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Quantum circuit simulation with a local time-dependent
variational principle

Aaron Sander, Maximilian Fréhlich, Martin Eigel, Jens Eisert, Mazen Ali, Michael Hintermller,
Richard M. Milbradt, Robert Wille, Christian B. Mendl|

Abstract

Classical simulations of quantum circuits are vital for assessing potential quantum advan-
tage and benchmarking devices, yet they require sophisticated methods to avoid the exponential
growth of resources. Tensor network approaches, in particular matrix product states (MPS) com-
bined with the time-evolving block decimation (TEBD) algorithm, currently dominate large-scale
circuit simulations. These methods scale efficiently when entanglement is limited but suffer rapid
bond dimension growth with increasing entanglement and handle long-range gates via costly
SWAP insertions. Motivated by the success of the time-dependent variational principle (TDVP)
in many-body physics, we reinterpret quantum circuits as series of discrete time evolutions, us-
ing gate generators to construct an MPS-based circuit simulation via a local TDVP formulation.
This addresses TEBD'’s key limitations by (1) naturally accommodating long-range gates and (2)
optimally representing states on the MPS manifold. By diffusing entanglement more globally, the
method suppresses local bond growth and reduces memory and runtime costs. We benchmark
the approach on five 49-qubit circuits: three Hamiltonian circuits (1D open and periodic Heisen-
berg, 2D 7 x 7 Ising) and two algorithmic ones (quantum approximate optimization, hardware-
efficient ansatz). Across all cases, our method yields substantial resource reductions over stan-
dard tools, establishing a new state-of-the-art for circuit simulation and enabling advances across
quantum computing, condensed matter, and beyond.

1 Introduction

Classical simulation of quantum circuits plays a central role in the development of quantum tech-
nologies, providing a critical tool to validate algorithms, benchmark hardware, and probe quantum
dynamics beyond current experimental reach. However, simulating large quantum systems remains
notoriously difficult due to the growth of entanglement and exponential computational complexity with
system size [1]. This state of affairs can be exploited in paradigmatic quantum computational tasks:
Indeed, recent demonstrations which presumed quantum advantages over classical supercomputers
have explicitly been constructed in order to exceed the computational capabilities of classical simula-
tion [2] [3, 4] B]. This, in principle, shows the computational capabilities even of near-term quantum
devices. At the same time, it can be seen as an invitation to further develop scalable, structure-
exploiting classical simulation methods that challenge such quantum advantages and can be used
for their benchmarking.

Motivated by this line of thought, a variety of simulation strategies has been developed to tackle this
challenge, ranging from tensor network families such as projected entangled pair states (PEPS) [6), 7]
and the multiscale entanglement renormalization ansatz (MERA) [8], to efficient methods for spe-
cial cases such as stabilizer circuits [9], as well as methods using well-established techniques from
classical computing such as decision diagrams [10, [11]. More recently, contraction-optimized general
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A. Sander et al. 2

tensor networks [12] [13]] have pushed classical simulation boundaries to match IBM’s largest experi-
ments [14]. Still, matrix product states (MPS) have remained the dominant practical tool, especially for
one-dimensional systems, owing to their favorable scaling in low-entanglement regimes, algorithmic
flexibility, and compatibility with gate-based quantum circuit simulation.

Among MPS-based approaches, the time-evolving block decimation (TEBD) algorithm [15,[16,[17, 18|
19, [1] has become a workhorse for simulating quantum circuits and many-body systems. By applying
local gates sequentially and truncating intermediate states, TEBD can efficiently simulate circuits with
limited entanglement. However, TEBD suffers from two fundamental limitations: (1) it introduces local
truncation error after every gate, which compounds rapidly as bond dimensions grow; and (2) it cannot
natively handle long-range gates, instead requiring costly SWAP networks that significantly increase
overhead [20].

The time-dependent variational principle (TDVP) [21}, 22, 23] [24] [25] provides an elegant alternative
by evolving states entirely within the MPS manifold, making use of tangent spaces. Rather than trun-
cating after gate application, TDVP projects the full time-evolution onto the tangent space of the MPS,
producing a variationally optimal trajectory. TDVP can naturally accommodate long-range Hamiltoni-
ans [26] and better conserves physical quantities under limited bond dimension. These features have
made TDVP a leading method in many-body physics [27, 28], though it has not yet been adapted
to the discrete, gate-based setting of quantum circuit simulation, likely due to the incompatibility be-
tween TDVP’s continuous-time formalism and the inherently discrete nature of quantum gates. Unlike
Hamiltonian evolution, quantum circuits involve non-infinitesimal, localized unitary operations that do
not readily fit within standard TDVP frameworks.

In this work, we close this gap by introducing the first TDVP-based algorithm specifically tailored for
quantum circuits. The central idea is to interpret each quantum gate as a generator of local time
evolution and then to apply a local TDVP update restricted to only a small region of the MPS. This
reinterpretation enables to simulate entire quantum circuits with both local and long-range operations,
while avoiding the stepwise truncation errors inherent to TEBD. It also leads to several key innovations
that push the current limits of quantum circuit simulation. In particular:

B It enables direct simulation of long-range gates without SWAP insertion or scheduling overhead.

B [t variationally adjusts bond dimensions using global state information, reducing local truncation
errors.

B |t suppresses bond dimension growth by distributing entanglement more evenly, improving scal-
ability.

Unlike standard TDVP, which projects onto the full MPS tangent space, our method proves that a
restricted projector acting only on a gate-local window yields exactly the same result. This theoretical
insight allows us to implement the method with the same asymptotic cost as TEBD while preserving
the advantages of variational evolution.

We benchmark the method on quantum circuits simulating both Hamiltonian and non-Hamiltonian
dynamics, including the 49-site Heisenberg model (with open and periodic boundaries), the 7 X 7 two-
dimensional Ising model, and circuits with randomly parameterized two-qubit gates such as QAOA
and hardware-efficient ansatze. These examples span a wide range of entanglement structures and
gate layouts, from strictly local to highly non-local. Across all cases, we observe substantial reductions
in memory footprint and runtime compared to TEBD, while maintaining comparable accuracy.
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Quantum circuit simulation with a local time-dependent variational principle 3

Our results establish the local TDVP as a new state-of-the-art for classical simulation of quantum cir-
cuits. The method bridges discrete quantum gate models and continuous-time variational principles,
offering a general-purpose simulation framework with broad implications for quantum algorithm de-
velopment, hardware verification, and the study of strongly-correlated quantum matter. Additionally,
all code is openly accessible as part of the Yet Another Quantum Simulator (YAQS) [29] within the
Munich Quantum Toolkit (MQT) framework [30].

2 Lessons from Continuous-Time TDVP

The core of the approach developed in this work comes from important lessons that can be drawn from
techniques used in simulating time evolution of quantum many-body systems. For illustration, a state
vector of an N-site quantum system with local dimension d resides in a Hilbert space H = (C?%)®V.
A general quantum state vector |¥') € H is thus a complex valued vector in a space of dimension avy

d—1
’\Il> = Z \Ilql...qN IQ17"'7QN>> (1)

q1,--,qn=0

which becomes prohibitively large for classical simulation as /N grows. To address this, it is common
to employ a matrix product state (MPS) representation

d—1
)= > MM g,.aw), )
q1,--,qN=0

which expresses |U') as a chain — sometimes referred to as “tensor train” of NV tensors, each with
a physical leg ¢, of dimension d and virtual (bond) legs a,,_1, a, of dimension X,_1, Xx, respec-
tively, that connect neighboring tensors [15]. This structure encodes entanglement locally and reduces
the representation cost from exponential to O(Ndx?), where x is the maximum bond dimension.
This structure allows efficient storage and localized operations, making it the state-of-the-art for the
simulation of large-scale systems. Each physical dimension ¢, with 1 < ¢ < N and dimensions
0 < ¢, < d— 1can be viewed as a qudit (or qubit for d = 2).

Beyond static representations, we are typically interested in the time evolution of quantum states under
a possibly time-dependent Hamiltonian ¢ — H (t). This evolution is governed by the Schrédinger
equation,

d 1
() =~ H(0) (). ®
with formal solution
(W (t)) =U(t) [¥(0)), (4)

where t — U(t) is a family of unitary time-evolution operators defined by
U(t) = e 1, (5)

As is common practice, & has been set to 1. In many applications, this evolution is approximated by a
sequence of small, discrete time steps

U(ndt) ~ H U;, with U; = e Hi%, (6)

j=1
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A. Sander et al. 4

A widely used method for simulating time evolution within the MPS framework is the time-evolving block
decimation (TEBD) algorithm [18} [19]. TEBD approximates the unitary evolution operators U;(dt) by
Trotter decomposing the Hamiltonian into a sequence of local two-site gates, which are applied se-
quentially across the chain. After each gate application, the resulting MPS is truncated by discarding
small Schmidt values, ensuring the bond dimension remains bounded [31]. This approach is partic-
ularly effective for short-range Hamiltonians and systems with low entanglement growth, where the
Trotter error and truncation error can both be controlled. However, TEBD has well-known limitations:
systems with long-range interactions or rapidly growing entanglement can require prohibitively large
bond dimensions. From this description, one may note that quantum circuits are an analogous simu-
lation structure such that TEBD and MPS-based quantum circuit simulation are two sides of the same
coin.

An alternative approach for unitary time-evolution is provided by the time-dependent variational prin-
ciple (TDVP) [21], 22} 23} 24}, [25], which evolves quantum states entirely within a variational manifold
M, defined by its bond dimensions x. Rather than applying gates and truncating, TDVP projects
the full time-evolution U;(dt) onto the tangent space of the MPS at each timestep using a Hamilto-
nian encoded as a matrix product operator (MPQO). This processs finds the provably optimal path of
the time-evolution along the manifold which can be understood as the most efficient set of bond di-
mensions and parameters of an MPS that represents the state at each timestep. TDVP can thus be
expressed as the optimization problem

d - , d d |-
P00 = argmings gy, |1210(0) = 5 [0 | )
which is equivalent to solving the differential equation on the manifold
d - ) ~
2 1Y) = —1Prg i H X)), (8)

where PT|@@)>M>< is the H-orthogonal projection onto the tangent space of M, at point ]\i/(t)> [23].

The present work makes a momentous contribution by combining these ideas in a novel fashion,
resulting in substantial algorithmical improvements. Concretely, in this work, we utilize the two-site
TDVP for which this projector is defined by
N
PT’Q\iJ(t))MX - Z Pym_” QI @It ® Pz[%nH:N]
n=1
N-1

o Z PL[Ln] I ® P][%n-i-Q:N}’

n=1

where PE:”‘” and PI[;H:N_H are projection operators built with left- and right-environments around
sites (n,n + 1). The first summation generates a forward-evolution of the Schrédinger equation and
the second summation a backward-evolution. We call these the forward projectors and backwards
projectors for brevity.

This yields a set of coupled differential equations at each pair of nearest-neighbor sites in the MPS
to solve the time-dependent Schrédinger equation. Practically, this concept results in a method that
preserves all symmetries and conservation laws. It ensures unitary, entanglement-respecting evolution
within the chosen bond dimension and can be solved in a DMRG-like sweep of the MPS [21] 32,
24]. Unlike TEBD, TDVP is inherently norm-preserving and seems promising in realizing long-range
interactions in physical systems [26]. In comparison to TEBD, TDVP has never been adapted or applied
to quantum circuit simulation despite its recent successes and dominance in other areas of quantum
science [27, 28].
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Quantum circuit simulation with a local time-dependent variational principle 5

3 Application of TDVP to quantum circuits

While TEBD naturally operates in terms of quantum gates, TDVP is traditionally formulated for continu-
ous time evolution under a Hamiltonian. To apply TDVP in the context of quantum circuit simulation, we
reinterpret quantum gates as discrete time-evolution operators, following a Trotterized prescription. It
is important to note that the approach taken is versatile enough to capture both Hamiltonian dynamics
encoded as quantum circuits, as well as more conventional algorithmic quantum circuits which will be
explored later in the manuscript.

A quantum circuit G consists of a sequence of |G| unitary gates, which we write as

|G|

G =19 (10)
j=1

mirroring the structure of discrete time evolution operators in Eq. @) Here, each gate g; represents a
localized operation that contributes to the overall evolution.

Thanks to their unitary nature, each gate g; can be associated with a Hermitian generator H; such
that
g =e " (11)

with a unit timestep 0t = 1. These generators correspond to the physical interactions that implement
the gates and can be interpreted as discrete Hamiltonians, whose exponentials yield the observable
gate dynamics. For reference, a list of generators of common quantum gates can be found in Ap-

pendix [Al

TDVP requires a matrix product operator (MPO) representation of the Hamiltonian, which in our case
corresponds to the generators of quantum gates. While methods exist to construct MPQOs for arbitrary
Hamiltonians [33], 134, [35], nearly all common two-qubit gates acting on sites £ and k + ¢ can be
associated with generators of the form

H = Hy ® Hyq, (12)

where ¢ > 1 defines the range of the gate, with ¢ = 1 for nearest-neighbor interactions. This struc-
ture can be encoded as a length-g factorization, i.e., an MPO with bond dimension one, where the
generator is decomposed into local tensors and padded with identities [36, [7].

In standard 2TDVP, the projection operators defined in Eq. (9) act on the full Hilbert space, potentially
undermining the gate-level locality of quantum circuits. However, we show that these global projectors
can be restricted to a local window [k — 1,k + ¢ + 1] around the gate generator without introduc-
ing additional error compared to the full TDVP. Specifically, the projected action of the Hamiltonian
becomes

k+q
P i) = 30 P e 1@ o P
n=k—1
k4+q—1 (13)
. Z P[[/l:n] Q [n+1 Q P][):L—i—?:N]‘
n=k—1

We refer to this as the local TDVP. This reduction is crucial for scalability since the cost of applying
TDVP now depends only on the gate range ¢ rather than the total system size V. A high-level overview
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A. Sander et al. 6

of this method can be found in Sec.[7.2] For details on the implementation of these projectors in tensor
networks as well as visualizations, we recommend several sources for a more detailed explanation
[22, 24, 27).

This approach results in two key theoretical advantages that solve the main limitations experienced in
TEBD-based quantum circuit simulation, observed purely in the structure of its projectors. The local
TDVP does not have any inherent limitation in performing long-range gates. This eliminates the need
for complex optimizations in SWAP networks or other optimizations required to simulate quantum
circuits with arbitrary gates. Building on this, unlike TEBD, where each gate update modifies the bond
dimension using only local information at that bond, TDVP incorporates neighboring environments into
the update. This enables bond dimension adjustments at any location to reflect correlations across the
entire state, resulting in a more globally informed and optimal evolution. Even in the case of nearest-
neighbor gates where the number of required projectors is minimal, the method still operates within a
small window around the gate, allowing entanglement (and thus bond dimension growth) to propagate
into neighboring sites.

Combining these insights, we propose a novel quantum circuit simulation algorithm consisting of two
primary components:

1 Single-qubit quantum gates: These gates are applied directly to the local tensors in the MPS
representation without the use of generators as no practical advantage would be gained from
exponentiating rather than using the unitary directly.

2 Multi-qubit quantum gates: These gates are applied using the local TDVP projection method
described above. Each gate application consists of the following steps:

2.1 Construct generator MPO: Form the MPO representation of the gate generator localized
to the involved qubits in the window [k — 1, k + ¢ + 1] by padding the form from Eq.
with identities.

2.2 Ensure MPS canonical form: Set the MPS to mixed canonical form at the first site of the
window k — 1.

2.3 Apply window to MPS: Use only the MPS tensors within the window M}* 7" . .. M,gi;cff.

2.4 Apply local TDVP projectors: Apply projectors including forward- and backward-evolution
in one sweep from kK — 1 — k + ¢ + 1. This step includes creating effective generators,
exponentiating them with the Lanczos method [37], and applying the result to the relevant
tensors.

Repeating these steps for each gate in the quantum circuit provides a scalable, flexible method with
provably optimal bond dimensions for simulating complex quantum circuits of arbitrary gate ranges
and structures.

4 Justification for local TDVP

4.1 Equivalence with global TDVP

In this section, we discuss a conceptual insight on the equivalence of the local TDVP with a global
TDVP scheme. Notably, the local scheme only uses a minimal subset of the TDVP projectors [23],
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Quantum circuit simulation with a local time-dependent variational principle 7

which ensures that opposite to a full TDVP no error is introduced in the computations while the com-
putational effort of the time evolution is reduced drastically. In fact, the complexity of the local TDVP
scheme does not depend on the system size anymore but only on the number of qubits which a given
gate acts on. This effectively localizes the operation and exploits the benefits of the tensor network
structure.

Theorem 1 (Local 2TDVP). Let H be a local generator as in (T2) acting on the qubit range [k, k+q| C
[1, N]. Then, for any |¥) € M,, we have Pra , s, H |¥) = PIZZ’ZW}H | W) where RZCC’ZW}H |W)
is defined in Eq. (13).

Proof. The proof is a direct consequence of the projections in Eq. @ acting on H |¥). By exploiting
the gauge freedom in the MPS representation of | '), we can first consider | W) with left-orthogonal
and right-orthogonal tensors and the center of orthogonality at site n. Since H is local, it has an MPO
representation with all sites to the left of & and to the right of k£ + ¢ consisting of trivial identity tensors.
Putting both together, for n < k — 1, we observe that

P[[/l:n—l} ® In ® In+1 ® P}[%n+2N]H“I}>

=L@ - @l @ PN H |w) (14)

_ P[[/l:n] ® In+1 ® P}[:;H-Q:N}H |\I/> '
This holds similarly for n > k + q + 1, where the orthogonality center is to the right of the non-trivial
tensors. Contracting the product of the projections with the Hamiltonian and the quantum state vector
|W) from the right, we observe that

_ L[lzn—1]®ln®...®[NH|1p> (15)

_ P[[/l:n—l] ® In ® P}[%H—l:N}H |\If> ‘

Hence, all terms in (9) cancel out, except the ones corresponding to RZCL;ZW]. O

For completeness we note that this can also be directly transferred to the one-site TDVP (1TDVP)
scheme, where we have Pr,, v, H [V) = PIZZ’H(I]H | W), with

k+q
plekta _ Zpl[/lzn—l] ®I,® P][%n—i-lzN}

n=k

loc

k+q—1
. Z P[[/l:n] ®PEL+1:N}'
n=k

Note that the 1TTDVP no longer needs to address sites neighboring the gate generator and hence only
acts onthe range n € [k, k + ¢].

4.2 Same computational complexity as TEBD

To analyze the efficiency of our local TDVP method for circuit simulations, we compare its computa-
tional complexity to that of the standard TEBD approach. We break down the cost into three categories:
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A. Sander et al. 8

single-qubit, nearest-neighbor, and long-range (multi-qubit) gates. Since asymptotic statements are
primarily of interest, we make use of a Landau notation to qualitatively capture the computational
effort.

4.2.1 General TDVP cost

We start by discussing the general TDVP cost. The full 2-site TDVP method has a known computational
complexity of

crove = O (N ()<2al3D2 +x3d*D + X3d3)) , (17)
where N is the number of sites, x is the maximum MPS bond dimension, d is the local Hilbert space
dimension (d = 2 for qubits), and D is the bond dimension of the local generator used in the TDVP
update [38]. In the localized variant, where updates are applied to a block of qubits [k — 1, k + ¢ + 1],
the cost reduces to

coerove = O (¢ (x*D* + X°D + x°)) = O(ax”), (18)
assuming D < x, which is valid for typical quantum gates.

4.2.2 Single-qubit gates

For both TDVP and TEBD, single-qubit gates correspond to a local tensor contraction with complexity

CigB = O(X2)7 (19)

which is negligible compared to multi-qubit operations.

4.2.3 Nearest-neighbor gates

For nearest-neighbor quantum gates, when ¢ = 1, the TDVP update acts on four consecutive qubits
[k — 1,k + 2] with cost

awn = O(®). (20)
This is directly comparable to the TEBD cost for a two-site gate, which also scales as (’)(X3) and is
dominated by the SVD step [19].

4.2.4 Long-range gates

We now turn to discussing long-ranged quantum gates. To apply a gate on qubits [k, &k + ¢, we
encounter the following approaches.

B TEBD and SWAP networks: This requires 2(q — 1) SWAP gates to iteratively move the target
qubits to adjacent positions, apply the gate, then undo the swaps. During this process, the SVD
is the most expensive operation such that this leads to an overall complexity of

CTeBD = O(QXg)- (21)

B Local TDVP: This avoids SWAP gates by directly evolving the state over the block [k— 1, k+q+
1]. This involves applying ¢ + 1 projectors and performing corresponding SVD decompositions,
resulting in a cost of

ClocTDVP — O(C]X3)~ (22)
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Quantum circuit simulation with a local time-dependent variational principle 9

Since for large systems x always is the dominating factor, both complexities are asymptotically and
practically equivalent at

4.2.5 Summary

To summarize the discussion of the computational effort of the steps made use of, both TEBD and
TDVP scale as O(X3) per gate application, with the main difference being how bond dimension grows
during the simulation. The practical runtime is therefore determined primarily by the entanglement
structure and resulting bond dimensions induced by each method rather than by asymptotic complexity
constants.

5 Results

We now turn to presenting numerical results relating to large-scale quantum circuits, both derived
from Trotterized Hamiltonian evolution as well as for families of natural algorithmic quantum circuits.
We evaluate the performance and accuracy of our local TDVP method by comparing it to the estab-
lished TEBD-based algorithm for simulating quantum circuits representing distinct quantum models as
illustrated in Fig. [}

We benchmark our method on five distinct 49-qubit scenarios, encompassing both physically mo-
tivated and algorithmic circuits. The first three are increasingly challenging Trotterized Hamiltonian
circuits: an open-boundary one-dimensional Heisenberg model, a periodic-boundary one-dimensional
Heisenberg model, and a 7 x 7 two-dimensional Ising model. All are simulated at the critical point
J = g = 1 with a time step 6t = 0.1.

These circuits represent highly entangling dynamics with progressively more long-range interactions:
the open Heisenberg model includes only nearest-neighbor gates, the periodic variant adds a single
long-range interaction, and the two-dimensional Ising model is dominated by long-range gates.

In addition to these structured models, we also simulate two general-purpose variational circuits: a
quantum approximate optimization (QAOA) [39] circuit from the context of variational quantum algo-
rithms [40] composed of alternating layers of R, and R, gates, and a hardware efficient ansatz (HEA)
circuit using U 3 and Controlled-X (CNOT) gates [41]. For both, each gate parameter is independently
drawn from a uniform distribution over [—, 7| with no repeated values.

Each column in Fig. [1] corresponds to one of these five scenarios, where all subplots within a column
are derived from a single, consistent dataset. To ensure a fair and robust comparison, all results
are benchmarked against IBM Qiskit's MPS simulator [42], maintaining a consistent maximum bond
dimension of Y = 512 and an SVD truncation threshold of sy, = 10~Y. This threshold corresponds
to a very mild truncation strategy, equivalent in both methods, allowing us to confidently attribute
observed scalability differences solely to algorithmic distinctions rather than truncation artifacts. It is
important to stress that our implementation is openly accessible as part of the Yet Another Quantum
Simulator (YAQS) [29] within the Munich Quantum Toolkit (MQT) framework [30].

Fig. a) compares the expectation values of the local correlator on the center bond (X4 X55) com-
puted by TDVP (orange circles) and TEBD (blue triangles) to ensure accuracy. Both methods exhibit
identical behavior within numerical precision until the point where TEBD simulations become infeasible
due to excessive entanglement-induced bond dimension growth. Dashed vertical lines mark the max-
imum feasible simulation times for TEBD, highlighting TDVP’s capability to accurately simulate circuits
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A. Sander et al. 10

well beyond TEBD’s limits.

To understand the underlying reason for this performance disparity, we present the spatial-temporal
bond dimension profiles in Fig. [T[b). While TEBD rapidly accumulates large bond dimensions at later
times, TDVP maintains significantly lower bond dimensions throughout the simulation, reflecting more
efficient management of entanglement. In particular, it spreads the bond dimension growth across
a wider set of bonds, rather than just the bond which a gate acts on. This contrast is particularly
pronounced in highly entangled scenarios, such as the two-dimensional Ising and periodic-boundary
Heisenberg models, where TDVP shows clear advantages in controlling bond dimension growth. We
see asymmetry in cases with long-range gates, likely stemming from the direction of the sweep. In the
QAOA circuit, we see a decrease in the total bond dimension, however, similar simulability for a fixed
maximum bond dimension. Finally, the HEA circuit causes the bond dimensions to grow uniformly
exponentially in both methods. Notably, in all scenarios and at all Trotter steps, TDVP shows an overall
reduction in total bond dimension of the MPS compared to TEBD, and in the worst case, an equivalent
one.

Fig. [T{c) quantifies the computational efficiency of both methods in terms of runtime cost, approx-
imated by Ej X?, a metric directly related to computational complexity. In particular, this can be
thought of as the complexity needed to perform consecutive SVDs across the MPS. TEBD exhibits
steeply increasing computational costs, quickly reaching infeasible levels at relatively short simulation
times. In contrast, TDVP’s computational cost grows considerably more slowly, enabling simulations at
larger circuit depths and longer evolution times.

The core insight is that by diffusing entanglement more globally, one encounters acceptable local
bond dimensions. As a result, large-scale simulations of quantum circuits get within practical reach.
In summary, our results demonstrate that the local TDVP provides a robust and computationally effi-
cient approach for large-scale quantum circuit simulations, enabling exploration of regimes previously
inaccessible by TEBD due to prohibitive entanglement growth.

6 Discussion

In this work, we have revisited — equipped with modern, powerful tools and recently developed in-
sights — the question of classically simulating quantum circuits. Such endeavors are of key impor-
tance in efforts to benchmark large-scale quantum circuits and help assessing the performance of
actual experimental quantum implementations of quantum circuits. Running classical against quan-
tum simulations of quantum circuits has become a highly fruitful line of thought to improve both fields
[43] 14} 12, 1, 6, 44]. In the light of this development, pushing the boundaries of efficient classical
simulation and challenging quantum advantage claims constitutes an important milestone.

Concretely, this work establishes the local TDVP as a scalable and accurate tool for quantum circuit
simulation. Whereas TEBD only allows for control via the SVD threshold, the local TDVP approach
introduces new algorithmic parameters — such as the choice of time integrator, exponentiation method,
or number of sweeps — that can be tuned for further optimization.

Future research can further explore these exciting possibilities, combine the local TDVP with other
tensor network structures, and adapt the method to simulate noisy quantum circuits. While the present
approach makes use of the mathematically optimal representation of the quantum state on the MPS
manifold, it would be interesting to put the results into the context of rigorous bounds for truncation
errors based on entanglement measures [44]. We expect that ongoing algorithmic refinements and
applications to emerging quantum hardware will reveal even broader potential for the approach taken
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in this work. At a higher level, this work pushes the realm of classical simulation and challenges, in an
interesting and novel fashion, the development of high accuracy quantum circuits, providing important
benchmarks that may be used to challenge claims of quantum advantage.
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7 Methods

7.1 Matrix product states

Consider a quantum state composed of N € N qudits, where each site is associated with a local
Hilbert space H 4 of dimension d € N. The Hilbert space of the entire system is constructed by taking
the tensor product of the [V local Hilbert spaces, denoted as H = ®iLV:1 4. State vectors | W) within
this multi-qudit Hilbert space H can be expressed as a matrix product state (MPS) [45],[19, 46], where

d—1
@)= Y M ME ar,aw) (23)
ql,...,QNZO

where ¢, € [0,...,d — 1] represent the local qudit for each site n = 1,..., N. This MPS is
composed of N degree-3 tensors

M = {M, € CPXn-1xn | p =1 . . N}, (24)
consisting of d matrices for each index g,

M, := {M € Q-

Gn=0,...,d—1}. (25)

The complexity of this structure is governed by its bond dimensions x,, € N (with xo = xny = 1),
which grow with the entanglement entropy of the quantum state it represents.

The MPS representation is inherently non-unique and gauge-invariant, allowing a given quantum state
to be expressed in multiple equivalent ways. This flexibility enables the individual tensors to be trans-
formed into canonical forms, which in turn simplifies many computational operations.

These conditions are the left canonical form

d—1 Xn—1
\4qn,an71,an 7\4‘17“(171717@” — ] CX"XXTL 26
n n - € ) ( )

gn=00an—1=1
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and the right canonical form

d—1 Xxn
Z Z Min’anfl’anMgnyanflyan — I c Canl ><an1’ (27)

gn=0an=1

where a,, € [1,..., x»] and M is the conjugated tensor.

By combining these conditions, the MPS is fixed in a mixed canonical form with an orthogonality center
at the site tensor j

d—1 Xn-1
Z Z M ppoman-1.an — T guch that n < j,

Qn_o an—1=1

- Xn
Z Z M ppanan—1.an — [ guch that n > .

gn=0anp=1

Given the MPS |¥) € M,, for any site 1 < n < N, there are orthonormal bases |<I>[Ll;;l]> and

|q> [t 1: N]> for the left and right blocks, respectively, such that

= 30 18l DL (ol )

7/6 1

which can be thought of as a partition around the tensor M,,.

7.2 Local time-dependent variational principle

This section elucidates how the projectors of the local TDVP, as defined in Eq. (13), can be imple-
mented through a sequential sweep across an MPS. We begin by explicitly defining these projectors
as

k+q k+qg—1

plek+d _ E : § :
loc Kn n+1l Gn,n—i—h (29)

n=k—1 n=k—1

where K, ,,+1 denote forward projectors acting on each site and G, ,,11 represent backward pro-
jectors acting on each bond. Substituting this definition into the projected TDVP equation (Eq. (8))
yields

k+q k+q
1\11 =i ) Ko H[) +i)  GunnH V), (30)
n=k—1 n=k

which naturally separates into ¢ + 1 forward-evolving equations
d 4
— |U) = —iK,, 11 H V), (31)
dt

and g backward-evolving equations

—|U) = +iGp i1 H |T) . (32)
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These terms are explicitly defined using the MPS partitions

1:n—1 1:n—1
Ko =017 (@)
Q ’®B;L+2:k+q+1]> <®%+2;k+q+1]”

and

1in—1 1imn—1
Grer =07 (@]
® 1, (34)

n+1l:k+qg+1 n+1l:k+qg+1
© [Pty (@it

Fixing the MPS into a mixed canonical form at site n and applying the conjugate transpose of the
. . [1in—1] [n+2:N] . . .
single-site map |}, ') ® [P ;) to each side of Eq. 1) we simplify to local ODEs

d :
EMH’HH = —ZHfoanMn,nﬂ, n=k—1....k+q, (35)
where Hfltfn+1 is a local effective Hamiltonian governing the evolution of tensor pairs M, ;,41.

These Hamiltonians are then matricized and exponentiated via the Lanczos method [37]. Post-exponen-
tiation, the updated tensors are

; eff

Mn,n+1 = 6_ZHn’nJrl]\471,71—5—1- (36)
Following this, a singular value decomposition (SVD) with threshold s, is applied, updating bond
dimensions ,, to control error and move the orthogonality center forward from n to n + 1.

Subsequently, the backward evolution at site n + 1 involves simplified backward ODEs obtained by
applying the conjugate transpose of the shifted single-site map |<I>[L1:Z}) ® |¢>[g’;2:N]> to each side of

Eq.

d
E]\/[n = +iH"M,, n=k,. .. k+q, (37)

since the bond tensor Cn’n+1 is effectively identical to a single-site tensor M,,.

Applying the Lanczos method again, this tensor evolves as
M, = et N (38)

Thus, the local TDVP method practically mirrors a DMRG-like algorithm [31], performing a spatial
sweep from n = k to n = k + ¢, alternating forward evolution updates for tensor pairs with backward
evolution updates for individual tensors.

Supplementary material

A Generators of quantum gates

We list the generators of quantum gates used in our experiments. Here, 6 denotes the rotation angle
parameter. The generators are provided in the convention U () = exp(—ifH), where H is the
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generator. Note that we only use the generators of two-qubit gates,

R..(0) = exp (—i gZ ® Z) . Ry, (0) =exp (—i gY ® Y) , (S1)

2

since single qubit gates are contracted directly into the corresponding site tensors without using TDVP.

Ry (0) = exp (—i QX ® X) ,  CNOT = exp (—i %(1 - Z)® I — X)) : (S2)

B Benchmark circuits

In this work, we benchmark local TDVP on four classes of quantum circuits that reflect a broad range
of structures found in many-body simulation and variational quantum algorithms. These include: (1)
the one-dimensional Heisenberg model with open and periodic boundary conditions, (2) the two-
dimensional Ising model on a square lattice, (3) quantum approximate optimization algorithm (QAOA)
circuits using R, and .. gates, and (4) hardware-efficient ansatz (HEA) circuits with random single-
and two-qubit gates. All circuits were constructed to exhibit nontrivial entanglement dynamics and in-
clude both local and non-local interactions. For the Hamiltonian circuits, standard first-order Trotteriza-
tion techniques are used, while the variational circuits follow common layouts from quantum algorithm
design.

B.1 One-dimensional Heisenberg model

The simulated circuit corresponds to the Trotterized evolution under the one-dimensional XXX Heisen-
berg Hamiltonian (with open and periodic boundaries)

Hyes = ) J (XiX; + Vi, + Z,2;) + b)Y Z, (S3)
(4,3) ¢
where the sum is over nearest neighbors (and includes a term connecting L — 1 and 0 for periodic
boundary conditions). These are performed at the critical point J = h = 1 with a timestep 6t = 0.1.
Each Trotter step consists of the following gates, parameterized as
R, =exp(—idt hZ), R, = exp (—idt JX ® X),

S4
Ry, =exp(—idt JY ®Y), R,,=exp(—idtJZ®Z). (54)

The gates are applied in an even-odd/odd-even decomposition across the chain. Iz, rotations are
applied to all qubits, followed by 2., R,,, and R,, gates acting on all nearest-neighbor pairs in
two sweeps (even-odd and odd-even); for periodic boundaries, gates are additionally applied between
sites (L — 1, 0). The non-periodic and periodic Heisenberg circuit for 5 sites is illustrated in Fig. a)

and Fig. [S1|b).
B.2 Two-dimensional Ising model

The simulated circuit corresponds to the Trotterized evolution under the two-dimensional Ising Hamil-
tonian on a rectangular N = nNus X Neois lattice

Hlsing = JZZZZJ +gZXZ7 (S5)
(6.5) g
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where (i, j) denotes all nearest-neighbor pairs on the grid. This is simulated at the critical point J =
g = 1 with a timestep ot = 0.1. Each Trotter step consists of the following gates, parameterized as

R, = exp (—idtg X), R..=exp(—idtJZ® 7). (S6)

A snaking (serpentine) mapping of the two-dimensional grid to a one-dimensional qubit ordering is
used for efficient MPS simulation. R, rotations are applied to all qubits, followed by .. gates acting
on all horizontally and vertically adjacent pairs, using even-odd and odd-even decompositions within
each row and column which is illustrated for 9 sites in Fig. [S1fc).

B.3 QAOA circuits

To benchmark performance on variational quantum algorithms, we simulate the Quantum Approximate
Optimization Algorithm (QAOA) for a 1D Ising cost Hamiltonian. Each circuit consists of p layers of
alternating unitaries derived from a cost Hamiltonian and a mixing Hamiltonian:

U9, E) = H exp (—zﬂl ZX,—) exp | —ivy Z Z,Z; . (S7)

=1 (3,9)

Each layer is implemented with a sequence of single-qubit R, (3,) = exp(—i/,X ) gates, followed by
two-qubit R, (7)) = exp(—iv,Z ® Z) gates applied to all nearest-neighbor pairs, using even-odd
and odd-even sweeps as in the Trotterized models. The angles (7, B) are randomly sampled from a
uniform distribution (such that each gate’s rotation angle is uniquely defined) to create diverse and
entangling circuits, rather than optimized for a specific problem instance. This setup allows us to probe

TDVP’s behavior on variational, non-Hamiltonian circuits with structured but non-integrable dynamics.

B.4 Hardware-efficient ansatz (HEA) circuits

We also benchmark the method on hardware-efficient ansatz (HEA) circuits, which are widely used
in variational quantum algorithms due to their shallow depth and compatibility with quantum hardware
constraints. Each HEA layer consists of arbitrary single-qubit rotations followed by entangling two-qubit
gates between neighboring qubits

d

UHEA = H

=1

® U™ (6y)

where Us3(6) = R.(61)R,(62)R.(03) is a universal single-qubit gate, and CZ is the controlled-Z
gate. We use a brickwork entangling pattern, alternating between even-odd and odd-even layers. The
single-qubit parameters are sampled randomly from a uniform distribution, generating circuits with
high expressivity and low regularity. This circuit class serves as a stress test for TDVP under irregular,
high-depth gate sequences and random entanglement growth.

N ]Iczi| (S8)
(i,5)
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Figure 1: Comparison of TDVP and TEBD for large-scale quantum circuit simulation. This fig-
ure includes the results for simulating circuits of three Trotterized Hamiltonian circuits and two non-
Hamiltonian circuits, all with 49 qubits. This includes a one-dimensional Heisenberg model (column
1), periodic Heisenberg model (column 2), two-dimensional Ising model (column 3), as well as a quan-
tum approximate algorithm (QAOA) circuit (column 4) and a hardware-efficient ansatz (HEA) (column
5). (a) Expectation values of the correlator (X4 Xo5). All circuits are simulated using TEBD (blue tri-
angles) and localized TDVP (orange circles). Both methods match within numerical precision. (b) Bond
dimension profiles for TEBD (top) and TDVP (bottom) up to a maximum x = 512. TDVP maintains
significantly lower bond dimensions throughout the simulation by spreading bond dimension growth
across neighboring bonds of the MPS. Dashed lines mark TEBD simulation limits. (c) Runtime cost
Zj X? versus Trotter steps. TDVP reduces computational costs through its decreased bond dimen-
sion, enabling the simulation of deeper circuits inaccessible to previous MPS-based quantum circuit
simulation methods.
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Figure S1: Trotterized quantum circuits for the models benchmarked in this work. (a) Circuit for
the open boundary one-dimensional Heisenberg model. (b) Circuit for the periodic one-dimensional
Heisenberg model. (c) Circuit for the 3 x 3 two-dimensional Ising model, mapped to a one-dimensional
snaking MPS layout.
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