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Derivation of a thermo-visco-elastic plate model at small strains
Moritz Immanuel Gau, Matthias Liero

Abstract

We investigate a three-dimensional thermo-visco-elastic model with Kelvin-Voigt rheology un-
der small strains confined to a thin domain. The model comprises a quasistatic linear momentum
equation, with viscous stresses adhering to a Kelvin-Voigt viscosity law, coupled with a nonlinear
heat equation governing temperature. The heat equation incorporates source terms arising from
viscous dissipation and adiabatic heat sources due to thermal expansion. The model ensures
thermodynamic consistency, maintaining energy conservation, positive temperature, and entropy
production. We analyze the asymptotic behavior of solutions as the domain thickness approaches
zero, deriving an effective two-dimensional model. This derivation involves rescaling the domain
to a fixed thickness and establishing uniform a priori estimates relative to the plate’s thickness.
In the limit, the temperature becomes vertically constant, and displacement are of Kirchhoff-Love
type, enabling meaningful interpretation of the limiting objects within the plate’s two-dimensional
cross-section. The mechanical equations consist of two parabolic equations, one for the mem-
brane part and one for the bending part. Notably, the viscosity law in the limiting model departs
from the Kelvin-Voigt form, reflecting nontrivial kinematic constraints on the rescaled out-of-plane
strains. The bending of the plate does not depend on the temperature in the limit.

1 Introduction

The derivation of lower-dimensional theories for thin structures such as rods, plates, or shells is a
classical problem in continuum mechanics. The first rigorous result for the plane membrane system
and Kirchhoff’s plate equation was given in [Mor59]. Subsequent contributions, both in the linear and
nonlinear setting, addressed rods, plates, and shells; see, for example, [CiD79, Mie88, CiL89, Cia22,
LeR00]. For static problems, rigorous dimension reduction results based on Γ-convergence were es-
tablished in the early 1990s (see e.g. [ABP91]). These have since been refined and extended to
encompass a wide range of mechanical behaviors, material responses, and coupled problems. For a
non-exhaustive list of such developments, we refer the interested reader to [FJM02, FJM06, BLS16,
ALL19, Pad22, BG∗23]. In the time-dependent setting, the derivation of reduced models typically relies
either on the fact that the system can be reformulated as a (generalized) gradient system—as is the
case in viscoelasticity and elastoplasticity [FrK20, LiM11]—thereby enabling the use of evolutionary
Γ-convergence, or on the availability of explicit solution formulas [Lic13].

In this work, we study the behavior of solutions to a thermo-visco-elastic model with Kelvin–Voigt
rheology at small strains, formulated on a thin three-dimensional plate occupying the domain Ωε =
ω × (−ε/2,+ε/2), as the thickness ε > 0 tends to zero. Our goal is to derive an effective two-
dimensional model in the limit ε → 0. The three-dimensional system of partial differential equations
(PDEs) is based on a thermodynamically consistent model discussed extensively in the works of
ROUBÍČEK; see in particular [KrR19, Chapter 8].

Neglecting inertial effects, the system consists of two coupled parabolic equations: a momentum bal-
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M.I. Gau, M. Liero 2

ance for the displacement u,

−div(Ce(u) + De(u̇) + θB) = f(t, x), in Ωε

and the heat equation for the temperature θ

cv(θ)θ̇ − div(K(θ)∇θ) = Q+ De(u̇) : e(u̇) + θB : e(u̇), in Ωε.

The system is supplemented by mixed boundary conditions for u, inhomogeneous Neumann bound-
ary conditions for θ, and appropriate initial data. Our main objective is to establish convergence of
the family of solutions (uε, θε)ε>0 to limit quantities that can be interpreted on the two-dimensional
midplane ω of the plate. Moreover, we aim to characterize the resulting effective model in the case of
general anisotropic materials. We emphasize that the model does not possess a gradient-flow struc-
ture (cf. [Mie11]), so that techniques based on evolutionary Γ-convergence for gradient systems, such
as those in [Mie16], are not directly applicable in this setting.

While the existence theory for such systems is well developed–even in the finite-strain setting–see
[Rou09, Rou10, BaR11, Rou13, MiR20, BFK23], a rigorous dimension reduction remains an open
problem. In [BlF87], dimension reduction was addressed for a simplified, fully linear model by neglect-
ing viscous effects and replacing the temperature in the adiabatic terms with a fixed one. Without
these simplifications, we encounter a central difficulty. From the momentum balance, we know that the
symmetric gradient e(u̇) is L2-integrable, since u is assumed to lie in H1(0, T ; H1(Ω;Rd)). However,
this only yields L1-integrability of the term De(u̇) : e(u̇), which acts as an additional heat source.
Consequently, we must rely on L1-theory for the heat equation. In general, such theory provides in-
tegrability of θ only up to the exponent d+2

d+1
= 5

4
(with d = 3 being the space dimension), which is

insufficient to control the adiabatic term θB : e(u̇), where at least L2-integrability of θ is needed. To
obtain the desired L2-regularity for the temperature, we reformulate the system using the enthalpy
transformation, as proposed in [BaR11] (see also [KrR19, Section 8.1]), and impose suitable growth
conditions on the model coefficients.

The paper is organized as follows: Section 2 introduces the model and notation, and states the main
results. In particular, we list the assumptions on the data and coefficients that will be used throughout
the text. Furthermore, we introduce a reformulation of the system based on the thermal part of the
internal energy (also referred to as enthalpy in [KrR19]), which we denote by w. For the dimension
reduction, we also perform a rescaling of the domain and the displacement fields. In Section 3, we
discuss the existence of solutions to the rescaled thermo-visco-elastic system, following the approach
in [KrR19]. To this end, we first study a regularized version of the system, depending on a parameter
δ > 0, where the heat sources are replaced by more regular approximations that admit better integra-
bility. This allows us to apply L2-theory for nonlinear parabolic equations. We establish uniform bounds
that are independent of both the plate thickness ε and the regularization parameter δ. In particular,
we derive a priori estimates for the enthalpy w following the strategy of [Rou09, BaR11], originally
developed in [BoG89, BD∗97]. The limit passage ε→ 0 is carried out in Section 4. A central difficulty
here is that the Aubin–Lions lemma cannot be applied directly, as standard estimates for ẇε are not
available due to the lack of admissible test functions in the heat equation. To overcome this, we de-
compose wε into the average across the plate thickness and a remainder. While the time derivative of
the averaged part can be estimated uniformly, the remainder is shown to converge strongly to zero in
suitable topologies.

In the limit, the thermal variable w becomes independent of the vertical coordinate, and the rescaled
displacements converge to so-called Kirchhoff–Love type displacements:

u(x′, x3) =
(
U1(x′)−x3∂x1U3(x′), U2(x′)−x3∂x2U3(x′), U3(x′)

)>
.
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Derivation of a thermo-visco-elastic plate model at small strains 3

The limit system is formulated in terms of the in-plane displacement U = (U1, U2), the out-of-plane
displacement U3, the thermal part of the internal energy w, and the out-of-plane strain variables κeven

and κodd, all defined on the two-dimensional mid-surface domain [0, T ]× ω.

The resulting two-dimensional limit model captures the interplay of membrane and bending effects
in the elastic response, coupled with a nonlinear heat equation driven by dissipative and adiabatic
contributions. It consists of the second-order membrane and fourth-order plate equations,

−div′(C e(U) + D e(U̇) + P∗C κeven + P∗D κ̇even + Θ(w)B) = F1,2(t, x′),

−div′div′(C∇2U3 + D∇2U̇3 + P∗C κodd + P∗D κ̇odd) = F3(t, x′)− div′ F̃3(t, x′),

the effective heat equation,

ẇ − div′
(
Keff(w)∇′w

)
= Qtot

(
t, x′; e(U̇),∇2U3, κ̇even, κ̇odd,Θ(w)

)
,

and the evolution equations for the out-of-plane strains,

κ̇even + M−1
D MC κeven = −M−1

D
(
PC e(U) + PD e(U̇1, U̇2) + Θ(w) bB

)
,

κ̇odd + M−1
D MC κodd = − 1

12
M−1

D
(
PC∇2U3 + PD∇2U̇3

)
.

Here, the tensors C, D, MC, MD, PC, and PD represent a decomposition of the original elasticity and
viscosity tensors C and D into in-plane, out-of-plane, and mixed components; cf. (14). The body force
densities F1,2, F3, and F̃3 (along with the corresponding surface force densities) are defined via suit-
able averages of the original three-dimensional body force f and heat source h. Finally, in Section 5,
we discuss the special case of isotropic elasticity and address the thermodynamic consistency of the
effective system. Moreover, we relate our limit model to the effective viscoelastic plate model derived
in [Lic13], by rewriting the system using a memory kernel formulation.

To the best of our knowledge, this is the first rigorous derivation of a dimension-reduced model for a
fully coupled, thermodynamically consistent thermo-visco-elastic system without gradient structure.

2 Setting and notation

Given a visco-elastic body that occupies the domain Ω ⊂ Rd, for d = 3, and a time horizon 0 < T <
∞, we are interested in the evolution of the displacement u : [0, T ] × Ω → Rd and temperature
θ : [0, T ] × Ω → R under external forces and heat sources. The governing equations of our model
consist of the linear momentum equation for the displacement

−div(Ce(u) + De(u̇) + θB) = f(t, x), (1a)

with e(u) = 1
2
(∇u+∇u>) denoting the linearized strain tensor, C denoting the fourth-order elasticity

tensor, D is the fourth-order viscosity tensor, B is the second-order thermal expansion tensor, and
f : [0, T ]×Ω→ Rd being a volume force density acting in Ω. Note that we neglected inertial effects,
i.e., the acceleration term ρ0ü, with mass density ρ0, does not appear on the left-hand side.

The equation for the displacement u is coupled to the heat equation for the temperature θ, viz.

cv(θ)θ̇ − div(K(θ)∇θ) = Q+ De(u̇) : e(u̇) + θB : e(u̇), (1b)
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M.I. Gau, M. Liero 4

where cv(θ) and K(θ) denote the (temperature-dependent) heat capacity and conductivity, respec-
tively, and Q is a fixed heat source density. Moreover, we used the notation A : B =

∑d
i,j=1 AijBij

for the scalar product of matrices A,B ∈ Rd×d.

The system is complemented by Dirichlet and Neumann boundary conditions for the displacement u

u = uD(x) on (0, T )× ΓD, (Ce(u) + De(u̇) + θB)ν = h(t, x) on (0, T )× ΓN, (1c)

where Γ := ∂Ω, ΓD ⊂ Γ, ΓN := Γ \ ΓD and ν : Γ → Sd−1 is the outer normal unit, with
uD : [0, T ]× ΓD → Rd being a fixed displacement on the Dirichlet part and h : [0, T ]× ΓN → Rd

denotes a surface force density.

For the heat equation, we assume inhomogeneous Neumann boundary conditions, namely

K(θ)∇θ · ν = q(t, x) on (0, T )× Γ (1d)

for some given boundary flux q.

Finally, we impose the initial conditions

u(0, ·) = u0 in Ω, θ(0, ·) = θ0 in Ω. (1e)

2.1 Thermodynamic consistency

The model in (1a)–(1e) is thermodynamically consistent. Indeed, we introduce the specific Helmholtz
free energy density ψ : Rd×d

sym × (0,∞)→ R via the decomposition into purely mechanical, coupling,
and purely thermal contributions, viz.

ψ(e, θ) :=
1

2
Ce : e+ θB : e− ψ0(θ). (2)

The heat capacity is then given via cv(θ) = −θ∂2
θθψ(e, θ) = θψ′′0(θ), which is only defined in terms

of ψ0 due to the linear dependence on θ of the coupling term and therefore only depends on θ.

The entropy density η and the internal energy E are given via

η(e, θ) = −∂θψ(e, θ), E(e, θ) = ψ(e, θ) + θη(e, θ).

In particular, with ψ as in (2), we arrive at

η(e, θ) = −B : e+ ψ′0(θ), E(e, θ) =
1

2
Ce : e− ψ0(θ) + θψ′0(θ).

We call W0(θ) = θψ′0(θ) − ψ0(θ) the thermal part of the internal energy. Note that we have that

ψ0(0)−ψ0(θ)+θψ′0(θ) =
∫ θ

0
cv(r) dr. The potential of dissipative forces due to viscous deformation

is given via ζ(ė) := 1
2
Dė : ė. The system in (1a) and (1b) can then be written equivalently as

−div
[
∂eE − θ∂eη + ∂ėζ

]
= f(t, x),

d

dt
E − div(K(θ)∇θ) = Q+

[
∂eE − θ∂eη + ∂ėζ

]
: e(u̇).

(3)

We derive an energy balance by testing the equation for linear momentum in (1a) with u̇, to obtain
after integrating by parts the mechanical energy balance∫

Ω

d

dt

1

2
Ce(u) : e(u) +∂ėζ(e(u̇)) : e(u̇) dx =

∫
Ω

f · u̇ dx+

∫
ΓN

h · u̇ da−
∫

Ω

θB : e(u̇) dx. (4)
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Derivation of a thermo-visco-elastic plate model at small strains 5

Using the heat equation in (1b) for the last term on the right-hand side, we arrive at the energy balance∫
Ω

d

dt

{1

2
Ce(u) : e(u) +W0(θ)

}
dx =

∫
Ω

f · u̇ dx+

∫
ΓN

h · u̇ da +

∫
Ω

Q dx+

∫
Γ

q da,

where we used that d
dt
W0(θ) = cv(θ)θ̇. This equality shows that the total energy E(u, θ) =∫

Ω
E(e(u), θ) dx of the system is conserved for vanishing external forces, fluxes, and heating.

On the other hand, we have for the entropy that

d

dt

∫
Ω

η(e(u), θ) dx =

∫
Ω

Q+ ∂ėζ(e(u̇)) : e(u̇) + div(K(θ)∇θ)
θ

dx

=

∫
Ω

Q+ ∂ėζ(e(u̇)) : e(u̇)

θ
+

K(θ)∇θ · ∇θ
θ2

dx+

∫
Γ

q

θ
da.

Thus, for nonnegative Q, q and positive semidefinite K(θ), we have positivity of the entropy produc-
tion.

Remark 1. From a mathematical perspective it is advantageous to choose either one of the quantities–
internal energyE, entropy η, temperature θ, or, as below, the thermal part of the internal energyw–as
the independent “thermal” variable τ and express the others in terms of the chosen, i.e.,E = Ê(e, τ),

η = η̂(e, τ), θ = Θ(e, τ) w = Ŵ (e, τ). In principle, all formulations will be equivalent, and the
system takes the form

−div
[
∂eÊ −Θ∂eη̂ + ∂ėζ

]
= f(t, x),

d

dt
Ê − div(K(Θ)∇Θ) = Q+

[
∂eÊ −Θ∂eη̂ + ∂ėζ

]
: e(u̇).

2.2 Transformation to thermal part of internal energy

To derive suitable a priori estimates for the existence result as well as the limit passage, it is desirable
to assume certain growth properties of the heat capacity θ 7→ cv(θ) to be able to treat the term
θB : e(u̇) on the right-hand side of the heat equation. We follow here the ideas in [Rou10] and rewrite
the system in terms of the so-called thermal part of internal energy (sometimes also called enthalpy)
using the transformation

w = W (θ) =

∫ θ

0

cv(r) dr, θ = Θ(w) := W−1(w) for w ≥ 0,

where we assumed positivity cv > 0 such that the primitive W of cv (normalized such that W (0) =
0) is strictly increasing and therefore invertible. In particular, W differs from W0 just by a constant,
namely, ψ0(0). Note that we have d

dt
W (θ(t)) = cv(θ(t))θ̇(t). Therefore, by further settingK(w) :=

K(Θ(w))/cv(Θ(w)), we can rewrite the system in (1a)–(1e) as

−div(C(e(u)) + D(e(u̇)) + Θ(w)B) = f(t, x) (5a)

ẇ − div(K(w)∇w) = Q(t, x) + De(u̇) : e(u̇) + Θ(w)B : e(u̇). (5b)

The boundary conditions for the displacement are

u = uD(x) on (0, T )× ΓD, (Ce(u) + De(u̇) + Θ(w)B)ν = h(t, x) on (0, T )× ΓN, (5c)
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and the Neumann boundary condition in (1d) translate to

K(w)∇w · ν = q(t, x) on (0, T )× Γ. (5d)

Finally, the initial conditions now read

u(0, ·) = u0 in Ω, w(0, ·) = w0 in Ω. (5e)

2.3 Existence of solutions

The following assumptions are sufficient for the existence of solutions to the thermo-visco-elastic sys-
tem in (5):

(A1) The domain Ω ⊂ R3 is open, bounded, connected and has a Lipschitz boundary Γ = ∂Ω. It
is decomposed disjointly into Dirichlet part ΓD and Neumann part ΓN such that ΓN = Γ \ ΓD.
The Dirichlet part has positive surface measureH2(ΓD) > 0.

(A2) The elasticity and viscosity tensors C ∈ L∞(Ω;R3×3×3×3) and D ∈ L∞(Ω;R3×3×3×3) sat-
isfy the symmetries Cjikl = Cijkl = Cklij and Djikl = Dijkl = Dklij for i, j, k, l = 1, . . . , 3.
Moreover, they are uniformly elliptic on R3×3

sym such that

∃γC > 0, γD > 0 : C(x)e : e ≥ γC|e|2, D(x)ė : ė ≥ γD|ė|2 a.e. in Ω.

(A3) The thermal expansion tensor B ∈ L∞(Ω;R3×3) is symmetric;

(A4) The heat capacity is such that cv ∈ C0(R;R), and there exist c0 > 0, s ≥ 2 with

∀w ∈ R : c0(1 + |w|)s−1 ≤ cv(w) (6)

(A5) The heat conductivity satisfies K ∈ C0(R;Rd×d) with

K : R→ Rd×d, where K(w) :=
K(Θ(w))

cv(Θ(w))

being bounded and uniformly elliptic;

(A6) The bulk and surface force densities in (5a) and (5c) satisfy f ∈ L2(0, T ; L2(Ω;R3)) and
h ∈ L2(0, T ; L2(ΓN;R3)). We define the loading ` ∈ L2(0, T ; H1(Ω;R3)∗) via

〈`(t), u〉 :=

∫
Ω

f(t, x) · u dx+

∫
ΓN

h(t, x) · u da

(A7) The Dirichlet data satisfies uD ∈ H1(Ω;R3).

(A8) The heat source density and the boundary heat flux in (5b) and (5d) are non-negative and
satisfy Q ∈ L1(0, T ; L1(Ω)) and q ∈ L1(0, T ; L1(Γ)).

(A9) The initial values are such that u0 ∈ H1(Ω;Rd) with u0−uD ∈ H1
ΓD

(Ω;Rd) andw0 ∈ L1(Ω)
with w0 ≥ w0

min > 0 a.e. in Ω.
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Derivation of a thermo-visco-elastic plate model at small strains 7

Remark 2. 1 The growth condition for θ 7→ cv(θ) in Assumption (A4) implies that Θ(w) ≤
C0(1 +w)1/s for w ≥ 0, some C0 ∈ [1,∞). Moreover, the condition s ≥ 2 can be relaxed to
s > 6/5, see [KrR19]. However, more refined estimates are required in this case.

2 Taking a time-independent Dirichlet data as in (A7) has the advantage that u̇ of a weak solution
(u,w) according to Definition 3 vanishes on (0, T )× ΓD. In particular, u̇ is an admissible test
function for (7), i.e., the tests in Step 1 of Proposition 9 and (31) are valid. However, one may
also consider a time-dependent Dirichlet data uD ∈ H1(0, T ; H1(Ω;Rd)) and then u̇ − u̇D

has to be used instead.

Definition 3 (Weak formulation of (5)). Let r ∈ (1, 5
4
) and assume that the Assumptions (A1)–(A9)

are satisfied. A pair (u,w) of functions u : [0, T ] × Ω → Rd, w : [0, T ] × Ω → R is said to be
a weak solution of the initial-boundary-value problem in (5a)–(5e) if u ∈ H1(0, T ; H1(Ω;Rd)) and
u − uD ∈ H1(0, T ; H1

ΓD
(Ω;Rd)) and w ∈ Lr(0, T ; W1,r(Ω)) with ẇ ∈ L1(0, T ; (W1,r′(Ω))∗),

and if it satisfies the integral identity∫ T

0

∫
Ω

(Ce(u) + De(u̇) + Θ(w)B) : e(v) dx dt =

∫ T

0

〈`(t), v〉 dt, (7)

for all v ∈ L2(0, T ; H1
ΓD

(Ω;Rd)) together with u(0, ·) = u0 in H1(Ω;Rd), and if for all φ ∈
W1,r′(0, T ; W1,r′(Ω)) with φ(T ) = 0∫ T

0

∫
Ω

(
−wφ̇+K(w)∇w · ∇φ

)
dx dt−

∫
Ω

w0(x)φ(0, x) dx

=

∫ T

0

∫
Ω

(
Q+ De(u̇) : e(u̇) + Θ(w)B : e(u̇)

)
φ dx dt+

∫ T

0

∫
Γ

qφ da dt. (8)

Theorem 4 (Existence of solutions). Let the Assumptions (A1)–(A9) hold. Then the initial-boundary-
value problem given by the system in (5a)–(5e) admits a weak solution in the sense of Definition 3.
Moreover, we have that Θ(w) > 0 and w > 0 a.e. in [0, T ]× Ω1.

The proof is postponed to Section 3.

2.4 Convergence to effective plate model

For the dimension reduction to a plate model, we consider domains with a plate geometry, namely,

Ωε = ω × (−ε/2,+ε/2) for 0 < ε� 1 and ω ⊂ R2.

In addition to the decomposition of the boundary into Dirichlet and Neumann part, we also use ab-
breviations to distinguish between vertical and horizontal part of the boundary in this setting. We set
Γ⊥ε := ∂ω × (−ε/2,+ε/2) for the vertical part and Γ

‖
ε := ω × {−ε/2,+ε/2} for the upper and

lower part of ∂Ωε, and we further define the lower part Γ−ε := ω × {−ε/2} and the upper part
Γ+
ε := ω × {+ε/2}. Hence, altogether we have the disjoint decomposition of the boundary

∂Ωε = Γ⊥ε ∪ Γ‖ε ∪
(
∂ω×{−ε/2,+ε/2}

)
= Γ⊥ε ∪ Γ−ε ∪ Γ+

ε ∪
(
∂ω×{−ε/2,+ε/2}

)
.

Finally, we assume that the Dirichlet part of the boundary is given in the form ΓD
ε = γD×(−ε/2,+ε/2)

for some subset γD ⊂ ∂ω with positive 1-dimensional Hausdorff measure.
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To pass to the limit ε→ 0 in a meaningful way, we need to interpret all functions as quantities defined
on one and the same domain. To this end, we introduce the transformation

Ωε 3 x = (x′, x3) 7→ x̃ := Sεx ∈ ω × (−1/2,+1/2) =: Ω1, where Sε := diag(1, 1, ε−1).

Correspondingly, we have the following parts of the boundary

� vertical boundary Γ⊥1 := ∂ω × (−1/2,+1/2);

� horizontal boundary Γ±1 := ω × {−1/2,+1/2};

� upper boundary Γ+
1 := ω × {+1/2};

� lower boundary Γ−1 := ω × {−1/2};

� Dirichlet boundary ΓD
1 := γD × (−1/2,+1/2);

� Neumann boundary ΓN
1 := ∂Ω1\ΓD

1 with horizontal and vertical parts Γ
N,‖
1 := ω×{−1/2, 1/2}

and ΓN,⊥
1 := (∂ω \ γD)× (−1/2,+1/2), respectively.

For a function φ : Ωε → R, we introduce the ‘tilde’ notation to denote by φ̃ : Ω1 → R the function in
the new variables, i.e.

φ̃(x̃) := φ(S−1
ε x̃) = φ(x) such that ∇xφ = Sε∇x̃φ̃(x̃) =: ∇εφ̃(x̃).

Furthermore, for vector-valued displacements u : Ωε → R3, we introduce the ‘hat’ notation to define
rescaled displacements via

û(x̃) := S−1
ε ũ(x̃) = S−1

ε u(S−1
ε x̃) such that ex(u) = Sεex̃(û)Sε =: κε(û)

Due to the form of the rescaled strain tensors κε(û), it is known that limits of rescaled displacements
ûε with bounded elastic energy have to lie in the space of Kirchhoff-Love displacements (see e.g.
[Cia97]), which is defined by

VKL(Ω1) :=
{
v ∈ H1(Ω1;Rd)

∣∣ e13(v) = e23(v) = e33(v) = 0
}

(9)

The space admits the following alternative characterization (cf. [Cia97, Part A, Section 1.4, Theo-
rem 1.4-1 (c)])

Lemma 5 (Characterization of Kirchhoff–Love displacements).

VKL(Ω1) =
{
û = (ûi)1≤i≤3

∣∣∣ ûi(x̃) = Ui(x1, x2)− x̃3∂xiU3(x1, x2) for i = 1, 2 and

û3(x̃) = U3(x1, x2) for Ui ∈ H1
γD

(ω), U3 ∈ H2
γD

(ω)
}

(10)

where H2
γD

(ω) := {U ∈ H2(ω) | U = ∇U · νγ = 0 on γD}.

Moreover, due to the uniform ellipticity of K, we expect limits of the solutions w̃ε to live in the set

W0 := {w̃ ∈W1,r(Ω1) | ∂x3w̃ = 0 a.e. Ω1} 'W1,r(ω). (11)

We can now state the additional assumptions that we will use for carrying out the limit passage ε→ 0.
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Derivation of a thermo-visco-elastic plate model at small strains 9

(B1) The domain ω ⊂ R2 is open, bounded, connected, and has a Lipschitz boundary γ = γD∪γN

such thatH1(γD) > 0.

(B2) The elasticity and the viscosity tensor C and D are spatially constant.

(B3) The thermal expansion tensor B is constant.

(B4) The bulk force density satisfies fε(t, x) = S−1
ε f∗(t, x̃) for some f∗ ∈ L2(0, T ; L2(Ω1;Rd))

and the surface force density is such that

hε(t, x) =

{
S−1
ε h⊥∗ (t, x̃) for x̃ ∈ ΓN,⊥

1 .

εS−1
ε h

‖
∗(t, x̃) for x̃ ∈ Γ

N,‖
1 ,

where h⊥∗ ∈ L2((0, T )× ΓN,⊥
1 ) and h

‖
∗ ∈ L2((0, T )× Γ

N,‖
1 ). We define the rescaled loadinĝ̀∗ ∈ L2(0, T ; H1(Ω1;R3)∗) via

〈̂̀∗(t), û〉 :=

∫
Ω1

f∗(t) · û dx̃+

∫
Γ
N,‖
1

h‖∗(t) · û da +

∫
ΓN,⊥
1

h⊥∗ (t) · û da.

(B5) The Dirichlet data is such that uD,ε(x) = SεûD,ε(x̃) := Sεû(0)
D (x̃)+εSεû(1)

D (x̃)+ε2Sεû(2)
D (x̃)

for given functions û(0)
D ∈ VKL(Ω1), û(1)

D ∈ V33(Ω1), and û(2)
D ∈ H1(Ω1;Rd), where V33(Ω1) :=

{(û1, û2, û3) ∈ H1(Ω1;Rd) | ∂x̃3û3 = 0}.

(B6) The heat source density is such that Qε(t, x) = Q∗(t, x̃) for some Q∗ ∈ L1(0, T ; L1(Ω1))
and the boundary heat flux satisfies

qε(t, x) =

{
q⊥∗ (t, x̃) for x̃ ∈ Γ⊥1
εq
‖
∗(t, x̃) for x̃ ∈ Γ

‖
1,

for q⊥∗ ∈ L1(0, T ; L1(Γ⊥1 )) and q
‖
∗ ∈ L1(0, T ; L1(Γ

‖
1)).

(B7) cv ∈ C0(R;R) satisfies the growth condition (6) for c0 > 0, s ≥ 2.

(B8) The heat conductivity is such that K ∈ C0(R;Rd×d), andK(w) = K(Θ(w))
cv(Θ(w))

is uniformly elliptic

and bounded, i.e. there exists γK > 0 such that K(w)ξ · ξ ≥ γK|ξ|2 for any w ∈ R, ξ ∈ R3,
and supw∈R|K(w)| <∞.

(B9) The initial values are such that u0,ε(x) = Sεû0,ε for û0,ε ∈ H1
ΓD,1

(Ω1;R3) with û0,ε → û0 in

H1
ΓD,1

(Ω1;R3) and κε(û0,ε) → κ0 in L2(Ω1;R3×3
sym). The limit κ0 is affine with respect to x3.

Finally, we assume that w0,ε = w̃0 for some w̃0 ∈ L1(Ω1) with ∂x3w̃
0 = 0 a.e. in Ω1.

Remark 6. (i) The condition that x3 7→ κ0(x′, x3) is affine for a.e. x′ ∈ ω will be used to decompose
the limiting strains κ(t) = limε→0 κε(ûε(t)) into an even and an odd part, see (44).

(ii) It is also possible to consider an initial value û0,ε that is minimizer of the functional Eε(û0,ε) =∫
Ω1

1
2
Cκε(û) : κε(û) dx−〈`0, û〉 for some given external loading `0. Then, it is well known, that mini-

mizers ûε of Eε converge to minimizers û of the effective functional E0, where E0(û) =
∫

Ω1

1
2
CKLe(û) :

e(û) dx − 〈`0, û〉 if û is a Kirchhoff–Love displacements and E0(û) = +∞ otherwise, see [Cia97].
Here, e(û) ∈ R2×2

sym denotes the in-plane strain tensor and, using the notation from (14), the effec-

tive elasticity tensor is given as CKL = C − P∗CM
−1
C PC. Moreover, we have that κε(ûε) → κ in

L2(Ω1;R3×3), where κij = eij(û) for i, j = 1, 2 and the vector κ ∈ L2(Ω1;R3), defined via
κi = κi3 for i = 1, 2, 3, satisfies the relation MCκ + PCe(û) = 0.
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M.I. Gau, M. Liero 10

With the transformation to the fixed domain Ω1 and the rescaling of the displacements, it is not hard
to confirm that the rescaled pair (ûε, w̃ε), corresponding to solutions to the system in (5), satisfy the
rescaled equation of linear momentum∫

Ω1

(
Cκε(ûε(t)) + Dκε( ˙̂uε(t)) + Θ(w̃ε(t))B

)
: κε(v̂) dx̃ = 〈̂̀∗(t), v̂〉, (12)

for almost every t ∈ [0, T ] and for all v̂ ∈ H1
ΓD,1

(Ω1;R3) and the rescaled heat equation

∫ T

0

∫
Ω1

(
−w̃ε

˙̃
ξ +K(w̃ε)∇εw̃ε · ∇εξ̃

)
dx̃ dt−

∫
Ω1

w̃0ξ̃(0, ·) dx̃

=

∫ T

0

∫
Ω1

(
Q∗ + Dκε( ˙̂u) : κε( ˙̂u) + Θ(w̃ε)B : κε( ˙̂u)

)
ξ̃ dx̃ dt

+

∫ T

0

∫
Γ
‖
1

q‖∗ξ̃ da dt+

∫ T

0

∫
Γ⊥1

q⊥∗ ξ̃ da dt (13)

for all ξ̃ ∈W1,r′(0, T ; W1,r′(Ω1)) with ξ̃(T ) = 0.

To identify the effective lower-dimensional system, it is convenient to introduce the tensors C ∈
Lin(R2×2

sym ,R2×2
sym ) PC ∈ Lin(R2×2

sym ,R3) and the matrix MC ∈ R3×3
sym via

CA : B := C
(
A 0
0 0

)
:

(
B 0
0 0

)
, PCA ·

(
a
z

)
:= C

(
A 0
0 0

)
:

(
0 a
a> z

)
MC

(
a
z

)
·
(
b
y

)
:= C

(
0 a
a> z

)
:

(
0 b
b> y

)
, for A,B ∈ R2×2

sym , a, b ∈ R2, y, z ∈ R.
(14)

Analogously, we define the quantities D ∈ Lin(R2×2
sym ,R2×2

sym ), PD ∈ Lin(R2×2
sym ,R3), MD ∈ R3×3

sym for

the viscosity tensor D. We will also denote B = (Bij)i,j=1,2 and bB = (2B13, 2B23,B33)> ∈ R3.
We decompose the heat conductivity tensor as

K(w) =

(
K(w) k1(w)
k1(w)> k2(w)

)
, where K(w) ∈ R2×2

sym , k1(w) ∈ R2, k2(w) ∈ R+. (15)

The effective two-dimensional heat conductivity tensor w 7→ Keff(w) ∈ R2×2
sym is given via Keff(w) =

K(w) − 1
k2(w)

k1(w) ⊗ k1(w). The form of Keff(w) is not surprising. Indeed, let us consider the

quadratic form z 7→ 1
2
K(w)z · z for z ∈ R3. The effective two-dimensional heat conductivity tensor

arises from minimizing out the vertical direction, viz.

1

2
Keff(w)z′ · z′ = min

z3∈R

1

2
K(w)

(
z′

z3

)
·
(
z′

z3

)
with Z∗3(w, z′) = −k1(w) · z′

k2(w)
(16)

denoting the unique minimizer for given w ∈ R and z′ ∈ R2. Note that Keff(w) is the Schur comple-
ment of k2(w) in K(w).

Moreover, we define the planar strain e(u) ∈ R2×2
sym as

eij(u) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2.
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Derivation of a thermo-visco-elastic plate model at small strains 11

Theorem 7 (Limit passage to plate model). Let us assume that the Assumptions (A1)–(A9) and
(B1)–(B9) hold. Then, the rescaled weak solutions (ûε, w̃ε) to the system (5) converge (up to sub-
sequences) to limits (û, w̃) with û ∈ H1(0, T ;VKL(Ω1))), w̃ ∈ Lr(0, T ;W0) such that

ûε ⇀ û in H1(0, T ; H1(Ω;R3)), w̃ε⇀ w̃ in Lr(0, T ; W1,r(Ω)). (17)

In particular, the limits û and w̃ can be identified with functions U = (U1, U2), U3 and W , respec-
tively, defined on [0, T ]× ω that are weak solutions to the following effective system consisting of the
membrane and plate equations∫

ω

(
Ce(U) + De(U̇) + P∗Cκeven + P∗Dκ̇even + Θ(W )B

)
: e(V ) dx′ = 〈L1,2(t), V 〉

1

12

∫
ω

(
C∇2U3 + D∇2U̇3 + P∗Cκodd + P∗Dκ̇odd

)
: ∇2V3 dx′ = 〈L3(t), V3〉

for all V = (V1, V2) ∈ H1
γD

(ω) × H1
γD

(ω) and V3 ∈ H2
γD

(ω) almost everywhere in [0, T ], the
out-of-plane strains satisfy

κ̇even + M−1
D MCκeven = −M−1

D (PCe(U) + PDe(U̇1, U̇2) + Θ(W )bB),

κ̇odd + M−1
D MCκodd = −M−1

D (PC∇2U3 + PD∇2U̇3).

almost everywhere in [0, T ]× ω, and the effective heat equation for W reads∫ T

0

∫
ω

(
−Wξ̇ +Keff(W )∇′W · ∇′ξ

)
dx dt−

∫
ω

W 0ξ(0, ·) dx

=

∫ T

0

∫
ω

Qtot

(
t, x′; e(U̇),∇2U3, κ̇even, κ̇odd,Θ(W )

)
ξ dx′ dt+

∫ T

0

∫
∂ω

q⊥∗ ξ da dt (18)

for all ξ ∈W1,r′(0, T ; W1,r′(ω)) with ξ(T ) = 0, where the total heat sourceQtot is defined in (50).

3 Existence proof

For the remaining part of the text, we drop ‘hat’ and ‘tilde’ over the quantities to keep the notation sim-
ple. In order to prove the existence of solutions, we first consider a regularized system, by introducing
for δ > 0 the regularized heat source

Qδ(κ̇, w; t, x) = Qδ(t, x) +
Θ(w)B : κ̇+ Dκ̇ : κ̇

1 + δ|κ̇|2
, (19)

where Qδ ∈ L2((0, T ) × Ω1) is such that Qδ → Q in L1(0, T ; L1(Ω1)). Moreover, we consider

q⊥δ ∈ L2((0, T ) × Γ⊥1 ) and q
‖
δ ∈ L2((0, T ) × Γ

‖
1) such that q⊥δ → q⊥∗ in L1(0, T ; L1(Γ⊥1 )) and

q
‖
δ → q

‖
∗ in L1(0, T ; L1(Γ

‖
1)), as well as, regularized initial values w0

δ ∈ L2(Ω1) such that w0
δ → w0

in L1(Ω1)

Thus, instead of the heat equation in (13), we consider its regularized version

ẇ − divε(K(w)∇εw) = Qδ(κε(u̇), w), (20)

while the mechanical equation stays the same. The existence of solutions to the regularized system
(1a) and (20) can be deduced either via time-discretization or Galerkin approximation, we refer the
interested reader to [KrR19, Sect. 8.3] and [Rou09], respectively.
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M.I. Gau, M. Liero 12

Theorem 8 (Existence for regularized model). For ε > 0 and δ > 0 fixed, there exists a weak
solution (uδ,ε, wδ,ε) ∈ H1(0, T ; H1(Ω1;Rd)) × (L2(0, T ; H1(Ω1)) ∩ H1(0, T ; (H1(Ω1))∗) to the
regularized system, meaning that uδ,ε − uD,ε ∈ H1(0, T ; H1

ΓD
1
(Ω1;Rd)), wδ,ε > 0, that for all v ∈

L2(0, T ; H1
ΓD
1
(Ω1;Rd)) it holds∫ T

0

∫
Ω

(
Cκε(uδ,ε) + Dκε(u̇δ,ε) + Θ(wδ,ε)B

)
: κε(v) dx dt =

∫ T

0

〈`∗(t), v〉 dt, (21)

for any ξ ∈ L2(0, T ; H1(Ω1))∫ T

0

〈ẇδ,ε, ξ〉 dt+

∫ T

0

∫
Ω

K(wδ,ε)∇εwδ,ε · ∇εξ dx dt

=

∫ T

0

∫
Ω

Qδ(κε(u̇δ,ε), wδ,ε)ξ dx dt+

∫ T

0

∫
Γ
‖
1

q
‖
δξ da dt+

∫ T

0

∫
Γ⊥1

q⊥δ ξ da dt, (22)

and the initial conditions uδ,ε(0) = u0
ε, wδ,ε(0) = w0

δ are fulfilled.

Concerning the positivity of temperature, we note that

Θ(w)B : κ̇+ Dκ̇ : κ̇

1 + δ|κ̇|2
≥ −C

2
0 |B|2

2γD
|w|2

due to Remark 2. Hence, we can carry out similar arguments as in [Rou13, Remark 12.10] to ob-
tain positivity wδ,ε ≥ 2

C2
0 |B|2Tγ

−1
D +2/w0

min

> 0, which holds uniformly in ε and δ. It follows that also

Θ(wδ,ε) > 0.

Proposition 9 (A priori estimates for the regularized system). Let us assume that Assumptions (A1)-
(A9) and (B1)–(B9) hold. Fix r ∈ (1, 5

4
). Let (uδ,ε, wδ,ε) denote the solutions for the regularized

system in Theorem 8, then there exists a constant C > 0 independent of δ > 0 and 0 < ε < 1 such
that

‖κε(uδ,ε)‖L∞(0,T ;L2(Ω1)) + ‖κε(u̇δ,ε)‖L2(0,T ;L2(Ω1)) + ‖uδ,ε‖H1(0,T ;H1(Ω)) ≤ C, (23)

‖wδ,ε‖L∞(0,T ;L1(Ω1)) + ‖wδ,ε‖Lr(0,T ;W1,r(Ω1)) +
1

ε
‖∂x3wδ,ε‖Lr(0,T ;Lr(Ω1)) ≤ C. (24)

Proof. Step 1. We fix τ ∈ [0, T ] and test (21) with v = u̇δ,ε(t)χ[0,τ ](t), and after some rearranging
we obtain∫ τ

0

∫
Ω

(
Cκε(uδ,ε) + Dκε(u̇δ,ε)

)
: κε(u̇δ,ε) dx dt =

∫ τ

0

〈`∗(t), u̇δ,ε〉 dt

−
∫ τ

0

∫
Ω

Θ(wδ,ε)B : κε(u̇δ,ε) dx dt.

In the left-hand side, we use uniform ellipticity of C and D in (A2) to obtain after using the chain rule

γC
2
‖κε(uδ,ε(τ))‖2

L2(Ω1) + γD

∫ τ

0

‖κε(u̇δ,ε)‖2
L2(Ω1) dt ≤ CC

2
‖κε(u0

ε)‖2
L2(Ω)

+

∫ τ

0

‖`∗(t)‖H1(Ω1)∗‖u̇δ,ε‖H1(Ω1) dt+ CB

∫ τ

0

‖Θ(wδ,ε)‖L2(Ω1)‖κε(u̇δ,ε)‖L2(Ω1) dt.
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Derivation of a thermo-visco-elastic plate model at small strains 13

In the right-hand side, we apply Young’s inequality several times and use that due to Korn’s inequality
there exists a constant CK > 0 (depending only on the fixed domain Ω1) such that ‖u̇δ,ε‖H1(Ω1) ≤
CK‖e(u̇δ,ε)‖L2(Ω1) ≤ ‖κε(u̇δ,ε)‖L2(Ω1) as 0 < ε < 1. We are then left with

‖κε(uδ,ε(τ))‖2
L2(Ω1) + ‖κε(u̇δ,ε)‖2

L2(0,τ ;L2(Ω1))

≤ C
(
‖κε(u0

ε)‖2
L2(Ω1) + ‖`∗‖2

L2(0,T ;H1(Ω1)∗) + ‖Θ(wδ,ε)‖2
L2(0,τ ;L2(Ω1)),

)
where C > 0 does not depend on δ, τ and ε. Using the Assumption in (B9) for the initial value u0

ε and
(B4) for the external forces, it follows for all τ ∈ (0, T ] that

‖κε(uδ,ε(τ))‖2
L2(Ω1) + ‖κε(u̇δ,ε)‖2

L2(0,τ ;L2(Ω1)) ≤ C1

(
1 + ‖Θ(wδ,ε)‖2

L2(0,τ ;L2(Ω1))

)
(25)

for some constant C1 independent of ε and δ.

Step 2. For the derivation of the estimates in (24), we use the techniques established by Boccardo and
Gallouët [BoG89, BD∗97] and follow the depiction in [Rou09, Proposition 4.3] and [Rou10, Proposition
4.2].

Again, keeping τ ∈ (0, T ] fixed, we consider for 0 < k < 1 the C2-function φk(z) := z −
1

1−k
1

(1+z)k−1 for z ∈ [0,∞). We have φ′k(z) = 1 − 1
(1+z)k

and φ′′k(z) = k
(1+z)k+1 and perform

the test in (22) with ξ = φ′k(wδ,ε)χ[0,τ ]. By chain rule, we then get∫
Ω1

φk(wδ,ε(τ)) dx−
∫

Ω1

φk(w
0
ε) dx+

∫ τ

0

∫
Ω1

φ′′k(wδ,ε)K(wδ,ε)∇εwδ,ε · ∇εwδ,ε dx dt

=

∫ τ

0

∫
Ω1

Qδ(κε(u̇δ,ε), wδ,ε)φ′k(wδ,ε) dx dt

+

∫ τ

0

∫
Γ
‖
1

q
‖
δφ
′
k(wδ,ε) da dt+

∫ τ

0

∫
Γ⊥1

q⊥δ φ
′
k(wδ,ε) da dt. (26)

Note that φk has linear growth, i.e., − 1
1−k + z ≤ φk(z) ≤ z, while 0 ≤ φ′k(z) ≤ 1 in the following.

In particular, exploiting that |Qδ(κ̇, w; t, x)| ≤ Qδ(t, x) + |B||Θ(w)||κ̇| + Dκ̇ : κ̇, we estimate the
right-hand side using Hölder’s and Young’s inequalities∫ τ

0

∫
Ω1

Qδ(κε(u̇δ,ε), wδ,ε)φ′k(wδ,ε) dx dt+

∫ τ

0

∫
Γ
‖
1

q
‖
δφ
′
k(wδ,ε) da dt+

∫ τ

0

∫
Γ⊥1

q⊥δ φ
′
k(wδ,ε) da dt

≤ ‖Qδ‖L1(0,τ ;L1(Ω1)) + C
(
‖κε(u̇δ,ε)‖2

L2(0,τ ;L2(Ω1)) + ‖Θ(wδ,ε)‖2
L2(0,τ ;L2(Ω1))

)
+ ‖q‖δ‖L1(0,τ ;L1(Γ

‖
1))

+ ‖q⊥δ ‖L1(0,τ ;L1(Γ⊥1 ))

for all τ ∈ (0, T ] and a constant C > 0 independent of ε and δ. In the left-hand side of (26),
we use the bounds for φk and uniform ellipticity of K in (B3) and the convergences Qδ → Q∗ in
L1(0, T ; L1(Ω1)) and q

‖
δ → q

‖
∗ in L1(0, T ; L1(Γ

‖
1)) and q⊥δ → q⊥∗ in L1(0, T ; L1(Γ⊥1 )), to obtain

for any ε > 1, δ > 1 and τ ∈ (0, T ]

‖wδ,ε(τ)‖L1(Ω1) +

∫ τ

0

∫
Ω1

|∇εwδ,ε|2

(1 + wδ,ε)k+1
dx dt

≤ C2

(
1 + ‖κε(u̇δ,ε)‖2

L2(0,τ ;L2(Ω1)) + ‖Θ(wδ,ε)‖2
L2(0,τ ;L2(Ω1))

)
(27)

for some constant C2 > 0 independent of ε and δ.
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Step 3. Multiplying (27) by 1/(2C2) and adding the result to (25) gives

‖κε(uδ,ε(τ))‖2
L2(Ω1) +

1

2
‖κε(u̇δ,ε)‖2

L2(0,τ ;L2(Ω1)) +
1

2C2

‖wδ,ε(τ)‖L1(Ω1)

+
1

2C2

∫ τ

0

∫
Ω1

|∇εwδ,ε|2

(1 + wδ,ε)k+1
dx dt ≤

(
C1+

1

2

)(
1 + ‖Θ(wδ,ε)‖2

L2(0,τ ;L2(Ω1))

)
(28)

for all δ > 0, ε ∈ (0, 1], τ ∈ [0, T ]. Using now the estimate Θ(w) ≤ C0(w)1/s for s > 2 (see Re-
mark 2) gives a uniform estimate for ‖wδ,ε‖L∞(0,T ;L1(Ω1)) via Grönwall’s inequality. From this estimate,
we immediately obtain the uniform bound for ‖κε(uδ,ε)‖L∞(0,T ;L2(Ω1)) and ‖κε(u̇δ,ε)‖L2(0,T ;L2(Ω1)).
Eventually, the uniform bound for ‖uδ,ε‖H1(0,T ;H1(Ω1)) follows from Korn’s inequality and ‖e(v)‖L2(Ω1) ≤
‖κε(v)‖L2(Ω1) (since ε < 1), which provide us

‖uδ,ε‖H1(0,T ;H1(Ω1)) ≤ CK‖κε(uδ,ε)‖H1(0,T ;L2(Ω1)) + CK‖κε(uD,ε)‖L2(Ω1) + ‖uD,ε‖H1(Ω1).

The norms containing the Dirichlet data are uniformly bounded in ε and δ by decomposition (B5), and
the norm of κε(uδ,ε) is bounded by the already shown estimate for ‖κε(uδ,ε)‖H1(0,T ;L2(Ω1)).

Step 4. It remains to prove the uniform estimate for ∇εwδ,ε in Lr(0, T ; Lr(Ω;R3)). We start by
applying Hölder’s inequality with the exponents 2/r and 2/(2−r) (recall that r ∈ (1, 5/4)) to obtain∫ T

0

∫
Ω

|∇εwδ,ε|r dx dt =

∫ T

0

∫
Ω

|∇εwδ,ε|r

(1 + wδ,ε)
r(k+1)

2

(1 + wδ,ε)
r(k+1)

2 dx dt

≤
(∫ T

0

∫
Ω

|∇εwδ,ε|2

(1 + wδ,ε)k+1
dx dt

) r
2
(∫ T

0

∫
Ω

(1 + wδ,ε)
r(k+1)
2−r dx dt

) 2−r
2

= I1 × I2.

We observe that I1 is already uniformly controlled via (28). For I2, we use the Gagliardo–Nirenberg
estimate, in the following form

‖z‖Lq̃(Ω1) ≤ CGN‖z‖1−λ
L1(Ω1)

(
‖z‖L1(Ω1) + ‖∇z‖Lr(Ω1)

)λ
for

1

q̃
≥ 1−λ

1
+ λ
(1

r
− 1

d

)
, 0 < λ ≤ 1, z ∈W1,r(Ω1),

(29)

where d = 3 is the dimension of the domain Ω1. In particular, for z = 1 + wδ,ε(t) and q̃ =
r(1+k)/(2−r) and k = 1

d
(d + 2 − r(d + 1)), we get k > 0 since r < (d + 2)/(d + 1) = 5/4,

and we can set λ = r/q̃ = (2−r)/(1+k) ∈ (0, 1) to obtain

‖∇εwδ,ε‖rLr(0,T ;Lr(Ω1)) ≤ I1 × I2 ≤ C

(∫ T

0

‖1 + wδ,ε(t)‖q̃Lq̃(Ω1)
dt

)1−r/2

≤ C

(∫ T

0

(1 + ‖∇wδ,ε‖rLr(Ω1)) dt

)1−r/2

(30)

where we also used that ‖wδ,ε‖L∞(0,T ;L1(Ω1)) ≤ C . Note that all constants C > 0 are independent of
δ and ε. Finally, we note that ‖∇wδ,ε‖Lr(Ω1) ≤ ‖∇εwδ,ε‖Lr(Ω1) as 0 < ε < 1. Thus, using Young’s
inequality on the right-hand side to conclude that ∇εwδ,ε is uniformly bounded in Lr(0, T ; Lr(Ω1)).

DOI 10.20347/WIAS.PREPRINT.3209 Berlin 2025



Derivation of a thermo-visco-elastic plate model at small strains 15

We are now in position to pass to the limit δ → 0 for ε fixed. Note that for ε fixed, we also ob-
tain a uniform estimate for the time-derivative ẇδ,ε. Indeed, testing the heat equation with an arbi-
trary test function ξ ∈ L∞(0, T ; W1,r′(Ω1)) and using the a priori estimates established above

as well as ‖Qδ(κε, wδ,ε)‖L1(0,T ;L1Ω1) and ‖q‖δ‖L1(0,T ;L1(Γ
‖
1))

+ ‖q⊥δ ‖L1(0,T ;L1(Γ⊥1 )) ≤ C gives that

‖ẇδ,ε‖L1(0,T ;(W1,r′ (Ω))∗) is bounded uniformly with respect to δ (but not with respect to ε).

Theorem 10 (Existence of rescaled solutions; limit passage δ → 0). Let (uδ,ε, wδ,ε) be from Theorem
8 and keep ε ∈ (0, 1] fixed. Then, there exists a sequence (δk)k∈N ⊂ (0, 1), δk ↘ 0, and limits
(uε, wε) such that {

uδk,ε ⇀ uε in H1(0, T ; H1(Ω;R3)),

wδk,ε ⇀ wε in Lr(0, T ; W1,r(Ω)),

and (uε, wε) is a weak solution of (5) in the sense of Definition 3. Moreover, all estimates in Proposition
9 remain true for the limits (uε, wε) via weak lower semicontinuity of the norm.

Proof. By Proposition 9, we find a sequence (δk)k∈N, δk ↘ 0, such that the stated convergences
hold. We will now mainly follow the ideas from [Rou09, Proposition 4.6] and [BaR11, Lemma 4.2]. One
crucial point is to get strong convergence for (wδ,ε)δ>0 and (κε(u̇δ,ε))δ>0 in order to deal with the
nonlinearities in (21) and (22).

First, we note that ẇδ,ε still enjoys a bound in L1(0, T ; (W1,r′(Ω1))∗) that is uniformly in δ (for ε
fixed). Thus, we obtain from Aubin–Lions’ compactness theorem (see [NeR01, Lemma 3]) the strong
convergence wδk,ε → wε in Lr(0, T ; Lr(Ω1)) and, up to further subsequence (not relabelled), con-
vergence a.e. in (0, T ) × Ω1. As Θ has at most 1

2
-growth, continuity implies Θ(wδk,ε) → Θ(wε) in

L2(0, T ; L2(Ω1)). In particular, the mechanical equation (7) can be readily derived from (21). Also,
the initial condition is fulfilled as u0

ε = uδk,ε(0) ⇀ uε(0).

The limit passage in (21) is used to show κε(u̇δk,ε)→ κε(u̇ε) in L2(0, T ; L2(Ω1)). We compute

∫ T

0

∫
Ω1

Dκε(u̇ε):κε(u̇ε) dx dt ≤ lim sup
k→∞

∫ T

0

∫
Ω1

Dκε(u̇δk,ε):κε(u̇δk,ε) dx dt

= lim sup
k→∞

(∫ T

0

∫
Ω1

−Cκε(uδk,ε):κε(u̇δk,ε)−Θ(wδk,ε)B:κε(u̇δk,ε) dx dt+

∫ T

0

〈̂̀∗, u̇δk,ε〉 dt)
= lim sup

k→∞

(∫
Ω1

1

2
Cκε(uε(0)):κε(uε(0)) dx−

∫
Ω1

1

2
Cκε(uδk,ε(T )) : κε(uδk,ε(T )) dx

−
∫ T

0

∫
Ω1

Θ(wδk,ε)B : κε(u̇δk,ε) dx dt+

∫ T

0

〈̂̀∗, u̇δk,ε〉 dt) =

∫ T

0

∫
Ω1

Dκε(u̇ε):κε(u̇ε) dx dt,

(31)

where we used weak lower semi-continuity in the first, the mechanical equation (21) in the sec-
ond, the chain rule in the third, and finally the mechanical equation (7) in the fourth line. Thus,
since L2(0, T ; L2(Ω1;R3×3

sym )) is a Radon-Riesz space, we conclude that κε(u̇δk,ε) → κε(u̇ε) in
L2(0, T ; L2(Ω1;R3×3

sym )) and (up to further subsequence; not relabelled) a.e. in (0, T )× Ω1.

We pass to the limit δk → 0 in (22) for test functions ξ ∈ W1,r′(0, T ; W1,r′(Ω1)) with ξ(T ) = 0 as
follows: In the left-hand side, we integrate by parts in the time derivative, and in the right-hand side we
use the strong convergences Θ(wδk,ε)→ Θ(wε) and κε(u̇δk,ε)→ κε(u̇ε) in L2(0, T ; L2(Ω1;R3×3

sym ))
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M.I. Gau, M. Liero 16

for the adiabatic terms. ForQδ, as defined in (19), we note that almost everywhere in [0, T ]× Ω1∣∣Qδ(κε(u̇δk,ε), wδk,ε)−Q−Θ(wε)B : κε(u̇ε)− Dκε(u̇ε) : κε(u̇ε)
∣∣

≤ |Qδ −Q|+ Dκε(u̇δk,ε) : κε(u̇δ,ε) + Dκε(u̇ε) : κε(u̇ε)

+ |Θ(wδk,ε)B : κε(u̇δk,ε)|+ |Θ(wε)B : κε(u̇ε)|.

Hence, we can use Pratt’s theorem and the strong- and a.e.-convergences again to eventually con-
clude (8). Finally, using equation (8), one shows a posteriori that wε has a time derivative in the space
L1(0, T ; (W1,r′(Ω))∗), see also Lemma 11.

For the limit passage ε → 0, the above arguments are not applicable since we cannot establish a
uniform bound for ẇε in L1(0, T ; (W1,r′(Ω))∗). However, we can exploit the following decomposition
ofwε into its vertical average and a remainder. For the former, the Aubin–Lions lemma can be applied,
and the latter strongly converges to 0 due to the boundedness of ε−1∂x3wε. Indeed, let us denote by
Wε the average in vertical direction, i.e., we set

Wε(t, x
′) :=

∫ 1

0

wε(t, x
′, z) dz, and ϑε := wε −Wε. (32)

The remainder ϑε ∈ Lr(0, T ; Lr(Ω1)) is given via

ϑε(t, x
′, x3) =

∫ 1

0

∫ x3

z

∂x3wε(t, x
′, y) dy dz.

Hence, with ε−1‖∂x3wε‖Lr(0,T ;Lr(Ω1)) ≤ being bounded (see (24) in Proposition 9), we obtain ϑε → 0
strongly in Lr(0, T ; Lr(Ω1)). Thus, it remains to prove the strong convergence of Wε.

Lemma 11 (Estimate for Ẇε). Let (wε, uε) be the rescaled solutions in Theorem 10 and Wε defined
as in (32). Then, there exists C > 0, independent of 0 < ε < 1, such that ‖Ẇε‖L1(0,T ;(W1,r′ (ω))) ≤
C .

Proof. Note that we can identify functions in W1,r′(ω) with functions in W0, see (11). For a.e. t ∈
[0, T ] and ξ ∈ W0, it holds

〈Ẇε(t), ξ〉 = 〈ẇε(t), ξ〉 = −
∫

Ω1

K(wε(t))∇εwε(t) ·
(
∇′ξ
0

)
dx+

∫
Γ1

q∗(t)ξ da

+

∫
Ω1

(
Q∗(t) + Dκε(u̇ε(t)) : κε(u̇ε(t)) + Θ(wε(t))B : κε(u̇ε(t))

)
ξ dx

In particular, we obtain

|〈Ẇε(t), ξ〉| ≤
{
CK‖∇εwε(t)‖Lr(Ω1) + ‖q∗(t)‖L1(Γ1) + ‖Q∗(t)‖L1(Ω1)

+ CD‖κε(u̇ε(t))‖2
L2(Ω1) + CB‖Θ(wε(t))‖L2(Ω1)‖κε(u̇ε(t))‖L2(Ω1)

}
‖ξ‖W1,r′ (Ω1),

where we have used the continuous embedding W1,r′(Ω1) ↪→ L∞(Ω1) (note that r′ > d + 2 with
d = 3) and the continuity of the trace operator W1,r′(Ω1) → L∞(Γ1). Thus, we have proven the
claim.

Lemma 12. Let (wε, uε) be the rescaled solutions in Theorem 10, then, the sequence wε is precom-
pact in Lr(0, T ; Lr(Ω1)).

Proof. With the decomposition in (32), the claim follows from the strong convergence of ϑε → 0 in
Lr(0, T ; Lr(Ω1)) and using Lemma 11 and the Aubin–Lions lemma for Wε, see [Rou13, Ch. 7].
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Derivation of a thermo-visco-elastic plate model at small strains 17

4 Proof of Theorem 7

We are now in position to pass to the limit in the rescaled system (12) and (13).

Step 1. Let (uε, wε)ε>0 be the rescaled solutions from Theorem 10, then, due to the uniform estimates
(with respect to ε > 0) in Proposition 9, we can extract (non-relabelled) subsequences such that

uε ⇀ u in H1(0, T ; H1(Ω1;R3)), κε(uε) ⇀ κ in H1(0, T ; L2(Ω1;R3×3)), (33)

with limits u ∈ H1(0, T ; H1(Ω;R3)) and κ ∈ H1(0, T ; L2(Ω;R3×3)). Moreover, since κε(uε) =
Sεe(uε)Sε is bounded in H1(0, T ; L2(Ω;R3×3)), we obtain ei3(u) = 0 a.e. in (0, T ) × Ω1 such
that u(t, ·) ∈ VKL(Ω1) for almost every t ∈ [0, T ]. Thus, following characterization of Kirchhoff–Love
displacements in Lemma 5, we can identify the limit u with a triple (U1, U2, U3) ∈ H1(0, T ; H1(ω))×
H1(0, T ; H1(ω)) × H1(0, T ; H2(ω)). We also obtain that κij = eij(u) and κ̇ij = eij(u̇) for
i, j ∈ {1, 2}. For the remaining components, we will use the notation κ = (κ13, κ23, κ33)> ∈
H1(0, T ; L2(Ω1;R3)).

Concerning the thermal part of the internal energy density, we have that

wε ⇀ w in Lr(0, T ; W1,r(Ω1)), 1
ε
∂x3wε ⇀ ζ in Lr(0, T ; Lr(Ω)), (34)

from which w(t, ·) ∈ W0 for almost every t ∈ [0, T ] immediately follows, cf. (11) for the definition of
the spaceW0. In particular, we identifyw(t) ∈ W0 with a functionw(t) ∈W1,r(ω). With Lemma 12,
we conclude that also wε → w strongly in Lr(0, T ; Lr(Ω1)). Hence, using the growth condition in
Assumption (A4) (see also Remark 2), we conclude that Θ(wε)→ Θ(w) in L2((0, T )× Ω1).

Step 2. We pass to the limit in the mechanical equation (12) testing with v ∈ L2(0, T ;VKL(Ω1)) so
that ei3(v) = 0 for i = 1, 2, 3. With the convergences above and the decomposition of C and D in
(14), we arrive at∫ T

0

∫
Ω1

(
Ce(u) + De(u̇) + P∗Cκ + P∗Dκ̇ + Θ(w)B

)
: e(v) dx dt =

∫ T

0

〈`∗(t), v〉 dt. (35)

Next, we test the mechanical equation (12) with vε = (εv′, ε2v3), where the horizontal part satisfies
v′ ∈ L2(0, T ; H1

ΓD,1
(Ω1;R2)) and the vertical component is such that v3 ∈ L2(0, T ; H1

ΓD,1
(Ω1)). In

the limit ε→ 0, we obtain∫ T

0

∫
Ω1

(
PCe(u) + PDe(u̇) + MCκ + MDκ̇ + Θ(w)bB

)
·
(

1
2
∂x3v

′

∂x3v3

)
dx dt = 0. (36)

By a variant of the fundamental lemma of calculus of variations [Cia97, Step (iii) of the proof of Theo-
rem 1.4-1.], we deduce that

κ̇+M−1
D MCκ = −M−1

D (PCe(u)+PDe(u̇)+Θ(w)bB) =: F[e(u), e(u̇),Θ(w)] a.e. in (0, T )×Ω1.
(37)

Note that MD ∈ R3×3
sym is invertible, since D is positive definite. Let E : [0, T ] → R3×3 denote the

matrix exponential E(τ) := exp(−τM−1
D MC) such that Ė = −M−1

D MCE and E(0) = I. Thus, we
find that the unique solution of the ODE (parametrized by x ∈ Ω1) in (37) is given by

κ(t, x) = A[e(u), e(u̇),Θ(w),κ0](t, x)

:=

∫ t

0

E(t−s)F
[
e(u), e(u̇),Θ(w)

]
(s, x) ds+ E(t)κ0(x),

(38)
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where the initial value satisfies κ0 = (κ0
13, κ

0
23, κ

0
33)> ∈ L2(Ω1;R3) with κ0 from Assumption (B9).

We highlight thatA : L2(0, T ; L2(Ω1;R2×2×R2×2×R))×L2(Ω1;R3)→ H1(0, T ; L2(Ω1;R3)) is
affine in u, u̇, and Θ(w).

Step 3. For the limit passage in (13), we choose a test function ξ ∈ W1,r′(0, T ; W1,r′(Ω1)) with
ξ(T ) = 0 and multiply the equation by ε > 0. Using the convergences above, we can pass to the
limit ε→ 0 and arrive at∫ T

0

∫
Ω1

(
k1(w) · ∇′w + k2(w)ζ

)
∂x3ξ dx dt = 0,

where ζ ∈ Lr(0, T ; Lr(Ω1)) is the limit of 1
ε
∂x3wε. We conclude that ζ = Z∗3(w,∇′w) = −(k1(w) ·

∇′w)/k2(w) (cf. (16)).

Arguing as in the proof of Theorem 10, we can assume that κε(u̇ε) → κ̇ in L2((0, T ) × Ω1;R3×3).
Thus, testing (13) with ξ as before and additionally such that ∂x3ξ = 0 gives in the limit∫ T

0

∫
Ω1

(
−wξ̇ +Keff(w)∇′w · ∇′ξ

)
dx dt−

∫
Ω1

w0ξ(0, ·) dx

=

∫ T

0

∫
Ω1

(
Q∗ + Dκ̇ : κ̇+ Θ(w)B : κ̇

)
ξ dx dt+

∫ T

0

∫
Γ
‖
1

q‖∗ξ da dt+

∫ T

0

∫
Γ⊥1

q⊥∗ ξ da dt.

(39)

Note that for the viscous and the adiabatic heat sources, we can write

Dκ̇ : κ̇ = De(u̇) : e(u̇) + 2PDe(u̇) · κ̇ + MDκ̇ · κ̇,
Θ(w)B : κ̇ = Θ(w)B : e(u̇) + Θ(w)bB · κ̇.

(40)

Step 4. Finally, we perform the actual dimension reduction. Starting point are the limiting equations in
(35) and (39) and the characterization of Kirchhoff–Love displacements in Lemma 5.

Step 4.1 Reduction of mechanical equation. Let us first look at the mechanical equation in (35). We
denote by (U1(t), U2(t), U3(t)) ∈ H1(ω)× H1(ω)× H2(ω) the displacements associated with the
limit u(t), i.e., u1 = U1−x3∂x1U3, u2 = U2−x3∂x2U3, and u3 = U3. Analogously, we consider a
test function v ∈ L2(0, T ;VKL(Ω1)) with associated (V1, V2, V3), see Lemma 5. Then, using that∫ 1/2

−1/2
x3 dx3 = 0 and

∫ 1/2

−1/2
x2

3 dx3 = 1
12

, we get the viscous membrane model for the in-plane

displacements U∫ T

0

∫
ω

(
Ce(U) + De(U̇) + P∗Cκeven + P∗Dκ̇even + Θ(W )B

)
: e(V ) dx′ dt

=

∫ T

0

〈L1,2(t), V 〉 dt, (41)

and Kirchhoff’s plate equation for the out-of-plane displacement U3 with viscous evolution

1

12

∫ T

0

∫
ω

(
C∇2U3 + D∇2U̇3 + P∗Cκodd + P∗Dκ̇odd

)
: ∇2V3 dx′ dt =

∫ T

0

〈L3(t), V3〉 dt, (42)

where eij(U) = 1
2
(∂xiUj + ∂xjUi) for i, j = 1, 2. Moreover, the external loading for in-plane dis-

placements L1,2 ∈ L2(0, T ; H1(ω)2) and the out-of-plane displacements L3 ∈ L2(0, T ; H2(ω)) are
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defined via

〈L1,2(t), V 〉 =

∫
ω

F1,2(t) · V dx′ +

∫
∂ω\γD

H1,2(t) · V da′

〈L3(t), V3〉 =

∫
ω

F3(t)V3 + F̃3(t) · ∇′V3 dx′ +

∫
∂ω\γD

H3(t)V3 + H̃3(t) · ∇′V3 da′,

(43)

where the densities F1,2, F3, F̃3, H1,2, H3, H̃3 are defined via averages of f∗ and h∗, see [Cia97,
Theorem 1.4-1.]. We have also introduced the averaged quantities

κeven(t, x′) =

∫ 1/2

−1/2

κ(t, x′, z) dz and κodd(t, x′) = 12

∫ 1/2

−1/2

zκ(t, x′, z) dz. (44)

Using (37), we check that (κeven,κodd) ∈ H1(0, T ; L2(ω;R3))× H1(0, T ; L2(ω;R3)) satisfies

κ̇even + M−1
D MCκeven = −M−1

D (PCe(U) + PDe(U̇1, U̇2) + Θ(W )bB), (45)

κ̇odd + M−1
D MCκodd = −M−1

D (PC∇2U3 + PD∇2U̇3). (46)

The initial conditions are κ0
even(x′) =

∫ 1/2

−1/2
κ0(x′, z) dz and κ0

odd(x′) = 12
∫ 1/2

−1/2
zκ0(x′, z) dz,

respectively. Note that by Assumption (B9), x3 7→ κ0(x′, x3) is affine for almost every x′ ∈ ω. Thus,
we can write κ0(x′, x3) = κ0

even(x′) + x3κ0
odd(x′). Obviously, it holds that

κeven = Aeven

[
e(U), e(U̇1, U̇2),Θ(W ),κ0

even

]
, κodd = Aodd

[
∇2U3,∇2U̇3,κ0

odd

]
,

where Aeven and Aodd are defined via A. In fact, we have the identity κ(t, x′, z) = κeven(t, x′) +
zκodd(t, x′).

Step 4.2 Reduction of heat equation. For the reduced heat equation, we first consider the heat sources
on the right-hand side of (39). We first define the fixed bulk heat source

Q∗(t, x
′) =

∫ 1/2

−1/2

Q∗(t, x
′, z) dz + q‖∗(t, x

′, 1
2
) + q‖∗(t, x

′,−1
2
), for x′ ∈ ω, (47)

and the surface heat source

q⊥∗ (t, x′) =

∫ 1/2

−1/2

q⊥∗ (t, x′, z) dz, for x′ ∈ ∂ω.

Using the identities in (40), we compute for the viscous heating terms

Qvisc(e(U̇),∇2U̇3, κ̇odd, κ̇even) :=

∫ 1/2

−1/2

Dκ : κ dz

= De(U̇) : e(U̇) +
1

12
D∇2U̇3 : ∇2U̇3 + 2PDe(U̇) · κ̇even

+
1

6
PD∇2U3 · κ̇odd + MDκ̇even · κ̇even +

1

12
MDκ̇odd · κ̇odd. (48)

We emphasize that for this decomposition, it was essential that κ0 (see (B9)) and hence also κ(t)
are affine in x3.
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Similarly, we obtain the adiabatic heat sources

Qadia

(
e(U̇), κ̇even,Θ(W )

)
:=

∫ 1/2

−1/2

Θ(W )B : κ̇ dz = Θ(W )B : e(U̇) + Θ(W )bB · κ̇even. (49)

To simplify the notation, we introduce the total heat source

Qtot

(
t, x′; e(U̇),∇2U3, κ̇even, κ̇odd,Θ(W )

)
=

Q∗(t, x
′) +Qvisc(e(U̇),∇2U̇3, κ̇odd, κ̇even) +Qadia

(
e(U̇), κ̇even,Θ(W )

)
. (50)

Thus, we find that the effective heat equation in the weak form reads∫ T

0

∫
ω

(
−Wξ̇ +Keff(W )∇′W · ∇′ξ

)
dx dt−

∫
ω

W 0ξ(0, ·) dx

=

∫ T

0

∫
ω

Qtot

(
t, x′; e(U̇),∇2U3, κ̇even, κ̇odd,Θ(W )

)
ξ dx′ dt+

∫ T

0

∫
∂ω

q⊥∗ ξ da dt. (51)

Thus, we have proven Theorem 7.

5 Discussion of the limit system

5.1 The isotropic case

Let us consider the isotropic case, where C and D are given in terms of the elastic and viscous Lamé
parameters λel, µel and λvi, µvi, respectively, namely

Ce = λeltr(e)I + 2µele, and Dė = λvitr(ė)I + 2µviė.

Moreover, we assume that B = bI and K(w) = kI for constants b, k > 0.

In this case, we obtain for e ∈ R2×2

Ce = λeltr(e)I2×2 + 2µele, PCe =

 0
0

λeltr e

 , MC =

4µel 0 0
0 4µel 0
0 0 λel + 2µel

 .

Analogous formulas hold for D,PD, and MD. Thus, the evolution equations in (45) and (46) for the
out-of-plane strains κeven = (κeven

1 ,κeven
2 ,κeven

3 ) and κodd = (κodd
1 ,κodd

2 ,κodd
3 ) take the simpler

form

κ̇even
i +

µel

µvi
κeven
i = 0 for i = 1, 2,

κ̇odd
i +

µel

µvi
κodd
i = 0 for i = 1, 2,

κ̇even
3 +

λel + 2µel

λvi + 2µvi
κeven

3 = −λeldiv′U + λvidiv′U̇ + Θ(w)bB
λvi+2µvi

,

κ̇odd
3 +

λel + 2µel

λvi + 2µvi
κodd

3 = −λel∆
′U3 + λvi∆

′U̇3

λvi+2µvi
.

In particular, we have exponential decay κeven
i (t),κodd

i (t) ∼ e−(µel/µvi)t for i = 1, 2, independently
of U,U3 or W . In particular, κeven

i , κeven
i only act as additional external loadings and sources in the

equations for U1, U2, U3 and W , respectively.
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5.2 Thermodynamic consistency of the effective model

The effective system derived in the previous system is thermodynamically consistent in that it satisfies
conservation of internal energy and positivity of entropy production.

For a given symmetric matrix A ∈ R2×2
sym and a vector κ ∈ R3, we define the symmetric matrix

(A|κ) ∈ R3×3
sym via

(A|κ) :=

A11 A12 κ1

A21 A22 κ2

κ1 κ2 κ3

 .

For the effective two-dimensional system derived in the previous section, we introduce the effective
free energy that is decomposed into a membrane and a bending part

ψeff(e1, e2,κ1,κ2, θ) = ψmemb
eff (e1,κ1, θ) + ψbend

eff (e2,κ2)− ψ0(θ), where

ψmemb
eff (e1,κ1, θ) =

1

2
C(e1|κ1) : (e1|κ1) + θB : (e1|κ1),

ψbend
eff (e2,κ2) = 6C(e2|κ2) : (e2|κ2),

where e1 and e2 are placeholders for e(U) and∇2U3, and κ1 and κ2 are placeholders for κeven and
κodd, respectively. Analogously, we define the effective dissipation potential

ζeff(ė1, ė2, κ̇1, κ̇2) = ζmemb
eff (ė1, κ̇1) + ζbend

eff (ė2, κ̇2), where

ζmemb
eff (ė1, κ̇1) =

1

2
D(ė1|κ1) : (ė1|κ1),

ζbend
eff (ė2, κ̇2) = 6D(ė2|κ̇2) : (ė2|κ̇2).

The effective entropy density and the effective internal energy density are given by ηeff = −∂θψeff and
Eeff = ψeff + θηeff, respectively, i.e.,

ηeff(e1,κ1, θ) = ηmemb
eff (e1,κ1, θ) = −B : (e1|κ1) + ψ′0(θ)

Eeff(e1, e2,κ1,κ2, θ) = Ememb
eff (e1,κ1, θ) + Ebend

eff (e2,κ2) + θψ′0(θ)− ψ0(θ), where

Ememb
eff (e1,κ1) =

1

2
C(e1|κ1) : (e1|κ1), Ebend

eff (e2,κ2) = 6C(e2|κ2) : (e2|κ2).

In particular, with the change of variables θ = Θ(W ), we have

Êeff(e1, e2,κ1,κ2,W ) = Eeff(e1, e2,κ1,κ2,Θ(W )) = Ememb
eff (e1,κ1) + Ebend

eff (e2,κ2) +W.

With these definitions, we can rewrite the effective system in (41), (42), (45), (46), and (51) formally as

−div′
[
∂e1ψ

memb
eff (e(U),κeven,Θ(W )) + ∂ė1ζ

memb
eff (e(U̇), κ̇even)

]
= F1,2(t, x′),

div′div′
[
∂e2ψ

bend
eff (∇2U3,κodd) + ∂ė2ζ

bend
eff (∇2U̇3, κ̇odd)

]
= F3(t, x′)− div′F̃3(t, x′),

∂κ1ψ
memb
eff (e(U),κeven,Θ(W )) + ∂κ̇1ζ

memb
eff (e(U̇), κ̇even) = 0,

∂κ2ψ
bend
eff (∇2U3,κodd) + ∂κ̇2ζ

bend
eff (∇2U̇3, κ̇odd) = 0,

and

d

dt
Êeff − div′(Keff(W )∇′W ) = Q∗(t, x

′)

+ ∂(ė1,κ̇1)ζ
memb
eff : (e(U̇)|κ̇even) + ∂(ė2,κ̇2)ζ

bend
eff : (∇2U̇3|κ̇odd)

+ [∂(e1,κ1)Êeff −Θ(W )∂(e1,κ1)η̂eff] : (e(U̇)|κ̇even) + ∂(e2,κ2)Êeff : (∇2U̇3|κ̇odd).
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Note that in the ∂(e2,κ2)η̂eff does not appear in the right-hand side since η̂eff does not depend on

(e2,κ2). Testing, the first four equations with U̇ , U̇3, κ̇even, and κodd, respectively, gives with the chain
rule the mechanical energy balance∫

ω

d

dt
(Ememb

eff +Ebend
eff ) + 2ζeff + Θ(W )B : (e(U̇)|κ̇even) dx = 〈L1,2(t), U̇〉+ 〈L3(t), U̇3〉.

Using the heat equation in the above form, finally gives the total energy balance for the effective
system, namely,∫

ω

d

dt
Êeff dx

′ = 〈L1,2(t), U̇〉+ 〈L3(t), U̇3〉+

∫
ω

Q∗(t, x
′) dx′ +

∫
∂ω

q⊥∗ da.

Similarly, the positivity of the entropy production is shown.

5.3 Reduced model with memory kernel

Since the evolution equations for the out-of-plane strains κeven and κodd can be solved explicitly in
terms of U1, U2, U3 and Θ(W ), we can give an even more reduced formulation. Indeed, let us denote
by κ∗ either κeven or κodd solving (45) or (46), respectively. We have the explicit formula

κ∗(t, ·) = −
∫ t

0

E(t−s)M−1
D
(
PCσ∗(s) + PDσ̇∗(s) + ξ∗(s)

)
ds+ E(t)κ∗0 ,

where σ∗ either denotes e(U) or∇2U3 and ξ∗ is either Θ(W )bB or 0.

After integrating by parts and using that Ė = −M−1
D MCE, we get that

κ∗(t, ·) =

∫ t

0

E(t−s)
(
{M−1

C PC −M−1
D PD}σ̇∗(s)−M−1

D ξ∗(s)
)

ds−M−1
C PCσ∗(t)

+ E(t)(M−1
C PCσ∗(0) + κ∗0).

Assuming that the initial value is given as κ∗0 = −M−1
C PCσ∗(0), cf. Remark 6(ii), allows us to drop

the last term. With this formula, we can rewrite the membrane equation in (41) in the following way∫
ω

(
CKLe(U) + DKLe(U̇) +

∫ t

0

K(t−s)[e(U̇)(s),Θ(W (s))bB] ds

+ Θ(W )B− P∗DM−1
D Θ(W (s))bB

)
: e(V ) dx′ = 〈L1,2(t), V 〉?

and plate equation in (42) as

1

12

∫
ω

(
CKL∇2U3 + DKL∇2U̇3 +

∫ t

0

K(t−s)[∇2U̇3(s), 0] ds
)

: ∇2V3 dx′ = 〈L3(t), V3〉

where the effective Kirchhoff–Love tensors CKL = C− P∗CM
−1
C PC and DKL = D− P∗DM

−1
D PD are

the Schur complements of C and D with respect to MC and MD, respectively. The memory kernel K
is given as in [Lic13] via the formula

K(τ)[σ̇∗, ξ∗] = (P∗C−P∗DM−1
D MC)E(τ)

(
(M−1

C PC−M−1
D PD)σ̇∗ −M−1

D ξ∗
)
. (52)
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