
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Variational modelling of porosity waves

Andrea Zafferi1, Dirk Peschka2

submitted: August 11, 2025

1 Freie Universität Berlin
Arnimallee 9
14195 Berlin
Germany
E-Mail: andrea.zafferi@fu-berlin.de

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: dirk.peschka@wias-berlin.de

No. 3210

Berlin 2025

2020 Mathematics Subject Classification. 74A15, 74F10, 74B20, 65M60.

Key words and phrases. Nonlinear poroelasticity, structure-preserving discretization, porosity waves.

DP thanks for the funding within the DFG Priority Program SPP 2171 Dynamic Wetting of Flexible, Adaptive, and Switchable Surfaces,
project #422792530. AZ acknowledge the funding by the DFG-Collaborative Research Center 1114 Scaling Cascades in Complex
Systems, project #235221301, C09 Dynamics of rock dehydration on multiple scales.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Variational modelling of porosity waves

Andrea Zafferi, Dirk Peschka

Abstract

Mathematical models for finite-strain poroelasticity in an Eulerian formulation are studied by construct-
ing their energy-variational structure, which gives rise to a class of saddle-point problems. This problem is
discretised using an incremental time-stepping scheme and a mixed finite element approach, resulting in a
monolithic, structure-preserving discretisation. The Eulerian formulation is based on the inverse deforma-
tion, the so-called reference map. We present examples from geophysical applications, where elasticity and
diffusive fluid flow are fully coupled and can be used to describe porosity waves, i.e., localised ascending
fluid waves driven by gravitational forces.

1 Introduction

Porosity waves play a critical role in various natural processes by governing fluid transport in deformable porous
media. These waves typically emerge due to coupled pore pressure gradients, mechanical deformation of the
porous matrix, and gravity. Depending on the context, these waves can be inertial, for example in ultrasound
applications, or viscous, for example in geophysical processes on long timescales. Recent works have illustrated
their importance across geophysical [1, 25, 24] and biological problems [7]. In particular [1] emphasizes on the
interplay between compaction-driven fluid flow and plastic effects to generate localized fluid flow patterns, i.e.,
solitary porosity waves. The classical works of Biot provided foundational theories of poroelasticity, describing
wave propagation through fluid-saturated porous media [4, 5, 6], and were later extended by McKenzie [13].
However, accurately modelling porosity waves poses significant challenges, particularly due to the complexity
inherent in coupling fluid-structure interactions and multiphase transport phenomena. Small-deformation models
are often used but fail to capture the transition from small deformations of elastic solids to large deformations of
soft solids or liquids.

A critical aspect of analysis and modelling poroelastic phenomena involves accurately capturing material defor-
mation and fluid-solid interactions. Traditionally, Lagrangian approaches have been used for the mathematical
treatment of these equations with large deformations, e.g., [21, 26, 23]. In contrast, the use of the reference
map technique has emerged as a valuable tool for handling finite-strain elasticity within Eulerian frameworks,
successfully combining spatial and material viewpoints to enhance numerical robustness [11]. This approach
has been effectively employed in modelling complex fluid-structure interactions [12] and extended to nonlinear
elastic biological tissues, capturing their inherent compressibility and growth dynamics [27]. In a similar fashion,
regarding geological applications an Eulerian large strain model for porous materials was developed in [22],
where the energetics of the system is obtained as part of the mathematical analysis.

Modelling approaches that are based on thermodynamic principles rely on the definition of thermodynamic
potentials such as energy or entropy and additional geometric structures or kinematic constructions involving
conservation laws to deduce the evolution of the system. Within these frameworks, we highlight the Hamilto-
nian [15], damped Hamiltonian, and gradient system formulations [17], which naturally incorporate thermody-
namic consistency and systematic treatment of dissipative processes. Among such approaches, one can find
the GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible Coupling) formalism, introduced by
Grmela and Öttinger [9, 16], used to couple reversible and irreversible processes in isolated systems and later
extended to thermoelastic solids and to damped Hamiltonian structure [14]. The development of corresponding
structure-preserving discretisations promises to generate robust discrete schemes that also provide stable nu-
merical methods for complex, nonlinearly coupled problems, e.g., see [3, 10] in the context of GENERIC. Such
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energy-based discretisation schemes have been also used in the context of poroelasticity, e.g., in [8] or [2],
where saddle-point problems are a reoccurring theme.

In this work, we build upon those structures and present a weak formulation of gradient systems, in the spirit
of our previous work in [19] and in [28], for nonlinear poroelastic materials. The goal of this contribution is to
highlight the origin of saddle-point structures and their natural discretisation for nonlinear poroelasticity using
energy-based approaches. The paper is structured into two main parts. Section 2 deals with the thermodynamic
modelling framework: from the abstract setting in 2.1, where we discuss an extension of classical gradient
systems, to the application of this framework in 2.2 with the aim to derive a weak formulation of a partial differ-
ential equations system inspired by the phenomenon of porosity waves, and finally to the design of a structure
preserving discretisation scheme in 2.3. In the last Section 3 we present the results of simulations for the above-
mentioned model, focusing on two different regimes.

2 Variational modelling and discretisation

This section is dedicated to the introduction of an abstract modelling framework that relies on and extends the
common notion of gradient systems. This approach offers a flexible way to model many interesting physical
phenomena, as addressed in the introduction, while keeping the system thermodynamically consistent. This
structured approach also lays the path towards the exploration of alternative formulations of physical systems,
either in terms of different variables or in terms of a different set of coordinates. In this section we focus on a
specific realization of this method concerning fluid flows of Stokes type. We conclude with the presentation of a
discretisation for this model that naturally leads to the numerical implementations in the following Section 3.

2.1 Abstract variational setting

One way to describe a dissipative system, i.e., a system where the total energy decreases over time due to
friction, diffusion or other dissipative effects, is through an equation of the following form:

G(q)q̇ = −DH (q) , in V∗ . (1)

This equation can be characterized by three ingredients: the state space, i.e., usually a subset of a Banach
space, that we denote with Q with the associated elements being q, the total or free energy of the system
H : Q → R, and lastly the dissipation potential R(q) : V → R that acts on elements of the velocity space
V . Often, the velocity space can be identified with the state space itself, i.e., Q ≡ V . Elements of the velocity
space will be denoted by q̇ or ∂tq when the velocity specific to the state variable q is taken or, more generally,
by v. We use 〈·, ·〉V : V∗ × V → R to indicate the canonical dual pairing 〈η,v〉V = η(v) and we use
(·, ·)V : V×V → R for theL2 inner product in V ⊂ L2(Ω). If the spaces are clear, then we drop the subscript.
We use blackboard-bold symbols to denote operators on function spaces (except reals R), and bold symbols to
denote vectors, tensors, and other multicomponent objects (except coordinates x ∈ Ω ⊂ Rd).Variations of the
energy H will be computed through the Frechét derivative DH (q) ∈ V∗:

〈DH (q),v〉V := lim
h→0

H (q + hv)−H (q)

h
, for any v ∈ V . (2)

Throughout this paper we will assume R(q, ·) to be convex and quadratic for any v ∈ V , i.e.,

R(q,v) =
1

2
〈G(q)v,v〉V , (3)

where G(q) : V → V∗ is the associated positive symmetric operator. Hence, in order to represent this evolution
equation we can simply write the triple (Q,H ,G), known as classical gradient system, or (Q,H ,R) for more
general ones. An alternative formulation relies on the application of the Legendre transform, through which we
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can define the dual dissipation potential for any elementη ∈ V∗ by R∗(q,η) := supv∈V (〈η,v〉V −R(q,v)).
By applying the definition of R∗ we introduce the Onsager operator K(q) : V∗ → V from the relation
R∗(q,η) = 1

2

〈
η,G(q)−1η

〉
= 1

2 〈η,K(q)η〉. Together with (1), this results in an alternative evolution
equation taking place on the velocity space

q̇ = −K(q)DH (q) , in V . (4)

Both equations (1) and (4) appear in strong form. One way to extend (4) to a saddle-point problem and to a weak
formulation is to consider the auxiliary spaceW and a linear transformation M∗(q) : W → V∗ that provides
a representation of the generalized forces η ∈ V∗ and thus of the driving force M∗(q)w = DH (q). Based
on its definition and the adjoint operator M(q) : V → W∗, i.e., 〈M∗(q)w,v〉V = 〈M(q)v,w〉W , one can
rewrite equation (4) as a weak form of a saddle-point problem

k(q;η,w) + b(q; q̇,w) = 0 for allw ∈ W , (5a)

b(q;v,η) = 〈DH (q),v〉V for all v ∈ V , (5b)

where k(q;η,w) = 〈M∗(q)w,K(q)M∗(q)η〉V arises from the dual dissipation potential and therefore is
symmetric, positive definite and b(v,w) = 〈M(q)∗w,v〉V .

This weak formulation actually permits us to go one step further and include additional dissipative effects acting
on the velocities v ∈ V , instead of the generalized forces M∗(q)η, by introducing a symmetric, positive opera-
tor G(q) : V → V∗ associated to the bilinear form g(q;v1,v2) = 〈G(q)v1,v2〉V = 〈Dv1R(q,v1),v2〉V .
System (5) then becomes:

k(q;η,w) + b(q; q̇,w) = 0 for allw ∈ W , (6a)

b(q;v,η)− g(q; q̇,v) = 〈DH (q),v〉V for all v ∈ V . (6b)

Observe that in the case k(q; ·, ·) ≡ 0, the equations (6) reduce simply to a weak formulation of (1). The
dissipative nature of the system is preserved under this construction and it can be verified by testing as usual
with velocity v = q̇ and chemical potentialw = η and by subtracting the equations (6)

d

dt
H
(
q(t)

)
= 〈DH (q), q̇〉V = −

(
k(q;η,η) + g(q; q̇, q̇)

)
≤ 0 .

2.2 Eulerian poroelastic model

Kinematics. To instantiate this abstract framework, we develop an Eulerian model tailored to poroelastic me-
dia. Consider a state vector composed of an Eulerian vector field (displacement) and a conserved scalar field
(concentration)

q =

(
u : Ω→ Rd
c : Ω→ R

)
∈ Q , (8)

where the displacementu is computed using the composition of the Lagrangian displacement and the reference
map, i.e., u(t, x) := x−α(t, x), x = (x1, . . . , xd)

> and c represents the particle concentration. Before we
continue with the formulation, we shortly recall the notion of Lagrangian and Eulerian representation. Consider a
domain Ωt ⊂ Rd where the system is evolving at time t > 0. This is usually regarded as the Eulerian or actual
configuration of the system. The Lagrangian or reference representation relies on the existence assumption of
an original state or a past configuration of the system Ω0 that for convenience is set at time t = 0. These
two configurations can be linked through a map that we call flow map that relates points or particles from the
reference configuration to the current configuration, i.e., x = χ(t, x̄) where x ∈ Ωt and x̄ ∈ Ω0. This relation
can always be constructed if, e.g., given a regular enough velocity field v one solves the Cauchy problem

∂χ(t, x̄)

∂t
= v(t,χ(t, x̄)) , for all t > 0, x̄ ∈ Ω0 , (9)

χ(0, x̄) = x̄ , for all x̄ ∈ Ω0 . (10)
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The inverse of the flow map, i.e., the mapping reconstructing the inverse motion of a particle, will be denoted by
α. Figure 1 exemplarily shows the Lagrangian and Eulerian configuration with the related maps.

Lagrangian (reference) Eulerian (current)

χ(t) : Ω0 → Ωt

α = χ(t)−1

x̄0

x(t)

Figure 1: Flow map χ from Lagrangian to Eulerian configuration and its reference map α = χ−1. The dashed
curve shows a possible particle trajectory so that x(t) = χ(t, x̄0).

The Lagrangian configuration is particularly useful for the description of solids, where strains and stresses
appear in a simplified form, while for fluids, where strong topological changes usually occurs, an Eulerian formu-
lation is more favourable to avoid mesh distortion. With this in mind, a commonly employed Lagrangian variable
is the displacement ū(t, x̄) := χ(t, x̄)− x̄, whose corresponding Eulerian variable isu in (8). We will consider
a domain whose boundary stays fixed over time, therefore we will drop the subscript and write Ω ≡ Ωt. We
conclude this paragraph with fundamental relations between the Eulerian displacement u:

∂tu(t, x) =− ∂tα(t, x) , (11a)

∂tα(t, x) =− (∇α)v(t, x) , (11b)

F (t, x) :=(∇α)−1(t, x) , Eulerian deformation gradient (11c)

where v denotes the Eulerian velocity field. By combining (11a) and (11b) and (11c) we get

F (t, x)∂tu(t, x) =v(t, x) , (11d)

where the Eulerian deformation gradient F can also be represented as

F (t, x) = (∇α)−1(t, x) = (Id −∇u(t, x))−1 , (11e)

Differentiating the identity u(t,χ(t, x̄)) = ū(t, x̄) with respect to time we get the relation

∂tu = (Id −∇u) ∂tū . (11f)

Given the Jacobian J := detF we state some chain rules helpful in the computation of gradients and deter-
minant of F and J , cf. [20, eq.(62)],

DuJ =JF> : ∇� , (11g)

Duf(F ) =F> (∂F f(F ))F> : ∇� . (11h)

Energetics and weak form. The second necessary ingredient for the formulation of our system is the total
energy H . We consider an energy functional H : Q → R with q = (u, c) that is expressed in the following
form:

H (q) :=

∫
Ω
Hel(F ) +HBiot(J, c) +Hgrav(c) +

ε

2
|∇c|2 dx , (12a)

Hel(F ) := µ
2 tr(C − Id) , withC = (F>F )/J2/d , (12b)

HBiot(J, c) := 1
2π

2 , with π = (c− c∗)− (J − 1) , (12c)

Hgrav(c) := cg0xd , (12d)

DOI 10.20347/WIAS.PREPRINT.3210 Berlin 2025



Variational modelling of porosity waves 5

The functional is composed by four terms: Hel captures the elastic behaviour of the material only through the
isochoric part of the right Cauchy-Green deformation tensor, HBiot couples displacement and concentration
relating volumetric changes in the volume J with concentration variations from the steady state c∗ with a Biot-
like pressure π, Hgrav collects the external forces, which in our case amount to gravity alone and are parallel
to the direction of the last dth coordinate and finally a higher order regularizing term for c. We write the weak
formulation in terms of functions v = (vu, vc) ∈ V and with the auxiliary space w = wc ∈ W . The total
energy (12) generates the following driving force, cf. (2):

〈DH (q),v〉 =

∫
Ω
F>∂F (Hel)F

>:∇vu − πJF> : ∇vu + πvc + g0xdvc + ε∇c · ∇vc

=

∫
Ω

(µ
2

(
2C − 2

dtr(C)Id
)
− πJ

)
F>:∇vu + (π + g0xd)vc + ε∇c · ∇vc

(13)

The representation of elements of the dual space V∗ is given through the bilinear for b and the map M : V →
W∗:

〈Mv, wc〉W = b(q;v, wc) :=

∫
Ω
wc (vc −∇ · (cFvu)) dx . (14)

One might already notice the presence of advective terms in (14), however this is not the solely way in our
variational framework to include such contributions, e.g., these terms can be derived from a damped Hamiltonian
system alike (5). This was the strategy employed to study fluid-structure interaction problems in [19]. There this
contribution naturally arose from a weak formulation that included the operator for thermodynamically reversible
processes, sometimes called Poisson operator or Poisson brackets. This operator has a fairly simple expression
in Lagrangian coordinates and in order to recover the Eulerian formulation we apply a transformation mechanism
based on the flow map defined in (9) that preserves the bilinear forms present in (5). With this identification we
are ready to compute the remaining two dissipative bilinear forms

〈M∗w1,K(q)M∗w2〉V = k(q;w1, w2) :=

∫
Ω
∇w1 ·D(c)∇w2dx with D(c) = D0

2 c
2 , (15)

〈G(q)v1,v2〉V = g(q;v1,u,v2,u) :=

∫
Ω
ν∇s(Fv1,u):∇s(Fv2,u) dx with∇sa = 1

2∇a+ 1
2(∇a)> ,

(16)

where v1,v2 ∈ V, w1, w2 ∈ W . Altogether the system formally reads:

k(q; ξc, ηc) + (ξc, ċ) + (ξc, div(cF u̇)) = 0 , (17a)

−g(q; u̇,vu) + (ηc,div(cF v̇u)) + (ηc, vc) = 〈DH (q),v〉 . (17b)

Thus we obtain the following weak system of equations for any (vu, vc) ∈ V and ξc ∈ W :

(ν∇s(F u̇),∇s(Fvu)) + (ηc, div(cFvu)) =
(
F>∂F (Hel)F

>,∇vu
)
−
(
πJF>,∇vu

)
(18a)

(ξc, ċ) + (ξc,div(cF u̇)) = (∇ξc, D(c)∇ηc) , (18b)

(ηc, vc) = (π + g0xd, vc) + (ε∇c,∇vc) . (18c)

The system is complemented with no-slip on the sides and homogeneous Dirichlet on the top and the bottom
boundary conditions foru, i.e.,u·ν = 0, where ν is the normal outer vector, andu = 0, and with homogenous
Neumann boundary conditions for c, i.e., D(c)∇ηc · ν = 0.

2.3 Discretization

Below we describe a structure-preserving discretisation of the poroelastic model. To this end, we are going to
discretise (6) using finite elements in space and using a semi-implicit scheme in time. Therefore, the derivative
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of the energy is discretise fully implicitly and the state-dependence of the bilinear forms in (6) are discretised
explicitly in q are implicitly in all remaining variables. Therefore, for a given triangulation Th of the domain
Ω =

⋃
T∈Th T introduce the auxiliary finite-dimensional function space

V m,k
h =

{
v ∈ C1(Ω;Rm) : vi|e ∈ Pk(T ), T ∈ Th, i ∈ {1, ...,m}

}
(19)

where m = 1 for scalar functions and m = d for vector fields and k is the polynomial degree of the H1

conforming function on elements T ∈ Th. For the discretisation we write qk = q(tk) and ηk = η(tk) for
times t0 = 0 < t1 < . . . < tN = T and discretise

qk = (uk, ck) = V d,2
h × V 1,1

h =: Vh and ηk = V 1,1
h =:Wh , (20)

where the space for uk is complemented with suitable Dirichlet boundary conditions uk · ν = 0 (sliding) or
uk = 0 (no-slip) to be specified later on parts of ∂Ω. For a given qk−1, we seek qk and ηk such that

k(qk−1;ηk,w) + b(qk−1; qk−qk−1

τk
,w) = 0 for allw ∈ Wh , (21a)

b(qk−1;v,ηk)− g(qk−1; qk−qk−1

τk
,v) =

〈
DH (qk),v

〉
V

for all v ∈ Vh . (21b)

where τk = tk − tk−1. In [23] we showed that such discretisation scheme corresponds to an incremental
minimization scheme for qk. The form above in (21) produces a (nonlinear) saddle-point problem, which is
solved using a Newton method. We solve this problem with a constant time step size τk ≡ τ for all k ∈
{1, ..., N}. Equation (21) is a semi-implicit monolithic structure-preserving discretisation of the gradient flow
equation (4) or the corresponding saddle-point structure (6).

3 Porosity wave example: flow vs diffusion

The strong form of the system (18) gives rise to the poroelastic model

−ν div∇s(F u̇) + c∇ηc =div(σ) where σ = ∂FHelF
> +HelId + (1

2π
2 − Jπ)Id , (22a)

ċ+ div(cF u̇) =− div (D(c)∇ηc) , (22b)

where π = (c−c∗)−(J−1) and ηc = π+g0xd−ε∆c and isochoric right Cauchy-Green deformation tensor
C = F>F /(detF )2/d. This is an Eulerian model for large deformations and models the viscous relaxation
of the compressible elastic body by shear forces and Biot-type pore pressure encoded in the Cauchy stress σ.
Using (11d) we can introduce the Eulerian solid velocity v = F u̇.

(a) Concentration c for time advancing from left to right.
(b) Determinant J = detF for time advancing from left to
right.

Figure 2: Porosity wave moving fluid upwards and displacing the (elastic) material in the flowing regime at
times t = 0, 10/3, 20/3, 10.
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Remark 1. Note that by defining the elastic Lagrangian energy as H̄el = HelJ one recovers the classical
elastic Cauchy stress in (22a) for the elastic contribution and in a similar manner one can define the reference
H̄Biot and recover the common expression for the thermodynamic pressure. The main step in the derivation of
the elastic Cauchy stress tensor, where for the sake of simplicity we writeH = Hel, is the following computation:

F−>div

(
F>

∂H

∂F
F>
)

= F−>ij ∇k
(
F>jl

∂H

∂F lm
F>mk

)
= F−>ij F

>
jl∇k

(
∂H

∂F lm
F>mk

)
+ F−1

ji

∂H

∂F lm
F km∇̄j(F ln)F−1

nk

= div
(
∂FHF

>
)

+
∂H

∂F lm
∇̄j(F lm)F−1

ji = div
(
∂FHF

> +HId

)
,

where the sum over the same indices has to be taken, we have made use of the identity relating Eulerian spatial
derivatives with the third order deformation tensor ∇kF lj = ∇̄sF ljF

−1
sk , ∇̄sF lj = ∇̄2

sjχl with χ being the
flowmap, and in the last equality we applied the chain rule for∇H .

There are a couple of peculiarities of this model that we want to briefly comment on. Firstly, the diffusive model
is of fourth order due to the regularization term, which also enters the momentum balance as a third-order
Korteweg-like term. Moreover, using the variational structure, we are able to introduce gravity consistently into
both the momentum equation and the diffusion equation, e.g., leading to correct equilibrium states via the
barometric formula. However, while η is the correct chemical potential for this (isothermal) system, note that π
is not the (full) thermodynamic pressure but only the Biot-type pore pressure contribution.

We are going to solve this problem in two spatial dimensions in a rectangular domain Ω = (0, L)× (0, H) with
components x = (x1, x2) ∈ Ω and with initial data

u0(x) = 0 , c0(x) = c̄0 + c̄1 exp(− 1
r2
|x− x0|2) . (23)

We impose sliding wall boundary conditions u(t) · ν = 0 for x1 ∈ {0, L} and no-slip boundary conditions for
x2 ∈ {0, H} on the boundary. For the fluid content c we employ homogeneous natural boundary conditions.
The nondimensional domain size is L = 1 and H = 2 and in the initial data we use r = 1/5. We use
c̄0 = 10−2 and c̄1 = 5 · 10−2 and viscosity ν = 10−3. For gravity we use g = (0, g0), where g0 and the
remaining parameters are given in Table 1. Both simulations use 300 time steps to reach the final time T .

Table 1: Comparison of selected parameters for flowing and diffusive regimes.

Parameter flowing regime diffusive regime

g0 −0.1 −0.01
D0 0.1 1000
ε 10−3 10−5

µ 10−9 10−3

T 10.0 4.0

We present in Figure 2 and Figure 3 two examples of different types of porosity waves, where the main differ-
ence is that the parameters give rise to a transport of fluid content primarily by convection in the former, i.e., the
flowing regime, and primarily by diffusion in the latter, i.e., the diffusive regime. This is achieved by the different
sets of parameters shown in Table 1, where in the flowing regime the shear modulus, but also the diffusion
constant, are both very small, whereas in the diffusive regime we suppress flow by a larger shear modulus and
enhance diffusion by a larger diffusion constant. Without going into the details of the solution, this difference is
most prominently observed in Figure 4, where in the flowing regime the dissipation from diffusion, encoded in
k(η, η), is practically negligible, whereas in the diffusive regime the Kelvin–Voigt viscous dissipation, encoded
in g(∂tq, ∂tq), is similarly negligible. If one looks at the individual contributions (elastic, Biot, gravity, regular-
isation), one observes that primarily gravity Hgrav(c) changes, while the other contributions leave the porosity
wave almost in local equilibrium, i.e., their contributions to the energy are very small.

DOI 10.20347/WIAS.PREPRINT.3210 Berlin 2025



A. Zafferi, D. Peschka 8

(a) Concentration c for time advancing from left to right.
(b) Determinant J = detF for time advancing from left to
right.

Figure 3: Porosity wave moving fluid upwards and displacing the (elastic) material in the diffusive regime at
times t = 0, 4/3, 8/3, 4.
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(a) Flowing regime
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(b) Diffusive regime

Figure 4: Decreasing system energy H (q(t)) (black line) and viscous dissipation g(∂tq, ∂tq) (blue dashed
line) and diffusive energy loss k(η, η) (orange dashed line) as a function of time t.
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Variational modelling of porosity waves 9

The interpretation of these shapes is somewhat limited by the fact that several simplifications are applied here,
i.e., the geometry is two-dimensional, and compaction of the solid phase due to gravity is neglected. This is both
because a term J−1%0x · g is missing in the energy, and because the overall domain is fixed. The latter could
be circumvented by introducing an additional indicator function for a fictitious air phase, as in [18]. The main
difference is that in the flowing regime, the porosity wave tends to grow in extent and leaves a more pronounced
wake behind, whereas in the diffusing regime, with degenerate diffusion D(c) = c2D, the porosity wave tends
to develop a more compact support.

Summary

We developed an Eulerian model for poroelasticity that is energy-based and supports large deformations using
a reference map approach. The discretisation is structure-preserving and therefore allows for a straightforward
discretisation in space using finite elements and in time using an incremental (finite-difference-type) scheme.
We employ this model to present different types of porosity waves, in which the fluid content is transported either
by flow or by diffusion.
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