(G̃)dx′ +

1

6

∫
S

Q1
3(sym∇′ϕ(x′))dx1

+
1

2

∫
S

Q1
3((2 sym∇′u(x′) +∇′v ⊗∇′v(x′)) + l

∫
S

|∇′2v(x′)|2dx′

+l

∫
S

|∇′ϕ(x′)|2dx′ + c1

∫
S

|∇′v(x′)|4dx′
 .

DOI 10.20347/WIAS.PREPRINT.3216 Berlin 2025



T. Fastovska, J. Ginster, B. Zwicknagl 34

(ii) (Optimality of lower bound.)
If u, ϕ ∈ W 1,2(S), v ∈ W 2,2(S) then there exists ŷh such that (81) and (14)–(17) hold and

lim inf
h→0

1

Eh
Ih(ŷh) =

1

2

∫
S

Q2
2(G̃)dx′ +

1

6

∫
S

Q1
3(sym∇′ϕ(x′))dx1

+
1

2

∫
S

Q1
3(2 sym∇′u(x′) +∇′v ⊗∇′v(x′)) + l

∫
S

|∇′2v(x′)|2dx′

+l

∫
S

|∇′ϕ(x′)|2dx′ + c1

∫
S

|∇′v(x′)|4dx′
 .

Proof. Arguing as in Theorem 1.1 one can show (81) and (14)–(17). It follows from (137) that∫
Ω

|∇2
hy(x)|2dx ≤ Ch2.

In particular this means for i = 1, 2∫
Ω

|1
h
∇′2y′(x)|2dx ≤ C,

∫
Ω

|1
h
∇′2y3(x)|2dx ≤ C, (139)

∫
Ω

| 1

h2
∂i∂3y

′(x)|2dx ≤ C,

∫
Ω

| 1

h2
∂i∂3y3(x)|2dx ≤ C, (140)

∫
Ω

| 1

h3
∂2

3y
′(x)|2dx ≤ C,

∫
Ω

| 1

h3
∂2

3y3(x)|2dx ≤ C. (141)

It follows from the second estimate in (140) and the first estimate in (141) that

1

h
∂i∂3y3(x)→ 0 in L2(Ω) and (142)

1

h2
∂2

3y
′(x)→ 0 in L2(Ω). (143)

Taking into account (143) and arguing as in Theorem 1.1 we get (16) which together with (73) yields

1

h2
∂3y

′(x) =
1

h2
(I −QT

h )∂3y
′(x) +

1

h2
QT
h∂3y

′(x) ⇀ ϕ(x′) in L1(Ω).

Consequently,
1

h2
∇′∂3y

′(x) ⇀ ∇′ϕ(x′) in W−1,1(Ω).

Therefore, (144) together with the first estimate in (140) we obtain

1

h2
∇′∂3y

′(x) ⇀ ∇′ϕ(x′) in L2(Ω). (144)

Moreover, from (142) we have

‖1

h
∇′yh3 −

1

h

∫
I

∇′yh3dx3‖L2(Ω) ≤ C‖1

h
∇′∂3y

h
3‖L2(Ω) → 0. (145)
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Consequently, (15) and (146) yield

1

h
∇′2yh3 ⇀ ∇′2v(x′) in W−1,2(Ω),

which together with the second estimate in (139) leads to

1

h
∇′2yh3 ⇀ ∇′2v(x′) in L2(Ω). (146)

Next, (14), (17), (73) imply
1

h
(∇′y′h − Id) ⇀ 0 in L1(Ω).

Consequently, it follows from the first estimate in (139) that

1

h
∇′2y′h ⇀ 0 in L2(Ω). (147)

Convergence (138) follows from (146). This yields 1
h2
∇′yh3 ⊗∇′yh3 → ∇′v′ ⊗∇′v′ in L2(Ω). Then

we choose as a recovery sequence (136) and take into consideration that the second term in (140)
and terms in (141) are equal to zero on the recovery sequence. Arguing as in Theorem 1.1 and using
(144), (146), (147) we conclude the statement of the theorem.

In this case the limiting functional contains a superfluous last term which is not a part of classical
nonlinear Reissner–Mindlin model. It is an open question whether the nonlinear model can be de-
rived without this term. In general, the nonlinear Reissner–Mindlin model lacks compactness, i.e. the
nonlinearity is supercritical.
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[30] Neukamm, S. and Velčić, I., Derivation of a homogenized von-Kármán plate theory from
3D nonlinear elasticity, Math. Models Methods Appl. Sci., 23(14), 2701-2748 (2013).
https://doi.org/10.1142/S0218202513500449

[31] Ogden, R.W., Nonlinear Continuum Mechanics and Modeling the Elasticity of Soft Biological
Tissues with a Focus on Artery Walls. In: Holzapfel, G., Ogden, R. (eds) Biomechanics: Trends in
Modeling and Simulation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol
20. Springer, Cham. (2017). https://doi.org/10.1007/978-3-319-41475-1_3

[32] Pantz, O., On the justification of the nonlinear inextensional plate model, Arch. Rational Mech.
Anal. 167(3), 179-209 (2003). https://doi.org/10.1007/s00205-002-0238-1

[33] Paroni, R. and Podio-Guidugli, P., On variational dimension reduction in structure mechanics, J.
Elasticity, 118(1), 1–13 (2015). https://doi.org/10.1007/s10659-014-9473-6

[34] Paroni, R., Podio-Guidugli, P. and Tomasetti G. The Reissner–Mindlin plate the-
ory via Γ-convergence, C.R. Acad. Sci. Paris, Ser. I, 343, 437–440 (2006).
https://doi.org/10.1016/j.crma.2006.08.006

[35] Paroni, R., Podio-Guidugli, P. and Tomassetti, G., A justification of the Reissner–Mindlin
plate theory through variational convergence, Anal. Appl., 5(02), 165-182 (2007).
https://doi.org/10.1142/S0219530507000936

[36] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, J. Appl.
Mech., Vol. 12, 68–77 (1945). https://doi.org/10.1115/1.4009435

DOI 10.20347/WIAS.PREPRINT.3216 Berlin 2025



T. Fastovska, J. Ginster, B. Zwicknagl 38

[37] Scardia, L., Asymptotic models for curved rods derived from nonlinear elasticity
by Γ-convergence, Proc. Roy. Soc. Edinburgh Sect. A, 139(5), 1037-1070 (2009).
https://doi.org/10.1017/S0308210507000194

[38] Scardia, L., The nonlinear bending–torsion theory for curved rods as Γ-limit of three-dimensional
elasticity, Asymptot. Anal., 47(3-4), 317–343 (2006). https://doi.org/10.3233/ASY-2006-760

[39] Schmidt, B., A Griffith–Euler–Bernoulli theory for thin brittle beams derived from nonlinear models
in variational fracture mechanics, Math. Models Methods Appl. Sci., 27 (09), 1685–1726 (2017).
https://doi.org/10.1142/S0218202517500294

[40] Schröder, J., Neff, P., Invariant formulation of hyperelastic transverse isotropy based
on polyconvex free energy functions, Int. J. Solids Struct., Vol. 40 401–445 (2003).
https://doi.org/10.1016/S0020-7683(02)00458-4

DOI 10.20347/WIAS.PREPRINT.3216 Berlin 2025


	Introduction
	Notation and setting.
	Main results and discussion.

	Geometric rigidity
	Dimension reduction
	The case =4.

