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Bifurcations and intermittency in coupled dissipative kicked
rotors

Jin Yan

Abstract

We investigate the emergence of complex dynamics in a system of coupled dissipative kicked
rotors and show that critical transitions can be understood via bifurcations of simple states. We
study multistability and bifurcations in the single rotor model, demonstrating how these give rise
to a variety of coexisting spatial patterns in a coupled system. A combined order parameter is
introduced to characterize different spatial patterns and to reveal the coexistence of chaotic and
regular attractors. Finally, we illustrate an intermittent phenomenon near the onset of chaos.

Phase transitions in coupled dynamical systems are intricate due to high dimensionality, nhon-
linearity and multistability. Understanding critical transitions is nontrivial and a general ap-
proach involves employing statistical mechanical (or macroscopic) quantities. In this study
we offer a microscopic perspective. We begin with a systematic study of dynamics of the
single-rotor model, emphasizing bifurcations and basins of attraction of multiple attractors.
These results significantly contribute to understanding coexisting spatiotemporal patterns in
the coupled system. The bifurcations of simple states establish critical boundaries where more
complex spatial patterns emerge, characterized using a combined order parameter adapted
from Kuramoto phase oscillator models. Lastly, we illustrate an intermittent behavior observed
near the onset of chaos, which belongs to type-l super-transient (i.e., chaos spreads out in a
percolation-like manner). Our findings highlight that, despite the multistability in the coupled
system, transitions in the dominant (or physically observable) behavior can be well-captured
by bifurcations of simple states, along with the dynamics at the single-element level.

1 Introduction

Coupled dynamical systems serve as a fundamental framework for understanding a wide range of
complex phenomena in physics, biology and engineering. These systems, characterized by interacting
components, exhibit intricate behaviors that emerge from interplay between individual dynamics and
the coupling mechanisms.

Multistability, where a system can have multiple stable states under the same set of parameter values,
is prevalent in coupled systems. In natural systems such as ecosystems, the ability of a system to shift
between stable states (for example, forest and grassland) has profound implications for biodiversity
and resilience [1]. Climate systems exhibit multistability with distinct states like ice ages and warm
interglacial periods [2, 3]. In neuroscience, memory and decision-making often rely on multistable
patterns in neural circuits [4]. Insights are given in control systems to avoid unintended state shifts
such as failures in power grid [5, 6], chaos in Josephson junction arrays [7, 8] and turbulence in
plasma flows [9]. In social sciences, multistability can model phenomena like cultural shifts, economic
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cycles and political polarization [10], [11]. Recognizing when a system is near a critical point can help
predict or prevent undesirable outcomes.

In many cases, the coexistence of multiple stable states makes the system sensitive to perturbations
or parameter variations, and give rise to changes in basins of attraction [12, [13]. For example, crisis
bifurcations can occur when a chaotic attractor in a multistable system collides with a basin boundary,
leading to abrupt changes in the system behavior [14}|15]. Therefore, bifurcations act as mechanisms
that create, modify or eliminate multistable states. Even a simple one-dimensional dynamical system
can have a saddle-node (or fold) bifurcation that generates or annihilates a pair of stable and unsta-
ble states, changing the number of coexisting attractors [16]. In large interacting dynamical systems,
understanding how bifurcations in the single element translate into phase transitions in the collective
behavior of the coupled system is challenging.

Coupled map lattices, one of the simplest mathematical models for spatially extended systems, where
the continuous dynamical variables are on the discrete (lattice) space with discrete time, have been
studied extensively [17-20]. They are a powerful framework for modeling and understanding spa-
tiotemporal complexity in high-dimensional systems. They combine simple local nonlinear dynamics
with spatial coupling, making them ideal for exploring how interactions lead to emergent collective
behavior. However, while coupled map lattices are often analyzed through macroscopic observables
(e.g., global order parameters and Lyapunov spectra), a comprehensive microscopic understanding
remains elusive.

A recent study [21] identified interesting phase transitions in a system of locally coupled dissipative
kicked rotors by exploring statistical observables such as variance of the momentum distribution, av-
eraged kinetic energy and largest Lyapunov exponents. Their phase diagram indicated transitions
among “trivial", “pattern”, “spatiotemporal orderingdnd chaotic states, yet the underlying mechanisms
remain unclear, particularly in relation to the bifurcations in the single-rotor model.

Simulations drawn from random initial conditions already indicate that “patternand “spatiotemporal
ordering"have different aspects. In Fig[l] we illustrate six different snapshots of the rotor momenta,
corresponding to different parameter regions. The patterns on the first row clearly exhibit spatial and
temporal periodicity, whereas those on the second row appear chaotic in time, space or both. Many
questions arise: how does the stationary (or frozen) state observed in Fig[Tfa) transition into temporal
period-2 states featuring spatially alternating patterns, as illustrated in Figs[T[b)-(c)? How are these
transitions connected to the dynamics of the single-rotor model? And how can these patterns be
effectively captured both spatially and temporally?

These questions motivate us to investigate microscopic dynamics and analyze bifurcations in the
simplest states, as more complex states emerging from random initial conditions can be understood
through these elementary states and the multistability inherent in the single-rotor model. Our advance-
ments can be summarized as follows:

(i) the detailed bifurcations in the single dissipative kicked rotor is analyzed, which provides key insights
into the patterns observed in the weakly coupled system; the coexistence of the chaotic and regular
attractors already exists at the level of a single rotor;

(i) even for small couplings, there exist multiple stable states depending on the nonlinearity parameter
and initial conditions (an example is shown in Fig[T(a)); however, if all initial momenta are restricted in
a small interval near zero, a unique homogeneous-zero state is expected;

(ii) the homogeneous-zero state bifurcates into a spatial period-2 and temporal period-2 state, which
we will refer as the alternating state; within the stability region of the alternating state, multiple periodic
patterns emerge (examples are shown in Figs[T[b)-(c)) and can be captured by an order parameter;
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Figure 1: Distinct typical snapshots in momenta {p,} (j = 1,2, ..., 100) of the coupled dissipative
kicked rotor system Eq.(3), each drawn from a random initial condition with parameter values (a)
Ky=19J=03,b) K =1,J =0.8,(c) Kg = 2,J = 0.6, (d) Ko = 4.8, J = 0.2, (e)
Ky=06,J=1.1,(f) Kg=5,J =0.5.

(iv) the coexistence of chaotic and regular states is also observed in the coupled system near the onset
of chaos, exhibiting spatiotemporal intermittency and type-| super-transient, where chaos spreads out
in a percolation-like manner [22].

The numerical method used in this study for detecting bifurcations is pseudo arclenth continuation
(PALC), encoded in the Julia package BifurcationKit.jl [23].

The paper is organized as follows. We first introduce in detail the model of a single rotor in Secl2]
including the cascades of bifurcating branches, their basins of attraction and probability distributions on
chaotic attractors. In Sec3]of the coupled rotor system, we first show stability of the simplest possible
state (i.e., homogeneous-zero state) and its bifurcated state (alternating state) in Sec3.1] Then in
Sec[3:2)we study less trivial spatial states and classify them as two different patched states. In Sec[3:3]
we employ a combination of Kuramoto and Daido order parameters to characterize spatial symmetry
before the transition to chaos. In Sec[3.4] we illustrate long transient behavior with spatiotemporal
intermittency and a transition to chaos. Finally in Sec[d]we draw conclusions and give an outlook.

2 Single dissipative kicked rotor

To understand the complex spatiotemporal patterns generated by the coupled system in Fig[i] we
first study the single-rotor dynamics. A single kicked rotor with dissipation was first introduced by
George M. Zaslavsky [24] which is now also called the Zaslavsky map (or dissipative standard map).
It was derived from perturbing a stable limit cycle of an oscillator by an external periodic force. The
stroboscopic map for the rotor angle § € [—, 7] and its angular momentum p € R can be written as

p(t +1) =p(t) — Kosin6(t), (1)
O(t+1)=06(t) +p(t+1) (mod2m), (2)

where v € [0, 1] is the dissipation coefficient, Ky > 0 is the nonlinearity parameter, and time ¢ € Nj,.
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When 7 = 0, the system reduces to the one-dimensional Arnold circle map (¢t + 1) = 0(t) —
Kysinf(t) (mod 27) — a fundamental model of phase locking [25]. In contrast, for ¥ = 1 (no dis-
sipation), it becomes the Chirikov standard map, a classical low-dimensional example of Hamiltonian
chaos exhibiting KAM tori, stochastic layers and chaotic seas [26)}, [27].

The Jacobian determinant equals to v, such that for v > 0 the map is invertible and can be regarded
as a Poincare map of some three-dimensional flow [28]. For v € (0, 1) the Zaslavsky map has an
attractor which for sufficiently large Ky is known to be chaotic [24], with contraction along p (due to
dissipation) and expansion along 6. Such an attractor is shown on the first row of Fig in Appendix

2.1 Cascades of bifurcating branches

First, we study regular (non-chaotic) solutions of the Zaslavsky map. For an m-periodic solution we
define the average momentum
1 m
=m0

Note that Eq.(2) implies that an m-periodic trajectory satisfies
Ot +m) —0(t Zpt—i—] (mod 2r).

Hence, for an m-periodic solution we can conclude that the product mp is an integer multiple of 2. We
will use the numbers (m, p) to characterize the periodic solutions. It turns out that they are organized in
a cascade of branches where, for increasing K, each branch undergoes a period-doubling sequence,
while p remains fixed. There are main n-resonances, where p = 27mn for some n € Z. They start
with fixed points m = 1 in a fold bifurcation. We show now how the folds as well as the first period
doublings can be calculated explicitly.

A fixed point (p*, %) of the Zaslavsky map satisfies
p* = 2nm,
Kysin0* = 2nm(y —1).

This allows to calculate the characteristic equation for multipliers A € C of the Jacobian at the fixed
points as
N — (y+1—Kycos)A+v=0.

Inserting A = 41, we obtain the bifurcation conditions for the fold and the period-doubling (PD) as
KP9" = +2n7(1 — ),
K™ = £24/(1+7)2 + (1 — 7)2n2n2,

The corresponding bifurcating points are therefore given by

K s
p(% KO) =2nm = :Fﬁu Q(f% KO) = iga

for the fold, and

K2
p(v, Ko) =2nm = F v 1_7 )
2(1
0(v, Ko) = + arccos u,
Ky
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Figure 2: Bifurcations in the Zaslavsky map with v = 0.8 and K € [1, 7]: (a) for momentum p and
(b) for angle 6. The dashed curves connect a cascade of bifurcation points: fold (in red) and period-
doubling (PD in short, in blue) bifurcations for fixed points p* = 2nm, n € Z, and fold bifurcations
for a period-3 state (in dark-green). Each plot also highlights the main n-resonances in violet, a sub-
harmonic (n,m) = (0,4) resonance in cyan, and a subharmonic (n,m) = (1, 3) resonance in
light-green. Bifurcations for other -y values are presented in Appendix@

for the period-doubling. These branches are shown as dashed red and blue curves in Fig[2|for a fixed
v = 0.8 (see Appendix [B] for other v values). Notice that although the phase space is an infinite
cylinder (p,0) € R x [—m, ]|, the red radial lines bound the rotor momentum; this radial region
is narrowed down when the dissipation is enhanced, i.e., when ~y decreases, cf. Appendix Bl The
discrete p* = 2nm (n € Z) branches somewhat resemble discrete energy levels of an atom, and
as K increases, more admissible levels appear. When chaos appears, there is coexistence of main
n-resonances and a (bounded) chaotic attractor. However, as K, increases the distance between the
dashed blue and red curves decreases; there exist windows of K for which the chaotic attractor is
the only attractor in the system, see also Sec[2.3

Other branches of nontrivial periodic solutions (m # 1) also emerge in a fold bifurcation and, for larger
values of K undergo period doublings. These bifurcations can be found by numerical bifurcation
analysis based on the continuation method mentioned in Sec/[i]

An example is shown in light-green in Fig[2] where a period-3 orbit (a subharmonic (n, m) = (1, 3))
undergoes period doublings. The dashed green curve obtained by the continuation method shows
such a bifurcation scenario for higher n. Another example shown in cyan is a period-4 orbit on the
main O-resonance, or a subharmonic (n, m) = (0,4).

From now on, we fix v = 0.8 for all numerical illustrations.

2.2 Basins of attraction

Fig[3] shows basins of attraction of various stable states in the Zaslavsky map. For K, = 2, the only
attractors are the three fixed points p* = 0 and 427 (in gray circles). The two unstable fixed points (in
gray diamonds) are also highlighted in Fig[3|a). The basin boundaries exhibit complicated and highly
nonlinear features.

For Ky = 2.7, there appear other attractors whose basins are labeled in different colors in Fig/3(b).
Specifically, apart from the three colors presented in Fig[3(a), we have basins for a period-4 orbit (in
cyan, corresponds to the same color in Figl2), for fixed point p* = 47 (in magenta) and for fixed
point p* = —4 (in orange). In the chaotic regime (K, = 6.6), the basins for the regular branches
p* = £107 are very small, as shown in gray in Fig[3(c).
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Figure 3: Basins of attractions of the Zaslavsky map with v = 0.8 and (a) Ky = 2, (b) Ky = 2.7 and
(c) K() = 6.6.

2.3 Chaotic regime

We notice that chaos is emerged from successive bifurcations of the trivial fixed point (p*, 0*) =
(0,0). Interestingly, the chaotic attractor can coexist with a pair of regular branches that is bounded
by the red and blue curves in the bifurcation diagram of p. For example, at i, = 6.6, the regular
branches given by p = 5 - (2m) & +31 coexist with the chaotic attractor, see Appendix |A| for
probability measures on these attractors. Such coexistence with the regular branches is no longer
observed due to the decreasing distance between the dashed red and blue curves in Fig2|

As illustrated in [21], the map undergoes a period-doubling cascade to chaos, but the cascade occurs
almost immediately and does not follow the Feigenbaum constant universality, unlike the logistic map
or other one-dimensional unimodal maps [29].

In this section, we examined rich dynamics of the single-rotor model, including cascades of bifurcations
and coexistence of regular and chaotic states. In the next section, we explore the coupling of these
rotors, show how the dynamics at the single-rotor level is reflected and new patterns are created in the
spatially extended systems, and therefore give explanations to the complex spatiotemporal patterns
illustrated in Fig[f]

3 Coupled dissipative kicked rotors

We consider a system F’ of NV coupled identical dissipative kicked rotors, whose dynamics is given by

pi(t+1) = yp;(t) — Kosinb;(t) + JA(1)
0;(t+1)=0;(t) +pj(t+1) (mod2r) 3)

A;(t) = sin (0;1(t) = 0;(t)) + sin (0,11 (¢) — 6;(1)) ,

where the coupling Aj(t) is considered through the sine of differences between the nearest neigh-
boring rotors attime ¢t > 0; 7 = 1,2,..., N labels the rotors with periodic boundary conditions, and
J > 0 is the coupling strength. There is no physical reason that J has to be non-negative, but we
leave the negative J case for future work.

Some statistical properties of this coupled system have already been addressed in [21]. In the following
sections we focus on bifurcations of simple states, spatial patterns and spatiotemporal intermittency
near the transition to chaos.
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3.1 Simple regular states and their bifurcations

The simplest state is the stationary homogeneous state where 6; = 6*, Vj. All the coupling terms A
vanish and the system reduces to a single rotor. For 8* = 0, a linear stability analysis (see Appendix
[C) gives a boundary in the parameter space where the homogeneous-zero state loses stability:

Ki = —4J +2(v +1). (4)

We denote this curve as C', which is shown in orange on the parameter (.J, Ky)-plane in Fig(y =
0.8 is fixed). It also suggests that the instability occurs when the eigenvalue is —1 (cf. Appendix [C),
indicating a period-doubling bifurcation in time, simultaneously the dynamical variables alternate in
space with period-2: 0;(t) = —0;11(t) = —0;(t + 1) V4, ¢, and hence we refer it as an alternating
state.

Since an alternating state can be regarded as a steady state of the second iterated system (p(t +
2),0(t +2)) = F@(p(t),0(t)), let us denote (p(t + 2),0(t + 2)) = (p(t),0(t)) =: (p*, 6*)
and (p(t +1),0(t+ 1)) =: (—p*, —0*), where the minus signs come from

0(t+2)=0(t+1)+p(t+2) mod 27
=0(t)+p(t+1)+pt+2) mod 2m,

which gives p(t + 2) = —p(t + 1) near the bifurcation. Furthermore, we have 20* = p*.

Now, consider the momentum equation

= 0= (14+7)20" — Kysinf* — 2J sin(260"),

where we have taken into account the spatial alternation: 9;-‘ = =07, = 0* and P; = —Djx1 = p"
The function

R(0") := (14 ~)20" — Kysin 0" — 2J sin(20")
Ky +16J

(0°)°

has a unique root (which is zero) when R'(0) > 0 and has two additional roots when R'(0) < 0.
The bifurcation is thus given by R'(0) = 0, or 2(v + 1) — 4J — Ky = 0, for which we recover
Eq.(4). The approximation of R suggests a pitchfork bifurcation near the origin, corresponding to a
period-doubling bifurcation in the original system F'. Moreover, R”'(0) = 16.J + K, > 0 implies that
the bifurcation is supercritical. If one allows J < 0 and K < 0, it becomes a subcritical bifurcation,
which we will not discuss here.

The instability of an alternating state can be determined by the eigenspectrum of the Jacobian of F®.
This bifurcation curve, denoted as (5, is shown in red Fig and is generated by numerical bifurcation
analysis [23]. Thus, a stable alternating state exists in the strip region in-between C'; and C5.

Notice that the pure alternating state with the angle configuration 8* = (6%, —6*, ..., 6%, —0*) can
only be obtained by carefully preparing initial conditions due to multistability of the system, for example,
0(0) = (1,—1,...,1, —1). With general random initial conditions, one obtains states with alternating
patches as in Fig[Tb)-(c). This will be discussed in the next section.
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Figure 4: Order parameter () (Eq.(5)) for a chain of N = 100 coupled rotors at time ¢ = 2000, with
the two curves C and (5. The green stars with labels (a-f) correspond to the parameter values in
Fig The heatmap is generated from a 100 x 100 grid on J x K, € [0, 1.43] x [0, 6] and averaged
over 30 random initial conditions (p;(0), 8;(0)) € Uni[—35, 35] x Uni[—m, 7].

3.2 Regular states inside the strip region

We observe complicated regular states inside the strip region in-between the curves C'; and Cs, which
correspond to examples (b)-(d) in Fig[T] Patterns in Fig[T[b)-(c) consist of patches with alternating
feature (i.e., within a patch 6,(t) = —6;41(t) = —0;(t+1)), so we refer them as alternating-patched
(AP) states; the pattern in Figd) consists of aligned patches (i.e., within a patch 6, (t) = 0,41 (t) =
—0, (t + 1)), and we refer as a homogeneous-patched (HP) state. While those are generated from
fully random initial conditions, a simpler picture can be constructed from perturbing an alternating
initial state as follows.

To elucidate the relative basin sizes of AP and HP states, we perturb an initially alternating state and
take parameter values along a line parallel to C'; within the strip region: K(J) = K§(J) + 1.0 with
J € ]0,1.15). These two kinds of patched states can be distinguished using a local quantity

N
1
Z = N ;(Wj — 01|+ 105 — 0541]).

For an HP state, Z € (0, ]]) while for an AP state, Z € (|6],2|0]), where [0] = ~ Zﬁvzl |6;]. The
fraction of AP and HP are shown in Fig/5] together with their typical profiles.

We see that the fraction of AP states undergoes strong fluctuations for J < 0.7, and becomes
dominant for J € (0.7,1.0). Compared to AP, the fraction of HP states slowly decreases for small
J < 0.08 and then vanishes completely. Notice that AP and HP states are not the only attractors;
when their fractions do not sum up to unity, additional attractors emerge.

3.3 Order parameter and phase diagram

To better understand the rich dynamics inside the strip region, and to get a full picture of spatial
patterns presented in Fig[f} we employ order parameters widely used in phase oscillator models [30]
31], in addition to the Kuramoto order parameter Z; = % Zj\f:l i, we also consider the second

harmonic, the so-called Daido order parameter, Z5 = % Zjvzl €2 to characterize an important
spatial symmetry in the system.

Consider an angle configuration with perfect spatial symmetry where there are equal numbers of +6
(A is a constant), then Z; = cos and Z, = cos 20, and thus the relation | Z,| = 2|Z;|*> — 1 holds.

DOI 10.20347/WIAS.PREPRINT.3214 Berlin 2025
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Figure 5: Fractions of alternating-patched (AP, solid) and homogeneous-patched (HP, dotted) states
in varying the system parameters (.J, K) along the line Ko(J) = Kg(J) + 1.0, which is parallel
to C'; and inside the strip region in-between curves C7 and Cs. Insets illustrate the two patched
states: (J, Ky) = (1.1,0.2) for AP, and (J, K) = (0.03, 4.48) for HP. Numerical settings: N = 30,
t = 10000, and 30 initial conditions are p(0) = 0, 8(0)+e€, where 8(0) = (1,—1,1,—1, ..., 1, —1)
and € = (€1, ...,€n), €; € Uni[—0.01,0.01], j = 1,2, ..., N.

We therefore denote
Q= |Zs] — 2|1Z1* - 1) € [-1,2] (5)

as the level of deviation from this symmetry: () ~ 0 when the phases are nearly 6-balanced, which
include stationary homogeneous states, alternating states and alternating-patched (AP) states; while
() = 1 when both |Z;| and |Z5| vanish, corresponding to a chaotic regime. Any other values of
() indicate other spatial patterns such as homogeneous-patched (HP) states. The heatmap in Figl4]
shows the values of () on the parameter (.J, Ky)-plane. First, the region below the curve C; has
() ~ 0 corresponding to stationary homogeneous states, and the region above the curve C5 shows
() ~ 1 representing the chaotic regime, both as expected. Inside the strip region that is close to C';,
homogeneous states are bifurcated into alternating states which maintain () ~ 0, and the heatmap
provides additional information that, to a large extent, alternating (or AP) states are dominant (i.e.,
physically observable) in the strip region. But when we approach C5, () — 1, indicating that the onset
of chaos is earlier than loss of stability of the alternating states. In other words, chaos coexists with
many regular states. Moreover, the period-doubling cascade of the zero state shown in the single-rotor
level is suppressed [32], resulting in a sudden jump to chaos.

We note that the boundary of Q = 1 in Figl4]is consistent with the onset of chaos determined by the
largest Lyapunov exponent in [21]. The very high value of ()(~ 1.75) in the top-left part of the strip
region coincides with the relatively high fraction of HP states in Fig5] and this region shrinks rapidly
as J increases along the strip. In fact, max () = 2 is attained if and only if | Z5| = max |Z,| = 1 and
|Z1| = min|Z;| = 0, which occurs under perfect symmetry with § = +2: Z; = cos (+%) = 0
and Zy = cos(xm) = £1. Under random initial conditions, however, the final state is not perfectly
symmetric. A value of () = 1.75 can be achieved when |Z;| < 0.35 and |Z5| 2 0.75, with patches
aligning around 0 = j:g in this particular parameter region.

The parameter values used to generate patterns in Fig[T] are labeled as green stars in the heatmap:
The stationary pattern in Fig[ifa) occurs below the period-doubling bifurcation curve C'; and thus of
temporal period-1; the alternating-patched patterns in Fig[1{b)-(c) occur inside the strip region where
the order parameter () = 0, highlighting the alternating feature around zero momenta; Figd) shows
a mix of homogeneous and chaotic patches, as the parameter value is close to the chaos border but
with a high () value; Fige) and (f) both show chaotic patterns but (f) is apparently more spread out
than the pattern in (e) — the phase diagram concludes that patterns like (e) coexist with non-chaotic
states.
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Despite complex multistability in the coupled system, the bifurcations of simple states in Sec[3.1]can
still capture the critical transitions observed in the order parameter (. In the next section, we study an
intermittent phenomenon near the onset of chaos.

3.4 Spatiotemporal intermittency near chaos

As the transition to chaos is approached (purple boundary in the heatmap Fig[4), a small perturbation
is highly likely to trigger chaotic behavior, and the system experiences prolonged chaotic transients.

To illustrate a long transient of an alternating-patched state, we introduce a coarse-grained spin vari-
able according to the sign change of the momentum in space and time:

s;(t) == sign (p;(t) - (—1)"*") € {-1,0,1}.

When the momentum p; alternates between two values ==p both in time and space, the spin remains
invariant. On the other hand, when the momentum changes around a non-zero value (e.g., 2nm with
n # 0) the spin alternates the sign.

In Fig[6(a), we see random patterns persist for a long time before reaching a regular state. The regular
state consists of multiple alternating patches and a stationary rotor (showing in alternating colors in
time). The transient time 7 diverges as a power law near the onset of chaos J*: 7 oc |J — J*| 7,
illustrated in Figl6[b). The exponent b ~ 1.4 (for N = 100) is referred as the critical exponent of
the chaotic transient |14} [15]. This behavior belongs to a class of defect turbulence with type-1 super-
transient at the onset of the bifurcation [22, 33]. In a spatially extended system one can also refer to a
percolation threshold [34] as the minimum concentration at which an infinite cluster spans the whole
space [35].

Furthermore, the average length of coherent domains (or patches) in an alternating state decreases as
the system parameters approach the onset of chaos. Beyond the transition point, the system becomes
fully chaotic, and the coherent domain length reduces to 1 (i.e., a single element). In the thermody-
namic limit (N — 00), this implies that the relative domain length (i.e., 1/N) vanishes at criticality.

4 Conclusion

In this paper, we studied complex dynamics of a single dissipative kicked rotor and its coupled system.
For the single map, multistability arises through multiple bifurcations, where, for the momentum vari-
able, the principal fold bifurcating points form a cone-like boundary that restrict possible momentum
values, while the principal period-doubling bifurcating points form a parabola-like boundary that sepa-
rates regular and chaotic attractors when the nonlinearity K is large. Between these two boundaries,
additional branches emerge, starting with fold bifurcations and proceeding through period-doubling
cascades; for small to intermediate K, these cascades terminate before developing into chaos. Only
the principal branch that bifurcated from the zero fixed point continues into a chaotic attractor, how-
ever, this chaotic attractor remains bounded in momentum and can coexist with two symmetric regular
branches, though the basins of these regular branches are significantly smaller than that of the chaotic
attractor. In the large K regime, we observe a chaotic attractor with the momentum distribution ex-
hibiting remnants of the period-2 orbit bifurcated from the zero fixed point.

For the coupled system, we provided a more microscopic picture of the dynamics compared to existing
literature. The multistability of the single rotor is thus integrated into a more intricate version, whereas
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Figure 6: (a) Typical spatiotemporal intermittent pattern of the spin s;(¢), and (b) transient time 7
as a function of the distance of .J to the critical coupling strength (onset of chaos) J* in a log-log
scale. Here v = 0.8, Ky = 3.3, N = 100, and the onset of chaos is estimated at J* = 0.5. [21]
The blue curve (with data points) represents the average of 100 trajectories, each initialized randomly
(p;(0),6;(0)) € Uni[—35,35] x Uni|—m, 7] and iterated until a steady state is reached; the blue
band illustrates fluctuations. The green line is a power-law fit y = ax~" with @ and b indicated in the
legend.

the local spatial patterns can still be understood via elementary solutions. We determined the stability
regions of the alternating states via numerical bifurcation analysis. To address general random initial
conditions, a combination of Kuramoto and Daido order parameters is employed to quantify patterns
with a spatial symmetry. The rich dynamics seen from this macroscopic quantity are bounded by the
bifurcation curves of the homogeneous-zero and alternating state. Additionally, this quantity indicates
coexistence of regular and chaotic states near the transition to complete chaos.

Many interesting further questions arise from our study. For example, while the sign of K is irrelevant
in the single-rotor model due to symmetry, the interplay between the signs of K and the coupling
J appears to be important in the coupled system. As discussed in Sec[3.1] the bifurcation of the
homogeneous-zero state is supercritical when both K and .J are positive, and subcritical when both
are negative. Investigating transitions between these two scenarios when they have different signs
would provide deeper understanding of the dynamics. Another open problem is to understand addi-
tional bifurcations in the region between the curves C; and (', revealing intricate structures shown
in the phase diagram of the order parameter (). Furthermore, while the basins of attraction in the
single-rotor model are straightforward to visualize, analyzing them in the coupled system is signifi-
cantly challenging. In this paper, we have characterized numerically the relative basin sizes of two
coexisting patched states, but a full picture is still missing. For instance, it remains unclear, near the
curve (s, how and under what conditions the chaotic attractor dominates the whole phase space.
These problems will be studied elsewhere.
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Figure 7: Chaotic attractors (a-c) and the corresponding distributions of p (d-f) for the Zaslavsky map
with v = 0.8 and Ky = 5.98 (column 1), 6.6 (column 2) and 8 (column 3). Each attractor is generated
from an arbitrary trajectory for 80000 iterations; each histogram is generated from 50000 trajectories
starting randomly in (p(0),#(0)) € Uni[—35, 35] x Uni[—, 7] for 10000 iterations.

Appendix A Probability measures on the single rotor attractors
in the chaotic regime

Fig illustrates, for three different K, the chaotic attractors and the corresponding probability dis-
tributions of the rotor momentum p. At the onset of chaos (K, ~ 5.98), a pair of distinguishable
peaks near the center of the p-distribution is seen as remnants of the bifurcated main 0-resonance
branch. By Ky = 6.6 these peaks are no longer visible, but the comparable probabilities of the regular
branches at p = 5 - (27) ~ +£31 are clearly visible (cf. basins in Figc)). At Ky = 8 the chaotic
attractor extends further in p and the p-distribution develops fractal-like spikes.

Appendix B  Bifurcations of the single rotor in K, for other val-
ues of ~y

The dissipation coefficient v affects the momentum range, as clearly illustrated in the bifurcation
diagrams in Figl8] The cascades of bifurcating branches discussed in Sec[2.7] are present for any
7 € (0,1).

Appendix C Linear stability analysis for the coupled system

The linearized equations of motion around the zero state p; = 0,0, =0Vj =1,2,..., N read

pi(t +1) = yp;(t) — J[20;(t) — 0;-1(t) — 041 (1)] — Kob;(t),
0;(t+1) =0;(t) + p;(t +1) (mod 27).
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Figure 8: Bifurcations in the Zaslavsky map with v = 0.55 (a-b) and 0.95 (c-d). The dashed curves
connect a cascade of bifurcation points: fold (in red) and period-doubling (PD in short, in blue) bifur-
cations for fixed points p* = 2nm, n € Z.

Applying a Fourier transform p;(t) = Y. P,(t)e™, 0;(t) = Y, Op(t)e™, w = 2, | =

0,1,..., N — 1 (for periodic boundary conditions) gives, for each pair of Fourier variables (P,,, ©,,),

()= (s ) (5),

whose characteristic equation is
AN —[y+1-2J(1—cosw) — Ko]A+~ =0, (6)

and its solutions are given by

1
)\izﬁ[7+1—2J(1—cosw)—K0j:\/[v+1—2J(1—cosw)—K0]2—47 .

We acknowledge that the above derivation was previously carried out in [21]. Here, we extend the

analysis by proving that the critical case corresponds to the eigenvalue crossing the unit circle at —1,
with the associated Fourier mode being [ = %

The homogeneous-zero solution becomes unstable when there is an eigenvalue with modulus larger
than one. An example is illustrated in Fig[9]

We now prove that this critical transition occurs when A = —1.

Itis clear that for A}, the maximum is attained when cosw = 1, or w = 0:

1
max S = N = 5 [y +1- Ko+ Vi + 1- Ko — 4

When the term in the square-root is negative, i.e., (/7 — 1)* < Ky < (/7 + 1)?, we have

1
NI =5V + 1= Ko = (y+1 - Ko) +4y =7 < 1.
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Figure 9: (a) Eigenvalues A, and (b) their magnitudes at the critical transition: v = 0.8, Ky = 3.2,
J =0.1.

Otherwise, we have [\{| = 1[(v + 1 — Ko) + /(v + 1 — Ko)? — 47/ as a decreasing function

in Ko(> 0), and thus [AJ| < [A\{|ko=0 = 3[(v +1) + /(v +1)> = 47| = 1. In summary,
| max,, Af| < 1 for all parameter values.

For A\, when the term in the square-root is negative, we have again
1
A, = 3 [(v+1—2J(1 —cosw) — Ko)*> = [y +1—2J(1 — cosw) — Ko]> +47] = /7 < 1.

Otherwise, let us denote A := v+ 1 —2J(1 — cosw) — K. The condition of A\, € R can be written
as A> — 4y > 0, or equivalently, A < —2,/7 or A > 2,/7. Furthermore, A, := f(A) becomes

F(A) = (4~ /A~ Ty).

From [/(A) = 5 — ;A— we have ['(4) < O when A > 2,/7, so max [ = f(A =

2,/7) = /7 < 1; on the other hand, when A < —2,/7, f'(4) > 0 and max, f(A) =
f(A = =2,/7) = —/7. Moreover, lim4_, ., f'(A) = —oc. Therefore, for A < —2,/7 we
have f(A) € (—o0,—,/7]. The maximum of |f(A)| over all w is attained when A = A(w)
is minimum, i.e., when cosw = —1, or w = 7. The crossing of the unit circle thus happens at

Ay =—1= %(A — /A2 —47),0r A(m) = —(1 + 7). Substituting in the definition of A gives
Ki=—-4J+2(v+1).

One can also simply plug A = —1 and w = 7 into Eq.(6). Note that the critical curve given by
eq.(8) in [21] is not precise, where the author substituted w = 7 but incorrectly letting the square-root
part of the eigenvalue \,—, vanish, which does not lead to the critical case |/\w:7r| = 1, but rather
Aw=r| = ﬁ < 1. This discrepancy becomes more apparent for smaller .

We conclude that w = 7 represents the most unstable mode, which corresponds to [ = % in the

Fourier mode w := %rl It implies that the dynamical variables alternate in space with period-2; the
eigenvalue crossing the unit circle at —1 indicates a period-2 bifurcation in time.

References

[1]1 Chiranjit Mitra, Jirgen Kurths, and Reik V Donner. “An integrative quantifier of multistability in
complex systems based on ecological resilience”. In: Scientific reports 5.1 (2015), p. 16196.

DOI 10.20347/WIAS.PREPRINT.3214 Berlin 2025



J. Yan 16

[2] Ulrike Feudel, Alexander N Pisarchik, and Kenneth Showalter. “Multistability and tipping: From
mathematics and physics to climate and brain—Minireview and preface to the focus issue”. In:
Chaos: An Interdisciplinary Journal of Nonlinear Science 28.3 (2018).

[8] Georgios Margazoglou et al. “Dynamical landscape and multistability of a climate model”. In:
Proceedings of the Royal Society A 477.2250 (2021), p. 20210019.

[4] JA Scott Kelso. “Multistability and metastability: understanding dynamic coordination in the
brain”. In: Philosophical Transactions of the Royal Society B: Biological Sciences 367.1591
(2012), pp. 906-918.

[5] Heetae Kim et al. “Multistability and variations in basin of attraction in power-grid systems”. In:
New Journal of Physics 20.11 (2018), p. 1130086.

[6] Robin Delabays, Saber Jafarpour, and Francesco Bullo. “Multistability and anomalies in oscilla-
tor models of lossy power grids”. In: Nature communications 13.1 (2022), p. 5238.

[7]1 Patrick Louodop et al. “Extreme multistability in a Josephson-junction-based circuit”. In: Physical
Review E 99.4 (2019), p. 042208.

[8] Balamurali Ramakrishnan et al. “Suppressing chaos in josephson junction model with coexisting
attractors and investigating its collective behavior in a network”. In: Journal of Superconductivity
and Novel Magnetism 34 (2021), pp. 2761-2769.

[9] Bogdan Teaca et al. “An overview of dynamical methods for studying transitions between states
in sheared plasma flows”. In: Philosophical Transactions of the Royal Society A 381.2242 (2023),
p. 20210238.

[10] Fausto Cavalli and Ahmad Naimzada. “Complex dynamics and multistability with increasing
rationality in market games”. In: Chaos, Solitons & Fractals 93 (2016), pp. 151-161.

[11] Guilherme Ferraz de Arruda et al. “Multistability, intermittency, and hybrid transitions in social
contagion models on hypergraphs”. In: Nature communications 14.1 (2023), p. 1375.

[12] Manish Dev Shrimali et al. “The nature of attractor basins in multistable systems”. In: Interna-
tional Journal of Bifurcation and Chaos 18.06 (2008), pp. 1675—1688.

[13] Ulrike Feudel. “Complex dynamics in multistable systems”. In: International Journal of Bifurca-
tion and Chaos 18.06 (2008), pp. 1607-1626.

[14] Celso Grebogi, Edward Ott, and James A Yorke. “Critical exponent of chaotic transients in non-
linear dynamical systems”. In: Physical review letters 57.11 (1986), p. 1284.

[15] Celso Grebogi et al. “Critical exponents for crisis-induced intermittency”. In: Physical Review A
36.11 (1987), p. 5365.

[16] Yuri A Kuznetsov, lu A Kuznetsov, and Y Kuznetsov. Elements of applied bifurcation theory.
Vol. 112. Springer, 1998.

[17] Kunihiko Kaneko. “Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of de-
fect and pattern competition intermettency”. In: Physica D: Nonlinear Phenomena 34.1-2 (1989),
pp. 1—-41.

[18] Kunihiko Kaneko and Tetsuro Konishi. “Diffusion in Hamiltonian dynamical systems with many
degrees of freedom”. In: Physical Review A 40.10 (1989), p. 6130.

[19] Diego FM Qliveira and Edson D Leonel. “Statistical and dynamical properties of a dissipative
kicked rotator”. In: Physica A: Statistical Mechanics and its Applications 413 (2014), pp. 498—
514.

DOI 10.20347/WIAS.PREPRINT.3214 Berlin 2025



Bifurcations and intermittency in coupled dissipative kicked rotors 17

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Jin Yan, Roderich Moessner, and Hongzheng Zhao. “Prethermalization in aperiodically kicked
many-body dynamics”. In: Physical Review B 109.6 (2024), p. 064305.

Angelo Russomanno. “Spatiotemporally ordered patterns in a chain of coupled dissipative kicked
rotors”. In: Physical Review B 108.9 (2023), p. 094305.

James P Crutchfield and Kunihiko Kaneko. “Are attractors relevant to turbulence?” In: Physical
review letters 60.26 (1988), p. 2715.

Romain Veltz. BifurcationKit.jl. July 2020. URL:https://hal.archives—-ouvertes.
fr/hal-029023406.

George M Zaslavsky. “The simplest case of a strange attractor”. In: Physics Letters A 69.3
(1978), pp. 145-147.

Philip L Boyland. “Bifurcations of circle maps: Arnol’'d tongues, bistability and rotation intervals”.
In: Communications in Mathematical Physics 106 (1986), pp. 353-381.

Boris V Chirikov. “A universal instability of many-dimensional oscillator systems”. In: Physics
reports 52.5 (1979), pp. 263-379.

Allan J Lichtenberg and Michael A Lieberman. Regular and chaotic dynamics. Vol. 38. Springer
Science & Business Media, 2013.

Nikolai Yu Ivankov and Sergey P Kuznetsov. “Complex periodic orbits, renormalization, and
scaling for quasiperiodic golden-mean transition to chaos”. In: Physical Review E 63.4 (2001),
p. 046210.

Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chem-
istry, and engineering. Chapman and Hall/CRC, 2024.

Juan A Acebron et al. “The Kuramoto model: A simple paradigm for synchronization phenom-
ena’. In: Reviews of modern physics 77.1 (2005), pp. 137-185.

Pau Clusella and Antonio Politi. “Irregular collective dynamics in a Kuramoto—Daido system”. In:
Journal of Physics: Complexity 2.1 (2020), p. 014002.

Charles H Bennett et al. “Stability of temporally periodic states of classical many-body systems”.
In: Physical Review A 41.4 (1990), p. 1932.

Ying-Cheng Lai and Tamas Tél. Transient chaos: complex dynamics on finite time scales.
Vol. 173. Springer Science & Business Media, 2011.

Simon R Broadbent and John M Hammersley. “Percolation processes: |. Crystals and mazes”.
In: Mathematical proceedings of the Cambridge philosophical society. Vol. 53. 3. Cambridge
University Press. 1957, pp. 629-641.

Franco Bagnoli, Lucia Baroni, and Paolo Palmerini. “Synchronization and directed percolation
in coupled map lattices”. In: Physical Review E 59.1 (1999), p. 409.

DOI 10.20347/WIAS.PREPRINT.3214 Berlin 2025


https://hal.archives-ouvertes.fr/hal-02902346
https://hal.archives-ouvertes.fr/hal-02902346

	Introduction
	Single dissipative kicked rotor
	Cascades of bifurcating branches
	Basins of attraction
	Chaotic regime

	Coupled dissipative kicked rotors
	Simple regular states and their bifurcations
	Regular states inside the strip region
	Order parameter and phase diagram
	Spatiotemporal intermittency near chaos

	Conclusion
	Acknowledgments
	Author Declarations
	Data Availability
	 Probability measures on the single rotor attractors in the chaotic regime
	 Bifurcations of the single rotor in K0 for other values of 
	 Linear stability analysis for the coupled system

