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Well-posedness and relaxation in a simplified model for
viscoelastic phase separation via Hilbertian gradient flows

Moritz Immanuel Gau, Katharina Hopf

Abstract

This article is concerned with a gradient-flow approach to a Cahn–Hilliard model for viscoelas-
tic phase separation introduced by Zhou et al. (Phys. Rev. E, 2006) in its variant with constant
mobility. By means of time-incremental minimisation and generalised contractivity estimates, we
establish the global well-posedness of the Cauchy problem for moderately regular initial data.
For general finite-energy data we obtain the existence of gradient-flow solutions and a stability
estimate of weak–strong type. We further study the asymptotic behaviour for relaxation time and
bulk modulus depending on a small parameter. Depending on the scaling, we recover the Cahn–
Hilliard, the mass-conserving Allen–Cahn or the viscous Cahn–Hilliard equation. A challenge in
the well-posedness analysis is the failure of semiconvexity of the appropriate driving functional,
which is caused by a phase-dependence of the bulk modulus.

1 Introduction

Phase separation in a homogeneous binary mixture can occur when the system is quenched to low
temperature in a way that a state close to one of the pure phases becomes energetically favourable.
If the constituents of the mixture have different intrinsic time and length scales, the unmixing process
can exhibit dynamical asymmetry, a phenomenon typical for viscoelastic phase separation (VPS) in
polymer–solvent mixtures. A first phenomenological continuum model for VPS in polymer solutions
that adheres to thermodynamic principles was introduced by Zhou et al. [ZZE06], building on ear-
lier modelling work by Tanaka and co-workers. For further background on the modelling, we refer
to [Tan22] and the references therein.

In this paper, we study a gradient-flow model for viscoelastic phase separation in polymer solutions,
which corresponds to a version of the dissipative system in [ZZE06, Equation (9)] with a constant
mobility (normalised to 1). Given a bounded domain Ω ⊂ Rd, 1 ≤ d ≤ 3, the equations read as
follows: 

u̇ = div
(
∇
(δE
δu
− A(u)q

))
in (0,∞)× Ω,

q̇ = − 1

τ(u)
q − A(u) div

(
∇
(δE
δu
− A(u)q

))
in (0,∞)× Ω.

(VPS.a)

Here, δE
δu

denotes the variational derivative with respect to u of the total free energy

E (u, q) =

∫
Ω

(1

2
|∇u|2 + F (u)

)
dx+

1

2

∫
Ω

q2 dx, (VPS.b)

where, for simplicity, fixed parameters are normalised. Denoting by n : ∂Ω → Sd−1 the outward unit
normal to ∂Ω, system (VPS.a) is complemented by no-flux boundary conditions

∇
(δE
δu
− A(u)q

)
· n = ∇u · n = 0 on (0,∞)× ∂Ω (VPS.c)
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M.I. Gau, K. Hopf 2

and initial values u(0) = u0, q(0) = q0. The function u : [0,∞) × Ω → R denotes the phase
field variable, modelling the concentration of the polymer molecules (i.e. u ≈ 0 indicates solvent-rich
regions and u ≈ 1 polymer-rich regions). The other unknown is the bulk stress qId, where we seek
for the scalar variable q : [0,∞)× Ω→ R, hereafter referred to as the scalar bulk stress. Moreover,
A models the bulk modulus, τ denotes the relaxation time associated with the bulk stress quantity
q, and we let F be a regular potential with f := F ′. A typical choice is the double well potential
F (u) = u2(u − 1)2. Our particular interest lies in the case of phase-dependent A and τ , which
can cause a dynamic asymmetry between solvent-rich and polymer-rich regions. This is reflected
in (VPS) through the concentration flux – which in addition to the gradient of the chemical potential
∇( δE

δu
) has the extra term∇(A(u)q) – and through the relaxation rate 1

τ(u)
of the scalar bulk stress.

These simplified systems are able to reproduce key features of VPS related to dynamic asymmetry
like volume shrinking and phase inversion, as confirmed by various numerical simulations [ZZE06;
DLL20; Spi+21; BEHL24].

This paper is devoted to a rigorous gradient-flow formulation of (VPS) and the development of a well-
posedness theory for the associated Cauchy problem, as well as to the derivation of relaxation limits,
assuming that A = Aε and τ = τε depend on a small parameter 0 < ε � 1. In this context, let
us mention the related viscous Cahn–Hilliard equation (vCH), introduced by Novick-Cohen [Nov88]
to model polymeric systems with viscous effects and analysed by Elliott and Stuart [ES96]. Mathe-
matically, vCH serves as a homotopy interpolating between the Cahn–Hilliard equation (CH) and the
mass-conserving Allen–Cahn equation (mAC) proposed by Rubinstein–Sternberg [RS92]. The three
models CH, vCH, and mAC will reappear in the relaxation limit.

1.1 Related literature

We briefly review the literature on the analysis of related VPS models and the gradient-flow theory
relevant to our study, and discuss our contribution in this context.

The existence of global-in-time weak solutions in 2D for a stress-diffusive version of the full fluid VPS
system in [ZZE06] – involving the incompressible Navier–Stokes equations and an evolution equation
for the stress tensor – was established by Brunk and Lukáčová-Medvid’ová in [BL22b] both in the
case of regular mobilities and smooth potentials as well as in the case of degenerate mobilities and
logarithmic potentials by means of the Faedo–Galerkin technique. (See also [BL22a] for a previous
result.) In the subsequent articles [BL23; Bru23], a relative entropy method was used to establish
weak–strong stability estimates (for d ∈ {2, 3}), which are of conditional type in the 3D case. An
error analysis via relative entropies of a structure-preserving discrete finite-element scheme for the
simplified VPS model without hydrodynamic transport (still in the presence of bulk stress diffusion)
was performed in [BEHL24] under the assumption of a smooth solution to the continuous problem. We
would also like to point out the work by Colli et al. [CGLN99], who considered a non-isothermal phase-
field system with memory, where temperature accounts for an extra contribution in the concentration
flux. Despite the different physical context, this model has a parabolic–ODE structure at the PDE
level that is related to that of (VPS) (cf. (VPS′) below), even though confined to a phase-independent
constant coupling.

Gradient-flow methods have proved a powerful tool in the analysis of Cahn–Hilliard equations and re-
lated systems. The most classical result concerns the global well-posedness of the Cauchy problem for
semiconvex, lower semicontinuous driving functionals (or “energies") in Hilbert spaces ([Bré73],[Kom67]),
see also [MS20, Introduction] for a short review, or [ABS24]. In [RS06], Rossi and Savaré relax the
hypothesis of semiconvexity using, as a key ingredient, Hilbert space-valued Young measures: under
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Well-posedness and relaxation for viscoelastic phase separation via Hilbertian gradient flows 3

a compactness condition on the energy, they develop an existence theory, via minimising movements,
for a generalisation of the gradient-flow equation involving a closure of the subdifferential, provided
that this limiting subdifferential is either convex-valued or satisfies a suitable chain rule. In general,
this leads to a very weak solution concept, where uniqueness may not be expected. The dissipation
mechanism in their approach is still the classical inner product of the underlying Hilbert space. An
extension to state-dependent dissipation in the context of quasi-linear non-degenerate Cahn-Hilliard–
Allen-Cahn systems was carried out by Heida [Hei15]. Again, this work focusses on the existence of
generalised solutions. For an extension of the variational methods in [RS06] to a Banach space set-
ting and some refinements, we refer to [MRS13] and to the review in [Mie23] for further literature. For
some recent developments in the Hilbertian setting, see e.g. [HS24] in the context of sharp interface
evolutions. Closer in spirit to PDE analysis, there is also an increasing body of literature using gradient-
flow techniques for the construction of global weak solutions to Cahn–Hilliard type models both in the
non-degenerate case, see e.g. [RS17; GK20] for constant mobility, and in the case of a degenerate
mobility [LMS12]. Note that, in the degenerate case, the gradient structure is of metric type based on
generalised Wasserstein distances.

While, at a purely formal level, the gradient-flow structure of versions of the simplified model [ZZE06,
Equation (9)] was exploited in [HKMW24], to the best of the authors’ knowledge, the present work
is the first to develop a rigorous gradient-flow interpretation for such a system. At the PDE level, our
results imply an (unconditional) well-posedness theory without stress diffusive modification in a setting
of moderately low regularity. With regard to methodology, a specific feature of the present problem
lies in the simultaneous failure of compactness and semiconvexity of the energy, which renders the
analysis non-standard. However, observing that semiconvexity only fails to a limited extent, determined
by the state-dependence of the bulk modulus, we are able to leverage ideas from [AGS08, Section 4]
and [Bré73], extending them to a “slightly non-semiconvex” situation. This is enabled by combining
gradient-flow with PDE methods, which provide the required extra regularity. Outside the semiconvex
case, a systematic application of the gradient-flow theory to the study of (unconditional) uniqueness
properties and stability estimates does not appear to have been explored extensively in the literature.
In a very broad sense, our approach may be seen as reminiscent to the Wasserstein gradient-flow
problem [BMZ23], where a singular cross-diffusive perturbation is introduced that destroys uniform
displacement convexity of the energy, but where exponential convergence rates to equilibrium can still
be recovered under a smallness condition. Let us mention that an analysis of the gradient structure for
VPS in the case of a degenerate mobility will be part of a future work. Our results on the relaxation limit
furnish a rigorous link between (VPS) and classical models for phase separation, the Cahn–Hilliard,
the viscous Cahn–Hilliard, and the mass-preserving Allen–Cahn equation and extend the latter two to
dynamically asymmetric versions.

1.2 Outline

The manuscript is structured as follows. Section 2 begins with a general introduction to gradient sys-
tems with a Hilbert space structure (Subsection 2.1) and an outline of our strategy (Subsection 2.2).
The remaining part (Subsection 2.3) is devoted to introducing our set-up, the general hypotheses as
well as the main results. In Section 3, we establish fundamental functional analytic results including
estimates reminiscent to those in a semiconvex setting and prove a chain rule. These results will be
crucial in the subsequent analysis. Section 4 is devoted to the proofs of the main results regarding
the well-posedness properties of (VPS). Finally, in Section 5 we prove the main results concerning the
relaxation limit.
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2 Main results

2.1 Basic concepts for Hilbertian gradient systems

We briefly review basic facts and notions, confining ourselves to the aspects most relevant to the
present application. For further developments, we refer the interested reader to [MRS13; Pel14; MMP21;
Mie23; SP23].

Definition 2.1 (Gradient system). We call a triple (Hm,E,R) a (Hilbertian) gradient system if

(i) Hm is an affine space over a Hilbert space denoted by H ,

(ii) E : Hm → [0,+∞] a functional with proper domain dom(E) := {u ∈ Hm | E(u) <∞},

(iii) R : dom(E)×H → [0,∞) can be represented as R(u;v) = 1
2
〈G(u)v,v〉H∗,H for a family

of linear, bounded, symmetric and positive definite operators G(u) : H → H∗, u ∈ dom(E).

We immediately see that v 7→ R(u;v) is a positive bounded quadratic form on H with Fréchet
differential DvR(u;v) = G(u)v for (u,v) ∈ dom(E)×H .

Gradient systems are used to describe dissipative evolution equations. The affine space Hm then
represents the state space, E is the driving functional, which in our present model will be the physically
relevant free energy, and R is called the dissipation potential, describing the dissipation mechanism of
the system. The evolution equation associated to a gradient system (Hm,E,R) is the gradient-flow
equation

−G(u(t))u̇(t) ∈ ∂GE(u(t)) for a.e. t ∈ (0,∞) (GFE)

for absolutely continuous functions u : (0,∞) → Hm, where ∂GE denotes the Gateaux subdiffer-
ential

∂GE(u) =

{
µ ∈ H∗

∣∣∣∣ ∀v ∈ H : lim inf
t↘0

E(u+ tv)− E(u)

t
≥ 〈µ,v〉H∗,H

}
. (2.1)

Note that, for u ∈ H fixed, ∂GE(u) ⊂ H∗ is a closed and convex (possibly empty) subset. In
classical applications, (GFE) is often formulated using the Fréchet subdifferential

∂FE(u) =

{
µ ∈ H∗

∣∣∣∣ lim inf
v→u

E(v)− E(u)− 〈µ,v − u〉H∗,H
‖u− v‖H

≥ 0

}
. (2.2)

However, the analysis of the present manuscript relies on the more general version (2.1), which re-
duces to (2.2) if the state u enjoys some extra regularity of (cf. Proposition 3.4 (ii)).

Definition 2.2 (Gradient-flow solution). Let (Hm,E,R) be a gradient system. We call an absolutely
continuous curveu : (0,∞)→ Hm a gradient-flow solution, in short GF solution, if it satisfies (GFE).

A desirable feature of gradient-flow solutions, which holds true in the smooth case, is the energy–
dissipation balance (EDB). A pair (u,µ) ∈ AC2

loc([0,∞);Hm)×L2
loc([0,∞);H∗) is said to satisfy

the EDB if

E(u(t)) +

∫ t

s

(
R(u(r); u̇(r)) + R∗(u(r);µ(r))

)
dr = E(u(s)), 0 ≤ s ≤ t <∞, (EDB)
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where R∗(u;µ) := supv∈H
(
〈µ,v〉H∗,H − R(u;v)

)
denotes the Legendre–Fenchel conjugate of

R, and AC2
loc(I;Hm) for a general interval I ⊆ [0,∞) is defined as

AC2
loc(I;Hm) :=

{
u : I → Hm locally absolutely continuous

∣∣ u̇ ∈ L2
loc(I;H)

}
.

For instance, (EDB) may play the role of the second law of thermodynamics in isothermal systems, so
as in our model (VPS). From a technical point of view, (EDB) (or (EDI) below) is a practical identity to
derive a priori estimates in certain scenarios, as in the proof of Theorems 2.6 and 2.9.

To ensure (EDB), one typically shows a chain rule of the following type (cf., e.g. [MRS13, (2.E4)]
or [Mie16, Definition 3.3.1]): If u ∈ AC2

loc([0,∞);Hm) and µ ∈ L2
loc([0,∞);H∗) are such that

µ(t) ∈ ∂GE(u(t)) for almost all t ∈ (0,∞), then E ◦ u ∈ AC([0,∞);R) and

d

dt
(E ◦ u)(t) = 〈µ(t), u̇(t)〉H∗,H for a.e. t ∈ (0,∞).

Thus, if u additionally satisfies (GFE), then such a chain rule can be applied to µ := −G(u)u̇ and
then Legendre–Fenchel equivalences [Rin18, Theorem 3.32]

〈G(u)u̇, u̇〉H∗,H = R(u; u̇) + R∗(u;µ) = 〈µ,K(u)µ〉H∗,H (2.3)

imply (EDB).

In the absence of smoothness and convexity, an appropriate chain rule may not always be established.
However, in such cases, it is often still possible to prove the weaker energy-dissipation inequality (EDI)

E(u(t)) +

∫ t

0

(
R(u(r); u̇(r)) + R∗(u(r);µ(r))

)
dr ≤ E(u(0)), t ∈ [0,∞). (EDI)

It is worth noting that, if a suitable chain rule holds after all, the formulations (GFE), (EDB) and (EDI)
are in fact equivalent; see, e.g., [Mie16, Theorem 3.3.1]. This is known as the energy-dissipation
principle, which is based on ideas from De Giorgi [DMT80; DeG93].

2.2 Our strategy

Motivation If A and τ are constant, we can apply the well-known theory of gradient flows of λ-
convex (λ ∈ R), lower semicontinuous functionals in Hilbert spaces mentioned in Subsection 1.1. This
guarantees global-in-time existence and uniqueness of gradient-flow solutions, also in the sense of
evolution variational inequalities (EVI), and the associated λ-contractive continuous semiflow extends
to data in the closure of dom(E). To apply the theory to the present situation, consider

H :=
{

(u, q) ∈ (H1
av(Ω))∗ × (H1(Ω))∗

∣∣∣ Au+ q ∈ L2(Ω)
}

(2.4)

(see (2.6) – (2.8) for details to H1
av(Ω) and (H1

av(Ω))∗) and endow H with the scalar product(
(u1, q1), (u2, q2)

)
H

:= 〈u1, (−∆)−1u2〉(H1
av(Ω))∗,H1

av(Ω) + τ(Au1 + q1, Au2 + q2)L2(Ω).

Moreover, put Hm := (H1(Ω))∗av + (m, 0) for some m ∈ R. Then, under suitable conditions on
F (for instance as in Assumption 2.3), the energy E defined in (VPS.b) takes proper values on
the dense subset (H1

av(Ω) + m) × L2(Ω) ⊂ Hm and is semiconvex with respect to ‖·‖H. With
the (state-independent) dissipation potential R(u;v) := 1

2
‖v‖2

H = 1
2
〈IHv,v〉H∗,H, the associated

gradient-flow equation of (Hm,E ,R) becomes −IHu̇ ∈ ∂GE (u), which, at the PDE level, coin-
cides with (VPS). Existence and semi-contractivity of the gradient flow defined for initial values in the
entire space Hm is then a consequence of the classical theory.
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Change of variables in phase-dependent case For phase-dependent A and τ , the problem still
exhibits a formal gradient structure with driving functional E and dissipation mechanism

G (u) =

(
(−∆)−1 + A2(u)τ(u) A(u)τ(u)

A(u)τ(u) τ(u)

)
.

However, the question of determining an appropriate functional setting in the variables (u, q) is more
involved, since the regularity of the cross terms (corresponding to the off-diagonal terms in G (u)) now
depends on that of u. To cope with such coupling, we consider the new variable z := q+K(u), where
K ′ = A,K(0) = 0, i.e. we introduce the change of variables Ψ(u, z) := (u, z−K(u)). This leads
to the new gradient system (Hm,E,R) with the pulled-back driving functional E(u) = E (Ψ(u)),
u := (u, z), and dissipation mechanism G(u) = DΨ(u)TG (u)DΨ(u), which amounts to

G(u) =

(
(−∆)−1 0

0 τ(u)

)
. (2.5)

Note that the dissipation mechanism in the new variables is diagonal and induces a simple functional
setting (H1

av(Ω))∗ × L2(Ω) whenever τ(u) ∼ 1.

In PDE form, the associated gradient-flow equation G(u)u̇ ∈ −∂GE(u) reads as
u̇ = div

(
∇
(
−∆u+ f(u)− A(u)(z −K(u))

))
in (0,∞)× Ω,

ż = − 1

τ(u)
(z −K(u)) in (0,∞)× Ω,

0 = ∇u · n = ∇
(
−∆u+ f(u)− A(u)(z −K(u))

)
· n on (0,∞)× ∂Ω.

(VPS′)

Thus, instead of developing directly a solution theory for (VPS) in the variables (u, q), we seek a
pair (u, z) satisfying system (VPS′). The challenge is that, in contrast to the constant-coefficient case
mentioned above, we loose the semiconvexity of the energy. However, as we will show in Section 3,
under extra regularity assumptions on (u, z), we can derive inequalities that mimic the semiconvex
case: crucially, we derive a subgradient estimate of the form

E(v) ≥ E(u) + 〈δE(u),v − u〉H∗,H + λ(u)‖v − u‖2
H ,

λ(u, z) = −C(1 + ‖A′‖∞‖z −K(u)‖L∞(Ω))
2

foru ∈ dom(∂GE), ∂GE(u) = {δE(u)}, and an analogous semi-monotonicity estimate for ∂GE(u).
To exploit such “almost λ-convexity", we show that the flow propagates a certain mild regularity using
the ODE in the second line in (VPS′). The extra regularity will ensure that, for solution trajectories
u = u(t), the function t 7→ λ(u(t)) is locally integrable in [0,∞), which turns out to be sufficient
for establishing key properties such as local Cauchy estimates at the approximate level as well as the
chain rule.

2.3 Function spaces, hypotheses, and main results

2.3.1 General notations and hypotheses

We now render precise the functional framework for the gradient system (Hm,E,R) induced by the
transformation Ψ. First, we define the averaged spaces

H1
av(Ω) =

{
φ ∈ H1(Ω)

∣∣ ∫
Ω
φ dx = 0

}
,

(H1(Ω))∗av =
{
φ ∈ (H1(Ω))∗

∣∣ 〈φ, 1〉(H1(Ω))∗,H1(Ω) = 0
}
,

(2.6)
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and equip them with

(φ, ψ)H1
av(Ω) :=

∫
Ω

∇φ · ∇ψ dx,

(φ, ψ)(H1(Ω))∗av
:=
(
(−∆)−1(φ|H1

av(Ω)), (−∆)−1(ψ|H1
av(Ω))

)
H1

av(Ω)
.

(2.7)

Here, −∆ : H1
av(Ω)→ (H1

av(Ω))∗ denotes the Neumann Laplacian, defined as

〈−∆φ, ψ〉(H1
av(Ω))∗,H1

av(Ω) :=

∫
Ω

∇φ · ∇ψ dx = (φ, ψ)H1
av(Ω),

which in fact agrees with the Riesz isomorphism of H1
av(Ω). Due to Poincaré-Wirtinger’s inequality,

(2.7) define inner products on the respective spaces, equivalent to the ones induced by the standard
inner products of H1(Ω) and (H1(Ω))∗.

We then define the affine state space as Hm := ((H1(Ω))∗av + m) × L2(Ω) for m ∈ R fixed and
identify the associated linear space H = (H1

av(Ω))∗ × L2(Ω). We justify this by the map

(H1(Ω))∗av → (H1
av(Ω))∗, φ 7→ φ|H1

av(Ω), (2.8)

which is an isometric isomorphism by the above choice (2.7) of inner products. Then,H∗ = H1
av(Ω)×

L2(Ω). We will use the ‘bold font’ notation u = (u, z) and v = (v, y) for elements (u, z), (v, y)
in Hm or H , and µ = (µ, ξ) for (µ, ξ) ∈ H∗. Since Hm is contained in the Hilbert space
(H1

av(Ω))∗ × L2(Ω), we have the following closedness property for AC2
loc(I;Hm) for closed in-

tervals I ⊆ [0,∞) due to [ABS24, Sections 9.1, 11.2]: If (un)n∈N ∈ AC2
loc(I;Hm) satisfies

un(t) → u(t) in Hm for any t ∈ I and supn∈N‖u̇n‖L2(I;H) < ∞, then u ∈ AC2
loc(I;Hm)

and u̇n ⇀ u̇ in L2(I;H). We occasionally use the notation Lp(0, T ;Hm) for the space of functions
u in Lp(0, T ; (H1(Ω))∗ × L2(Ω)) with u(t) ∈ Hm for almost all t.

We define the driving functional E : Hm → [0,+∞] via

E(u, z) =

{∫
Ω

(
(1

2
|∇u|2 + F (u)) + 1

2
(z −K(u))2

)
dx if (u, z) ∈ (H1

av(Ω)+m)× L2(Ω)

+∞ otherwise.
(2.9)

In Proposition 3.4, we show that ∂GE(u) contains at most one element, namely

∂GE(u, z) =

{(
−∆u+ f(u)− A(u)(z −K(u))− a(u, z)

z −K(u)

)}
(2.10)

for regular enough u ∈ Hm, where a(u, z) = −
∫

Ω
(f(u)− A(u)(z −K(u))) dx.

According to (2.5), R is induced by

G(u) : H → H∗, G(u)v :=
(
(−∆)−1v, τ(u)y

)
for u = (u, z) ∈ dom(E), which indeed is linear, bounded, symmetric and positive definite under
assumption (2.14b) below. The inverse K(u) := (G(u))−1 is given by

K(u) : H∗ → H, K(u)µ =
(
−∆µ,

1

τ(u)
ξ
)
,

so that the Legendre–Fenchel conjugate ofR (cf. [Pel14, Section 3.2]) can be expressed asR∗(u;µ) =
1
2
〈µ,K(u)µ〉H∗,H for (u,µ) ∈ dom(E)×H∗.

Throughout the rest of this manuscript, we impose the following hypotheses on the data:
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Assumption 2.3. We let Ω ⊂ Rd (d ∈ {1, 2, 3}) be a bounded domain that is either convex or
has a C1,1-regular boundary. For the potential F ∈ C2(R) and its derivative f := F ′, we assume
inf f ′ ≥ −β for some β ∈ (0,∞), which equivalently means that F can be decomposed as

F (u) = h(u)− β

2
u2 (2.11)

for a convex function h ∈ C2(R). In the dimensions d = 2, 3, we additionally suppose the polynomial
growth

|f(u)| ≤ c1(|u|p + 1) (2.12)

for all u ∈ R, some constant c1 ∈ (0,∞), and with exponent{
p ∈ [1,∞) for d = 2,

p ∈ [1, 5] for d = 3.

Observe that this also implies
|F (u)| ≤ c2(|u|p+1 + 1) (2.13)

for any u ∈ R and some constant c2 ∈ (0,∞). Finally, we assume A, τ ∈W1,∞(R) (bounded and
Lipschitz continuous) and

A∗ ≤ A(u) ≤ A∗, (2.14a)

τ∗ ≤ τ(u) ≤ τ ∗ (2.14b)

for all u ∈ R, where A∗, A∗, τ∗, τ ∗ ∈ (0,∞) are fixed.

We point out that the proofs in Sections 4 and 5 are presented for the 2D/3D setting to avoid repeated
dimension-specific case distinctions; the results, however, remain valid in 1D. The point is that the
p-growth is relevant only in 2D and 3D, ensuring F (u) ∈ L1(Ω) for u ∈ H1(Ω) via the Sobolev
embedding H1(Ω) ↪→ Lp(Ω), while in 1D we have H1(Ω) ↪→ C(Ω), which immediately yields
f(u), F (u) ∈ C(Ω).

Note that condition (2.13) particularly implies dom(E) = (H1
av(Ω) +m)×L2(Ω). Moreover, (2.14b)

ensures

min{1, τ∗}
2

‖v‖2
H ≤ R(u;v) ≤ max{1, τ ∗}

2
‖v‖2

H , (2.15a)

1

2 max{1, τ ∗}
‖µ‖2

H∗ ≤ R∗(u;µ) ≤ 1

2 min{1, τ∗}
‖µ‖2

H∗ (2.15b)

for every (u,v,µ) ∈ dom(E)×H ×H∗.

2.3.2 Well-posedness

To formulate our first main result, we recall Definition 2.2 of a gradient-flow solution associated to a
given gradient system. Unless specified otherwise, the underlying gradient system is understood to be
that introduced in Subsection 2.3.1.

Theorem 2.4 (Well-posedness). For any initial data u0 = (u0, z0) ∈ (H1
av(Ω) + m) × L∞(Ω),

there exists a gradient-flow solution u = (u, z) ∈ AC2
loc([0,∞);Hm) with u(0) = u0. Any such
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solution u enjoys the regularity u ∈ L2
loc([0,∞); H2(Ω)) × H1

loc([0,∞); L∞(Ω)) and satisfies the
energy-dissipation balance

E(u(t))+

∫ t

s

∫
Ω

(∣∣∇(−∆u+f(u)−A(u)(z−K(u)))
∣∣2 +

1

τ(u)
(z−K(u))2

)
dx dr = E(u(s))

(2.16)
for all 0 ≤ s ≤ t <∞.

Moreover, any two gradient-flow solutions ui = (ui, zi) ∈ AC2
loc([0,∞);Hm) with initial values

ui(0) ∈ (H1
av(Ω) +m)× L∞(Ω), i = 1, 2, satisfy the stability estimate

‖u1(t)− u2(t)‖H ≤ eC
∫ t
s (1+(‖A′‖∞+‖τ ′‖∞)‖z1−K(u1)‖L∞(Ω))

2 dr‖u1(s)− u2(s)‖H (2.17)

for all 0 ≤ s ≤ t < ∞, where C ∈ (0,∞) is a constant only depending on β, A∗ and τ∗. In
particular, solutions emanating from a given initial value are unique.

The proof of Theorem 2.4 is carried out in Subsection 4.1.

Remark 2.5.

(i) Note that the term∇(−∆u+ f(u)−A(u)(z −K(u))) appearing in (2.16) is a well-defined
function in L2

loc([0,∞); L2(Ω)). This is implied by the regularity u̇ ∈ L2
loc([0,∞);H), the

gradient-flow equation and the subdifferential (2.10). From (2.16) and the Fenchel equiva-
lences (2.3) we even obtain the global control z − K(u) ∈ L2([0,∞); L2(Ω)), as well as
−∆u+ f(u)−A(u)(z −K(u))− a(u, z) ∈ L2([0,∞); H1(Ω)) and u̇ ∈ L2([0,∞);H).

(ii) In the above theorem, the unique solution u also satisfies the GFE with the Gateaux subdiffer-
ential replaced by the Fréchet subdifferential. This follows from the regularity
u ∈ L2

loc([0,∞); L∞(Ω;R2)) and the subgradient estimate in Proposition 3.4.

(iii) If A and τ are constant, the integrating factor in the stability estimate (2.17) does no longer
depend on the solution. In particular, via an approximation argument, estimate (2.17) yields
existence and uniqueness of GF solutions u in AC2

loc((0,∞);Hm) (even EVI-solutions, as
mentioned in the motivation) with respect to initial values in Hm.

The second main result extends Theorem 2.4 to initial values in the energy domain, allowing for z0

merely in L2(Ω). Theorem 2.6 asserts that solutions still exist and satisfy the energy–dissipation
inequality. The stability estimate (2.17) for two solutions remains valid as long as the initial value of one
of the solutions lies in H1(Ω)× L∞(Ω), which enables us to prove a weak–strong-type uniqueness.

Theorem 2.6 (Finite-energy data). Let u0 = (u0, z0) ∈ (H1
av(Ω) + m) × L2(Ω). Then, there

exists a gradient-flow solution u = (u, z) ∈ AC2
loc([0,∞);Hm) with u(0) = u0 that satisfies the

energy-dissipation inequality

E(u(t)) +

∫ t

0

∫
Ω

(∣∣∇(−∆u+ f(u)−A(u)(z−K(u))
)∣∣2 +

1

τ(u)
(z−K(u))2

)
dx ds ≤ E(u0)

(2.18)
for all t ∈ [0,∞).

Moreover, if u = (u, z),v = (v, y) ∈ AC2
loc([0,∞);Hm) are two gradient-flow solutions with initial

values u(0) =: u0 ∈ (H1
av(Ω) + m) × L∞(Ω) and v(0) =: v0 ∈ (H1

av(Ω) + m) × L2(Ω), then
u ∈ L2

loc([0,∞); H2(Ω))× H1
loc([0,∞); L∞(Ω)) by Theorem 2.4 and it holds

‖u(t)− v(t)‖H ≤ eC
∫ t
s (1+(‖A′‖∞+‖τ ′‖∞)‖z−K(u)‖L∞(Ω))

2 dr‖u(s)− v(s)‖H (2.19)
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for all 0 ≤ s ≤ t < ∞, where C ∈ (0,∞) only depends on β, A∗ and τ∗. In addition, if
‖z0‖L∞(Ω) ≤ M and E(u0) ≤ E0 for certain M,E0 ∈ (0,∞), and T ∈ (0,∞) is fixed, then
‖z −K(u)‖L2(0,T ;L∞(Ω)) can be estimated by a constant depending only on Ω, T , d, E0, M , m, β,
A∗ and τ∗.

The proof is provided in Subsection 4.2.

By virtue of Lemma A.3, the variable transformation Ψ(u, z) = (u, q) from Subsection 2.2 is rigor-
ously justified. Thus, Theorems 2.4 and 2.6 imply:

Corollary 2.7 (Original variables). For any (u0, q0) ∈ (H1
av(Ω) + m) × L2(Ω), there exists a weak

solution (u, q) to (VPS) satisfying the energy-dissipation inequality, i.e. the following six conditions are
fulfilled:

(i) u ∈ L∞([0,∞); H1(Ω)) ∩ L2
loc([0,∞); H2(Ω)) with u̇ ∈ L2([0,∞); (H1

av(Ω))∗);

(ii) q ∈ C([0,∞); L2(Ω)) with q̇ ∈ L
4/3
loc ([0,∞); (H1(Ω))∗);

(iii) −∆u+ f(u)− A(u)q ∈ L2
loc([0,∞); H1(Ω));

(iv) for almost all t ∈ (0,∞) it holds

〈u̇(t), ϕ〉(H1
av(Ω))∗,H1

av(Ω) = −
∫

Ω

∇
(
−∆u(t) + f(u(t))− A(u(t))q(t)

)
· ∇ϕ dx,

〈q̇(t), ψ〉(H1(Ω))∗,H1(Ω) = −〈u̇(t), A(u(t))ψ〉(H1(Ω))∗,H1(Ω) −
∫

Ω

1

τ(u(t))
q(t)ψ dx

for all ϕ ∈ H1
av(Ω), ψ ∈ H1(Ω);

(v) (initial conditions) u(0) = u0 in L2(Ω) and q(0) = q0 in L2(Ω) are fulfilled;

(vi) (energy-dissipation inequality) for all t ∈ (0,∞) it holds (with E as in (VPS.b))

E (u(t), q(t)) +

∫ t

0

∫
Ω

(∣∣∇(−∆u+ f(u)− A(u)q
)∣∣2 +

1

τ(u)
q2
)

dx dr ≤ E (u0, q0).

If in addition q0 +K(u0) ∈ L∞(Ω), then q ∈ L2
loc([0,∞); L∞(Ω)), the solution (u, q) is unique and

satisfies the energy-dissipation balance.

2.3.3 Relaxation

Beyond the well-posedness theory, we are interested in connecting the viscoelastic system to classical
models of phase separation, where elastic effects are neglected. Observe that, so far, the VPS system
was formulated in dimensionless variables and inessential multiplicative constants were set equal to
unity. To study relaxation limits, however, we need to take the characteristic size qc of the bulk stress
variable to be of order o(1). We will therefore consider a rescaled free energy, which at the level of the
original physical variables reads as

Ẽ (u, q) =

∫
Ω

(1

2
|∇u|2 + F (u)

)
dx+

1

2

∫
Ω

(
q

qc

)2

dx,
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and an appropriately rescaled dissipation mechanism

G̃ (u, q) = t−1
c

(
(−∆)−1 + A2(u)τ(u) q−1

c A(u)τ(u)
q−1
c A(u)τ(u) q−2

c τ(u)

)
.

Note that here tc > 0 denotes a characteristic time scale. Below, we perform the corresponding
change of variables directly in the “diagonal"coordinates (u, z). We will then make the ansatz qc = ε

for ε ∈ (0, 1) and study the asymptotic behaviour, as ε↘ 0, for suitable choices of A = Âε, τ = τ̂ε,
and tc = tc,ε.

For the rigorous asymptotics, we first invoke Theorem 2.6 (with A = Âε, τ = τ̂ε), which provides
gradient-flow solutions ûε to (Hm, Êε, R̂ε), where Êε and R̂ε are given via

Êε(u) =

∫
Ω

(1

2
|∇u|2 + F (u)

)
dx+

1

2

∫
Ω

(
z − K̂ε(u)

)2
dx, (2.20)

R̂ε(v;u) =
1

2

(
‖v‖2

(H1
av(Ω))∗ + (τ̂ε(u)y, y)L2(Ω)

)
with K̂ ′ε = Âε, K̂ε(0) = 0. As explained above, before studying the limit ε↘ 0, we need to consider
new variables that account for a vanishing bulk stress size qc. The appropriate transformation of the
dependent variables is given by Ψ̂(u, z) = (u, q−1

c z) = (û, ẑ), where qc = ε. Combined with the
time rescaling under the ansatz tc = ε−γ, γ ∈ [0,∞), this leads to a gradient system with the
following rescaled energy and dissipation potential

Eε(u, z) :=

∫
Ω

(1

2
|∇u|2 + F (u)

)
dx+

1

2ε2

∫
Ω

(z −Kε(u))2 dx, (2.21)

R(γ,κ)
ε ((u, z); (v, y)) :=

1

2

(
εγ‖v‖2

(H1
av(Ω))∗ + εκ(τε(u)y, y)L2(Ω)

)
, (2.22)

where Kε(u) := εK̂ε(u), and εκτε(u) := εγ−2τ̂ε(u). The goal is then to show that, in some sense,
the sequence of solutions in the new variables (uε)ε∈(0,1), determined by Ψ̂(uε(t)) = ûε(ε

−γt),
converges (up to a subsequence) to a gradient-flow solution u0 of some “effective” gradient system
(Heff ,Eeff ,Reff) (see also Remark 2.11 below). Formula (2.21) and the definition of Kε(u) suggest
to take Âε = ε−1Aε for Aε bounded away from zero and infinity.

Assumption 2.8. Âε, τ̂ε ∈ W1,∞(R) for every ε ∈ (0, 1) and, given γ ∈ [0,∞), there exists
κ ∈ [0,∞) with κ · γ = 0, such that Aε := εÂε and τε := εγ−2−κτ̂ε converge uniformly, i.e.

‖Aε − A‖C(R) → 0 and ‖τε − τ‖C(R) → 0 as ε↘ 0 (2.23)

for certain A, τ ∈W1,∞(R). Moreover, there exist τ∗, τ ∗, A∗, A∗ ∈ (0,∞) such that

A∗ ≤ Aε(u) ≤ A∗, (2.24a)

τ∗ ≤ τε(u) ≤ τ ∗. (2.24b)

Note that the bounds (2.24) are preserved in the limit, i.e. A∗ ≤ A ≤ A∗ and τ∗ ≤ τ ≤ τ ∗. Denote
by K the primitive of A with K(0) = 0. Since K is strictly increasing, its inverse K−1 exists.

In Proposition 5.2, we will show that, with this choice of Âε, (Eε)ε∈(0,1) has a Γ-limit E0 : Hm →
[0,∞] given by

E0(u) :=

{
EGL(u) if z = K(u) and u ∈ H1

av(Ω) +m,

+∞ otherwise,
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where

EGL(u) =

∫
Ω

(1

2
|∇u|2 + F (u)

)
dx (2.25)

denotes the Ginzburg–Landau energy or Modica-Mortola functional. Note that the constraint z =
K(u) in the definition of E0 is nonlinear as soon as A is not constant, in which case the explicit form
of any reasonable subdifferential of E0 may be quite involved.

The effective dissipation potential Reff will depend on the choice of parameters. Formula (2.22) sug-
gests that there are three non-trivial cases, depending on the positivity of κ, γ ∈ [0,∞):

(CH) if γ = 0, κ > 0 “(0,+)”, (vCH) if γ = 0, κ = 0 “(0, 0)”, (mAC) if γ > 0, κ = 0 “(+, 0)”.

The actual gradient systems are given by ((H1(Ω))∗av +m,EGL,RCH), (L2
av(Ω) +m,EGL,RmAC)

and (L2
av(Ω) +m,EGL,RvCH), where

RCH : (H1
av(Ω))∗ → [0,∞), RCH(v) :=

1

2
‖v‖2

(H1
av(Ω))∗ ,

RmAC : (H1
av(Ω) +m)× L2

av(Ω)→ [0,∞), RmAC(u; v) :=
1

2

(
A2(u)τ(u)v, v

)
L2(Ω)

,

RvCH : (H1
av(Ω) +m)× L2

av(Ω)→ [0,∞), RvCH(u; v) := RCH(v) + RmAC(u; v).

We are now in a position to state our final main result, which will be proved in Section 5.

Theorem 2.9 (Relaxation limit). Assume (uε)ε∈(0,1) ⊂ AC2
loc([0,∞);Hm) is a family of gradient-

flow solutions to (Hm,Eε,R
(γ,κ)
ε ) that satisfy the energy-dissipation inequality (EDI). Let the initial

conditions uε(0) =: u0
ε ∈ (H1

av(Ω) + m) × L2(Ω) be well-prepared, i.e. assume that there exists
u0

0 ∈ H1
av(Ω) +m such that

u0
ε → (u0

0, K(u0
0)) in Hm, Eε(u

0
ε)→ EGL(u0

0), ε↘ 0. (2.26)

Then, for every sequence εk ↘ 0, k →∞, there exists a subsequence (not relabelled) and a function
u0 ∈ C([0,∞); L2(Ω)) ∩ L∞([0,∞); H1(Ω)) ∩ L2

loc([0,∞); H2(Ω)) such that
uεk → u0 in Cloc([0,∞); L2(Ω)),

zεk → K(u0) in Cloc([0,∞); L2(Ω)),

Eεk(uεk(t))→ EGL(u0(t)) for all t ∈ [0,∞),

(2.27a)

(2.27b)

(2.27c)

u0 has a time derivative in the space

u̇0 ∈

{
L2([0,∞); (H1

av(Ω))∗) if (γ, κ) = (0,+),

L2([0,∞); L2
av(Ω)) if κ = 0

with convergence {
u̇εk → u̇0 in L2

loc([0,∞); (H1
av(Ω))∗) if γ = 0,

żεk → A(u0)u̇0 in L2
loc([0,∞); L2

av(Ω)) if κ = 0,
(2.28)

and u0 is a gradient-flow solution, also satisfying (EDB), of one of the three gradient systems
((H1

av(Ω))∗ +m,EGL,RCH) if (γ, κ) = (0,+),

(L2
av(Ω) +m,EGL,RvCH) if (γ, κ) = (0, 0),

(L2
av(Ω) +m,EGL,RmAC) if (γ, κ) = (+, 0).
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Remark 2.10 (Well-prepared data). Thanks to the Γ-convergence of the energies (cf. Proposition 5.2),
the well-preparedness (2.26) can be achieved for any (u,K(u)) with u ∈ H1

av(Ω) +m.

Remark 2.11 (Relation to EDB- and EDP-convergence). In the study of singular limits of gradient
systems, the notions of EDB-convergence and EDP-convergence are commonly encountered in the
literature, both falling under the umbrella of Evolutionary Γ-convergence. The core idea of EDB-

convergence is to establish the Γ-convergences Eε
Γ→ Eeff and R

(γ,κ)
ε

Γ→ Reff to certain effective
Eeff and Reff . Then, assuming that the approximate solutions uε comply with (EDB) (or (EDI)) and
the initial conditions (uε(0))ε are well-prepared, one can, under additional technical assumptions,
extract suitable convergent subsequences. Combining liminf-estimates in (EDB) (or (EDI)) with a sub-
differential closedness, and assuming an appropriate chain rule holds for Eeff , the energy-dissipation
principle mentioned in Subsection 2.1 guarantees that the limit is indeed a solution to (Hm,Eeff ,Reff).

The strategy behind EDP-convergence is similar, but instead of showing R
(γ,κ)
ε

Γ→ Reff , one proves a
liminf-estimate of the total dissipation functional.

We highlight that our approach in Section 5 is mainly based on the GFE rather than on EDB- or EDP-
convergence. One can show a liminf-estimate, which would yield the EDI for (Hm,Reff ,Eeff). How-
ever, in order to conclude−DvReff(u; u̇) ∈ ∂`E0(u) with the limit subdifferential ∂`E0 determined in
Lemma 5.4, one would need to apply a suitable chain rule whose validity, without extra assumptions, is
unclear at this stage. In the special case A, τ ≡ const., one has ∂`E0 = ∂FE0, and a chain rule can
be shown through a simple subgradient estimate. Hence, in the constant case, EDP-type arguments
can be used. In the (vCH) case, the dissipation potential R(γ,κ)

ε is even non-degenerate, and the limit
can be taken using the (EVI) formulation.

3 Properties of the energy and its subdifferential

In this section, we establish key properties of E and ∂GE needed in the proof of Theorem 2.4. We
emphasise that E is not semiconvex. To see this, we note that the Hessian

Hess
(

(u, z) 7→ 1

2
(z −K(u))2

)
=

(
A2(u)− A′(u)(z −K(u)) −A(u)

−A(u) 1

)
,

viewed as a bilinear form, can not be bounded from below uniformly in (u, z) unless A′ ≡ 0. Con-
sequently, several valuable properties – like the strong–weak closedness of the graph of ∂GE or the
chain rule – do not come for free. We will therefore invest particular effort into a thorough investigation
of the Gateaux subdifferential.

In Proposition 3.4 we characterise ∂GE, showing that the Gateaux subdifferential ∂GE(u) is single-
valued and takes the precise form anticipated in (2.10). An additional observation is the subdifferential
estimate (3.5), which will play an important role in the upcoming proof of the chain rule. Another
important estimate concerning ∂GE, namely (3.10), is proved in Proposition 3.5. This will be used to
show that the absolutely continuous interpolants (ûκ)κ as defined in (4.3c) form a Cauchy sequence
in the strong topology C([0, T ];Hm) for any T <∞, and to derive the stability estimates (2.17) and
(2.19). Proposition 3.5 is followed by an H2(Ω)-estimate for the phase field variable u, the closedness
properties of ∂GE and DvR, and, eventually, the chain rule Proposition 3.10, whose proof is based
on (3.5).

Let us first recall two auxiliary results.
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Lemma 3.1. In the sense of Gelfand triples, we have

‖u‖L2(Ω) ≤ ‖u‖1/2

H1
av(Ω)‖u‖

1/2

(H1
av(Ω))∗ for all u ∈ H1

av(Ω), (3.1)

‖u‖H1
av(Ω) ≤ C‖u‖2/3

H2(Ω)‖u‖
1/3

(H1
av(Ω))∗ for all u ∈ H2

av(Ω), (3.2)

where C ∈ (0,∞) only depends on Ω and d.

Lemma 3.2. There exists a constant C ∈ (0,∞) only depending on Ω such that∥∥∥∥u−−∫
Ω

u dx

∥∥∥∥
H2(Ω)

≤ C‖∆u‖L2(Ω) (3.3)

for all u ∈ H2(Ω) with∇u · n = 0 on ∂Ω.

The interpolation inequality (3.1) is an easy consequence of 〈u, u〉(H1
av(Ω))∗,H1

av(Ω) = (u, u)L2(Ω),

and (3.2) can be readily deduced from ‖u‖H1
av(Ω) = ‖∇u‖L2(Ω;Rd) ≤ C‖u‖1/2

H2(Ω)‖u‖
1/2

L2(Ω) (Niren-
berg [Nir59]) and (3.1). Lemma 3.2 is a combination of the a priori estimate from elliptic regularity (see
[Gri11, Chapters II, III] for instance) ‖u‖H2(Ω) ≤ C(‖∆u‖L2(Ω) +‖u‖L2(Ω)) and Poincaré-Wirtinger’s
inequality ‖u−−

∫
Ω
u dx‖L2(Ω) ≤ CPW‖∇u‖L2(Ω;Rd) ≤ C2

PW‖∆u‖L2(Ω).

Proposition 3.3. The energy E : Hm → [0,+∞], defined in (2.9), is weakly lower semicontinuous.

Proof. Let (un)n∈N = (un, zn)n∈N ⊂ Hm, u = (u, z) ∈ Hm such that un ⇀ u for n → ∞ in
Hm. If lim infn→∞ E(un) = +∞ then there is nothing to do. Otherwise, there exists a subsequence
(unk)k∈N ⊆ (un)n∈N such that lim infn→∞ E(un) = limk→∞ E(unk) ∈ [0,∞) and unk ∈
dom(E) for any k. In particular, (E(unk))k∈N is bounded.

From there we get that (∇unk)k∈N is bounded in L2(Ω;Rd) and (znk −K(unk))k∈N is bounded in
L2(Ω). Since−

∫
Ω
unk dx = m for all k ∈ N, reflexivity of H1(Ω) and L2(Ω) and uniqueness of weak

limits imply (unk , znk) ⇀ (u, z) in H1(Ω)×L2(Ω). Moreover, Rellich–Kondrachov provides unk → u
in L2(Ω) and almost everywhere in Ω for non-relabelled subsequence. Since K is continuous and
grows linearly, we also infer K(unk)→ K(u) in L2(Ω), and continuity of F yields F (unk)→ F (u)
almost everywhere in Ω. Thus, weak lower semicontinuity

‖∇u‖2
L2(Ω;Rd) ≤ lim inf

k→∞
‖∇unk‖2

L2(Ω;Rd), ‖z −K(u)‖2
L2(Ω) ≤ lim inf

k→∞
‖znk −K(unk)‖2

L2(Ω)

and Fatou’s lemma
∫

Ω
F (u) dx ≤ lim infk→∞

∫
Ω
F (unk) dx yield E(u) ≤ lim infn→∞ E(un).

Proposition 3.4 (Gateaux subdifferential ∂GE). Define

A :=

{
(u, z) ∈ (H2

av(Ω) +m)× L2(Ω)

∣∣∣∣ ∇u · n = 0 on ∂Ω and
−∆u+ f(u)− A(u)(z −K(u)) ∈ H1(Ω)

}
and, for any u = (u, z) ∈ A,

δE(u) :=

(
−∆u+ f(u)− A(u)(z −K(u))− a(u, z)

z −K(u)

)
, (3.4)

where a(u, z) = −
∫

Ω
(f(u) − A(u)(z − K(u))) dx. Observe that δE(u) ∈ H∗ for every u ∈ A.

Then:
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(i) dom(∂GE) = A and ∂GE(u) = {δE(u)},

(ii) if u = (u, z) ∈ A and in addition z ∈ L∞(Ω), then the subgradient estimate

E(v) ≥ E(u) + 〈δE(u),v − u〉H∗,H + λ(u)‖v − u‖2
H (3.5)

holds for all v ∈ Hm, where λ(u, z) := −1
8

(
β + ‖A′‖∞‖z −K(u)‖L∞(Ω)

)2
.

Proof. Recalling F (u) = h(u)− β
2
u2, we compute for u = (u, z) ∈ A, v = (v, y) ∈ dom(E)

E(v)− E(u)− 〈δE(u),v − u〉H∗,H

=

∫
Ω

(1

2
|∇v|2 + F (v) +

1

2
(y −K(v))2

)
dx

−
∫

Ω

(1

2
|∇u|2 + F (u) +

1

2
(z −K(u))2

)
dx

−
∫

Ω

((
−∆u+ f(u)− A(u)(z −K(u))

)
(v − u) +

(
z −K(u)

)
(y − z)

)
dx

=
1

2

∫
Ω

|∇(v − u)|2 dx+

∫
Ω

(
h(v)− h(u)− h′(u)(v − u)︸ ︷︷ ︸

≥0 since h is convex

)
dx

− β

2

∫
Ω

(v − u)2 dx+
1

2

∫
Ω

(
(y −K(v))− (z −K(u))

)2
dx

+

∫
Ω

(z −K(u))
(
K(u)−K(v) + A(u)(v − u)

)
dx

≥ 1

2
‖v − u‖2

H1
av(Ω) −

β

2
‖v − u‖2

L2(Ω) −
1

2
‖A′‖∞

∫
Ω

|z −K(u)||v − u|2 dx. (3.6)

Here, in the first equation we inserted the definitions of E and δE(u), in the second we rearranged
the terms which is well-defined since K(u), K(v) ∈ L2(Ω) and h′(u) ∈ L6/5(Ω) by (2.12) and the
Sobolev embedding H1(Ω) ↪→ L6(Ω), and in the third equation we used

K(v)−K(u)− A(u)(v − u) =

∫ v

u

(v − ζ)A′(ζ) dζ ≤ 1

2
‖A′‖∞(u− v)2.

Now we turn to the proof of the statements (i) and (ii).

(i) We first show that δE(u) ∈ ∂GE(u) for u ∈ A via definition (2.1). So, let v ∈ H . If v /∈
H1

av(Ω)×L2(Ω), thenu+tv /∈ dom(E) for every t > 0 and there is nothing to do. Otherwise,
i.e. if v = (v, y) ∈ H1

av(Ω)× L2(Ω), then u+ tv ∈ dom(E). From (3.6) we deduce

E(u+ tv)− E(u)− t〈δE(u),v〉H∗,H

≥ t2

2

(
‖v‖2

H1
av(Ω) − β‖v‖2

L2(Ω) − ‖A′‖∞‖z −K(u)‖L2(Ω)‖v‖2
L4(Ω)

)
, (3.7)

and the right-hand side is real-valued due to Sobolev embedding H1(Ω) ↪→ L4(Ω). Hence,
after dividing (3.7) by t, we obtain in the limit t ↘ 0 the desired estimate from (2.1) and we
conclude δE(u) ∈ ∂GE(u) for u ∈ A.
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It remains to show dom(∂GE) ⊆ A and ∂GE(u) ⊆ {δE(u)}. To this end, we let u ∈
dom(∂GE) and µ = (µ, ξ) ∈ ∂GE(u), aiming to show u ∈ A and µ = δE(u). By definition
of ∂GE(u) we have for all v ∈ H

lim inf
t↘0

E(u+ tv)− E(u)

t
≥ 〈µ,v〉H∗,H ≥ lim sup

t↗0

E(u+ tv)− E(u)

t
. (3.8)

Since u+ tv ∈ dom(E) for every t ∈ R and v = (v, y) ∈ H1
av(Ω)× L2(Ω), we compute

E(u+ tv)− E(u)

t

=
1

t

∫
Ω

(1

2
|∇(u+ tv)|2 + F (u+ tv) +

1

2
(z + ty −K(u+ tv))2

)
dx

− 1

t

∫
Ω

(1

2
|∇u|2 + F (u) +

1

2
(z −K(u))2

)
dx

=

∫
Ω

∇u · ∇v dx+
t

2

∫
Ω

|∇v|2 dx+

∫
Ω

F (u+ tv)− F (u)

t
dx

+

∫
Ω

(K(u+ tv))2 − (K(u))2

2t
dx−

∫
Ω

K(u+ tv)−K(u)

t
z dx

+

∫
Ω

(z −K(u+ tv))y dx+
t

2

∫
Ω

y2 dx.

Owing to the p-growth of f from (2.12) and the linear growth ofK , we can take the limits t↘ 0
and t↗ 0. In combination with (3.8) we conclude that, for every v ∈ H1

av(Ω)× L2(Ω),

〈v, µ〉(H1
av(Ω))∗,H1

av(Ω) + (ξ, y)L2(Ω) = 〈µ,v〉H∗,H

=

∫
Ω

(
∇u · ∇v +

(
f(u) + A(u)K(u)− A(u)z

)
v + (z −K(u))y

)
dx. (3.9)

In particular, considering v = (0, y) for y ∈ L2(Ω), we deduce ξ = z − K(u) from (3.9).
Furthermore, if we restrict (3.9) to functions of type v = (v, 0) for v ∈ H1

av(Ω), we obtain∫
Ω

∇u · ∇v dx =

∫
Ω

(
µ− f(u) + A(u)(z −K(u))

)
v dx,

i.e. u is a weak solution of the nonlinear elliptic problem{
−∆u+ h′(u) = βu+ µ+ A(u)(z −K(u)) + a(u, z) in Ω,

∇u · n = 0 on ∂Ω.

Since ` := βu+ µ+A(u)(z −K(u)) + a(u, z) ∈ L2(Ω) and h ∈ C2(R) is convex, i.e. h′

monotonically increasing, we can use the Stampacchia method in order to show u ∈ L∞(Ω).
For this argument, ` needs to lie in Lr(Ω) for some r > d/2, hence r = 2 is valid for d ≤ 3,
see, e.g. [Trö09, Theorem 4.5 and Section 7.2.2].

In particular, since h′ is continuous, h′(u) ∈ L∞(Ω), and whence −∆u ∈ L2(Ω). The regu-
larity assumptions on Ω therefore imply u ∈ H2(Ω) (cf. [Gri11, Chapters II and III]). Finally,

−∆u+ h′(u)− βu− A(u)(z −K(u)) = µ+ a(u, z) ∈ H1(Ω),

so that u ∈ A is shown and we have µ = δE(u).
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(ii) Let v = (v, y) ∈ Hm, and we may assume v ∈ dom(E), otherwise (3.5) is trivial. Then, from
(3.6) we receive

E(v)− E(u)− 〈δE(u),v − u〉H∗,H

≥ 1

2
‖v − u‖2

H1
av(Ω) −

β

2
‖v − u‖2

L2(Ω) −
1

2
‖A′‖∞‖z −K(u)‖L∞(Ω)‖v − u‖2

L2(Ω).

Since u ∈ H2(Ω) and d ≤ 3, the Sobolev-embedding H2(Ω) ↪→ L∞(Ω) ensures u ∈
L∞(Ω). If we then apply (3.1) to v − u (note that v and u have the same mean value m) and
ε-Young’s inequality, we arrive directly at (3.5), noting that ‖v − u‖(H1

av(Ω))∗ ≤ ‖v − u‖H .

Proposition 3.5 (Monotonicity-type estimate for ∂GE). Let ui = (ui, zi) ∈ dom(∂GE) and vi =
(vi, yi) ∈ dom(E), i = 1, 2, where zi ∈ L∞(Ω) for at least one i. Then it holds(

K(v1)δE(u1)−K(v2)δE(u2),u1 − u2

)
H

≥ −Λ(ui)‖u1 − u2‖2
H − ω(ui)

(
‖v1 − u1‖2

L2(Ω) + ‖v2 − u2‖2
L2(Ω)

)
, (3.10)

where Λ(u) := C1

(
1 + (‖A′‖∞ + ‖τ ′‖∞)‖z − K(u)‖L∞(Ω)

)2
for some constant C1 ∈ (0,∞)

depending only on β,A∗, τ∗, and ω(u) := ‖τ ′‖2
∞‖z −K(u)‖2

L∞(Ω).

Proof. After possibly renumbering indices, we may assume i = 1. Inserting the definitions of K(vi),
δE(ui), and rearranging terms, we obtain(

K(v1)δE(u1)−K(v2)δE(u2),u1 − u2

)
H

=

∫
Ω

∇
(
−∆(u1 − u2) + f(u1)− f(u2)− A(u1)(z1 −K(u1))

+ A(u2)(z2 −K(u2))
)
· ∇
(
(−∆)−1(u1 − u2)

)
dx

+

∫
Ω

(z1 −K(u1)

τ(v1)
− z2 −K(u2)

τ(v2)

)
(z1 − z2) dx

=

∫
Ω

|∇(u1 − u2)|2 dx+

∫
Ω

(h′(u1)− h′(u2))(u1 − u2)︸ ︷︷ ︸
≥0 by convexity of h

dx

− β
∫

Ω

(u1 − u2)2 dx−
∫

Ω

A(u2)(z1 − z2)(u1 − u2) dx

−
∫

Ω

(z1 −K(u1))(A(u1)− A(u2))(u1 − u2) dx

+

∫
Ω

A(u2)︸ ︷︷ ︸
≥A∗>0

(K(u1)−K(u2))(u1 − u2)︸ ︷︷ ︸
≥A∗(u1−u2)2≥0

dx

+

∫
Ω

(z1 −K(u1))
( 1

τ(v1)
− 1

τ(v2)

)
(z1 − z2) dx

−
∫

Ω

1

τ(v2)
(K(u1)−K(u2))(z1 − z2) dx+

∫
Ω

1

τ(v2)
(z1 − z2)2 dx

≥ ‖u1 − u2‖2
H1

av(Ω) − A∗‖z1 − z2‖L2(Ω)‖u1 − u2‖L2(Ω)

−
(
β + ‖A′‖∞‖z1 −K(u1)‖L∞(Ω)

)
‖u1 − u2‖2

L2(Ω)

− ‖τ
′‖∞
τ 2
∗
‖z1 −K(u1)‖L∞(Ω)‖v1 − v2‖L2(Ω)‖z1 − z2‖L2(Ω)
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− A∗

τ∗
‖u1 − u2‖L2(Ω)‖z1 − z2‖L2(Ω), (3.11)

where we used that A, K and 1
τ

are Lipschitz continuous with respective Lipschitz constants ‖A′‖∞,

A∗ and ‖τ
′‖∞
τ2
∗

. Applying Young’s inequality several times and triangular inequality ‖v1 − v2‖L2(Ω) ≤
‖v1−u1‖L2(Ω)+‖u1−u2‖L2(Ω)+‖v2−u2‖L2(Ω) to (3.11), one obtains a constantC = C(β,A∗, τ∗) ∈
[1,∞) satisfying(

K(v1)δE(u1)−K(v2)δE(u2),u1 − u2

)
H

≥ ‖u1 − u2‖2
H1

av(Ω) − C
(
1 + ‖A′‖∞‖z1 −K(u1)‖L∞(Ω)

)
‖u1 − u2‖2

L2(Ω)

− C(1 + ‖τ ′‖∞‖z1 −K(u1)‖L∞(Ω))
2‖z1 − z2‖2

L2(Ω)

− ‖τ ′‖2
∞‖z1 −K(u1)‖2

L∞(Ω)

(
‖v2 − u2‖2

L2(Ω) + ‖v1 − u1‖2
L2(Ω)

)
.

Eventually, applying (3.1) and Young’s inequality once more, we arrive at the desired estimate (3.10).

Lemma 3.6. There exists a constant C2 = C2(Ω, d, A∗, β) ∈ (0,∞) such that

‖u−m‖H2(Ω) ≤ C2

(
‖(u−m, z)‖H + ‖δE(u)‖H∗

)
(3.12)

for all u = (u, z) ∈ dom(∂GE).

Proof. From the definition of δE(u), i.e. (3.4), it holds

‖δE(u)‖2
H∗ =

∫
Ω

(
|∇(−∆u+ f(u)− A(u)(z −K(u)))|2 + (z −K(u))2

)
dx. (3.13)

Thanks to (3.3), it suffices to show (3.12) with left-hand side ‖∆u‖L2(Ω). Multiplying −∆u+ f(u)−
A(u)(z −K(u)) with −∆u and integrating by parts twice, we get, by making use of∇u · n = 0 on
∂Ω and∇(f(u)) = f ′(u)∇u (as f ∈ C1(R) and u ∈ H2(Ω) ↪→ L∞(Ω)),∫

Ω

|∆u|2 dx =

∫
Ω

∇(−∆u+ f(u)− A(u)(z −K(u))) · ∇u dx

+

∫
Ω

f(u) ·∆u dx−
∫

Ω

A(u)(z −K(u)) ·∆u dx

≤ ‖∇(−∆u+ f(u)− A(u)(z −K(u)))‖L2(Ω;Rd)‖u−m‖H1
av(Ω)

−
∫

Ω

f ′(u)|∇u|2 dx+ A∗‖∆u‖L2(Ω)‖(z −K(u))‖L2(Ω).

Hence, as f ′ ≥ −β, Young’s inequality provides

‖∆u‖2
L2(Ω) ≤ ‖∇(−∆u+ f(u)− A(z −K(u)))‖2

L2(Ω;Rd)

+ (1 + 2β)‖u−m‖2
H1

av(Ω) + (A∗)2‖z −K(u)‖2
L2(Ω)

≤ max{1, (A∗)2}‖µ‖2
H∗ + (1 + 2β)C‖∆u‖4/3

L2(Ω)‖u−m‖
2/3

(H1
av(Ω))∗ ,

where the last estimate follows from (3.2), (3.3) and (3.13). Since ‖u−m‖(H1
av(Ω))∗ ≤ ‖(u−m, z)‖H ,

the desired estimate (3.12) finally follows after one more application of Young’s inequality.
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Proposition 3.7 (Closedness of ∂GE). The subdifferential ∂GE is strong–weak closed, i.e. whenever
(un)n∈N ⊂ dom(∂GE), u ∈ Hm and µ ∈ H∗ are such that un → u in Hm and δE(un) ⇀ µ in
H∗ as n→∞, then µ = δE(u).

Proof. In the following, we write (un, zn) = un, (u, z) = u. From un → u in Hm we immediately
obtain zn → z in L2(Ω). Moreover, since (δE(un))n∈N and (un)n∈N are bounded in H∗ resp.
Hm, estimate (3.12) provides a uniform H2(Ω)-bound for (un)n∈N, so that in fact u ∈ H2(Ω) and,
for a non-relabelled subsequence, un ⇀ u in H2(Ω), un → u in L2p(Ω) and almost everywhere
in Ω. In particular, using A∗ ≤ A ≤ A∗ and continuity of A, we infer A(un)(zn − K(un)) →
A(u)(z−K(u)) and K(un)→ K(u) in L2(Ω). Furthermore, the p-growth (2.12) of f ensures that
f(un) → f(u) in L2(Ω). Collecting the derived convergences, we thus conclude that δE(un) ⇀
δE(u) in L2(Ω;R2). On the other hand, δE(un) ⇀ µ follows in L2(Ω;R2) by hypothesis. As the
weak limit is unique, we conclude µ = δE(u).

If we apply Lemma A.2 to Sn := ∂GE and combine it with Proposition 3.7, we readily deduce the
following evolutionary closedness:

Corollary 3.8 (Evolutionary closedness of ∂GE). Let T <∞. The subdifferential ∂GE is evolutionary
strong–weak closed, i.e. if u,un ∈ L2(0, T ;Hm),µ,µn ∈ L2(0, T ;H∗) are such that

(1) un → u in L2(0, T ;Hm) as n→∞,

(2) µn ⇀ µ in L2(0, T ;H∗) as n→∞ and

(3) µn(t) ∈ ∂GE(un(t)) for almost all t ∈ (0, T ), all n ∈ N,

then it follows µ(t) ∈ ∂GE(u(t)) for almost every t ∈ (0, T ).

Proposition 3.9 (Closedness of DvR). Let T < ∞. The differential of R is closed in the following
sense: If u,un ∈ L2(0, T ;Hm), v,vn ∈ L2(0, T ;H) are such that

(1) un → u in L2(0, T ;Hm) as n→∞,

(2) vn ⇀ v in L2(0, T ;H) as n→∞ and

(3) supn∈N ess supt∈[0,T ] E(un(t)) <∞,

then G(un)vn ⇀ G(u)v in L2(0, T ;H∗) for n→∞.

Proof. Write (vn, yn) = vn, (un, zn) = un, (v, y) = v and (u, z) = u. By definition of G, we need
to prove u(t) ∈ dom(E) for almost every t ∈ (0, T ) and

((−∆)−1vn, τ(un)yn) ⇀ ((−∆)−1v, τ(u)y)

in L2(0, T ; H1
av(Ω) × L2(Ω)). From (2) we particularly receive vn ⇀ v in L2(0, T ; (H1

av(Ω))∗), so
that (−∆)−1vn ⇀ (−∆)−1v in L2(0, T ; H1

av(Ω)). Moreover, (3.1) yields

‖un − u‖2
L2(0,T ;L2(Ω)) ≤ ‖un − u‖L2(0,T ;(H1

av(Ω))∗)︸ ︷︷ ︸
→0 by (1)

‖un − u‖L2(0,T ;H1
av(Ω))︸ ︷︷ ︸

uniformly bounded by (3)

,

so we infer un → u in L2(0, T ; L2(Ω)) and – up to a subsequence (not relabelled) – almost ev-
erywhere in (0, T ) × Ω. Therefore, together with yn ⇀ y from (2) and |τ(u)| ≤ τ ∗, we infer
τ(un)yn ⇀ τ(u)y in L2(0, T ; L2(Ω)). This holds true for any subsequence we might have cho-
sen, hence we have convergence along the whole sequence.
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Proposition 3.10 (Chain rule). Let T < ∞. Assume u ∈ AC2
loc([0, T ];Hm) ∩ L2(0, T ; H2(Ω) ×

L∞(Ω)) and µ ∈ L2(0, T ;H∗) are such that µ(t) ∈ ∂GE(u(t)) for almost every t ∈ (0, T ). Then,
the function E ◦ u : [0, T ]→ [0,∞) is absolutely continuous, and for almost all t ∈ (0, T )

d

dt
E(u(t)) = 〈µ(t), u̇(t)〉H∗,H .

Proof. As always, u is identified with its continuous representative. Moreover, we fix a representative
for µ and put the set of “good points” Σ := {t ∈ (0, T ) | µ(t) ∈ ∂GE(u(t))}. By assumption,
L1([0, T ] \ Σ) = 0.

We aim to give a self-contained proof by relying on the subdifferential estimate (3.5) and following
largely the strategy from the lecture notes [Mie23, Theorem 3.12], with adaptations where necessary.
We start with Step 1 by introducing the arc-length parametrisation η : [0, T ] → [0, L] of u with left
inverse θ, so that û := u ◦ η is 1-Lipschitz continuous. Accordingly, we define Ê := E ◦ u ◦ η and
a quantity µ̂, which will be a slightly modified version of µ ◦ η. In Step 2 we will show that the “good
properties” of Σ are inherited to θ(Σ) for the reparametrised functions û and µ̂. Step 3 is devoted to
showing an absolute continuity estimate for Ê on θ(Σ). This will be achieved by employing the subd-
ifferential estimate (3.5) and approximating the integral of g by Riemann sums, for which the assumed
L∞ space regularity plays a crucial role. In Step 4 we will then prove that this absolute continuity
estimate transfers back to the original variables u,µ,E ◦ u on Σ. As a result, we obtain a function
E ∈W1,1([0, T ];R) that agrees with E ◦ u on Σ. The task is then to show that E(t) = E(u(t)) for
any t ∈ [0, T ], thereby establishing the desired absolute continuity for E ◦u. Finally, in Step 5 we will
identify the weak derivative of E ◦ u.

Step 1: Reparametrisation to 1-Lipschitz curve.
The following goes back to [AGS08, Lemma 1.1.4]. ForL := ‖u̇‖L1(0,T ;H), we consider the absolutely
continuous and non-decreasing surjective function

θ : [0, T ]→ [0, L], θ(t) :=

∫ t

0

‖u̇(r)‖H dr.

Define the left continuous, non-decreasing map

η : [0, L]→ [0, T ], η(s) := min{t ∈ [0, T ] | θ(t) = s},

which, in fact, is right inverse to θ. We make the following observation: If η(θ(t)) < t, then θ is constant
on [η(θ(t)), t], which means thatu is constant on [η(θ(t)), t] as well. Therefore,u(η(θ(t))) = u(t).
Hence, the following properties of θ and η hold true

θ(η(s)) = s for all s ∈ [0, L],

η(θ(t)) ≤ t for all t ∈ [0, T ],

u(η(θ(t))) = u(t) for all t ∈ [0, T ].

(3.14)

With that, we define û := u ◦ η : [0, L] → Hm, which is 1-Lipschitz continuous as for 0 ≤ s0 ≤
s1 ≤ L

‖û(s1)− û(s0)‖H ≤
∫ η(s1)

η(s0)

‖u̇(s)‖H ds = θ(η(s1))− θ(η(s0)) = s1 − s0,
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where the penultimate equality is simply the definition of θ. Using (3.14), we also observe u = û ◦ θ
on [0, T ]. We also put Ê := E ◦ u ◦ η and define µ̂ : [0, L]→ H∗ via

µ̂(s) :=

{
µ(η(s)) if s /∈ D,
δE(û(s)) if s ∈ D,

where D := {s ∈ [0, L] | η discontinuous at s} is at most countable due to monotonicity of η. Note
that µ̂(s) is well-defined for s ∈ D (i.e. û(s) ∈ dom(∂GE)), because u is constant on [η(s), η(s+)]
and, since L1([η(s), η(s+)] ∩ Σ) > 0, it must be that u(t) ∈ dom(∂GE) for all t ∈ [η(s), η(s+)].
We also stress that µ̂ is Bochner measurable as θ is non-decreasing.

By the change of variables formula [Bog07, Theorem 5.8.30] and observing that θ satisfies the Lusin
property [Bog07, Definition 3.6.8] since it is absolutely continuous, we find for all [t0, t1] ⊆ [0, T ]∫ θ(t1)

θ(t0)

‖µ̂(s)‖H∗ ds =

∫ θ(t1)

θ(t0)

‖(µ ◦ η)(s)‖H∗ ds =

∫ t1

t0

‖µ(η(θ(t)))‖H∗θ′(t) dt

=

∫ t1

t0

‖µ(η(θ(t)))‖H∗‖u̇(t)‖H dt =

∫ t1

t0

‖µ(t)‖H∗‖u̇(t)‖H dt, (3.15)

where the first equality uses that L1(D) = 0 (i.e. µ̂ = µ ◦ η almost everyhwere), and the fourth that
u̇ = 0 almost everywhere in {t ∈ [0, T ] | η(θ(t)) 6= t}. Similarly, we obtain∫ θ(t1)

θ(t0)

‖ẑ(s)−K(û(s))‖L∞(Ω) ds =

∫ t1

t0

‖z(t)−K(u(t))‖L∞(Ω)‖u̇(t)‖H dt. (3.16)

In particular, µ̂ ∈ L1(0, L;H∗) and ẑ −K(û) ∈ L1(0, L; L∞(Ω)).

Step 2: L1([0, L] \ θ(Σ)) = 0 and µ̂(s) ∈ ∂GE(û(s)) for all s ∈ θ(Σ).
Since [0, T ] \ Σ is a null set, the Lusin property tells us θ([0, T ] \ Σ) is a null set as well. Hence
the first claim already follows from the inclusion [0, L] \ θ(Σ) ⊆ θ([0, T ] \ Σ), which holds true by
surjectivity, i.e. θ([0, T ]) = [0, L].

For the second claim, we assume s ∈ θ(Σ) and take t ∈ Σ such that θ(t) = s. If in addition s ∈ D,
then µ̂(s) = δE(û(s)) ∈ ∂GE(û(s)) already holds by definition of µ̂. Let us consider the case
s /∈ D. If η(s) 6= t, then η(s) < t by (3.14) and η(s) < t ≤ η(s+) since θ(t) = s. In particular
s ∈ D, which is a contradiction. Thus, η(s) = t ∈ Σ, whence

µ̂(s) = µ(η(s)) ∈ ∂GE(u(η(s))) = ∂GE(û(s)).

Step 3: Absolute continuity estimate for Ê.
Our goal is to show that |Ê(t)− Ê(s)| ≤ (1 +M)

∫ t
s
g(r) dr for all s, t ∈ θ(Σ) with s < t, where

g(r) := ‖µ̂(r)‖H∗ +
1

2
‖A′‖∞‖ẑ(r)−K(û(r))‖L∞(Ω), (3.17)

and M := ‖g‖L1([0,L]). Note that M <∞ by Step 1.

To begin with, we note that for arbitrary s0, s1 ∈ θ(Σ) with s0 < s1, Step 2 tells us that estimate (3.5)
is applicable. Hence, exploiting the 1-Lipschitz continuity of û, we obtain
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λ(û(s0))|s1 − s0|2 − ‖µ̂(s0)‖H∗ |s1 − s0| ≤ Ê(s1)− Ê(s0)

≤ ‖µ̂(s1)‖H∗ |s1 − s0| − λ(û(s1))|s1 − s0|2.
(3.18)

Let now s, t ∈ θ(Σ) with s < t. Then, for a partition s = s0 < s1 < . . . < sN = t with si ∈ θ(Σ),
we infer from (3.18)

Ê(t)− Ê(s) =
n∑
j=1

(
Ê(sj)− Ê(sj−1)

)
≤

n∑
j=1

(
‖µ̂(sj)‖H∗|sj − sj−1| − λ(û(sj))|sj − sj−1|2

)
≤

n∑
j=1

‖µ̂(sj)‖H∗|sj − sj−1|+
β2

4

n∑
j=1

(sj − sj−1)2

+

( n∑
j=1

1

2
‖A′‖∞‖ẑ(sj)−K(û(sj))‖L∞(Ω)(sj − sj−1)

)2

≤
(

1 +
n∑
j=1

(sj − sj−1)g(sj)

) n∑
j=1

(sj − sj−1)g(sj) +
β2

4

n∑
j=1

(sj − sj−1)2,

(3.19)

where we have used ‖·‖2
`2 ≤ ‖·‖2

`1 in the penultimate inequality.

Using Lemma A.1 for approximating the Lebesgue integral by Riemann sums with partition points from
a set of full measure, we get a sequence of partitions s = sn0 < sn1 < . . . < snN(n) = t, indexed by
n ∈ N, such that max1≤j≤N(n)|snj − snj−1| → 0 as n→∞, snj ∈ θ(Σ) for every j, n and

lim
n→∞

N(n)∑
j=1

(snj − snj−1)g(snj ) =

∫ t

s

g(r) dr.

Hence, applying (3.19) to these partitions {sn0 , . . . , snN(n)}, we obtain in the limit n→∞

Ê(t)− Ê(s) ≤ (1 + ‖g‖L1(s,t))

∫ t

s

g(r) dr.

Using the lower bound in (3.18), one shows Ê(t)− Ê(s) ≥ −(1 + ‖g‖L1(s,t))
∫ t
s
g(r) dr very anal-

ogously. Thus, in combination, we deduce |Ê(t)− Ê(s)| ≤ (1 +M)
∫ t
s
g(r) dr.

Step 4: Absolute continuity of E ◦ u.
Let t0, t1 ∈ Σ, t0 < t1. Then θ(t0), θ(t1) ∈ θ(Σ), hence, by (3.14), Step 3, (3.15) and (3.16),

|E(u(t1))− E(u(t0))| =
∣∣E(u(η(θ(t1))

))
− E

(
u
(
η(θ(t0))

))∣∣ =
∣∣Ê(θ(t1))− Ê(θ(t0))

∣∣
≤ (1 +M)

∫ θ(t1)

θ(t0)

(
‖µ̂(t)‖H∗ +

1

2
‖A′‖∞‖ẑ(t)−K(û(t))‖L∞(Ω)

)
dt
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= (1 +M)

∫ t1

t0

‖µ(t)‖H∗‖u̇(t)‖H dt

+
1

2
(1 +M)‖A′‖∞

∫ t1

t0

‖z(t)−K(u(t))‖L∞(Ω)‖u̇(t)‖H dt.

Since L1([0, T ] \ Σ) = 0, we therefore find E ∈ W1,1([0, T ];R) such that E(t) = E(u(t)) for
all t ∈ Σ. Now, we want to argue similarly as in [AGS08, Theorem 1.2.5] and [Mie23, Theorem 3.12,
Step 2] to showE(t) = E(u(t)) for all t ∈ [0, T ], albeit with slight adaptations. The actual difference
is that u is not 1-Lipschitz continuous but certainly 1

2
-Hölder continuous

‖u(t)− u(s)‖H ≤
∫ t

s

‖u̇(r)‖H dr ≤ ‖u̇‖L2(s,t;H)|t− s|1/2, 0 ≤ s ≤ t ≤ T, (3.20)

and thatµ is L2-integrable in time, which, in the end, turns out to be enough to carry out the argument.

Lower semicontinuity of E already gives E(u(t)) ≤ E(t) for all t ∈ [0, T ] \ Σ. For the reverse
inequality, we restrict to t ∈ [T/2, T ] \ Σ and consider the averages for r ∈ [0, T/2]

Er(t) :=
1

r

∫ t

t−r
E(u(s)) ds =

1

r

∫ t

t−r
E(s) ds

r↘0−−→ E(t),

where the equality is justified since {s | E(u(s)) 6= E(s)} is a null set, and the limit r ↘ 0 because
E is continuous. Hence, in order to get E(u(t)) ≥ E(t), it suffices to show E(u(t)) ≥ limr↘0Er(t).
To this end, we compute by applying (3.5), (3.20) and using the fact that |t− s| ≤ r for s ∈ [t− r, t],

E(u(t))− Er(t) =
1

r

∫ t

t−r

(
E(u(t))− E(u(s))

)
ds

≥ 1

r

∫ t

t−r

(〈
µ(s),u(t)− u(s)

〉
H∗,H

+ λ(u(s))‖u(t)− u(s)‖2
H

)
ds

≥ 1

r

∫ t

t−r

(
−‖µ(s)‖H∗‖u̇‖L2(s,t;H)|t− s|1/2 + λ(u(s))‖u̇‖2

L2(s,t;H)|t− s|
)

ds

≥ − 1√
r
‖u̇‖L2(t−r,t;H)

∫ t

t−r
‖µ(s)‖H∗ ds+ ‖u̇‖2

L2(t−r,t;H)

∫ t

t−r
λ(u(s)) ds

≥ −‖u̇‖L2(t−r,t;H)‖µ‖L2(t−r,t;H∗) + ‖u̇‖2
L2(t−r,t;H)‖λ(u)‖L1(t−r,t),

where we used ‖µ‖L1(t−r,t;H∗) ≤
√
r‖µ‖L2(t−r,t;H∗) in the last inequality. As µ ∈ L2(0, T ;H∗)

and λ(u) = −1
8
(β + ‖A′‖‖z − K(u)‖L∞(Ω))

2 ∈ L1(0, T ), the right-hand side vanishes in
the limit r ↘ 0 by absolute continuity of the Lebesgue integral. This shows the desired estimate
E(u(t)) ≥ limr↘0Er(t) in the case t ∈ [T/2, T ]. For t ∈ [0, T/2], we instead consider Er(t) =
1
r

∫ t+r
t

E(u(s)) ds and the analogous argument yields the same result in the end.

Step 5: Identification of derivative d
dt
E(u) = 〈µ, u̇〉H∗,H .

Let Σ0 denote the set of points t ∈ (0, T ) where u and E ◦ u are differentiable, µ(t) = δE(u(t)),
and u(t), z(t) ∈ L∞(Ω). By hypothesis and Step 4, we have L1([0, T ] \ Σ0) = 0. For any t ∈ Σ0,
it then holds for all h ∈ [−t, T − t] that

E(u(t+ h))− E(u(t)) ≥ 〈µ(t),u(t+ h)− u(t)〉H∗,H + λ(u(t))‖u(t+ h)− u(t)‖2
H .
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Dividing this by h > 0 and taking the limit h↘ 0, the differentiability of E ◦ u and u yield

d

dt
E(u(t)) ≥ 〈µ(t), u̇(t)〉H∗,H + 0.

Finally, dividing by h < 0 and taking the limit h↗ 0, we obtain the reverse inequality.

Remark 3.11. We emphasise that the abstract chain rule results [MRS13, Proposition 2.4] and [MR23,
Appendix A, Proposition A.1] are not directly applicable. As in our case, their proofs rely on a subgra-
dient estimate of the form

E(v) ≥ E(u) + 〈µ,v − u〉H∗,H + ρ(u,v)‖v − u‖H .

In Mielke et al., the modulus of subdifferentiability ρ : Hm × Hm → [0,∞) is assumed to be
upper semicontinuous, which guarantees sups,t∈[0,T ] ρ(u(s),u(t)) < ∞ for continuous curves u :
[0, T ]→ Hm. In our setting, however, the modulus takes the form

ρ(u,v) = λ(u)‖u− v‖H

and is not upper semicontinuous.

In fact, the arguments in Mielke et al. would still apply if λ(û) ∈ L1(0, T ) for the arc-length reparametri-
sation (û, ẑ). Yet, as observed in Step 1, (û, ẑ) in general only belongs to L1(0, T ; L∞(Ω;R2)),
which is not sufficiently regular.

4 Existence, uniqueness, and stability estimate

This section is devoted to the proofs of Theorems 2.4 and 2.6.

4.1 Proof of Theorem 2.4

The existence proof is based on a time-discretisation. Since we also obtain uniqueness (independent
of the existence result), it suffices to carry out the construction on finite time horizons T < ∞. For a
fixed time step κ = T/N , N ∈ N, we will perform time-incremental minimisation, providing a family
(uκn)Nn=0 that satisfies the (semi-)implicit Euler approximation of (GFE)

−G(uκn)
uκn+1 − uκn

κ
∈ ∂GE(uκn+1),

which arises as the Euler–Langrange (EL) equation of a suitable minimisation problem (cf. (4.1) be-
low). For the associated piecewise affine and piecewise constant left- resp. right-continuous inter-
polants (ûκ)κ, (uκ)κ, (uκ)κ, we then derive suitable uniform bounds as well as a Cauchy estimate
that builds on Proposition 3.5 and Lemma 3.6. This yields the strong convergence of the approximants
to a unique limit u and a suitable weak convergence of the discrete time derivatives. Applying the
closedness properties Corollary 3.8 and Proposition 3.9, we will pass to the limit in the approximate
equation −G(uκ)

˙̂uκ ∈ ∂GE(uκ) formulated in terms of the interpolants to derive (GFE). Eventually,
we show the regularity u ∈ L2

loc([0,∞); H2(Ω)) × H1
loc([0,∞); L∞(Ω)), the energy-dissipation

balance (2.16) and the stability estimate (2.17).
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Following our roadmap, we will start constructing discrete approximants satisfying (EL) by solving the
minimisation problem

min
u∈Hm

ΦE,G
κ (v;u) := E(u) +

κ

2
R
(
v;

1

κ
(u− v)

)
. (4.1)

Proposition 4.1 (Solvability of the direct problem). For all κ ∈ (0,∞) and v ∈ dom(E), minimisation
problem (4.1) admits a solution u∗ ∈ Hm, and any minimiser u∗ fulfils the following (EL) equation
(with δE(u∗) as defined in (3.4))

−1

κ
G(v)(u∗ − v) = δE(u∗). (4.2)

Proof. Existence of minimisers follows from the direct method of the calculus of variations: ΦE,G
κ (v; ·)

is coercive due to (2.15a) and E ≥ 0; weak lower semicontinuity holds since E is weakly lower
semicontinuous by Proposition 3.3 and the dissipation potential in the second argument is as well. Via
the subdifferential inclusion, any minimiser u∗ fulfils

0 ∈ ∂ΦE,G
κ (v;u∗) ⊆ κDR

(
v;

1

κ
(u∗ − v)

)
+ ∂GE(u∗),

where here DR denotes the Fréchet differential with respect to the second variable of R. Inserting the
identities DR(v; 1

κ
(u∗− v)) = 1

κ2G(v)(u∗− v) and ∂GE(u∗) = {δE(u∗)}, the claim follows.

Starting with an initial condition u0 = (u0, q0) ∈ (H1
av(Ω) + m) × L∞(Ω) and a time step κ =

T/N , N ∈ N, we construct uκ0 , . . . ,u
κ
N ∈ Hm iteratively as follows: We put uκ0 := u0 and,

assuming uκ0 , . . . ,u
κ
n have been constructed for some n < N , we define uκn+1 as the minimiser

of ΦE,G
κ (uκn; ·). Based on the discrete minimisers, we define our approximate solutions, i.e. the left-

continuous piecewise constant interpolant

uκ : [0, T ]→ Hm, uκ(t) := uκd t
κ
e, (4.3a)

the right-continuous piecewise constant interpolant

uκ : [0, T ]→ Hm, uκ(t) := uκb t
κ
c, (4.3b)

and the absolutely continuous, piecewise affine interpolant

ûκ : [0, T ]→ Hm, ûκ(t) :=
(
1− t

κ
+ b t

κ
c
)
uκb t

κ
c +
(
t
κ
− b t

κ
c
)
uκd t

κ
e. (4.3c)

By (4.2), the interpolants uκ,uκ, ûκ satisfy the Euler approximation

−G(uκ)
˙̂uκ ∈ ∂GE(uκ) a.e. in (0, T ). (EL)

We also set µκ := −G(uκ)
˙̂uκ, so that µκ(t) = δE(uκ(t)) for all but finitely many t ∈ [0, T ].

Lemma 4.2 (A priori estimates). There exists a constant C3 ∈ (0,∞), independent of κ, such that

(i) ‖ ˙̂uκ‖L2(0,T ;H) ≤ C3;

(ii) ‖ûκ − uκ‖L∞(0,T ;H) + ‖uκ − uκ‖L∞(0,T ;H) ≤ C3

√
κ;

(iii) ‖ûκ1 − ûκ2‖C([0,T ];H) ≤ C3(
√
κ1 +

√
κ2).
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Proof. The proof is split into three steps. In Step 1 we will derive estimates (i) and (ii), which essentially
follow from the minimising property of the uκn’s. In Step 2, which prepares for the subsequent step, we
will show that the family (uκ)κ ⊂ L2(0, T ; L∞(Ω;R2)) is bounded. Finally, in Step 3 we will establish
the remaining estimate (iii) by exploiting the monotonicity property (3.10) of ∂GE.

Without loss of generality, we henceforth assume that τ∗ ≤ 1 and τ ∗ ≥ 1.

Step 1: Uniform bounds by minimising property.
By the minimising property, we have for all 1 ≤ n ≤ N , N ∈ N,

1

κ
R(uκn−1;uκn − uκn−1) + E(uκn) = ΦE,G

κ (uκn−1;uκn) ≤ ΦE,G
κ (uκn−1;uκn−1) = E(uκn−1). (4.4)

This implies 0 ≤ E(uκn) ≤ E(u0) =: E0 for any 0 ≤ n ≤ N and, by (2.15a),∫ T

0

‖ ˙̂uκ(t)‖2
H dt =

N∑
n=1

κ
∥∥∥1

κ
(uκn − uκn−1)

∥∥∥2

H
≤ 2

τ∗

N∑
n=1

1

κ
R(uκn−1;uκn − uκn−1)

≤ 2

τ∗

N∑
n=1

(
E(uκn−1)− E(uκn)

)
≤ 2E0

τ∗
(4.5)

as a telescope sum. Moreover, (2.15a) and (4.4) yield

max
{
‖ûκ(t)− uκ(t)‖H , ‖uκ(t)− uκ(t)‖H

}
≤
∥∥uκb t

κ
c − u

κ
d t
κ
e

∥∥
H
≤
√
κ

√
2E0

τ∗
(4.6)

for all t ∈ [0, T ]. Thus, we already have established (i) and (ii).

Later in Step 2, we will need the estimate∫ T

0

‖µκ(t)‖2
H∗ dt =

N∑
n=1

1

κ
‖G(uκn−1)(uκn − uκn−1)‖2

H∗

≤ 2τ ∗
N∑
n=1

1

κ
R∗
(
uκn−1;G(uκn−1)(uκn − uκn−1)

)
= 2τ ∗

N∑
n=1

1

κ
R(uκn−1;uκn − uκn−1) ≤ 2τ ∗E0, (4.7)

where the second line uses (2.15b), and the last inequality follows similarly as in (4.5).

Step 2: Uniform bound for ‖uκ‖L2(0,T ;L∞(Ω;R2)).
We actually show that ‖uκ‖L2(0,T ;H2(Ω)) and ‖zκ‖L∞(0,T ;L∞(Ω)) are uniformly bounded. We first start
with ‖uκ‖L2(0,T ;H2(Ω)). Using (3.12), we obtain∫ T

0

‖uκ(t)−m‖2
H2(Ω) dt ≤ C2

2

∫ T

0

(
‖uκ(t)− (m, 0)‖H + ‖µκ(t)‖H∗

)2
dt

since µκ = δE(uκ) almost everywhere in (0, T ). Furthermore, (4.5) yields

‖uκ(t)− u0‖H =

∥∥∥∥∫ d tκ e
0

˙̂uκ(t) dt

∥∥∥∥
H

≤
√

2TE0

τ∗
.
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Using this and (4.7), we already find that uκ is uniformly bounded in L2(0, T ; H2(Ω)). In particular,
by the Sobolev embedding H2(Ω) ↪→ L∞(Ω) (possible as d ≤ 3) and |K(u)| ≤ A∗|u|, we find a
constant C3,1 = C3,1(Ω, T, ‖u0 − (m, 0)‖H , E0, β, A

∗, τ ∗, τ∗,m) ∈ (0,∞) such that for all κ

‖K(uκ)‖L2(0,T ;L∞(Ω)) ≤ CSA
∗‖uκ‖L2(0,T ;H2(Ω)) ≤ C3,1. (4.8)

For the L∞-bound of zκ, we use (EL), which tells us for all 1 ≤ n ≤ N , all κ,

1

κ
(zκn − zκn−1) = − 1

τ(uκn−1)
zκn +

K(uκn)

τ(uκn−1)

in L2(Ω). After some algebraic manipulations, this can be rearranged to

zκn =
τ(uκn−1)

τ(uκn−1) + κ
zκn−1 +

κK(uκn)

τ(uκn−1) + κ
.

Therefore, we obtain

‖zκn‖L∞(Ω) ≤ ‖zκn−1‖L∞(Ω) +
κ

τ∗
‖K(uκn)‖L∞(Ω),

and hence, invoking (4.8),

‖zκn‖L∞(Ω) = ‖z0‖L∞(Ω) +
n∑
l=1

(
‖zκl ‖L∞(Ω) − ‖zκl−1‖L∞(Ω)

)
≤ ‖z0‖L∞(Ω) +

1

τ∗

n∑
l=1

κ‖K(uκl )‖L∞(Ω)

≤ ‖z0‖L∞(Ω) +
1

τ∗
‖K(uκ)‖L1(0,T ;L∞(Ω)) ≤ ‖z0‖L∞(Ω) +

√
T

τ∗
C3,1 =: C3,2

where C3,2 = C3,2(Ω, T, ‖u0 − (m, 0)‖H , ‖z0‖L∞(Ω), E0, β, A
∗, τ ∗, τ∗,m) ∈ (0,∞) is indepen-

dent of n and κ. This shows that zκ is uniformly bounded in L∞(0, T ; L∞(Ω)) by C3,2.

Step 3: Cauchy estimate for (ûκ)κ in C([0, T ];Hm).
Finally, we show an estimate for ûκ1 − ûκ2 for two time steps κ1, κ2. To this end, we abbreviate
ζ := ‖ ˙̂uκ1 − ˙̂uκ2‖H , which is a function in L2(0, T ), and we recall −K(uκi)µκi = ˙̂uκi . Then, with
Cauchy–Schwarz inequality, (4.6), the semi-monotonicity of ∂GE from Proposition 3.5 and triangle
inequality, we obtain almost everywhere in (0, T )

1

2

d

dt
‖ûκ1 − ûκ2‖2

H =
(

˙̂uκ1 − ˙̂uκ2 , ûκ1 − uκ1

)
H

+
(

˙̂uκ1 − ˙̂uκ2 ,uκ2 − ûκ2

)
H

−
(
K(uκ1

)µκ1
−K(uκ2

)µκ2
,uκ1 − uκ2

)
H

≤ ζ
√

2E0τ
−1
∗
(√

κ1 +
√
κ2

)
+ Λ(uκ1)‖uκ1 − uκ2‖2

H

+ ω(uκ1)‖uκ1 − uκ1
‖2

L2(Ω) + ω(uκ1)‖uκ2 − uκ2
‖2

L2(Ω). (4.9)

For any i = 1, 2, we have with (4.6) and κi ≤
√
T
√
κi

3Λ(uκ1)‖uκi − ûκi‖2
H + ω(uκ1)‖uκi − uκi‖

2
L2(Ω)

≤ 3Λ(uκ1) · 2E0τ
−1
∗ κi + ω(uκ1)‖uκi − uκi‖H1

av(Ω)‖uκi − uκi‖(H1
av(Ω))∗
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≤ Λ(uκ1) · 6E0τ
−1
∗

√
T
√
κi + ω(uκ1) · 2

√
2E0

√
2E0τ

−1
∗
√
κi

≤ C3,3

√
κi(Λ(uκ1) + ω(uκ1))

for C3,3 := 1 + 6E0τ
−1
∗
√

1 + T . Combining this with (4.9), we arrive at

d

dt
‖ûκ1 − ûκ2‖2

H ≤ C3,3

(
ζ + Λ(uκ1) + ω(uκ1)

)
(
√
κ1 +

√
κ2) + 3Λ(uκ1)‖ûκ1 − ûκ2‖2

H .

By estimate (4.5) and Step 2 we find a constantC3,4 ∈ (0,∞) independent of κi such that ‖ζ‖L1(0,T )+
‖Λ(uκ1)‖L1(0,T ) + ‖ω(uκ1)‖L1(0,T ) ≤ C3,4. Eventually, Grönwall’s inequality postulates

‖ûκ1(t)− ûκ2(t)‖2
H ≤ e3‖Λ(uκ1 )‖L1(0,t)

(
‖ûκ1(0)− ûκ2(0)‖2

H︸ ︷︷ ︸
=0

+ C3,3(
√
κ1 +

√
κ2)

∫ t

0

(
ζ(s) + Λ(uκ1(s)) + ω(uκ1(s))

)
ds

)
≤ C3,3C3,4e3C3,4

(√
κ1 +

√
κ2

)
for all t ∈ [0, T ].

Theorem 4.3 (Limit passage and conclusion).

(i) There exists u ∈ AC2
loc([0,∞);Hm) such that

ûκ → u in C([0, T ];Hm),

˙̂uκ ⇀ u̇ in L2(0, T ;H),

uκ → u in L∞(0, T ;Hm),

uκ → u in L∞(0, T ;Hm)

(4.10a)

(4.10b)

(4.10c)

(4.10d)

along the whole sequence κ→ 0, and u is a gradient-flow solution of (Hm,E,R).

(ii) The remaining statements of Theorem 2.4 hold true: Any solution u ∈ AC2
loc([0,∞);Hm)

with u(0) ∈ (H1
av(Ω) + m) × L∞(Ω) satisfies u ∈ L2(0, T ; H2(Ω)) × H1(0, T ; L∞(Ω)),

the energy-dissipation balance (2.16), and any such two solutions satisfy the stability esti-
mate (2.17).

Proof. Step 1: Statement (i).
Using Lemma 4.2 (iii), we find an element u = (u, z) ∈ C([0, T ];Hm) such that (4.10a) holds true
along the entire sequence. Applying Lemma 4.2 (i), we further deduce that u ∈ AC2

loc([0,∞);Hm)
and (4.10b). Moreover, Lemma 4.2 (ii) together with (4.10a) immediately yields (4.10c) and (4.10d).

Next, we want to show that this u satisfies (GFE). To this end, we notice that

sup
N∈N

ess sup
t∈[0,T ]

E(uκ(t)) = sup
N∈N,0≤n≤N

E(uκn) ≤ E0. (4.11)

Combining (4.10b), (4.10d) and (4.11), the closedness of DvR from Proposition 3.9 yieldsG(uκ)
˙̂uκ ⇀

G(u)u̇ in L2(0, T ;H∗). Using this, (4.10c), (EL) and the closedness property of ∂GE from Corol-
lary 3.8, we conclude that −G(u(t))u̇(t) ∈ ∂GE(u(t)) for almost all t ∈ (0, T ). Eventually, (4.10a)
delivers u0 = ûκ(0)→ u(0).
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Step 2: Any GF solution u ∈ AC2
loc([0,∞);Hm) with u(0) ∈ (H1

av(Ω) +m)× L∞(Ω) enjoys the
regularity u ∈ L2(0, T ; H2(Ω))× H1(0, T ; L∞(Ω)) and satisfies the EDB (2.16).
We will first show u ∈ L2(0, T ; H2(Ω))× H1(0, T ; L∞(Ω)). Then we are in a position to apply the
chain rule in Proposition 3.10 to (u,−G(u)u̇). Applying estimate (3.12), we get∫ T

0

‖u(t)−m‖2
H2(Ω) dt ≤ C2

2

∫ T

0

(
‖u(t)− (m, 0)‖H + ‖G(u(t))u̇(t)‖H∗

)2
dt <∞,

i.e. u ∈ L2(0, T ; H2(Ω)). To see z ∈ H1(0, T ; L∞(Ω)), we use (GFE), which tells us

ż = − 1

τ(u)
(z −K(u)) (4.12)

in L2(0, T ; L2(Ω)). Hence, z admits the representation

z(t) = e−
∫ t
0

1
τ(u(s))

dsz(0) +

∫ t

0

K(u(s))

τ(u(s))
e−

∫ t
s

1
τ(u(ζ))

dζ ds (4.13)

in L2(Ω) for all t ∈ [0, T ]. From there one obtains

‖z(t)‖L∞(Ω) ≤ ‖z(0)‖L∞(Ω) +
A∗

τ∗
‖u‖L1(0,T ;L∞(Ω)) <∞ (4.14)

by Sobolev embedding H2(Ω) ↪→ L∞(Ω). Note that, since u is Bochner-measurable with respect
to L∞(Ω) and 1

τ
, K are Lipschitz continuous, z is Bochner-measurable with respect to L∞(Ω), too.

Invoking (4.14), we obtain z ∈ L∞(0, T ; L∞(Ω)). In particular, the right-hand side in (4.12) is in
L2(0, T ; L∞(Ω)), hence so is the left-hand side, i.e. ż ∈ L2(0, T ; L∞(Ω)). Altogether this shows
z ∈ H1(0, T ; L∞(Ω)).

We are now ready to apply the chain rule, which states E ◦ u : [0, T ] → [0,∞) is absolutely
continuous with L1-weak derivative

− d

dt
E(u(t)) =

〈
G(u(t))u̇(t), u̇(t)

〉
H∗,H

=
〈
δE(u(t)),K(u(t))δE(u(t))

〉
H∗,H

=

∫
Ω

(∣∣∇(−∆u+ f(u)− A(u)(z −K(u))
)∣∣2 +

1

τ(u)
(z −K(u))2

)
dx. (4.15)

From there, (2.16) follows immediately.

Step 3: Stability estimate and uniqueness.
Let u = (u, z),v = (v, y) ∈ AC2

loc([0,∞);Hm) be GF solutions with corresponding initial condi-
tions u0,v0 ∈ (H1

av(Ω) +m)× L∞(Ω). In particular,

−G(u)u̇ = δE(u) and G(v)v̇ = δE(v)

almost everywhere in (0, T ). By Step 2 we know (u, z) ∈ L2(0, T ; H2(Ω)) × H1(0, T ; L∞(Ω)).
Therefore, we can apply the monotonicity from Proposition 3.5 to obtain

1

2

d

dt
‖u− v‖2

H =
(
K(u)G(u)u̇−K(v)G(v)v̇,u− v

)
H
≤ Λ(u)‖u− v‖2

H .

An application of Grönwall’s inequality provides

‖u(t)− v(t)‖H ≤ exp
(
‖Λ(u)‖L1(s,t)

)
‖u(s)− v(s)‖H (4.16)

for all 0 ≤ s ≤ t ≤ T , which, by definition of Λ, is precisely the desired estimate (2.17).
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4.2 Proof of Theorem 2.6

The proof relies on the previous result. We approximate u0 ∈ (H1
av(Ω)+m)×L2(Ω) by a sequence

of initial values in (H1
av(Ω) + m)× L∞(Ω), for which Theorem 2.4 guarantees unique gradient-flow

solutions satisfying the EDB. Based on this, we show that the approximate solutions are uniformly
bounded and thus admit weakly convergent subsequences. Due to the absence of a Cauchy estimate
as in Lemma 4.2 (iii), we do not obtain the strong convergence in C([0, T ];Hm). As a result, the
argument for the closedness of ∂GE becomes a bit more delicate. Eventually, we derive the EDI (2.18)
and the weak–strong stability (2.19).

Proof of Theorem 2.6. Let u0 ∈ (H1
av(Ω) + m) × L2(Ω). We choose a sequence of initial data

(u0
n)n∈N ⊂ (H1

av(Ω) +m)× L∞(Ω) such that

‖u0
n − u0‖H1

av(Ω)×L2(Ω) → 0 as n→∞. (4.17)

By Theorem 2.4, we find GF solutions un ∈ AC2
loc([0,∞);Hm) that satisfy the EDB, in particular

E(un(T )) +

∫ T

0

(
R(un(t); u̇n(t)) + R∗(un(t);−µn(t))

)
dt = E(u0

n) <∞

for all T ∈ [0,∞), where µn = −G(un)u̇n. Combining (4.17) with the bounded sublevels of E in
H1(Ω)×L2(Ω) and using coercivity (2.15), we find a constantC ∈ (0,∞) such that for every n ∈ N

‖un‖L∞([0,∞);H1(Ω)×L2(Ω)) + ‖u̇n‖L2([0,∞);H) + ‖µn‖L2([0,∞);H) ≤ C. (4.18)

Now put µ̃n := −∆un + f(un)−A(un)(zn−K(un)), so that µn− µ̃n = a(un, zn). Observe that

|a(un, zn)| ≤
∫

Ω

|f(un)| dx+ A∗
∫

Ω

|zn −K(un)| dx,

i.e. ‖a(un, zn)‖L∞([0,∞)) ≤ C by growth condition (2.12) and (4.18). Together with (3.12) this implies
the existence of constants C(T ) ∈ (0,∞) such that

‖µ̃n‖L2(0,T ;H1(Ω)) + ‖un‖L2(0,T ;H2(Ω)) ≤ C(T ). (4.19)

Using (4.18), we find a limit u = (u, z) ∈ AC2
loc([0,∞);Hm)∩L∞([0,∞); H1(Ω)×L2(Ω)) such

that for a non-relabelled subsequence{
u̇n ⇀ u̇ in L2([0,∞);H),

un
∗
⇀ u in L∞([0,∞); H1(Ω)× L2(Ω)).

(4.20a)

(4.20b)

From (4.19) we infer u ∈ L2
loc([0,∞); H2(Ω)) and get some µ̃ ∈ L2

loc([0,∞); H1(Ω)), such that for
further subsequence (again, not-relabelled) it holds

un ⇀ u in L2(0, T ; H2(Ω)) ∀T <∞,
un → u in L2

loc([0,∞); H1(Ω)),

un → u a.e. in (0,∞)× Ω,

µ̃n ⇀ µ̃ in L2(0, T ; H1(Ω)) ∀T <∞.

(4.20c)

(4.20d)

(4.20e)

(4.20f)

Note that (4.20d) is implied by Aubin–Lions compactness, while (4.20e) and (4.20f) are obtained via a
diagonal argument. We observe that (4.20a), (4.20e) and |τ | ≤ τ ∗ imply literally as in Lemma 3.9

G(un)u̇n ⇀ G(u)u̇ in L2([0,∞);H). (4.20g)
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To conclude −G(u)u̇ = δE(u), we can not use Proposition 3.7 because strong convergence un →
u in L2

loc([0,∞);Hm) is not available. However, since−G(un)u̇n = µn = δE(un) and weak limits
are unique, it is sufficient to verify that

µ̃ = −∆u+ f(u)− A(u)(z −K(u)) and (4.21)

zn −K(un) ⇀ z −K(u) in L2(0, T ; L2(Ω)) ∀T <∞. (4.22)

The latter one already follows from (4.20b), (4.20d) and (4.20e). Note that (4.22) and (4.20e) also
provides A(un)(zn−K(un)) ⇀ A(u)(z−K(u)) in L2(0, T ; L2(Ω)) for any T <∞ since |A| ≤
A∗. Moreover, (4.20c) yields ∆un ⇀ ∆u in L2(0, T ; L2(Ω)). Hence, once we have f(un)→ f(u)
in L1

loc([0,∞); L1(Ω)) established, the identity (4.21) follows. To this end, fix T < ∞ and observe
that (4.20d) and (4.20e), together with (2.12) and Sobolev embedding H1(Ω) ↪→ Lp(Ω), imply for a
subsequence ‖f(unk)− f(u)‖L1(Ω) → 0 almost everywhere in (0, T ). Hence, invoking

‖f(unk(t))− f(u(t))‖L1(Ω) ≤ c1

(
2(Ld(Ω))1 + CS

(
‖unk(t)‖

p
H1(Ω) + ‖u(t)‖pH1(Ω)

))
and (4.20b), the dominated convergence theorem yields f(unk) → f(u) in L1(0, T ; L1(Ω)). Since
this applies to any subsequence we might have chosen, it follows f(un)→ f(u) in L1(0, T ; L1(Ω))
as desired. Taking into account that u(0) ↼ un(0) = u0

n → u0 in Hm, u eventually qualifies as a
gradient-flow solution.

To derive the EDI (2.18), we pass to the limit in the EDB (2.16) satisfied by un. Since un(t) ⇀ u(t)
in Hm for all t, it holds E(u(t)) ≤ lim infn→∞ E(un(t)) by Proposition 3.3. In the dissipative terms,
we apply lower semicontinuity to the weak convergences (4.20f), (4.22) and the identification (4.21).
Eventually, for the passage in the initial energy, we just observe that (4.17) implies E(u0

n)→ E(u0).

The stability estimate (2.19) can be shown literally as in Step 3 of Theorem 4.3, by noting that the ar-
gument needs the L∞(Ω)-regularity only for one of the solutions. The very last statement concerning
the bound of ‖z − K(u)‖L2(0,T ;L∞(Ω)) can be deduced easily from (3.12), the ODE formula (4.13),

EDI (2.18) and estimates of type ‖z‖L2(Ω) ≤
√

2E(u)+A∗‖u‖L2(Ω), ‖u−m‖(H1
av(Ω))∗ ≤ CPW‖u−

m‖L2(Ω) ≤ C2
PW‖∇u‖L2(Ω;Rd) ≤ C2

PW

√
2E(u) (Poincaré-Wirtinger).

5 Relaxation limit

Throughout this section, we suppose Assumption 2.8 in addition to our general hypotheses listed in
Assumption 2.3. Before turning to the proof of Theorem 2.9, we establish the Γ-convergence of the
energies and collect further auxiliary properties.

5.1 Γ-Convergence of energies, compactness, and closures

We will frequently use the following L2-convergence result, which is an easy consequence of the
uniform convergence Aε → A from Assumption 2.8:

Lemma 5.1. Let T < ∞. If uε, u ∈ C([0, T ]; L2(Ω)) are such that uε → u in C([0, T ]; L2(Ω)),
then Kε(uε)→ K(u) and K−1

ε (uε)→ K−1(u) in C([0, T ]; L2(Ω)) as well.

The same conclusion holds if we replace “ C([0, T ]; L2(Ω))” by “ L2(Ω)”.
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Proposition 5.2 (Γ-limit of Eε). The family (Eε)ε∈(0,1) Γ-converges with respect to Hm to the func-
tional

E0 : Hm → [0,∞], E0(u) :=

{
EGL(u) if z = K(u) and u ∈ H1

av(Ω) +m,

+∞ otherwise,

i.e. the following holds true:

(i) If uε → u in Hm, then E0(u) ≤ lim infε→0 Eε(uε).

(ii) For any u ∈ Hm, we find (uε)ε∈(0,1) ⊂ Hm with uε → u and lim supε→0 Eε(uε) ≤ E0(u).

Proof.

(i) For a suitable subsequence we have lim infε→0 Eε(uε) = limk→∞ Eεk(uεk) =: E. We may
also assume that E <∞, otherwise there is nothing to do, and uεk ∈ H1(Ω)× L2(Ω) for all
k. In particular, (uεk)k∈N is bounded in H1(Ω). Therefore, u ∈ H1

av(Ω) +m and, for a further
non-relabelled subsequence, uεk ⇀ u in H1(Ω), uεk → u in L2(Ω) and uεk(x) → u(x)
for almost every x ∈ Ω. Via weak lower semicontinuity of the norm and Fatou’s lemma, as in
Proposition 3.3, it follows

EGL(u) ≤ lim inf
k→∞

Eεk(uεk) = E.

Since ‖zε−Kε(uε)‖L2(Ω) ≤ εC for some C ∈ (0,∞), we have zε−Kε(uε)→ 0 in L2(Ω).
Furthermore,Kεk(uεk)→ K(u) in L2(Ω) by Lemma 5.1, so that zεk → K(u) in L2(Ω), thus
z = K(u), i.e. EGL(u) = E0(u).

(ii) We may assume z = K(u). Hence, for uε := (u,Kε(u)) it holds Eε(uε) = EGL(u) and
Kε(u)→ K(u) in L2(Ω) by Lemma 5.1, especially uε → u in Hm.

The following compactness property will play a key role in obtaining strong convergence required for
the strong–weak closedness of the graph of ∂GEαε .

Lemma 5.3. For every sequence (uεk)k∈N ⊂ Hm, εk ↘ 0 fulfilling supk∈N Eεk(uεk) <∞, we find
a subsequence (uεkn)n∈N ⊆ (uεk)k∈N with uεkn → u0 in Hm for some u0 ∈ Hm.

Proof. The uniform bound of Eεk(uεk) implies, on the one hand, zεk −Kεk(uεk) → 0 in L2(Ω) as
k → ∞, and on the other hand it provides a subsequence (uεkn)n∈N ⊆ (uεk)k∈N and some u0 ∈
H1

av(Ω) +m such that uεkn ⇀ u0 in H1(Ω) as n→∞. By Rellich-Kondrachov we infer uεkn → u0

in L2(Ω), and whence Kεkn(uεkn) → K(u0) in L2(Ω) by Lemma 5.1, hence zεkn → K(u0) in
L2(Ω) as well. Altogether we have, as n→∞,

‖uεkn − (u0, K(u0))‖2
H = ‖uεkn − u0‖2

(H1
av(Ω))∗ + ‖zεkn −K(u0)‖2

L2(Ω) → 0.

Lemma 5.4 (Strong–weak closure of ∂GEε). Let uεk = (uεk , zεk),u = (u, z) ∈ Hm, µεk ,µ =
(µ, ξ) ∈ H∗. Assume that µεk ∈ ∂

GEεk(uεk) for all k ∈ N, uεk → u in Hm and µεk ⇀ µ in H∗.
Then µ ∈ ∂`E0(u), where the limit subdifferential is defined as

∂`E0(u) :=

{(
−∆u+ f(u)− A(u)v − ã(u, v)

v

) ∣∣∣∣ v ∈ L2(Ω),
−∆u+ f(u)− A(u)v ∈ H1(Ω)

}
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for u = (u,K(u)) with u ∈ H2
av(Ω) + m such that ∇u · n = 0 on ∂Ω. Here, we used ã(u, v) :=

−
∫

Ω
(f(u)− A(u)v) dx.

In particular, if µ = 0, then A(u)ξ = −∆u + f(u) − −
∫

Ω
(f(u) − A(u)ξ) dx. And if ξ = 0, then

µ = −∆u+ f(u)−−
∫

Ω
f(u) dx.

Proof. To simplify notation, we write ε instead of εk. By assumption, we have µε ⇀ (µ, ξ) in
H1

av(Ω)× L2(Ω), which means that

−∆uε + f(uε)−
1

ε2
Aε(uε)(zε −Kε(uε))− a(uε, zε) ⇀ µ

in H1(Ω) and 1
ε2

(zε − Kε(uε)) ⇀ ξ in L2(Ω). The latter particularly implies zε − Kε(uε) → 0
in L2(Ω). Furthermore, Lemma 5.6 tells us that (uε)ε is uniformly bounded in H2(Ω). We conclude
u ∈ H2(Ω) and uε ⇀ u in H2(Ω). In particular, since uε ∈ H2

av(Ω) +m and∇uε · n = 0 on ∂Ω, it
follows u ∈ H2

av(Ω) +m and∇u ·n = 0 as well. Moreover, for non-relabelled subsequence, Rellich-
Kondrachov postulates uε → u in Lp(Ω) and almost everywhere in Ω. Hence, since zε−Kε(uε)→ 0
in L2(Ω), Lemma 5.1 yields z = K(u), i.e. u = (u,K(u)).

Eventually, it holds ∆uε ⇀ ∆u in L2(Ω), f(uε) → f(u) in L1(Ω) by the p-growth (2.12) of f ,
1
ε2
Aε(uε)(zε −Kε(uε)) ⇀ A(u)ξ in L2(Ω), because Aε converges uniformly to A, and

a(uε, zε) =

∫
Ω

(
f(uε)−

1

ε2
Aε(uε)(zε −Kε(uε))

)
dx→

∫
Ω

(f(u)− A(u)ξ) = ã(u, ξ),

so that µ = −∆u+ f(u)− A(u)ξ − ã(u, ξ) is identified by uniqueness of weak limits. This shows

µ =

(
−∆u+ f(u)− A(u)ξ − ã(u, ξ)

ξ

)
∈ ∂`E0(u)

as desired. The special cases µ = 0 resp. ξ = 0 are now readily deduced.

Combined with Lemma A.2, we infer:

Corollary 5.5 (Evolutionary closure of ∂GEεk ). Let T < ∞. If u,uεk ∈ L2(0, T ;Hm),µ,µεk ∈
L2(0, T ;H∗) are such that

(1) uεk → u in L2(0, T ;Hm) as k →∞,

(2) µεk ⇀ µ in L2(0, T ;H∗) as k →∞ and

(3) µεk(t) ∈ ∂
GEεk(uεk(t)) for almost all t ∈ (0, T ), all k ∈ N,

then µ(t) ∈ ∂`E0(u(t)) for almost all t ∈ (0, T ).

Proof. Applying Lemma A.2 to Sk := ∂GEεk and noticing that ∂`E0 is closed and convex in H∗, the
claim follows together with Lemma 5.4.

Lemma 5.6. There exists a constant C = C(Ω, d, A∗, τ ∗, β) ∈ (0,∞) such that

‖u−m‖H2(Ω) ≤ C
(
‖(u−m, z)‖H + ‖µ‖H∗

)
(5.1)

for all u = (u, z) ∈ dom(∂GEε), µ ∈ ∂GEε(u), all ε ∈ (0, 1).
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Proof. As the proof closely parallels that of Lemma 3.6, we omit the detailed computations. Let u =
(u, z) ∈ dom(∂GEε), µ ∈ ∂GEε(u), and multiplying −∆u + f(u) − 1

ε2
Aε(u)(z − Kε(u)) with

−∆u, by-part integration and Young’s inequality yields as in Lemma 3.6

‖∆u‖2
L2(Ω) ≤

∥∥∥∇(−∆u+ f(u)− 1

ε2
Aε(u)(z −Kε(u))

)∥∥∥2

L2(Ω;Rd)

+ (1 + 2β)‖u−m‖2
H1

av(Ω) + (A∗)2 1

ε4
‖z −Kε(u)‖2

L2(Ω).

Since µ = (−∆u+ f(u)− 1
ε2
Aε(u)(z −Kε(u)), 1

ε2
(z −Kε(u))), we easily deduce

‖∆u‖2
L2(Ω) ≤ max{1, (A∗)2}‖µ‖2

H∗ + (1 + 2β)‖u−m‖2
H1

av(Ω)

and conclude as in Lemma 3.6 to get a constant C independent of ε as claimed.

5.2 Proof of Theorem 2.9

Let us first outline the proof. Exploiting (EDI), we first show that µε := −DvR
(γ,κ)
ε (uε; u̇ε) and u̇ε

are uniformly bounded, and that (uε)ε is equicontinuous. In Step 2, we capitalise on these bounds
and apply Lemma 5.3 to deduce (2.27a), (2.27b), and the weak convergence of (µεk)k to some limit
µ. In Step 3, we perform the limit passage in (GFE) by identifying µ using Corollary 5.5. Finally, in
the last step, we show that u0 satisfies (EDB), from which we further deduce the convergence of en-
ergies (2.27c) and strong convergence of the time derivatives (2.28).

Step 1: Uniform bounds and equicontinuity.
By the energy-dissipation inequality (EDI), we know that for all t ∈ [0,∞)

Eε(uε(t)) +

∫ t

0

(
R(γ,κ)
ε (uε(s); u̇ε(s)) + R(γ,κ),∗

ε (uε(s);−µε(s))
)

ds ≤ Eε(u
0
ε). (5.2)

Since supε∈(0,1) Eε(u
0
ε) < ∞ by well-preparedness (2.26), there exists a constant C ∈ (0,∞),

independent of ε, satisfying

sup
t∈[0,∞)

Eε(uε(t)) + εγ‖u̇ε‖2
L2([0,∞);(H1

av(Ω))∗) + εκ‖żε‖2
L2([0,∞);L2(Ω))

+ ε−γ‖µε‖2
L2([0,∞);H1

av(Ω)) + ε−κ‖ξε‖2
L2([0,∞);L2(Ω)) ≤ C. (5.3)

Consequently, by the bounds of the time derivative in (5.3), the sequences
(uε)ε∈(0,1) in (H1(Ω))∗av +m if (γ, κ) = (0,+),

(uε)ε∈(0,1) in Hm if (γ, κ) = (0, 0),

(zε)ε∈(0,1) in L2(Ω) if (γ, κ) = (+, 0)

(5.4)

enjoy uniform 1
2
-Hölder continuity in the respective cases, in particular they are equicontinuous.

Step 2: Extraction of subsequences with convergence in the sense (2.27a) and (2.27b).
In case (γ, κ) = (0, 0), Ascoli’s theorem (e.g. [Sim86, Lemma 1]) together with Lemma 5.3 allow
us – via a diagonal argument – to extract a subsequence (εk)k∈N ⊂ (0, 1), εk ↘ 0 such that
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uεk → u0 in Cloc([0,∞);Hm) (i.e. uniform convergence on any compact interval) for some limit
u0 = (u0, z0) ∈ C([0,∞);Hm). Moreover, by interpolation

‖uεk(t)− u0(t)‖L2(Ω) ≤ ‖uεk(t)− u0(t)‖1/2

(H1
av(Ω))∗︸ ︷︷ ︸

→0

(
‖uεk(t)‖

1/2

H1
av(Ω) + ‖u0(t)‖1/2

H1
av(Ω)︸ ︷︷ ︸

bounded by (5.3) and Proposition 5.2

)
(5.5)

we obtain uεk → u0 in Cloc([0,∞); L2(Ω)), so that (2.27a) is established. In order to achieve
(2.27b), we need to show z0 = K(u0). First note that Lemma 5.1 yields Kεk(uεk) → K(u0) in
Cloc([0,∞); L2(Ω)). The energy bound in (5.3) provides

sup
t∈[0,∞)

‖zε(t)−Kε(uε(t))‖L2(Ω) ≤ ε sup
t∈[0,∞)

√
Eε(uε) ≤

√
Cε (5.6)

for all ε ∈ (0, 1), which particularly implies zε − Kε(uε) → 0 in C([0,∞); L2(Ω)). As a conse-
quence, z0 = K(u0).

The other cases work similarly: If “(0,+)”, then (5.4) provides a subsequence with convergence
uεk → u0 in Cloc([0,∞); (H1(Ω))∗av + m), which, as in (5.5), improves to uεk → u0 in
Cloc([0,∞); L2(Ω)). Thus, Lemma 5.1 tells us Kεk(uεk) → K(u0) in Cloc([0,∞); L2(Ω)). Us-
ing (5.6) again, we infer zεk → K(u0) in Cloc([0,∞); L2(Ω)). In the remaining case “(+, 0)”,
(5.4) implies zεk → z0 in Cloc([0,∞); L2(Ω)), and subsequently, (5.6) yields Kεk(uεk) → z0 in
Cloc([0,∞); L2(Ω)). Applying Lemma 5.1 to the inverse functions K−1

ε , it follows uεk → K−1(z0)
in Cloc([0,∞); L2(Ω)).

Hence, we have established uεk → (u0, K(u0)) in Cloc([0,∞); L2(Ω;R2)) in all three cases for
some u0 ∈ C([0,∞); L2(Ω)), and the energy bound in (5.3) gives the additional regularity u0 ∈
L∞([0,∞); H1(Ω)). The uniform bounds on µε in (5.3) also ensure u0 ∈ L2

loc([0,∞); H2(Ω)) by
Lemma 5.6 and provide some limit µ = (µ, ξ) ∈ L2([0,∞);H∗) such that

µεk ⇀ (µ, 0) if (0,+),

µεk ⇀ (µ, ξ) if (0, 0),

µεk ⇀ (0, ξ) if (+, 0)

(5.7)

in L2([0,∞);H∗) (the convergences to zero even hold in the strong sense).

Step 3: Derivation of (GFE) in (CH), (vCH) and (mAC).
Applying Corollary 5.5, we find that

µ =

(
µ
ξ

)
=

(
−∆u0 + f(u0)− A(u0)ξ − ã(u0, z0)

ξ

)
. (5.8)

Thus, it remains to address the convergence of the time derivatives u̇0 and ż0 in the respective cases,
and to reformulate the results as gradient-flow equations corresponding to the gradient systems for
(CH), (vCH) and (mAC).

We start with the case “(0,+)”. By (5.3), (u̇ε)ε is uniformly bounded in L2([0,∞); (H1
av(Ω))∗).

Consequently, u0 possesses a time derivative u̇0 ∈ L2([0,∞); (H1
av(Ω))∗) with u̇εk ⇀ u̇0 in

L2([0,∞); (H1
av(Ω))∗), which in turn leads to (−∆)−1u̇εk ⇀ (−∆)−1u̇0 in L2([0,∞); H1

av(Ω)).
Combining this with (5.8), ξ = 0 (see (5.7)) and the equation −(−∆)−1u̇εk = µεk for k ∈ N, we
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arrive at the identity −(−∆)−1u̇0 = −∆u0 + f(u0) − −
∫

Ω
f(u0) dx. Equivalently, −DRCH(u̇0) ∈

∂FEGL(u0), i.e. u0 is a GF solution of ((H1(Ω))∗av +m,EGL,RCH).

Next, we treat “(0, 0)”. Again, (5.3) gives a uniform bound, now for both components (u̇ε, żε)ε in
L2([0,∞);H). Hence,u0 has a time derivative u̇0 ∈ L2([0,∞);H) with u̇εk ⇀ u̇0 in L2([0,∞);H).
Since τε → τ uniformly and uεk → u0 in Cloc([0,∞); L2(Ω)), it follows τεk(uεk)żεk ⇀ τ(u0)ż0 in
L2([0,∞); L2(Ω)). Thus, ((−∆)−1u̇εk , τεk(uεk)żεk) ⇀ ((−∆)−1u̇0, τ(u0)ż0) in L2([0,∞);H∗).
Together with (5.7), (5.8) and µεk = ((−∆)−1u̇εk , τεk(uεk)żεk), we obtain(

−(−∆)−1u̇0

−τ(u0)ż0

)
=

(
−∆u0 + f(u0)− A(u0)ξ −−

∫
Ω

(f(u0)− A(u0)ξ) dx
ξ

)
. (5.9)

In order to rearrange (5.9) to −DvRvCH(u0; u̇0) ∈ ∂FEGL(u0), we observe that ∂t(K ◦ u0) can be
expressed in two ways due to Lemma A.3, namely

(ż0(t), φ)L2(Ω) = 〈∂t(K ◦ u0)(t), φ〉(H1(Ω))∗,H1(Ω) = 〈u̇0, A(u0(t))φ〉(H1(Ω))∗,H1(Ω) (5.10)

for φ ∈ H1(Ω) and almost every t ∈ [0,∞), where the right-hand side is to be understood through
the identification (H1

av(Ω))∗ ' (H1(Ω))∗av in (2.8). Since H1(Ω) 3 φ 7→ A(u0(t))φ ∈ H1(Ω) is a
bijective assignment whenever u0(t) ∈ H2(Ω), which holds for almost every t ∈ (0,∞), the compar-
ison (5.10) yields u̇0 = 1

A(u0)
ż0 ∈ L2([0,∞); L2

av(Ω)). Inserting ξ = −τ(u0)ż0 = −τ(u0)A(u0)u̇0

into the upper equation of (5.9), we arrive at

−
(

(−∆)−1 + A2(u0)τ(u0)−−
∫

Ω

A2(u0)τ(u0)(·) dx

)
u̇0 = −∆u0 + f(u0)−−

∫
Ω

f(u0) dx.

Hence, u0 is a GF solution to (L2
av(Ω) +m,EGL,RvCH).

Eventually, consider the case “(+, 0)”. This time, (5.3) gives a uniform bound for (żε)ε, so that
żεk ⇀ ż0 in L2([0,∞); L2(Ω)). As before, we derive τεk(uεk)żεk ⇀ τ(u0)ż0 in L2([0,∞); L2(Ω)).
Combining with (5.7), (5.8) and τεk(uεk)żεk = ξεk , we deduce

−A(u0)τ(u0)ż0 = −∆u0 + f(u0)−−
∫

Ω

(f(u0)− A(u0)τ(u0)ż0) dx. (5.11)

By an approximation argument similar to that in the proof of the chain rule Lemma A.3, we deduce
that u̇0 exists in L2([0,∞); L2(Ω)), namely

(u̇0(t), φ)L2(Ω) = 〈∂t(K−1 ◦ z0)(t), φ〉(H1(Ω))∗,H1(Ω) =
(
ż0,

1

A(u0(t))
φ
)

L2(Ω)
.

In particular, as−
∫

Ω
u0(t) dx = m, we even have u̇0 = 1

A(u0)
ż0 ∈ L2([0,∞); L2

av(Ω)). Inserting this
into (5.11), we end up with

−
(
A2(u0)τ(u0)u̇0 −−

∫
Ω

A2(u0)τ(u0)(·) dx

)
u̇0 = −∆u0 + f(u0)−−

∫
Ω

f(u0) dx.

Hence, u0 is a GF solution of (L2
av(Ω) +m,EGL,RmAC).

To conclude this step, note that u0
εk
→ u0

0 in L2(Ω) (by well-preparedness (2.26) and interpolation)
and uεk(0)→ u0(0) by (2.27a). Thus, the initial condition u0(0) = u0 is satisfied.
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Step 4: (EDB), (2.27c) and (2.28).
Since EGL is semiconvex with respect to (H1

av(Ω))∗ as well as L2(Ω), the chain rule from [MRS13,
(2.E4) and Remark 2.5] can be applied in all three cases, so that the solution u0 satisfies (EDB). To
derive (2.27c) and (2.28), we will use the particular form of (EDB) (cf. (2.3))

EGL(u0(t)) +

∫ t

s

2R(u0(r); u̇0(r)) dr = EGL(u0(s)) (5.12)

for 0 ≤ s ≤ t <∞ and R ∈ {RCH,RvCH,RmAC}, depending on (γ, κ).

We start with the case (γ, κ) = (0, 0). By fixing t ∈ (0,∞) and passing to the limit in (5.2), and in
light of the well-preparedness (2.26) and (5.12), we obtain

lim sup
k→∞

(
Eεk(uεk(t)) + ‖u̇εk‖2

L2(0,t;(H1
av(Ω))∗) +

∥∥√τεk(uεk)żεk
∥∥2

L2(0,t;L2(Ω))

)
= lim sup

k→∞

(
Eεk(uεk(t)) +

∫ t

0

(
2R(γ,κ)

εk
(uεk(s); u̇εk(s))

)
ds
)

≤ lim sup
k→∞

Eεk(u
0
εk

) = EGL(u0
0)

= EGL(u0(t)) + ‖u̇0‖2
L2(0,t;(H1

av(Ω))∗) + ‖A(u0)
√
τ(u0)u̇0‖2

L2(0,t;L2(Ω)).

From there we obtain, by weak lower semicontinuity of norms (applied to u̇εk ⇀ u̇0 and
√
τεk(uεk)żεk ⇀

A(u0)
√
τ(u0)u̇0) and the liminf-estimate from Proposition 5.2,

lim supk→∞‖u̇εk‖L2(0,t;(H1
av(Ω))∗) ≤ ‖u̇0‖L2(0,t;(H1

av(Ω))∗),

lim supk→∞‖
√
τεk(uεk)żεk‖L2(0,t;L2(Ω)) ≤ ‖A(u0)

√
τ(u0)u̇0‖L2(0,t;L2(Ω)),

lim supk→∞ Eεk(uεk(t)) ≤ EGL(u0(t)).

Hence, u̇εk → u̇0 in L2(0, t; (H1
av(Ω))∗),

√
τεk(uεk)żεk → A(u0)

√
τ(u0)u̇0 in L2(0, t; L2(Ω))

and Eεk(uεk(t)) → EGL(u0(t)). Using (2.27a) and 1/|τεk | ≤ 1/τ∗, we get żεk → A(u0)u̇0 in
L2(0, t; L2(Ω)).

To deal with the other cases (γ, κ) = (0,+) and (+, 0), we note that

max
{
‖u̇εk(t)‖2

(H1
av(Ω))∗ ,

∥∥√τεk(uεk(t))żεk(t)
∥∥2

L2(Ω)

}
≤ 2R(γ,κ)

εk
(uεk(t); u̇εk(t)),

and similarly derive

lim supk→∞
(
Eεk(uεk(t)) + ‖u̇εk‖2

L2(0,t;(H1
av(Ω))∗)

)
if (0,+),

lim supk→∞
(
Eεk(uεk(t)) + ‖

√
τεk(uεk)żεk‖2

L2(0,t;L2(Ω))

)
if (+, 0)

}

≤

{
EGL(u0(t)) + ‖u̇0‖2

L2(0,t;(H1
av(Ω))∗) if (0,+),

EGL(u0(t)) + ‖A0(u)
√
τ(u0)u̇0‖2

L2(0,t;L2(Ω) if (+, 0).

The arguments then proceed as before.

The proof of Theorem 2.9 is now complete.

DOI 10.20347/WIAS.PREPRINT.3212 Berlin 2025



M.I. Gau, K. Hopf 38

A Appendix

A.1 Approximation of Lebesgue integral by Riemann sums

In the proof of the chain rule, Proposition 3.10, we approximated the Lebesgue integral by Riemann
sums. For this argument to be valid, we need to ensure that the Riemann sums indeed converge to the
Lebesgue integral. The specific situation needed in Proposition 3.10 was recently treated in [CS24],
where it was shown, in particular, that the partition points can be chosen outside a set of Lebesgue
measure zero.

Lemma A.1 ([CS24, Lemma A.1]). Let a, b ∈ R, a < b, and a subset Σ ⊆ [a, b] such that a, b ∈ Σ

and L1([a, b]\Σ) = 0. Moreover, let g : [a, b]→ [0,∞] be Lebesgue measurable with
∫ b
a
g(t) dt <

∞. Fix σ ∈ {0, 1} and ε ∈ (0, 1). Then, there exists a partition a = t0 < t1 < . . . < tn = b such
that ti ∈ Σ for all 0 ≤ i ≤ n, max1≤i≤n|ti − ti−1| < ε and∣∣∣∣ n∑

i=1

g(ti−σ)(ti − ti−1)−
∫ b

a

g(t) dt

∣∣∣∣ < ε.

A.2 Evolutionary closedness

In the existence and relaxation limit proofs, we employed the evolutionary closedness properties for-
mulated in Corollaries 3.8 and 5.5. In both cases, we proved a static strong-weak closedness in ad-
vance, namely Proposition 3.7 and Lemma 5.4. The following lemma, which is based on the methods
in [RS06], builds the crucial link between the static and evolutionary properties. There, the Sn’s are the
placeholders for the subdifferentials. More precisely, in the existence part, we apply it to Sn = ∂GE,
so that Sn is in fact independent of n. In the relaxation limit, the situation differs: here, Sn = ∂GEαεn ,
i.e. it genuinely depends on n, and the limit operator is S∞ = ∂`E0.

Lemma A.2. Let H be a real, separable Hilbert space, and let Sn : H → P(H∗) be mappings for
n ∈ N ∪ {∞} from H into the power set of H∗. We assume that S∞(x) is closed in H∗ and convex
for all x ∈ H . Moreover, assume (A.1) holds for all subsequences (nk)k∈N ⊆ (n)n∈N:

(xnk)k∈N ⊂ H, ynk ∈ Snk(xnk), x∞ ∈ H, y∞ ∈ H∗
xnk → x∞ in H, ynk ⇀ y∞ in H∗ as k →∞

}
=⇒ y∞ ∈ S∞(x∞). (A.1)

Then, we have the following evolutionary closedness for any T ∈ (0,∞):

xn, x∞ ∈ L2(0, T ;H), yn, y∞ ∈ L2(0, T ;H∗)
xn → x∞ in L2(0, T ;H) for n→∞,
yn ⇀ y∞ in L2(0, T ;H∗) for n→∞,

yn(t) ∈ Sn(xn(t)) for a.e. t ∈ (0, T ), n ∈ N


=⇒ y∞(t) ∈ S∞(x∞(t)) a.e. t ∈ (0, T ). (A.2)

Proof. The proof mostly follows [LR18, Proposition 2.7]. Assume the left-hand side of (A.2). From
xn → x∞ strongly and the condition yn ∈ Sn(xn), we particularly find a subsequence (nk)k∈N ⊆
(n)n∈N and a null set N ⊂ [0, T ] such that, for all t ∈ [0, T ] \N , it holds xnk(t)→ x∞(t) in H as
k →∞ and ynk(t) ∈ Snk(xnk(t)) for all k ∈ N.
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As a weakly convergent sequence, (ynk)k∈N is bounded in L2(0, T ;H∗). Applying the fundamen-
tal theorem for weak topologies [RS06, Theorem 3.2], we find a time-parametrised Young measure
(νt)t∈[0,T ] such that (ν(t))(L(t)) = 1, where

L(t) :=
{
y ∈ H∗

∣∣∣ ∃(ynk` )`∈N ⊆ (ynk)k∈N with ynk` ⇀ y in H∗ as `→∞
}
,

and

y∞(t) =

∫
H∗
z dνt(z) (A.3)

for all t ∈ [0, T ] \N (by making N possibly larger, but still L1(N) = 0).

Taking y ∈ L(t), we find a subsequence such that ynk` ⇀ y in H∗. As shown above, we also
have xnk` (t) → x(t) in H and ynk` (t) ∈ Snk` (xnk` (t)) for all ` ∈ N. Therefore, (A.1) implies
y ∈ S∞(x∞(t)). Hence, L(t) ⊆ S∞(x∞(t)). This shows that for all t ∈ [0, T ] \ N , the measure
ν(t) is concentrated on the convex and closed set S∞(x∞(t)), so we infer y∞(t) ∈ S∞(x∞(t)) by
(A.3).

A.3 Auxiliary Sobolev–Bochner chain rule

Lemma A.3. Assume T < ∞, and Ω ⊂ Rd, 1 ≤ d ≤ 3, be open and bounded. Assume u ∈
H1(0, T ; (H1(Ω))∗) ∩ L2(0, T ; H2(Ω)) and A ∈W1,∞(R), and let K : R→ R be the primitive of
A with K(0) = 0. Then K ◦ u ∈W1, 4

3 (0, T ; (H1(Ω))∗) ∩ L2(0, T ; H2(Ω)), with distributional time
derivative

〈∂t(K ◦ u)(t), φ〉(H1(Ω))∗,H1(Ω) = 〈∂tu(t), A(u(t))φ〉(H1(Ω))∗,H1(Ω) (A.4)

for all φ ∈ H1(Ω), almost all t ∈ [0, T ].

Proof. SinceA andK are Lipschitz continuous, we haveK(u) ∈ L2(0, T ; H2(Ω)) with∇(K(u)) =
A(u)∇u and Hess(K(u)) = A′(u)∇u ⊗ ∇u + A(u) Hess(u) by product rule in Sobolev spaces
and the chain rule, e.g. [MM72, Lemma 2.1].

Next, we show that the right-hand side in (A.4) has the regularity W1, 4
3 (0, T ; (H1(Ω))∗). To this end,

we let φ ∈ H1(Ω) and estimate for almost all t ∈ (0, T )

`(t)(φ) := 〈∂tu(t), A(u(t))φ〉(H1(Ω))∗,H1(Ω) ≤ ‖∂tu(t)‖(H1(Ω))∗‖A(u)φ‖H1(Ω).

Since ∇(A(u(t))φ) = A(u(t))∇φ + A′(u(t))φ∇u(t) in L2(Ω;Rd), the Sobolev embedding
H1(Ω) ↪→ L6(Ω) entails

‖A(u(t))φ‖H1(Ω) ≤
(√

2‖A‖∞ +
√

2CS‖A′‖∞‖∇u(t)‖L3(Ω;Rd)

)
‖φ‖H1(Ω).

Consequently, Hölder’s inequality applied to the exponents 3
2
, 3 leads to∫ T

0

‖`(t)‖4/3

(H1(Ω))∗ dt ≤ C

∫ T

0

‖∂tu‖4/3

(H1(Ω))∗

(
1 + ‖∇u‖L3(Ω;Rd)

)4/3
dt

≤ C

(∫ T

0

‖∂tu‖2
(H1(Ω))∗ dt

)2/3(∫ T

0

|1 + ‖∇u‖L3(Ω;Rd)|4 dt

)1/3

,

which is finite by interpolation ‖·‖L4(0,T ;L3(Ω;Rd)) ≤ ‖·‖
1/2

L∞(0,T ;L2(Ω;Rd))
‖·‖1/2

L2(0,T ;H1(Ω;Rd))
.
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It remains to show that for any φ ∈ H1(Ω) and η ∈ C∞c ((0, T ))∫ T

0

η′(t)(K(u(t)), φ)L2(Ω) dt = −
∫ T

0

η(t)〈∂tu(t), A(u(t))φ〉(H1(Ω))∗,H1(Ω) dt.

By approximation [Rou13, Lemma 7.2], we find a sequence (un)n∈N ⊂ C1([0, T ]; H2(Ω)) such
that un → u in L2(0, T ; H2(Ω)) and ∂tun → ∂tu in L2(0, T ; (H1(Ω))∗). Exploiting the Lipschitz
continuity of A, one finds A(un)ηφ ⇀ A(u)ηφ in L2(0, T ; H1(Ω)), so that∫ T

0

η′(t)(K(u(t)), φ)L2(Ω) dt = lim
n→∞

∫ T

0

η′(t)(K(un(t)), φ)L2(Ω) dt

= − lim
n→∞

∫ T

0

〈∂tun(t), A(un(t))η(t)φ〉(H1(Ω))∗,H1(Ω) dt

= −
∫ T

0

η(t)〈∂tu(t), A(u(t))φ〉(H1(Ω))∗,H1(Ω) dt.
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