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A convex variational principle for the necessary conditions of
classical optimal control

Amit Acharya, Janusz Ginster

Abstract

A scheme for generating a family of convex variational principles is developed, the Euler-
Lagrange equations of each member of the family formally corresponding to the necessary condi-
tions of optimal control of a given system of ordinary differential equations (ODE) in a well-defined
sense. The scheme is applied to the Quadratic-Quadratic Regulator problem for which an explicit
form of the functional is derived, and existence of minimizers of the variational principle is rigor-
ously shown. It is shown that the Linear-Quadratic Regulator problem with time-dependent forcing
can be solved within the formalism without requiring any nonlinear considerations, in contrast to
the use of a Riccati system in the classical methodology.

Our work demonstrates a pathway for solving nonlinear control problems via convex optimiza-
tion.

1 Introduction

Optimal control theory for ODEs is a vast and well-developed subject at a level of maturity where many
textbooks have been written on it - an excellent introduction, e.g., is [8], and it is beyond the scope
(and neither the intent) of this work to provide an extensive review of the literature on the subject. Our
modest goal here is to describe a particular viewpoint for attacking the equations describing some nec-
essary conditions satisfied by optimal solutions of the problem, an approach which, to our knowledge,
is new. The proposed scheme results in an unconstrained convex variational principle for a mapping
of time alone, taking values in Rn+m+n (where t 7→ x(t) ∈ Rn describes the state, t 7→ u(t) ∈ Rm

is the control, and t ∈ [0, T ] ⊂ R is time). This is in contrast to the Hamilton-Jacobi-Bellman (HJB)
equation based approach to the optimal control problem which involves solving a first-order, nonlin-
ear scalar PDE for the value function on a subset of Rn+1; for n large, this is a manifestation of the
so-called ‘curse of dimensionality.’ Thus, our approach is expected to have some practical relevance,
albeit that it solves necessary conditions of the problem, a feature also shared by the Pontryagin
Maximum Principle (PMP). The PMP is extensively used in important practical applications, and our
work contributes to efforts to bring general nonlinear control problems within the purview of convex
optimization techniques [17] and, in general, to the body of work treating control problems as one of
optimization [7].

The Pontryagin Maximum Principle has recently been incorporated as a soft constraint into a Machine
Learning scheme called PMP-net for optimal control problems [11], much in the spirit of physics-
informed-neural networks [20]; a Least Squares objective defined from the PMP equations is added
as an additional component to the Loss function used to train the scheme. Given a set of equations
to be solved, it is understood that the solutions to the Euler-Lagrange equations of the least squares
functional generated from ‘squaring’ the equations can generate spurious solutions to the given set of
equations, while our proposed duality scheme does not share this shortcoming [2, 22]. Of course, it is
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understood that the least-squares strategy is a shortcoming only when the given equations constitute
a ‘ground-truth’ model - like the PMP for control problems - to which the ML trained trajectories should
ideally comply. Thus, the developed dual variational principles in this paper have the potential to con-
tribute to modern applications of control theory within the PMP-net paradigm by providing improved
theory-informed training constraints. The proposed approach in this article arose in questions related
to solving/approximating the (non)linear governing equations of problems in continuum mechanics by
a duality based approach [2, 1, 21, 12, 13], and is strongly related to the ideas of Hidden Convexity in
PDE advanced by Y. Brenier [6, 5].

An outline of the paper is as follows: in Sec. 2 we develop the differential algebraic system with bound-
ary conditions that constitute necessary conditions of the optimal control problem of interest. In Sec. 3
the derivation of the dual variational principle for the governing system developed in Sec. 2 is pre-
sented. The formalism is applied to the Quadratic-Quadratic Regulator problem in Sec. 4 where the
explicit form of the dual functional is obtained, along with its analog amenable to convex optimization.
Sec. 5 contains a proof of coercivity and boundedness from below of the dual functional for the QQR
problem which, along with its guaranteed weak lower-semicontinuity by design, ensures the existence
of a minimizer. Finally, Sec. 6 contains an application to the classical Linear-Quadratic Regulator prob-
lem, with time-dependent forcing. A comparison of the proposed scheme with the classical solution
protocol for the problem based on solving a nonlinear Riccati system is discussed, and an explicit
solution to the dual problem for a simple example LQR is also derived. While we do not deal with free-
final-time problems in this paper as well as state-space constraints, the general dual methodology
developed here suggests that both of these problem features can be naturally accommodated.

A few words on notation: an overhead dot will represent a time derivative. We will always use the
summation convention on repeated indices, unless otherwise specified. The notation f |a denotes the
evaluation of the function f at the argument a, i.e., f |a = f(a), and we will use both notations as
convenient.

2 The necessary conditions for optimality in the classical opti-
mal control problem

The classical optimal control problem may be stated as (see, e.g., [8], [16, Sec. 9.5, 9.6]),

for r : Rn × Rm × R→ R; x : R→ Rn; u : R→ Rm; g : Rn × R→ R; r, g given

maximize P [u] = −
∫ T

0

r(x(t), u(t), t) dt− g(x(T ), T ) (1)

subject to

{
ẋ(t) = f(x(t), u(t), t), f : Rn × Rm × R→ Rn given,

x(0) = x0 ∈ Rn, x0 specified.

Here, x is the state function and u is the control.

Using the method of Lagrange multipliers with p : R → Rn as the co-state multiplier functions, one
can seek to solve the unconstrained maximization problem given by maximizing

P̃ [x, u, p] = −
∫ T

0

r (x|t, u|t, t) + p|t ·
(
ẋ|t−f(x|t, u|t, t)

)
dt − g(x|T , T ) − p|0 · (x|0−x0).

The first variation of P̃ about a state (x, u, p) in the direction (δx, δu, δp) is given by

δP̃ |(δx,δu,δp)[x, u, p] (2a)
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=

∫ T

0

−∂xr · δx− ∂ur · δu− δp · (ẋ− f)− p · δẋ+ p · (∂uf · δu+ ∂xf · δx) dt

− (∂xg)|T · δx|t − δp|0 · x|0 + δp|0 · x0 − p|0 · δx|0

=

∫ T

0

δx ·
(
− ∂xr + ṗ+ pj∂xfj

)
+ δu ·

(
− ∂ur + pi∂ufi

)
+ δp ·

(
− ẋ+ f

)
dt

+ δx|T ·
(
− (∂xg)|(x|T ,T ) − p|T

)
− δx|0 · (−p|0 + p|0) + δp|0 ·

(
x|0 − x0

)
.

Consequently, a maximizer (x, u, p) of P̃ would formally satisfy the following Euler-Lagrange equa-
tions:

ẋ|t − f
(
x|t, u|t, t

)
= 0 (3a)

ṗ|t − ∂xr
(
x|t, u|t, t

)
+ pj|t ∂x fj

(
x|t, u|t, t

)
= 0 (3b)

pi∂ufi
(
x|t, u|t, p|t

)
− ∂ur

(
x|t, u|t, p|t

)
= 0 (3c)

p|T + ∂xg(x|T , T ) = 0. (3d)

x|0 − x0 = 0 (3e)

We note that defining the ‘control theory Hamiltonian’ [8, Sec. 4.3] as

H(x, u, p, t) := p · f(x, u, t)− r(x, u, t),

(3a,3b,3c) may be expressed as

ẋ = ∂pH (4a)

ṗ = −∂xH (4b)

0 = ∂uH (4c)

which are necessary conditions satisfied by a triple of functions (x, u, p) satisfying the Pontryagin
Maximum Principle (PMP) of Optimal Control (see, e.g., [8]) for (1); (4a,4b) are exact statements of
the PMP, while (4c) is a necessary condition satisfied by solutions of the PMP when there is enough
smoothness for ∂uH(x, u, p, t) to make sense.

3 A dual variational principle for (3) and a convex optimization
problem

The equations (3) contain first order ODEs and are not easily converted to a second order system
typical of Euler-Lagrange equations of variational principles with a local Lagrangian that is a function
of first order derivatives in time and lower-order terms; we note that the Hamiltonian H is linear in
p and hence not strictly convex in it, so that a Legendre transform cannot be implemented to obtain
a corresponding Lagrangian. Moreover, the forward-in-time nature of the (x) state evolution (3a, 3e)
and backward-in-time nature of the (p) co-state evolution (3b, 3d) pose a significant challenge for
practical approximation schemes for solving nonlinear control problems not suffering from the ‘curse
of dimensionality,’ as arises in a Hamilton-Jacobi-Bellman (HJB) formulation [8, Secs. 5.1.2, 5.1.3]
of the problem [4, 14, 18, 3]. The goal here is to develop a variational approach to (3) which has
the potential of addressing these issues. As well, it allows the inclusion (but not as a necessity) of
‘guiding’ state, control, and co-state functions (t 7→ x̄(t), t 7→ ū(t), t 7→ p̄(t)) in the formulation as
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parameters, such that obtained solutions may be expected to be close to these user-specified guiding
functions.

We denote the primal functions U := (x, u, p) and consider arbitrarily specified (‘designable’) func-
tions of time called base states

Ū := (x̄, ū, p̄) : R ⊃ [0, T ]→ Rn × Rm × Rn; t 7→ Ū(t).

Also considered is a triple of dual functions

D := (γ, µ, λ); γ, λ : R ⊃ [0, T ]→ Rn, µ : R ⊃ [0, T ]→ Rm; D := (D, Ḋ)

and a freely chosen (designable) auxiliary potential

H : Rn × Rm × Rn × Rn × Rm × Rn → R

that is assumed to have a positive-definite Hessian everywhere w.r.t its first n+m+ n arguments.

In terms of these ingredients, we define the pre-dual functional

ŜH[x, u, p, γ, µ, λ]

=

∫ T

0

(
− xiγ̇i − γifi(x, u, t)− piλ̇i − λi∂xir(x, u, t) + λipj∂xjfi(x, u, t)

+ µκpi∂uκfi(x, u, t)− µκ∂uκr(x, u, t)−H(x, u, p, x̄, ū, p̄)
)
dt

− γi|0 x0
i + γi|T xi|T − λi|T ∂xig(x|T , T )

=:

∫ T

0

LH(U,D, Ū , t) dt − γi|0 x0
i + γi|T xi|T − λi|T ∂xig

∣∣
(x|T ,T )

,

(5)

and require the choice ofH to be such that it enables the definition of a dual-to-primal (DtP) mapping

(D, Ū , t) 7→ UH(D, Ū , t) =
(
xH, uH, pH

)∣∣∣
(D,Ū ,t)

; UH : R2n+(n+m+n)+1 ⊃ O → Rn+m+n

such that
∂ULH

(
UH(D, Ū , t),D, Ū , t) = 0 (6)

is satisfied on the setO. Thus, the choice ofH should allow ‘solving for U in terms of (D, Ū , t)’ from
(6).

One now defines the dual functional, SH[γ, µ, λ], as the one obtained by the substitution of the DtP
mapping into the pre-dual functional:

SH[γ, µ, λ] := ŜH

[
xH, uH, pH, γ, µ, λ

]
=

∫ T

0

LH
(
UH
(
D|t, Ū |t, t

)
,D|t, Ū |t, t

)
dt

− γi|0 x0
i + γi|T xHi

(
D|T , Ū |T , T

)
− λi|T ∂xig

(
xH
(
D|T , Ū |T , T

)
, T
)
.

(7)
In the following, we use the notation

t 7→ d(t) = d|t := (D|t, Ū |t, t); sH
∣∣
t

:=
(
xH
∣∣∣
d|t
, uH

∣∣∣
d|t
, t
)

; δD := (δD, ˙δD).
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The first variation of SH at a dual state D in a direction δD : [0, T ] → Rn+m+n (denoted below by
δSH|δD[D]), constrained by the boundary conditions

γi|T − λj|T ∂xixjg
(
xH
∣∣
d|t
, T
)

= 0 (8a)

λ|0 = specified arbitrarily, say λ0; δλ|0 = 0 (8b)

and for which (6) is satisfied in [0, T ], is given, after integration by parts and using (6) and (8b), by

δSH
∣∣
δD

[D] (9)

=

∫ T

0

(
δγi|t

{
˙

xHi ◦ d
∣∣∣
t
− fi

(
sH
∣∣
t

)}
+ δλi|t

{
˙

pHi ◦ d
∣∣∣
t
− ∂xir

(
sH
∣∣
t

)
+ pHj

∣∣∣
d|t
∂xjfi

(
sH
∣∣
t

)}
+ δµκ|t

{
pHi

∣∣∣
d|t
∂uκfi

(
sH
∣∣
t

)
− ∂uκr

(
sH
∣∣
t

)} )
dt (10)

+ δγi|0
{
xHi

∣∣∣
d0
− x0

i

}
− δλi|T

{
pHi

∣∣∣
d|T

+ ∂xig
(
xH
∣∣∣
d|T
, T
)}

+ δγi|T
{
xHi

∣∣∣
d|T
− xHi

∣∣∣
d|T

}
+
(
∂D x

H
i

∣∣∣
d|T
· δD

){
γi|T − λj|T ∂xixjg

(
xH
∣∣∣
d|T
, T
)}
.

The last line of (10) vanishes due to (8a); one term of the first curly bracket on the same line arises
from the variation of the boundary term γi|T xi|T ; the other from the variation of the term −xiγ̇i in
the Lagrangian LH after integration by parts. The five other expressions within curly brackets in (10)
are the set of equations (3) with the substitution U → UH. Thus, by standard arguments, the Euler-
Lagrange equations of the dual functional (7) are the necessary conditions (3) for the classical optimal
control problem (1), utilizing an adapted change of variables defined by the DtP mapping UH.

It is worth noting that if the the DtP mapping has the property that UH(D, Ū , t) = Ū for D = 0 - this
can be arranged in many circumstances by an appropriate choice ofH, and examples are provided in
Secs. 4-6 - then, if Ū was a solution to (3) then D = 0 is a critical point of SH.

Depending on the nonlinearity of the terminal cost function g, the final-time boundary condition (8a)
may pose a nonlinear constraint on the dual space of functions involved; for g a quadratic form in its
first argument, the boundary condition becomes a linear constraint.

In all that follows, we will assume that g = xiGijxj , with G symmetric, positive semi-definite.

With this choice, along with imposing the constraint

γ|T −Gλ|T = 0 (11)

(the b. c. (8a)) for all functions (γ, λ) in the set on which ŜH is defined, the functional takes the form

ŜH[x, u, p, γ, µ, λ] =

∫ T

0

LH(U,D, Ū , t) dt − γi|0 x0
i .

We now consider a slightly different (but related) dual functional S̃H given by

S̃H[D] = sup
U

∫ T

0

LH(U,D, Ū , t) dt − γi|0 x0
i . (12)
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It is reasonable that the maximization over U can be moved into the integral and noting that LH is
necessarily affine in D,

L̃H(D, Ū , t) := sup
U
LH(U,D, Ū , t)

is convex in D.

Moreover, note that if formulated in the correct function spaces then S̃H is the supremum over con-
tinuous, affine functions. In particular, S̃H is the supremum over weakly continuous functions and
therefore lower-semicontinuous with respect to weak convergence. Thus, up to coercivity of S̃H[D]
one may even expect to prove existence of minimizers for it in appropriate Sobolev spaces for the dual
fields (γ, µ, λ) (as is done in Sec. 5).

We note that for the class of dual fields for which the maximization (over U ) to define S̃H has a unique
maximizer, the DtP mapping UH is a well-defined object a.e. in [0, T ], and for such dual fields the
value of SH and S̃H coincide. Since a minimizer of the convex S̃H functional is also its critical point
(at least formally), such minimizers can be expected to be critical points of SH, if they also belong to
the set for which the DtP mapping is well-defined a.e in [0, T ], i.e., under suitable hypotheses

t 7→ UH
(
D[argmin S̃H[D]](t)

)
can define a solution to (3), which are necessary conditions satisfied by solutions to the problem of
classical optimal control (1). In the above,D[D∗](t) denotes the evaluation, at time t, ofD constructed
from the dual field D∗.

Thus, upon discretization of S̃H[D] by any Rayleigh-Ritz basis, we have a convex optimization formu-
lation of the necessary conditions (3) of the, in general nonlinear, classical optimal control problem.

4 A dual convex optimization formulation for the Quadratic -
Quadratic Regulator (QQR)

The goal of this section is to develop the explicit formula for the dual functional for the Quadratic-
Quadratic Regulator problem [4, 14] involving a quadratically nonlinear state evolution. Many important
scientific problems fall within this class - the Lorenz system [15] and the Fermi-Pasta-Ulam-Tsingou
problem [9] in the ODE context, and (discretized versions of) the Euler and Navier-Stokes equations.

We consider the special case of quadratic running and terminal cost, as well as a quadratically non-
linear state evolution with linear dependence on the control u. The problem (1) is defined by:

Given matrices B,G ∈ Rn×n, C ∈ Rm×m,M ∈ Rn×n, N ∈ Rn×m, F ∈ Rn×n×n

B,C,G symmetric, positive-semidefinite

F symmetric in last two indices, i.e., Fa = 0,∀ a ∈ Rn×n and skew-symmetric;

r(x, u, t) :=
1

2
(xiBijxj + uαCαβuβ)

g(x, T ) := xiGijxj

fi(x, u, t) := Ai(t) +Mijxj +Niαuα +
1

2
xrFirsxs, with given function t 7→ A(t) ∈ Rn and

Given functions t 7→ x̄(t), t 7→ ū(t), t 7→ p̄(t) (with 0 a possible choice for any of x̄, ū, p̄),
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the primal system is given by

ẋi = Ai +Mijxj +Niαuα +
1

2
xrFirsxs

ṗi = Bijxj − pjMji − pjFjrixr
0 = piNiα − uβCβα

(14)

on [0, T ] with boundary conditions

pi|T +Gijxj|T = 0

xi|0 = x0
i .

(15)

As the auxiliary potentialH we choose the quadratic potential

Q(x, u, p) :=
1

2

(
ax|x− x̄|2 + au|u− ū|2 + ap|p− p̄|2

)
, ax, au, ap > 0.

Then the pre-dual functional is given by, c.f. (5),

ŜQ[U,D] =

∫ T

0

{
− γiAi − xiγ̇i − γiMijxj − γiNiαuα − γi

1

2
Firsxrxs

− piλ̇i − λiBijxj + pjMjiλi + pjFjrixrλi

+ piNiαµα − uβCβαµα

− 1

2

(
ax|x− x̄|2 + au|u− ū|2 + ap|p− p̄|2

) }
dt

− γi|0x0
i + γi|Txi|T − λi|TGijxj|T ,

and after imposition of the constraint boundary condition (8a), the last two terms drop out.

We denote the integrand as LQ. In order to generate the explicit formula for the dual QQR functional,
it is efficient to write the Lagrangian LQ in terms of the factor U − Ū instead of U and subsequently
focus on the linear, quadratic, and ‘constant’ terms in this factor. Then the linear and quadratic terms
combine in a compact manner to deliver the final expression (21). These steps are demonstrated
below.

The DtP mapping UQ :=
(
xQ, uQ, pQ

)
is generated from the following set of conditions:

∂xiLQ = 0 : −
(
axδir + γkFkir

)(
xQr − x̄r

)
+ λkFjik

(
pQj − p̄j

)
= γ̇i + γkMki + λkBki + γkFkisx̄s − λkFjikp̄j (16a)

∂piLQ = 0 : −ap
(
pQi − p̄i

)
+ λkFirk

(
xQr − x̄r

)
= λ̇i −Mikλk −Niαµα − λkFirkx̄r

∂uαLQ = 0 : −au
(
uQα − ūα

)
= γiNiα + Cαβµβ.

We now introduce the notation

Xi|D := γ̇i + γkMki + λkBki ; X̄i|(D,Ū) := γkFkisx̄s − λkFjikp̄j
Pi|D := λ̇i −Mikλk −Niαµα ; P̄i|(D,Ū) := −λkFirkx̄r
Uα|D := γiNiα + Cαβµβ
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J |(D,Ū) :=


X|D + X̄ |(D,Ū)

P|D + P̄|(D,Ū)

 ∈ R2n K|D :=

axI + (γF ) −(Fλ)T

−(Fλ) apI

 ∈ R2n×2n ;

I is the n× n identity matrix ; F : Rn → Rn×n ; t 7→ (γ(t)F ) ∈ Rn×n, (γF )ir = γkFkir

t 7→ U∗(t) :=


x(t)

p(t)

 ∈ R2n ; t 7→ Ū∗(t) =


x̄(t)

p̄(t)

 ∈ R2n

in terms of which the DtP mapping can be expressed as

−KD
(
UQ
∗ − ŪQ

∗
)

= J |(D,Ū)

−au(u− ū) = U|D. (18)

The Lagrangian LQ can be expressed as

LQ
(
U,D, Ū , t

)
=− γiAi − (xi − x̄i)γ̇i − x̄iγ̇i − γiMij(xj − x̄j)− γiMijx̄j − γiNiα(uα − ūα)

− γiNiαūα − (pi − p̄i)λ̇i − p̄iλ̇i − λiBij(xj − x̄j)− λiBijx̄j + (pj − p̄j)Mjiλi

+ p̄jMjiλi + (pi − p̄i)Niαµα + p̄iNiαµα − µαCαβ(uβ − ūβ)− µαCαβūβ

− 1

2

(
ax(x− x̄i)(x− x̄i) + au(uα − ūα)(uα − ūα) + ap(pi − p̄i)(pi − p̄i)

)
− 1

2
(xr − x̄r)γiFirs(xs − x̄s)

− 1

2
(xr − x̄i)γiFirsx̄s −

1

2
x̄rγiFirs(xs − x̄s) +

1

2
x̄rγiFirsx̄s

− 1

2
x̄rγiFirsx̄s −

1

2
x̄rγiFirsx̄s

+ λi(pj − p̄j)Fjri(xr − x̄r)
+ λi(pj − p̄j)Fjrix̄r + λip̄jFjri(xr − x̄r)− λip̄jFjrix̄r
+ λip̄jFjrix̄r + λip̄jFjrix̄r

=

(xi − x̄i)
(
− γ̇i − γkMki − λkBki − γkFkisx̄s + λkp̄jFjik

)
− 1

2
(xi − x̄i)

(
axδir + γkFkir

)
(xr − x̄r) +

1

2
(xi − x̄i)Fjikλk(pj − p̄j)

+ (pi − p̄i)
(
− λ̇i +Mikλk +Niαµα + λkFirkx̄r

)
− 1

2
ap(pi − p̄i)(pi − p̄i) +

1

2
(pi − p̄i)Firkλk(xr − x̄r)

+ (uα − ūα)(−γiNiα − Cαβµβ)− 1

2
au(uα − ūα)(uα − ūα)

+ x̄i
(
− γ̇i − γkMki − λkBki − γkFkisx̄s + λkp̄jFjik

)
+ p̄i

(
− λ̇i +Mikλk +Niαµα + λkFirkx̄r

)
+ ūα

(
− γiNiα − Cαβµβ

)
+
(1

2
+

1

2

)
p̄jFjriλix̄r −

1

2
x̄rγiFirsx̄s − Aiγi

=
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− 1

2

(
U∗ − Ū∗

)
·K|D

(
U∗ − Ū∗

)
− 1

2
au(u− ū) · (u− ū)

−
(
U∗ − Ū∗

)
· J |(D,Ū) − (u− ū) · UD (19)

− x̄ ·
(
X|D +

1

2
X̄ |(D,Ū)

)
− p̄ ·

(
P|D +

1

2
P̄|(D,Ū)

)
− ū · U|D − A · γ.

so that the QQR pre-dual functional may be written as

ŜQ[U,D]

=− 1

2

∫ T

0

{(
U∗ − Ū∗

)
·K|D

(
U∗ − Ū∗

)
− au(u− ū) · (u− ū)

}
dt

−
∫ T

0

{(
U∗ − Ū∗

)
· J |(D,Ū) + (u− ū) · UD

}
dt (20)

−
∫ T

0

{
x̄ ·
(
X|D +

1

2
X̄ |(D,Ū)

)
+ p̄ ·

(
P|D +

1

2
P̄|(D,Ū)

)
+ ū · U|D + A · γ

}
dt

− γ|0 · x0.

Substituting for UQ from (18) for U in LQ, we have

LQ
(
UQ|(D,Ū),D, Ū , t

)
=

(
− 1

2
+ 1

)(
J |(D,Ū) ·K

∣∣−1

D J |(D,Ū) +
1

au
U
∣∣
D · U

∣∣
D

)
− x̄ ·

(
X|D +

1

2
X̄ |(D,Ū)

)
− p̄ ·

(
P|D +

1

2
P̄|(D,Ū)

)
− ū · U|D − A · γ

so that the QQR dual functional is given by

SQ[D] =

∫ T

0

LQ
(
UQ|(D,Ū),D, Ū , t

)
dt− γ|0 · x0

=
1

2

∫ T

0

(
J |(D,Ū) ·K

∣∣−1

D J |(D,Ū) +
1

au
U
∣∣
D · U

∣∣
D

)
dt (21)

−
∫ T

0

{
x̄ ·
(
X|D +

1

2
X̄ |(D,Ū)

)
+ p̄ ·

(
P|D +

1

2
P̄|(D,Ū)

)
+ ū · U|D + A · γ

}
dt

− γ|0 · x0.

We note from the DtP mapping (18) that, for the fieldD = 0 so thatD(t) = 0 ∀ t ∈ [0, T ], UQ = Ū ,
and recall that the E-L equation of SQ is the QQR primal equation set (14) with the replacement
U → UQ. Thus, if Ū was a solution of (14), then D = 0 is a critical point of SQ.

If we now define

S̃Q[D] := sup
U

ŜQ[U,D] =

∫ T

0

sup
U
LQ(U,D, Ū , t) dt − γ|0 · x0 (22)

(19) implies that

sup
U
LQ(U,D, t, Ū) =


LQ
(
UQ|(D,Ū),D, Ū , t

)
for any D s.t. K(D) is positive semi-definite

and J |(D,Ū) ∈ im(K(D))

+∞ otherwise.
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Indeed, first note that K(D) is a symmetric matrix. In particular, the above maximization problem
above is concave if K(D) is positive semi-definite. Hence, every critical point is a maximizer, i.e. every
solution of (18) is a maximizer of U → LQ(U,D, Ū , t). Next, if K(D) is only positive semi-definite
then the expression K(D)−1 has to be interpreted as the inverse of the linear mapping restricted to
the orthogonal complement of its kernel. This is well-defined as all solutions of (18) return the same
maximal value for LQ. If 0 6= J |(D,Ū) /∈ im(K(D)) then its projection onto the kernel of K(D), call
it U , is non-zero as K(D) is symmetric. Then note that LQ(sU + Ū ,D, Ū , t)→ +∞ as s→ −∞.
Similarly, one can argue if K(D) is not positive semi-definite, i.e. if K(D) has a negative eigenvalue.
Thus,

S̃Q[D] =


SQ[D] for D s.t. K(D(t)) is positive semi-definite

and J |(D(t),Ū(t)) ∈ im(K(D(t))) a.e. in [0, T ]

+∞ otherwise.

(23)

As already noted, S̃Q is a convex functional of the dual fields D.

5 Coercivity of the dual minimization problem for the Quadratic-
Quadratic Regulator (QQR)

In this section we will discuss the coercivity of the dual functional S̃Q as defined in (22) on an ap-
propriate subspace of H1((0, T );Rn) × H1((0, T );Rn) × L2((0, T );Rm). Given λ0 ∈ Rn we
set

A :=
{

(γ, λ, µ) ∈ H1((0, T );Rn)×H1((0, T );Rn)× L2((0, T );Rm) :

λ(0) = λ0, Gλ(T ) = γ(T )
}
.

Moreover, we define the function g : Rn × Rn × Rn × Rn × Rm → [0,∞] as

g(γ, α, λ, β, µ) = sup
x,p∈Rn,u∈Rm

[
− xj · (αj + γiMij + λiBij)− pj(βj −Mjiλi +Njiµi)

− uj(Nijγi + Cjiµi)−
1

2

(
ax|x|2 + ap|p|2 + au|u|2

)
− 1

2
γiFirsxrxs + pjFjrixrλi

]
.

As indicated in (22) in this setting it can be shown rigorously that it holds for all (γ, λ, µ) ∈ A

S̃Q[γ, λ, µ] = sup
x,p∈L2((0,T );Rn),u∈L2((0,T );Rm)

ŜQ[(x, u, p), (γ, λ, µ)]

=

∫ T

0

g(γ, γ̇, λ, λ̇, µ) + A · γ ds− γ(0) · x0.

In particular, since ŜQ is affine in (γ, λ, µ) the functional S̃Q is lower-semicontinuous with respect to
weak convergence in H1((0, T );Rn) × H1((0, T );Rn) × L2((0, T );Rm). Hence, the coercivity
result of this section, Proposition 5.2, guarantees that the direct method of the Calculus of Variations
can be applied to establish the existence of a minimizer of S̃Q. By the argumentation in Section 3 such
a minimizer is then (at least formally) a solution to the primal equations (3), c.f. also the discussion in
[21, Section 5].

We start by proving the following lower bound for g.
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Proposition 5.1. It holds for all (γ, α, λ, β, µ) ∈ Rn × Rn × Rn × Rn × Rm that

g(γ, α, λ, β, µ) ≥
∣∣α +MTγ +BTλ

∣∣2
2(ax + |F ||γ|+ |F ||λ|)

+
|β −Mλ+Nµ|2

2(ap + |F ||λ|)
+

∣∣NTγ + Cµ
∣∣2

2au
.

For F = 0 it holds

g(γ, α, λ, β, µ) =

∣∣α +MTγ +BTλ
∣∣2

2ax
+
|β −Mλ+Nµ|2

2ap
+

∣∣NTγ + Cµ
∣∣2

2au
.

Proof. We estimate using Young’s inequality

g(γ, α, λ, β, µ)

≥ sup
x,p∈Rn,u∈Rm

[
− xj · (αj + γiMij + λiBij)− pj(βj −Mjiλi +Njiµi)

− uj(Nijγi − Cjiµi)−
1

2

(
ax|x|2 + ap|p|2 + au|u|2

)
− 1

2
(|γ|+ |λ|) |F | |x|2

− 1

2
|λ| |F | |p|2

]
=

∣∣α +MTγ +BTλ
∣∣2

2(ax + |F ||γ|+ |F ||λ|)
+
|β −Mλ+Nµ|2

2(ap + |F ||λ|)
+

∣∣NTγ − Cµ
∣∣2

2au
.

For F = 0 the inequality above is an equality.

Before we state a coercivity result for S̃Q, let us briefly introduce some notation. Given a matrix R ∈
Rd×d and t ∈ R we denote by etR :=

∑∞
k=0

tk

k!
Rk the usual exponential functions for matrices.

Additionally, we denote by π1, π2 : Rn×Rn → Rn the projections π1(x, y) = x and π2(x, y) = y for
(x, y) ∈ Rn×Rn. Lastly, we write ι : Rn → Rn×Rn for the embedding ι(x) = (x, 0) ∈ Rn×Rn,
x ∈ Rn.

Proposition 5.2. Let the matrices B,G,C,M,N, F be matrices as before and T > 0. Additionally
assume that C is invertible. Set

R :=

(
−MT −BT

NC−1NT M

)
∈ R2n×2n. (24)

Assume that the linear mapping

Rn 3 x→ π1(eTRι(x)) +Gπ2(eTRι(x)) (25)

is invertible.

Then there exists δ > 0 such that whenever |x0| + ‖A‖L1 ≤ δ then the functional S̃Q is weakly
coercive onA, i.e., for every sequence (γ(k), λ(k), µ(k))k ⊆ A such that supk S̃Q[γ(k), λ(k), µ(k)] <
∞ there exists a subsequence that is weakly convergent inA.
If F = 0 the dual functional S̃Q is coercive on A only under the assumption that C is invertible and
the invertibility of (25).

Remark 5.1. Let us briefly comment on the invertibility condition (25). We write

ρ := γ̇+MTγ+BTλ and σ := λ̇−Mλ+Nµ = λ̇−Mλ−NC−1NTγ+NC−1(NTγ+Cµ).
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Hence, the functions γ, λ solve the ODE(
γ̇

λ̇

)
= R

(
γ
λ

)
+

(
ρ

σ −NC−1(NTγ + Cµ)

)
,

where R is the matrix in (24). By Proposition 5.1 it seems reasonable that for admissible functions
(γ, λ, µ) ∈ A with a bounded energy S̃Q[γ, λ, µ] one might hope to control the functions ρ, σ and
NTγ + Cµ so that it holds approximately(

γ(t)
λ(t)

)
≈ etR

(
γ(0)
λ(0)

)
.

Then the invertibility of the mapping in (25) is exactly the condition that allows to control γ(0) through
λ(0) = λ0 using that γ(T ) = Gλ(T ). In turn this will imply bounds on the functions γ and λ in
H1((0, T );Rn).

Proof. Let (γ(k), λ(k), µ(k))k ⊆ A be a sequence satisfying supk S̃Q[γ(k), λ(k), µ(k)] ≤ K , for some
K > 0. By the usual weak compactness properties of the spaces H1 and L2 it suffices to prove
that the sequence (γ(k), λ(k), µ(k))k lies in a bounded subset of H1(0, T ;Rm) × H1(0, T ;Rm) ×
L2((0, T );Rm).

Throughout the proof c > 0 will denote a constant which does not depend on γ(k), λ(k) nor µ(k) but
may change from line to line.

Defining σ(k) = γ̇(k) + MTγ(k) + BTλ(k) and ρ(k) = λ̇(k) − Mλ(k) + Nµ(k) we obtain from
Proposition 5.1 for a constant c > 0 (depending on ax, ap and |F |)

K ≥ S̃Q[γ(k), λ(k), µ(k)] (26)

≥
∫ T

0

(
|σ(k)|2

c(1 + |λ(k)|+ |γ(k)|)
+

|ρ(k)|2

c(1 + |λ(k)|+ |γ(k)|)
+

1

2au
|NTγ(k) + Cµ(k)|2

+ A · γ(k)

)
dt− γ(k)(0) · x0

≥
∫ T

0

(
|σ(k)|2

c(1 + |λ(k)|+ |γ(k)|)
+

|ρ(k)|2

c(1 + |λ(k)|+ |γ(k)|)
+

1

2au
|NTγ(k) + Cµ(k)|2

)
dt

− ‖A‖L1‖γ(k)‖L∞ − |γ(k)(0)| |x0|

≥
∫ T

0

(
|σ(k)|2

c(1 + |λ(k)|+ |γ(k)|)
+

|ρ(k)|2

c(1 + |λ(k)|+ |γ(k)|)
+

1

2au
|NTγ(k) + Cµ(k)|2

)
dt

− δ‖γ(k)‖L∞ .

Next, we write(
γ̇(k)

λ̇(k)

)
=

(
−MT −BT

NC−1NT M

)
︸ ︷︷ ︸

=R

(
γ(k)

λ(k)

)
−
(

0
NC−1(NTγ(k) + Cµ(k))

)
+

(
σ(k)

ρ(k)

)
. (27)

This ODE is solved uniquely by

(
γ(k)(t)
λ(k)(t)

)
= etR

(
γ(k)(0)
λ(k)(0)

)
+ etR

∫ t

0

e−sR
(

σ(k)(s)
−NTC−1(Nγ(k)(s) + Cµ(k)(s)) + ρ(k)(s)

)
ds

(28)
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Writing the initial condition in the form
(
γ(k)(0) λ(k)(0)

)T
=
(
0 λ(k)(0)

)T
+
(
γ(k)(0) 0

)T
and

using γ(k)(T ) = Gλ(k)(T ) and λ(k)(0) = λ0 in (28) with some rearrangement of terms, we find that

(π1 −G ◦ π2)

(
eTR

(
0
λ0

)
+ eTR

∫ T

0

e−sR
(

σ(k)(s)
−NC−1(NTγ(k)(s) + Cµ(k)(s)) + ρ(k)(s)

)
ds

)
= −π1(eTRι(γ(k)(0))) +Gπ2(eTRι(γ(k)(0))).

(29)
By the invertibility of the mapping in (25) we obtain

|γ(k)(0)| ≤ c

(
|λ0|+

∫ T

0

|σ(k)|+ |ρ(k)|+ |NTγ(k) + Cµ(k)| ds
)

(30)

Combining this with (28), we find using (26) and Hölder’s inequality

‖γ(k)‖L∞ + ‖λ(k)‖L∞

≤c
(
|γ(k)(0)|+ |λ0|+

∫ T

0

|σ(k)|+ |ρ(k)|+ |NTγ(k) + Cµ(k)| ds
)

≤c
(
|λ0|+ ‖NTγ(k) + Cµ(k)‖L2

+

(∫ T

0

|σ(k)|2 + |ρ(k)|2

1 + |λ(k)|+ |γ(k)|
dt

)1/2

(1 + ‖λ(k)‖L∞ + ‖γ(k)‖L∞)1/2

)
Using (26) and Young’s inequality it follows

‖γ(k)‖L∞ + ‖λ(k)‖L∞

≤ c
(
|λ0|+ (K + δ‖γ(k)‖L∞)1/2 +

(
K + δ‖γ(k)‖L∞

)1/2
(1 + ‖λ(k)‖L∞ + ‖γ(k)‖L∞)1/2

)
≤ c
(
|λ0|+ 1 +K + δ‖γ(k)‖L∞ + δ−1/2(K + δ‖γ(k)‖L∞)

+ δ1/2(1 + ‖λ(k)‖L∞ + ‖γ(k)‖L∞)

)
.

Hence, if

c(2δ1/2 + δ) ≤ 1

2
,

we find
‖γ(k)‖L∞ + ‖λ(k)‖L∞ ≤ 2c

(
|λ0|+ 1 + δ1/2 +K + δ−1/2K

)
.

In particular, λ(k) and γ(k) are uniformly bounded in L∞. By (26) this implies that the functions ρ(k)

and σ(k) are uniformly bounded in L2. Consequently,

sup
k
‖γ̇(k)‖L2 + ‖λ̇(k)‖L2

≤ sup
k
c
(
‖λ(k)‖L2 + ‖γ(k)‖L2 + ‖ρ(k)‖L2 + ‖σ(k)‖L2 + ‖NTγ(k) + Cµ(k)‖L2

)
<∞.

This shows that the sequences (γ(k))k, (λ
(k))k are uniformly bounded in H1((0, T );Rn). The uni-

form boundedness of (µ(k))k in L2(Ω;Rm) then follows from (26).
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Let us now consider the special case F = 0. First, note that by Proposition 5.1 it holds in the notation
from above similarly to (26) that∫ T

0

1

2au
|σ(k)|2 +

1

2ap
|ρ(k)|2 +

1

2au
|NTγ(k) +Cµ(k)|2 dt ≤ K + (|x0|+ ‖A‖L1)‖γ(k)‖L∞ . (31)

By (30) it follows that

|γ(k)(0)| ≤ c
(
|λ0|+ (K + (|x0|+ ‖A‖L1)‖γ(k)‖L∞)1/2

)
.

In turn, using (28) and (31) it follows

‖γ(k)‖L∞ + ‖λ(k)‖L∞ (32)

≤c
(
|γ(k)(0)|+ |λ0|+

∫ T

0

|σ(k)|+ |ρ(k)|+ |NTγ(k) + Cµ(k)| ds
)

(33)

≤c
(
|λ0|+ (K + (|x0|+ ‖A‖L1)‖γ(k)‖L∞)1/2

)
. (34)

This implies that supk ‖γ(k)‖L∞ + ‖λ(k)‖L∞ <∞. The rest of the proof then concludes analogously
to before.

Remark 5.2. Let us remark that the invertibility assumption for C can be slightly weakened. Assume
that it holds ker(C) ⊆ ker(N) and im(NT ) ⊆ im(C). Then, it holds for all x, y ∈ Rm that Cx = Cy
implies that Nx = Ny. Hence, for all z ∈ im(C) one can define the linear mapping NC−1 in a well-
defined manner as NC−1z = Nx, where Cx = z. By definition it follows that NC−1Cµ = Nµ. In
addition, since im(NT ) ⊆ im(C) also the linear mapping NC−1NT is well-defined. Using this in the
definition of the matrix R in (24) the proof above shows that the coercivity of S̃Q still holds.

In the following we will argue that coercivity of the dual functional S̃Q might fail if the mapping (25) is
not invertible or if |x0| or ‖A‖L1 is too large.

Remark 5.3. 1 Let F = 0, A = 0, λ0 = 0 and assume that the mapping (25) is not invertible.
Then there exists γ0 ∈ Rm \ {0} such that x0 · γ0 ≤ 0 and

π1(eTRι(γ0))−Gπ2(eTRι(γ0)) = 0.

Then define the sequence of functions(
γ(k)(t)
λ(k)(t)

)
= etR

(
kγ0

0

)
and µ(k) = −C−1NTγ(k). It follows that

γ(k)(T )−Gλ(k)(T ) = π1

(
eTR

(
kγ0

0

))
−Gπ2

(
eTR

(
kγ0

0

))
= 0.

Moreover, (
γ̇(k)(t)

λ̇(k)(t)

)
= R

(
γ(k)(t)
λ(k)(t)

)
and therefore

γ̇(k) +MTγ(k) +BTλ(k) = λ̇(k) −Mλ(k) +NTµ(k) = 0 and NTγ(k) + Cµ(k) = 0,
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which implies by Proposition 5.1 that g(γ(k), γ̇(k), λ(k), λ̇(k), µ(k)) = 0, i.e.,

S̃Q[γ(k), λ(k), µ(k)] = γ(k)(0) · x0 = kγ0 · x0 ≤ 0.

Hence, supk S̃Q[γ(k), λ(k), µ(k)] < ∞ but the sequence (γ(k), λ(k), µ(k))k is not bounded in
H1(0, T ;Rm)×H1(0, T ;Rm)×L2((0, T );Rm), i.e., the dual functional S̃Q is not coercive.

2 Let n = m = 2, B = C = G =

(
1 0
0 1

)
, M = 0, Fijr = δjr, N =

(
1 0
0 0

)
, λ0 = 0

and ax = ap = au = 1. For k ∈ N we set λ(k) = 0, γ(k)
1 = 0, γ(k)

2 (t) = k(T − t)2 and

µ(k) = 0. Then γ(k)(T )+Gλ(k)(T ) = 0 and λ(k)(0) = 0 = λ0. Moreover, γ̇(k)
2 = 2k(t−T )

and NTγ(k) + Cµ(k) = 0. Then compute

S̃Q[γ(k), λ(k), µ(k)]

=

∫ T

0

sup
x,p,u∈R2

−γ̇(k)(t) · x− 1

2
(γ

(k)
2 (t) + 1)x2 − A(t) · γ(k)(t) dt− γ(k)(0) · x0

=

∫ T

0

∣∣γ̇(k)
∣∣2

2(γ
(k)
2 (t) + 1)

− A(t) · γ(k)(t) dt− γ(k)(0) · x0

=

∫ T

0

4k2|t− T |2

2k(T − t)2 + 2
− A2(t)k(T − t)2 dt− x0

2 kT
2

≤kT
(

2− x0
2T −

∫ T

0

A2(t)
(t− T )2

T
dt

)
.

Hence, if x0
2 � 1 or for specific choices of A with ‖A2‖L1 � 1 it holds S̃Q[γ(k), λ(k), µ(k)]→

−∞ as k →∞. In particular, S̃Q is not coercive.

Eventually, we check that the mapping (25) is invertible. Using that NT = N and N2 = N

it holds by definition (24) that R =

(
0 −Id2

N 0

)
, where Id2 ∈ R2×2 denotes the identity

matrix. Using that N2 = N one can then show for l ≥ 1 that

R2l = (−1)l
(
N 0
0 N

)
and R2l+1 = (−1)l

(
0 N
−N 0

)
.

Consequently, it follows

eTR

=

(
Id2 0
0 Id2

)
+ t

(
0 −Id2

N 0

)
+
∞∑
l=1

(−1)l
t2l

(2l)!

(
N 0
0 N

)
+
∞∑
l=1

(−1)l
t2l+1

(2l + 1)!

(
0 N
−N 0

)
=

(
Id2 0
0 Id2

)
+ t

(
0 −Id2

N 0

)
+ (cos(t)− 1)

(
N 0
0 N

)
+ (sin(t)− t)

(
0 N
−N 0

)
.
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It follows for x =

(
x1

x2

)
∈ R2 that

π1(eTRι(x)) +Gπ2(eTRι(x)) =

(
(cos(T )− sin(T ) + 2T )x1

x2

)
.

Since cos(T )− sin(T ) + 2T ≥ 1 for all T ≥ 0 it follows that the mapping in (25) is invertible.

On the other hand, if a solution to the primal ODE exists then the dual functional cannot be unbounded
from below.

Proposition 5.3. If a solution to the primal ODE (14), (15) exists then the dual functional S̃Q is
bounded from below.

Proof. Let x, p, u denote the solution to (14) and (15). Then it holds for γ, λ, µ that

S̃Q[γ, λ, µ] =

∫ T

0

g(γ, γ̇, λ, λ̇, µ) − Ai · γidt− x0 · γ(0)

≥
∫ T

0

{
− γiAi − xiγ̇i − γiMijxj − γiNiαuα − γi

1

2
Firsxrxs

− piλ̇i − λiBijxj + pjMjiλi + pjFjrixrλi

+ piNiαµα − uβCβαµα

− supx, p, u
1

2

(
ax|x|2 + au|u|2 + ap|p|2

) }
dt− γi|0x0

i .

= −
∫ T

0

1

2

(
ax|x|2 + au|u|2 + ap|p|2

)
dt.

6 The forced Linear-Quadratic Regulator (LQR)

The dual formulation of the LQR problem is obtained from the dual QQR by setting F = 0. Define

J l
∣∣∣
D

:=


X|D

P|D

 Kl
∣∣∣
D

:=

axI 0

0 apI

 ; I is the n× n identity matrix.

The LQR dual functional is then given by

SlQ[D] :=
1

2

∫ T

0

(
J l
∣∣∣
(D,Ū)

·Kl
∣∣∣−1

D
J l
∣∣
(D,Ū)

+
1

au
U
∣∣
D · U

∣∣
D

)
dt

−
∫ T

0

{
x̄ · X |D + p̄ · P|D + ū · U|D + A · γ

}
dt − γ|0 · x0

= (35)

1

2

∫ T

0

(
1

ax
X|D · X |D +

1

ap
P|D · P|D +

1

au
U|D · U|D

)
dt

−
∫ T

0

{
x̄ · X |D + p̄ · P|D + ū · U|D + A · γ

}
dt − γ|0 · x0.
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Its first variation, in a direction δD, generates the weak form of the LQR problem (14) with F = 0 and
is given by

δSlQ
∣∣
δD

[D] =

∫ T

0

(
1

ax
X|δD · X |D +

1

au
U|δD · U|D +

1

ap
P|δD · P|D

)
dt

−
∫ T

0

(
x̄ · X |δD + ū · U|δD + p̄ · P|δD + A · δγ

)
dt − δγ|0 · x0;

(36)

Noting that D is naturally viewed as a linear operator on the space, say

Y =
{
D : [0, T ]→ Rn+m+m : (γ, λ) ∈ H1

(
[0, T ],R2n

)
, µ ∈ L2([0, T ],Rm), D satisfies (8a)

}
of admissible dual functions D, and (X ,U ,P) is a linear function on D, the second variation of SlQ,
in the pair of directions (δD, dD) ∈ Y × Y , is a symmetric, positive semi-definite bilinear operator
in (δD, dD) independent of D, and given by

dδSlQ
∣∣
(δD,dD)

[D] =

∫ T

0

(
1

ax
X|δD · X |dD +

1

au
U|δD · U|dD +

1

ap
P|δD · P|dD

)
dt (37)

=:L(δD, dD).

At a critical pointD of the functional the first variation must vanish for all variations δD consistent with
the boundary conditions (8a). If (x̄, ū, p̄) is a solution to (14-15) for F = 0, then the second line in
(36) must vanish for all admissible variations. Then it is clear thatD = (γ, µ, λ) = 0 is a critical point.
In general, the choice of a guiding base state Ū = (x̄, ū, p̄) act as forcing to the problem, as do the
boundary conditions (8a).

Let us define a linear operator on Y

l(D;A, x0, Ū) :=

∫ T

0

{
x̄ · X |D + p̄ · P|D + ū · U|D + A · γ

}
dt + γ|0 · x0.

Invoking a finite set of linearly independent functions B = {φA ∈ Y,A = 1, . . . , N} and writing

D = DBφB, δD = δDAφA,

a discrete linear algebra based approximation of the LQR primal problem (14) with F = 0 is given by
the following finite dimensional approximation of (36) (using (37)):

MABDB = fA, L(φA, φB) =: MAB; fA =: l(φA;A, x0, Ū); A,B = 1, . . . , N.

We note that the matrix M is symmetric and does not depend on the initial condition x0. Thus, given
the problem (14) with F = 0, the time interval [0, T ], and the basis B, an SVD decomposition (or
LU, when nonsingular, or any other preferred linear algebraic decomposition) of the matrix M can be
precomputed off-line and stored. This can be used in conjunction with the vector f , which depends on
the initial condition x0, to generate the state, co-state, and control approximations for the LQR problem
for each specific x0. In the presence of nonuniqueness of solutions to the primal control problem, the
base state Ū employed enforces the obtained solutions/approximations to be closest to it.

Of course, because the LQR dual functional (35) is convex, the powerful methods of convex optimiza-
tion [19] can be brought to bear on the discrete problem.
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The classical method for solving LQR systems relies on a one-time solution of a nonlinear Riccati
equation to generate the feedback control (with the matrix C assumed invertible): one considers the
LQR optimality conditions (14) with F = 0 and A = 0,

ẋ = Mx+Nu (38a)

ṗ = Bx−MTp (38b)

0 = NTp− Cu (38c)

with the boundary conditions (15), along with the ansatz

p|t := K|t x|t t 7→ K|t ∈ Rn×n
sym (39)

and assuming (38a-38c-39) are satisfied, one chooses the function K such that (38b) is also satisfied
(for alternate motivation based on the value function of the HJB procedure, see, e.g., [8, Sec. 5.2.3]).
Thus,

u = C−1NTKx and ẋ = Mx+NC−1NTKx,

so that (38b) corresponds to the statement

K̇x+K(Mx+NC−1NTKx)−Bx+MTKx = 0,

which is satisfied if K satisfies the (nonlinear) Riccati equation

K̇|t + (K|tM +MTK|t) +K|tNC−1NTK|t −B = 0; K|T = −G,

with the feedback control given by

u|t = C−1NTK|t x|t. (40)

Then, for each specific problem corresponding to initial condition x(0) = x0, one substitutes (40) into
(38a) to solve for the state response t 7→ x(t).

In our scheme, the one-off solution procedure involves a linear problem. The analog of the solution of
the Riccati problem corresponds to obtaining the solution operator for the linear, second-order bvp for
(γ, µ, λ) subject to the boundary conditions (8b)-(11)-(15) as a function of the boundary data (x0, λ0)
(an outline of the computational protocol for the corresponding discrete case has been discussed
above). Admittedly, it is not in feedback control form, but it does not require

� the matrix C to be invertible, and

� the forcing vector A to vanish.

The formal non-requirement of the invertibility of the control cost matrix C in the dual formulation of
the LQR problem is intriguing and it remains to be seen whether a rigorous existence theorem can
be obtained in the absence of this invertibility (we note that even the formal derivation of the matrix
Riccati equation for the LQR problem requires this invertibility).
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6.1 An Example

In this section we derive an explicit solution for the simplest LQR problem by the proposed dual
scheme. Consider the problem

maximize P [u] = −
∫ T

0

x2(t) + u2(t) dt

subject to ẋ(t) = x(t) + u(t)

x(0) = −x0,

and x0 is specified. Here, n,m = 1. Thus, within our setup

f(x, u) = x+ u; G = 0; r(x, u) = x2 + u2,

and the primal system of equations to be solved is

ẋ− x− u = 0

ṗ− 2x+ p = 0

−p+ 2u = 0 (41)

p(T ) = 0

x(0) = −x0.

Choosing

Q(x, u, p) =
1

2
(x2 + u2 + p2),

the pre-dual functional is given by

ŜQ =

∫ T

0

(
− xγ̇ − γx− γu− pλ̇− 2λx+ λp− pµ+ 2µu

− 1

2
x2 − 1

2
u2 − 1

2
p2

)
dt − γ(0)x0

with Lagrangian

LQ = x

(
− γ̇ − γ − 2λ− 1

2
x

)
+ u

(
− γ + 2µ− 1

2
u

)
+ p

(
− λ̇+ λ− µ− 1

2
p

)
and the DtP mapping

∂xLQ = 0 : xQ = −(γ̇ + γ + 2λ)

∂uLQ = 0 : uQ = −(γ − 2µ)

∂pLQ = 0 : pQ = −(λ̇− λ+ µ).
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The corresponding set of governing equations and boundary conditions for the dual problem is given
by

ẋQ − xQ − uQ = −(γ̈ + 2λ̇− 2γ − 2λ+ 2µ) = 0

ṗQ − 2xQ + pQ = −(λ̈+ µ̇− 2γ̇ − 2γ − 5λ+ µ) = 0

−pQ + 2uQ = −(−γ̇ + 2γ + λ− 5µ) = 0 (44a)

xQ(0) + x0 = −(γ̇(0) + γ(0) + 2λ(0)) + x0 = 0

pQ(T ) = −(λ̇(T )− λ(T ) + µ(T )) = 0

γ(T ) = 0

λ(0) = λ0.

Eliminating µ using (44a),

µ =
1

5

(
− λ̇+ 2γ + λ

)
,

one obtains the following constant-coefficient, linear, second order reduced system1 0

0 4
5


γ̈

λ̈

+

 0 8
5

−8
5

0


γ̇

λ̇

+

−6
5

−8
5

−8
5

−24
5


γ

λ

 =


0

0


with boundary conditions

γ̇(0) + γ(0) + 2λ(0) = x0

4

5
λ̇(T )− 4

5
λ(T ) +

2

5
µ(T ) = 0

γ(T ) = 0

λ(0) = λ0.

The general solution involves two characteristic times (roots)±
√

2 each of multiplicity two (so the dual
solution is not a linear combination of pure exponentials in time). We use the symbolic mathematics
software Mathematica [10] to obtain the explicit solution listed in the Appendix. The explicit forms are
not instructive except for the following fact:

� the solution for
(
xQ, uQ

)
does not depend on (the arbitrary choice) of λ0 whereas the solution

for the dual functions (γ, µ, λ) does; the former condition is necessary when the primal problem
has unique solutions.

Indeed, we show below that the primal problem in this case has a unique solution.

The system (41) can also be written as(
ẋ
ṗ

)
=

(
1 1

2

2 −1

)
︸ ︷︷ ︸

=:A

(
x
p

)
, x(0) = −x0, p(T ) = 0.

A solution (if it exists) to the ODE above is of the form(
x
p

)
= eAt

(
x̄
p̄

)
,
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where x̄, p̄ ∈ R need to be determined. It follows directly that x̄ = −x0. The equation that determines
p̄ is

0 = e2 ·
(
eAT

(
x̄
p̄

))
= (eAT )21x̄+ (eAT )22p̄.

Hence, if (eAT )22 6= 0 then the value of p̄ is uniquely determined. If (eAT )22 = 0 then (eAT )21 6= 0
(since eAT is always invertible) and there are either infinitely many solutions for p̄ (if x̄ = 0) or no
solution for p̄ (if x̄ 6= 0).

In this particular case it can be checked that (eAT )22 6= 0 and the solution to (41) is unique.

A Appendix: Explicit primal and dual solutions for (41)

• xQ(t) =
xnum(t)

xden(t)
where (45a)

xnum(t) = e−
√

2t
(
− x0

) (
−
(√

2− 2
)
e2
√

2(t+2T ) + 2
(√

2 + 2
)
e2
√

2(t+T )

+
(

7
√

2 + 10
)
e2
√

2t − 2
(√

2− 2
)
e4
√

2T

+
(√

2 + 2
)
e2
√

2T +
(

10− 7
√

2
)
e6
√

2T

)
xden(t) =

((√
2− 2

)
e2
√

2T −
√

2− 2

)(
− 2e2

√
2T +

(
2
√

2− 3
)
e4
√

2T − 2
√

2− 3

)
;

• uQ(t) =
e−
√

2t
(
− x0

) (
2
√

2e2
√

2T +
(
3
√

2− 4
)
e4
√

2T + 3
√

2 + 4
)(

e2
√

2t − e2
√

2T
)

((√
2− 2

)
e2
√

2T −
√

2− 2
) (
−2e2

√
2T +

(
2
√

2− 3
)
e4
√

2T − 2
√

2− 3
) ;

• pQ(t) =
2e−

√
2t
(
− x0

) (
2
√

2e2
√

2T +
(
3
√

2− 4
)
e4
√

2T + 3
√

2 + 4
)(

e2
√

2t − e2
√

2T
)

((√
2− 2

)
e2
√

2T −
√

2− 2
) (
−2e2

√
2T +

(
2
√

2− 3
)
e4
√

2T − 2
√

2− 3
) .

It has been verified (in Mathematica) that (41) is satisfied by the formulae x = xQ, u = uQ, p = pQ,
where the righ-hand-sides are given above.

The λ0-dependent solutions to the dual problem are given by

• γ(t) =
γnum(t)

γden(t)
where

γnum(t) (46a)

=e−
√

2t

(
e6
√

2T
((

6
√

2− 8
)
λ0 +

((
4
√

2− 6
)
t− 5

√
2 + 6

)
x0
)

+ e2
√

2(t+T )
(
−4
√

2λ0 − 4tx0 + 4Tx0 + 6
√

2x0
)
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+ e2
√

2(t+T )
(
−4
√

2λ0 − 4tx0 + 4Tx0 + 6
√

2x0
)

+ e2
√

2(t+2T )
((

8− 6
√

2
)
λ0 + x0

((
4
√

2− 6
)
t− 8

√
2T + 12T + 5

√
2− 6

))
+ e2

√
2T
((

6
√

2 + 8
)
λ0 − x0

((
4
√

2 + 6
)
t− 4

(
2
√

2 + 3
)
T + 5

√
2 + 6

)))
γden(t) =

((√
2− 2

)
e2
√

2T −
√

2− 2
)(
−2e2

√
2T +

(
2
√

2− 3
)
e4
√

2T − 2
√

2− 3
)

• λ(t) =
λnum(t)

λden(t)
where

λnum(t) = e−
√

2t

(
e6
√

2T
((

10− 7
√

2
)
λ0 +

(
7− 5

√
2
)
tx0
)

+ e2
√

2t
((

7
√

2 + 10
)
λ0 +

(
5
√

2 + 7
)
tx0
)

− 2e4
√

2T
((√

2− 2
)
λ0 +

(√
2− 1

)
x0(t− T − 1)

)
+ 2e2

√
2(t+T )

((√
2 + 2

)
λ0 +

(√
2 + 1

)
x0(t− T − 1)

)
+ e2

√
2(t+2T )

((√
2− 1

)
x0(t− 2(T + 1))−

(√
2− 2

)
λ0
)

+ e2
√

2T
((√

2 + 2
)
λ0 −

(√
2 + 1

)
x0(t− 2(T + 1))

) )
λden(t) =

((√
2− 2

)
e2
√

2T −
√

2− 2
)(
−2e2

√
2T +

(
2
√

2− 3
)
e4
√

2T − 2
√

2− 3
)

• µ(t) =
µnum(t)

µden(t)
where

µnum(t)

=e−
√

2t

(
e6
√

2T
((

3
√

2− 4
)
λ0 +

(
2
√

2− 3
)
tx0 −

√
2x0 + x0

)
+ e2

√
2t
((
−
(

2
√

2 + 3
)
t+
√

2 + 1
)
x0 −

(
3
√

2 + 4
)
λ0
)

+ 2e4
√

2T
(√

2λ0 − x0
(
t− T +

√
2
))

− 2e2
√

2(t+T )
(√

2λ0 − x0
(
−t+ T +

√
2
))

+ e2
√

2T
((

3
√

2 + 4
)
λ0 − x0

((
2
√

2 + 3
)
t− 4

√
2T − 6T +

√
2 + 1

))
+ e2

√
2(t+2T )

((
4− 3

√
2
)
λ0 + x0

((
2
√

2− 3
)
t− 4

√
2T + 6T +

√
2− 1

)) )
µden(t) =

((√
2− 2

)
e2
√

2T −
√

2− 2
)(
−2e2

√
2T +

(
2
√

2− 3
)
e4
√

2T − 2
√

2− 3
)
.
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