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A relative energy inequality for an anisotropic
Navier-Stokes—Nernst-Planck—Poisson system — Weak-strong uniqueness and
a posteriori error estimates

Robert Lasarzik, Luisa Plato

Abstract

In this work, we build upon the framework of suitable weak solutions to the anisotropic Navier—Stokes—
Nernst—Planck—Poisson (NSNPP) system, as developed in [HLP25|, and establish a relative energy inequality
for these solutions. This inequality serves as the basis for proving the weak-strong uniqueness property.
Additionally, we exploit the relative energy inequality as a tool to obtain a posteriori error estimates. We are
interested in the high-viscosity—low-Reynolds number limit of the NSNPP, which leads to the anisotropic
Stokes—Nernst—Planck—Poisson (SNPP) system. Utilizing the relative energy framework, we derive an error
estimate for the distance between solutions to the NSNPP and SNPP model in natural energy and dissipation
norms. Moreover, we prove the existence of regular local-in-time solutions to the NSNPP as well as the
SNPP system, possessing sufficient regularity to be admissible in the relative energy framework.

1 Introduction

Electrokinetics is essential in the design of nano-fluid “lab-on-a-chip” devices [ZY12]. This innovation has the
potential to revolutionize and democratize healthcare by making laboratory diagnostics more affordable and
widely accessible. Precise control of fluid dynamics is crucial for automating laboratory functions on microfluidic
chips. But at such small scales, mechanical stirring becomes impractical due to, amongst other reasons, the high
viscosity of the fluid. To address this challenge, one innovative approach involves dissolving ions in the fluid and
using an electric field to manipulate the flow for effective mixing [£Y12]. Notably, an anisotropic medium has
been observed to produce persistent electrokinetic flows, particularly in the presence of oscillating electric fields
[Pen+15].

To model these effects, multiple physical effects on multiple different scales have to be taken into account. When
charged particles ¢T are dissolved in an incompressible fluid with velocity v and under the influence of an external
electric field —V, three major effects govern the movement of the charges. The charges diffuse, they are
transported by the surrounding fluid and the electric field induces a directed movement, called electromigration.
Further, space charge exerts an electric body force on the fluid velocity. Moreover, there is a complex interaction
of the electric field, the charges and the velocity field with the underlying anisotropy. An attempt to model this
physical interaction leads us to a coupled Navier—Stokes—Nernst—Planck—Poisson (NSNPP) system, [Pro94,
Chap. 3.4]. More explicitly, we are considering,

Re (0iv + (v-V)v) — Av + Vp+ (¢T — ¢ )V =0 in (0,T) x Q, (1a)
V-v=0 in (0,7) x Q, (1b)

et +V - (cFo) -V (A(d)(Vci + civﬂi)) =0 in (0,T) x Q, (1c)
—V - (E@)VY) = (cT —c¢)=0 in (0,7) x Q, (1d)

where ) C R3 is a smooth and bounded domain, Re, A, e > 0 are positive constants, £(d) := I + ¢d ® d and
A(d) := I + \d ® d, where d is the so-called director with d(x) € R3 and d - n = 0 on " := 9. The evolution
of the fluid’s velocity field is described by the Navier—Stokes equations for incompressible fluids (Ta)—(1b). The
charge densities evolve according to the Nernst—Planck equations including an anisotropic diffusion term
-V (A(d)Vci) as well as two transport terms, one due to the velocity field v and one due to the electric field

DOI 10.20347/WIAS.PREPRINT.3208 Berlin 2025



R. Lasarzik, L. Plato 2

—V1. The notation ¢* means an enumeration, so that in fact denotes two equations: one for the positive
charges ¢ with a plus in front of the V1) term and one for the negative charges ¢~ with a minus in front of the
V4. Finally, the electric potential is given by the Poisson equation (1d). The existence of suitable weak solutions
to system was shown in [HLP25] and we refer to the introduction therein for a discussion of the relevant
literature on the existence of weak solutions.

In isotropic fluids the movement of the charges and the formation of the electric field are independent of the
direction. Not so in anisotropic fluids, where the movement of the ions due to diffusion and electromigration, as
well as the diffusion of the electric potential may depend on the direction. In our case they depend on the director
d, which gives the preferred direction of motion. Our choice for the matrices A(d) and £(d) stems from the
modeling of liquid crystals, most famously known for their application in LCDs. One possible way to model liquid
crystals are the Erickson—Leslie equations [EKL18], including a time-evolution for the director d. The mobilities of
the charges vary depending on the motion being parallel or perpendicular to the director, see [Cal+16] for an
extensive model derivation for nematic electrolytes. As it was done in [Cal+16] we choose the anisotropy matrices
to be of the form £(d) and A(d). The difference between the anisotropy matrices £(d) and A(d) is crucial for
capturing the distinct physical properties of electric conductivity and electric permittivity, which are inherently
different physical properties.

Additionally, the system is equipped with the following boundary conditions

v=0 and A(d) (Vct +£cEVy) - n=00nT x [0,7],
E@VY -n+1p=E&onT x[0,7T],

where 7 is a positive constant and £ the externally applied electric potential, which may vary in space and time.
These are the standard no-slip boundary conditions for the velocity field, no-flux boundary condition for the
charge densities, which correspond to the assumption that the charges cannot cross the boundary of the domain
and Robin boundary conditions for the electric potential. As in [BFS14], we choose Robin boundary conditions to
model the electric double layer, which usually forms at an electrolyte-solid-interface [NT04, Chap. 7].

A main difficulty beside the multiple effects in the system are the multiple scales at which these effects are
present. The highly oscillating electric field is present on way faster time scales than the induced fluid flow. To
achieve accurate simulations at reasonable computational cost, model reduction techniques adapted to different
parameter regimes are essential [Haa+23|. Besides the data assimilation, this is the most important building
block for digital twins, which model physical systems at multiple scales using multiple mathematical descriptions.
According to Forbes [McK24], “The global market for digital-twin technology will grow about 60% annually over
the next five years, reaching 73.5 billion dollars by 2027.” To enable model switching and adaptation during
simulations, a general framework is needed to compare models within a given class and assess the influence of
changing or vanishing parameters. This can be achieved by appropriate a posteriori error estimators. While a
theory for developing a posteriori error estimators exist for linear PDEs [ESV10], they have been deduced for
certain specific nonlinear evolution equations [Fis15]. In this work, we apply the general framework of relative-
energy estimates as an a posteriori error estimate in order to infer modeling errors for the case of vanishing
Reynolds number in the NSNPP system.

The physical scaling in [Cal+16] suggests that the Reynolds number is very small, around 10~6. For such
small Reynolds numbers the Stokes equation can be a good approximation for the Navier—Stokes equation. So
additionally to the NSNPP system (), we consider the Stokes—Nernst—Planck—Poisson (SNPP) system, where

is replaced by

—Av+Vp+ (¢t =)V =0 in (0,T) x Q. (2a)
The aim of this work is to derive a relative energy inequality for the suitable weak solutions to (1) which provides
further properties of these solutions and compares a suitable weak solution to a smooth test function. A first and

simple consequence is the weak-strong uniqueness. Additionally, convergence rates for suitable weak solutions
to the NSNPP system for vanishing Reynolds number can be derived as well as continuous dependence of these
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solutions on the initial and boundary data under the assumption that there is a strong reference solution. The
exact regularity will be stated below. To give these estimates meaning we show that at least locally in time we
have such strong solutions to the NSNPP as well as the SNPP system.

Main contribution: The basis for the proof of all these estimates and the main novelty of this work is the derived
relative energy inequality. The relative energy is a non-negative function R (u|%) measuring the distance between
a suitable weak solution © and a smooth test function w. In the context of the incompressible Navier—Stokes
equations, i.e., for a quadratic energy, the relative energy approach was already used by Leray in his seminal
work |Ler34] and later on by Serrin [Ser63] to prove weak-strong uniqueness. For more general energy or entropy
functionals, this approach can be traced back to Dafermos, see [Daf79;|DiP79], in the context of conservation
laws. This technique has since been generalized in different directions, for instance to the case of renormalized
solutions to reaction-diffusion systems [Fis17] or energy-variational solutions to general conservation laws |[EL24]
or damped Hamiltonian systems [ALR24]. The relative energy serves nowadays as a general tool in the analysis
of PDEs and is used to consider along side the weak-strong uniqueness of solutions [HL21};|CJ19;|Fis17] also
long-time behavior [Las19b], singular limits [FNO9], convergence of numerical schemes [BLP21] or comparison
with reduced models [Fis15], and even optimal control [Las19a].

For systems with convex energy £ the relative energy can be defined by the first order Taylor expansion of the
energy at the smooth test function u:

R(ul@) = £(@) — £(u) + (DE(@),u — @) > 0.

The non-negativity follows by well-known properties of convex functionals. For system (1) the relative energy has
the following form:

R(u|a) := /Q %h} — o2+ [Ei —F —F(nét - lnci)]i—&— %|V(1/J — i)@(d) dx + % /F [ — % do.
3)

The derivation is based on the fact that suitable weak solutions already fulfill an energy-dissipation-inequality.
The main idea then is to add this energy-dissipation-inequality, the weak formulation tested with the smooth test
function, and system (1) for the smooth function tested in suitable way. As in the existence proof [HLP25] the
main challenge was introduced by the difference in anisotropy matrices £(d) and A(d) and we tackle this by
careful integration by parts in the bulk as well as on the boundary, that is for f € WP(T") and v € lep'(l“) we
use:

/pr~v—f(v-n)VF-n—i—’v-foda:O
r

where Vr - v denotes the surface differential divergence and Vr f the surface differential gradient, see [HLP25|
Cor. A.25].

The article is organized as follows: We first introduce some notation and present the main results in Section
In Section [3|we state and prove the relative energy inequality and use it to prove the weak-strong uniqueness
result. We then proceed to show the local-in-time existence of strong solutions to the NSNPP as well as the
SNPP system in Section [4]and conclude this work with the proof of the error estimates in Section

2 Main results

We begin by introducing some basic notation. By €2, we denote a smooth bounded domain in R3 and I := 9.
For all » € (1, 00) we define the function spaces

LI(Q) := WH-HU and W&,r(Q) _ WMW“.
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The function space LP(Q)+ is defined via LP(2) 4 = {f € LP(Q?) | f > Oa.e.in Q}. The norm | - [5(g) is
defined by |a|i(d) = |al?> + M(d - @)? and similarly for | - ¢ (4). The outer normal of Q is denoted by n. The
standard matrix and matrix-vector multiplication is written without an extra sign for brevity,

3 3
3 3
ZAiijk , Aa= ZAijaj s AGRgXS, B€R3X3, GGRS.
‘ ik=1 g=1 i=1
The outer vector product is given by a ® b := ab? = [aibj]?jzl for two vectors a,b € R3 and by A ® a :=
AaT = [A;; ak]z k1 foramatrix A € R3*3 and a vector a € R3. We use the Nabla symbol V for real-valued

functions f : R — R, vector-valued functions f : R® — R3 as well as matrix-valued functions A : R3 — R3%3
denoting

V= [afr V- Pfir VA = [aAUr |
O |i—q’ Om;j |, iy Oy [ j k=1

The divergence of a vector-valued and a matrix-valued function is defined by

of; 0A;
Z 7,7 VA= Z aw;]

- =1

3

These definitions give rise to different calculation rules, .g. V - (a ® b) = Va b+ V -ba for a,b € W12(Q).
+
The use of |- § implies a summation: for example [ici] =ct —c, [¢cﬂi =—ct +¢,and

[ci(lnci + 1)]i: ct(net +1)+c¢ (Ine™ +1).

So the sum |- ¥* consists of two terms: one where only the top signs of & and = are used, and one where only
the bottom signs are used. Outside of these brackets + is used as an enumeration, e.g. ¢* € LY(©2) means
teLl'(Q)andc € LY(Q).

For a given Banach space V, the space C,([0,T]; V') denotes the functions on [0, T'] taking values in V' that are
continuous with respect to the weak topology of V.
1
Inthe case I' € C™, m € N we denote for p € (1,00) by S : W™P(Q) — W' »P(I), the usual trace operator
1 1
andby E: W™ »P(I') — W™P(Q) its right-inverse such that S(E(f)) = f forall f € W™ »P(I).

Throughout this work C' > 0 denotes a generic constant, which may change its value without an indication in the
notation. We sometimes use C(-) to indicate dependencies of this constant.

Now that we have introduced this notation we can state our definition of suitable weak solutions, which are simply
weak solutions, which additionally fulfill an energy inequality. The existence of such suitable weak solutions for
Re = 1 is shown in [HLP25] under the following assumptions, cf. Assumption[2.1] This existence proof directly
transfers to the case Re > 0 so we will not prove the existence of suitable weak solutions again for arbitrary
Re > 0.

Assumption 2.1. LetQ C R? be a bounded smooth domain, ¢ € W2([0, T]; W22(T')), d € Wh°(Q) with
d-n=0o0nT, ¢ >0, and the initial data (vo,co) € L2(Q) x L2(Q) 4.

Definition 2.2 (Suitable weak solutions). Let Assumption[2.1| be fulfilled. We call (v, c*, ) a suitable weak
solution if

v € Cy ([0, T); L2(92)) N L2(0, T; Wy 2 () N L1300, T; L1073 (q2)),
£ € Cy((0,T); 1) +) N LY (0, T; W4 (Q)) 0 L5/3(0, T; LP/3(9)),
Vet e L2(0,T; W2 (Q)),
W € Cy ([0, TI; WH2(92)) N L(0, T; W>2()),
VeEvy e L2(0,T; L2(Q)),
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and () is fulfilled in the weak sense, that is, for all test functions © € W2(0,T; L2(Q)) N L>=((0,T) x ©) N
L2(0,T; Wy (), & € C([0,T) x Q) n Wh5/2(0, T; L5/2(Q)) 0 LY0(0, T; W10(Q)) and ¢ € W2(Q2) N
L°°(Q), it holds

Re/ w(t) - 5(t) — vo - 5(0) dz
Q
/ / Vv : VD —Rev 90+ (Re(v-V)v+ (7 —¢7)Vy) - ddeds=0 (4a)
/ () FE(t) — ch € £&5(0) da +/ / N(Vet +e¢Evy) — ¢ v) Vet — et deds =0 (4b)
Q
/ E(d)Vy - Vi dz + / (1) — €)dh do — / (" —c)pde=0 (4c)
Q r Q

for allt € (0,T) and, additionally, the energy inequality

Re o [ 4.4, + = Lo T 2 t
e e e T s v da s G [ |

+/Ot/Q|vv|2+ [‘Wﬁi ﬁvw‘i(d)]idwdsS/Ot/rwﬁtfdads (5)

holds for allt € (0,T).

Remark 2.3 The electric potential at the initial time is given by the solution of the Poisson equation with
right-hand side car — ¢o and boundary condition £(d)Vg - n + T = £(0).

Next, we define the space of test functions for the relative energy inequality, which will also serve as our regularity
space for strong solutions. We say @ = (9, &+, ) € Uif:

o € Wh2(0,T; L2(9)) 0 LP/2(0, T Wy S12(Q)) NL2((0,T) x Q) N L2(0, T; W22(Q)),

& e 0(0,T] x Q) n L0, T; lelo(m) N LA0,T; W4(Q)) nWhH5/2(0, T, L¥/%(9)),

A(d) (Ve £ V) -n=0o0nT,

and 1 is the weak solution to the Poisson equation with right-hand side ¢ — ¢~

fulfilling the Robin boundary condition £(d)V) - n + ¢ = £ on T with € € W4 (0, T; W24(I)).

By elliptic regularity [Gri85, Thm. 2.4.2.6] we then have o) € W15/2(0, T; W25/2(Q)) n C([0, T]; W210())
since £ € W40, T; W24(T)) — Wht(0,T; Wh10(I)) [DD12, Thm. 3.81]. To deduce more regularity of
v in space by the regularity of &= with the help of elliptic regularity we would need a more regular director d
and external electric potential f For later usage we collect the assumptions needed for the existence of strong
solutions.

Assumption 2.4. Let @ C R3 be a bounded smooth domain, ¢ € Wl4([0,T]; W?4(T)), d € C*1(Q)
withd -n = 0 onT, e,A > 0, and the initial data (9,&) € WiS(Q) x W210(Q), & > 1 > 0 and
A(d)(VEE + V) -n = 0.

Here the regularity of the initial data is chosen in a way, that allows us to use maximal LP-regularity of the Stokes
operator for p = 6 and of the diffusive part of the Nernst—Planck equation for p = 10.

Definition 2.5 (Strong solutions). We call uw = (v, &+, z/?) strong solution to the NSNPP system () or the
SNPP system (2), respectively, if the equations of the NSNPP or SNPP system are fulfilled in the weak sense.

The first main result of this work is the weak-strong uniqueness of suitable weak solutions to the NSNPP system
(1), which is stated in the following proposition.
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Proposition 2.6 (Weak-strong uniqueness). Let Assumption|2.4 hold, let (v, ¢ ,w) be a suitable weak solution
to (@) according to Definition and let (v, ¢ ,z,b . Ul be a strong solution to (1) emanating from the same
initial and boundary values. Then (v,cE, ) and (9, ¢F, 1)) coincide.

The proof is an easy consequence of the relative energy inequality, which will be derived in Section 3] where
we will also provide the proof of Proposition We refrain from introducing the relative energy inequality here,
even though it is the basis of all our main results, for the sake of readability. The derivation of the relative energy
inequality is rather technical and we need some time to introduce all the operators needed for the formulation.
Here, in this main section, we will rather focus on the results we obtain with the help of this relative energy
inequality.

The relative energy inequality always compares a suitable weak solution with a rather smooth test function, for
us a function u l Ul In order to give the weak-strong uniqueness result, which only holds conditionally, under
the assumption that a strong solution exists, more meaning and to be able to compare suitable weak solutions
to solutions of the SNPP system, we show that strong solutions to both the NSNPP as well the SNPP system
exist at least locally in time. For the NSNPP system the need to restrict the existence of strong solutions to local
existence intervals is not surprising, as the existence of global strong solutions to the Navier—Stokes equations is
a well-known open problem in space dimension three. But even for the seemingly nicer behaved SNPP system,
we were not able to show global existence of strong solutions and this is to the best of our knowledge still an open
problem. Similar existence result work for scalar valued diffusion coefficients in the Nernst—Planck equations
[CI19] but the techniques used there cannot be extended to our case due to the difference in the anisotropy
matrices £(d) and A(d). So we also have to restrict the existence of strong solutions to the SNPP system to
local time intervals.

Theorem 2.7 (Existence of a unique, local, strong solution to NSNPP and SNPP). Let Assumption[2.4) hold, then
there exists aT* > 0 such that there is a unique strong solution in@ according to Definition to (1) and (2) on
[0,T%).

Remark 2.8 To be able to plug in the strong solution into the relative energy inequality, we need positivity of &+
The positivity of the initial data ¢ i easily extends to the whole existence interval of the solutions, which can be
seen by the following comparlson principle for this more regular solution.

Proposition 2.9 (Comparison principle for &*). Let @ and 1 fulfill the regularity in and letct and ¢* be a
super- and a sub-solution to the Nernst—Planck equation which also fulfill the regularity in that is
is fulfilled for all non-negative test functions 6% € W1:5/2(0, T; L5/2(Q)) n L1°(0, T; W'10(Q)) with > for the
super solution ¢+ and with < for ¢*. We then have that c= < ¢t implies ¢+ < & everywhere.

The proof of this proposition is based on a straight forward testing scheme and a Gronwall argument and is
performed at the end of Section |4} The positivity of ¢+ can now be seen as an easy consequence of this
comparison principle.

Corollary 2.10. Let the assumptions of Proposition[2.9 hold. If the charge densities are initially bounded away
from zero, that is E(f > [ > 0, then they stay bounded away from zero ¢+ > I > 0, where I depends on the
final time T .

Proof. This is an easy consequence of Proposition We take (c¢)* to be the constant in space solution to
the ODE
W)+ () [V MA@V ooy =0, (¢5)*(0) =1

which is given by (c¢*)*(t) = lexp (— oIV - (A TD)(5)]| oo )ds) The fact that V - (A(d)V%) is in

LY(0,T; L>(Q)) follows from the definition of@ and elliptic regularity, which implies ¢ € L*(0, T; W34(Q))
since ¢ € W1’4(0 T;W24T)) and &+ e L40,T; W24(Q)) — L*0,T; Wh4(Q)). This (ci) is a sub-
solution to (1c) and thus by the comparison principle from Proposmonwe know that since (c )*( )=1< 53[
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that we have (¢)* < & everywhere. And thus, with the explicit form for (¢*)* we find

T -
lp = lexp ( /0 HV ‘ (A(d)vw)(S)HLoo(Q) d5> = (Ci)*(T) < (Ci)* <&t
O

Now that we have established existence and positivity of strong solutions to the NSNPP and the SNPP system
at least locally in time we turn the convergence of suitable weak solutions to the NSNPP system for vanishing
Reynolds number.

Theorem 2.11. Let Assumptions and hold, let u be a strong solution to the SNPP system and let
{ur.} be a family of suitable weak solutions to the NSNPP system for bounded Reynolds number emanating
from the same initial and boundary values. Then we can estimate the difference of u and ur. by:

@ ||'URe - f)HLOO(O,T;[ﬁ(Q)) + H V Cge — \/E?HLOO(O,T;L2(Q)) + HwRe - ’(/;HLOQ(O’T;WLQ(Q))
+ ||vRe - ’BHL2(O,T;W1’2(Q)) + || V C%e — \/EHLQ(O,T;WLQ(Q))
* H\/%(VwRe - V) | 20,7522(2)) < CVRe. (6)

Remark 2.12 (Convergence for vanishing Reynolds number) For vanishing Reynolds number Re > 0 the
estimate from the theorem above imply that all suitable weak solutions to the NSNPP system converge to the
strong solution of the SNPP, as long as it exists, such that the weak formulation and the energy inequality
converge with rate C'v/Re.

Under some smoothness assumption we can also prove the continuous dependence of suitable weak solutions
on data.

Corollary 2.13 (Continuous dependence on boundary and initial data). Let Assumptions([2.1|and[2.4 hold, let u
and u be suitable weak solutions to the NSNPP system with initial data wy and g and external electric potential
& and € respectively. Foru we have

VRe v - 17||Loo(o,T;L2(Q)) + H‘/CTE - \/ET:HLOO(O,T;LQ(Q)) + Hw n 1;HL°°(0,T;W“(Q))

+ HU - 6||L2(07T;W1,2(Q))
<C (\/ﬁ\\vo =00l p2(q) + ||\/%— \/%Hm(g) + |0 — JJOHWL?(Q)) LC(@T)

+ e D) <Hat(f L2 0z2ry) T \/1 + [HEiHLoo((o,T)xﬂ)]i 1€ - gHLQ(O,T;Wl’Q(F))) ;

where C'(u, T) is some constant depending on the strong reference solution @ and the finial time T

The proofs of this theorem and the corollary are again based on the relative energy inequality and can be found
in Section |5 Besides proving the convergence rate of Theorem analytically we could also reproduce it in
numerical experiments.

2.1 Numerical Experiments

We perform numerical experiments on a two-dimensional rectangular domain using a finite element approximation
implemented with the Python package FEniCS [Aln+15; LMW+12]. The simulation code is available on GitHub
[Pla24a]. A regular triangular mesh, equidistant time steps, and a fixed-point solver are used to solve a decoupled
version of the system (). Further implementation details can be found in [Pla24a] and [Pla24b].

We consider an alternating electric field acting from left to right and use the director field d shown in Figure[Ta]
The streamline plot of the time-averaged velocity field for Re = 1, shown in Figure [Tb] qualitatively agrees with

DOI 10.20347/WIAS.PREPRINT.3208 Berlin 2025



R. Lasarzik, L. Plato 8

3.8e-04
I 0.00035
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(a) Director field. (b) Streamline plot of the simulated velocity field.

Figure 1: Simulated velocity field for a given director field.

the experimentally observed flow pattern described in [Pen+15]. The initial condition assumes a quiescent fluid
and a uniform distribution of positive and negative charges, i.e., ca” = ¢, = 0.5. While it is far from trivial—and
we make no general claim—that the analytical convergence rate from Theorem [2.77] carries over to our numerical
scheme, it is nonetheless promising to observe that the expected convergence rate appears to be realized in
our computations. This is demonstrated in the following figures. Figure 2] presents the evolution of the relative
energy c.f. (3) and the relative dissipation of the velocity field, defined as ||V (vg. — 'b)||%2(0,t;L2(Q)), for various
values of the Reynolds number. Here, vy, is the solution to the full NSNPP system (), while © denotes the
solution of the simplified SNPP system (2). The oscillatory behavior in the relative energy and the wavy pattern

le—8

§{ — Re=1.0

w

Relative energy
[P N
~ w IS

N}

DU

[ 20 40 60 80 100 (5 Zb 4b Gb Sb 1(50
Time step Time step

[

Relative dissipation of the velocity field

o

(a) Relative energy over time. (b) Relative dissipation over time.

Figure 2: Relative error metrics over time for different Reynolds numbers.

in the dissipation are due to the sinusoidal nature of the chosen external electric potential, which changes sign
periodically. Nevertheless, we observe a clear monotonic decrease in both error measures as the Reynolds
number decreases. This trend is further confirmed in Figure 3} which plots the maximum relative energy error
against the Reynolds number. The observed slope matches the theoretical convergence rate predicted by (6).

3 Relative energy inequality

Before we introduce the relative energy for our system we shortly comment on the construction of the relative
energy and on the strategy of how to prove the relative energy inequality. This shall give a better insight on the
choice of the appropriate calculations in the following proof. We note that a relative energy-inequality is proven in
a general context for energy-variational solutions in [ALR24]. For a convex Gateaux-differentiable energy £ on a
Banach space U, £ : U — [0, oo], we define the relative energy R : U x U — [0, o0] via

R(ul) == E(u) — £(@) — (DE (@), u — ),
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Figure 3: Maximum relative energy error as a function of the Reynolds number.

where D denotes the Gateaux-derivative. Taking formally the time derivative of the relative energy, we infer

t
R(u|ﬁ)‘ - €(u)‘ - /0 (DE(@), dyiw) + (DE(@), dyu — dyaa) — (D2E(@)dyat, w — @) ds

t
- / (DE(@), yu) — (D*E(w) i, u — @) ds .

0
In order to evaluate the right-hand side further, we need to use the energy-inequality (5), we need the weak
formulation (4) tested with the derivative of the energy evaluated at the smooth functions DE(), as well as the

equations (T) for the smooth function tested by D2£(@)(w — @). In order to complete this short motivation, we
will calculate these terms for the considered system. Recalling that the energy takes the form,

R 1
£(u) ;:/Qg\mh [ n e 4 )] + 2 [V g da + g/r|¢|2da,

where the variable v has to be understood as a nonlocal term depending on c*, e, Y = B(cT —¢7), where
B : L'(Q) — LY(Q) solving with inhomogeneous Robin-boundary conditions. Calculating the first two
variations, we end up with

(DE(u), w) = /QRev cWy + [wci (Inct + 2)]i+ B(ct — ¢ ) (we+ —w,-)dx

+
1
Rewy - 24 + [ciwcizci] + B(wc+ - 'wc*)(‘?"c+ - zc*) de.

(D2E(w), (w,2)) = /

Q

Finally, we observe for the terms in question

DE(@) = (Red, In&t + )T

D2E(a)(u — @) = <Re (v— ), éii(ci — &) £ | Bt F ai)]i>

~ +
By the definition of ¢/ and similar 1, we may identify + [B(ici ¥ 5i)] =+(B(ct —c7) =B —-¢)) =
+( — 1[;). Thus in order to derive the relative energy inequality, we have to subtract the weak formulation
and tested with © and Iné* 4+ 2 + z/? respectively as well as the strong formulation and for the
smooth function @ tested with v — & and 2 (c* — &) & (¢ — ¢)), respectively from the energy inequality (&).
Which is exactly the strategy we are going to follow in the next subsection.
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3.1 Formulation of the relative energy inequality

Let U be the solution space of weak solutions (v, ¢ ﬂb) fulfilling the regularity assumptions from Definition
and recalllthe space of test function. We define the relative energy R : U x@ — L°°(0,T) by

~ Re ~ - ~ + -
R (u|i) ;:/ 7\0 o + )&t - F - Fet —meH)[ + §|V(¢7w)|i~(d) dw
/ [ — 4 do. (7)
With the regularities from U and U all terms appearing in the definition of the relative energy are indeed in
L°°(0,T), which follows from the energy inequality for the ct—terms. Moreover, we define the relative
dissipation potential W : U ><—> LY(0,T) by
+
2 -
Wiula) == / V(v — )2 + [4 ‘V\/Ci - vVai‘A(d) + AV - w)i(d)] da
Q
+ 2/ V() — )2 + XV (¢ — P)d - d> + XV V(¢ — o) - d|? dz
9)
+ 2/ (e + N)|V2(p — )d|? da
Q
+27/F V(W = ) + Ve = 9)Zq) do, (8)
where Vr denotes the surface gradient [HLP25} Sec. A.1] and the regularity weight 1C —> Ll(O, T) by
+
- - 4
K(@) = C (1+ 1.0 ) ((1 +RE) 0]l ) + [HCiHWLOO(Q)]
s 1 9
HY w100 +||¢HL°° (0,T;W12(Q +H5HW12 ) T ) ©)

Additionally, we introduce the operator Qg : (W12(0,T; L*(I")) N L*(0, T; VI/L?(F)))2 — L'(0,T) measuring
the distance between ¢ and £ through

Qu(€ld) = one = Ol ey + € (14 [I* e[ ) € = oy (10
We note that Q; (£|£) =0ifandonlyif £ = f Finally, we define the system operator by
Ald- (LQ((O,T) % Q) x L5/2((0,T) x Q))

~ Ay (@) Re (0:0 + (v V)o) — Ad + (61 — &)V
A(a) = =
T ds@ | T\ a1V (#F0) - V- (Add)(VEE £ ciw))

It is clear from the definition of [T that .A indeed maps to L2((0, T) x Q) x L3/2((0,T) x ). Now, we are in a
position to state the relative energy inequality.

(11)

Proposition 3.1 (Relative energy inequality). Under the Assumption[2.7} it holds for all suitable weak solutions
u = (v,c¢t,y) € U, cf. Definition[2.2 and all test functions @ = (, ¢+, ) d Ulwith &£ > 1 > 0 that

R (ula)(s)els K@ ar|” / “Wiula)els K@ dr g

+
/ ( / Ap(@) - (0 —v) + [Aei (@) (éi(éi R E w))] dx) els K@ a7 g
+/ Qa(ﬂé)efstlc(ﬁ)des (12)
0

forallt € [0,T].
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Before we turn to the rather lengthy proof of this proposition, we quickly prove the weak-strong uniqueness of
suitable weak solutions to system (T).

Proof (of Proposition[2.6). We use the strong solution & = (v, &+, JJ) as a test function in (12). Since o fulfills
with boundary condition E = £ and u solves the system (1) the .A— and Q;—terms on the right-hand side
of (12) vanish. Additionally, since (@, &, ¢) and (v, ¢+, 1)) emanate from the same initial conditions, we have
R(ulw)(0) = 0. By the non-negativity of the relative dissipation potential (8), we obtain

R(ulu)(t) <0

for all t € [0, T]. From that, we can deduce that additionally to ¢+ > > 0 also ¢* > 0 almost everywhere and
thus by [HLP23| Rem. 5.4], we obtain « = u and our proof is complete. O

3.2 Proof of the relative energy inequality

Now, we turn to the proof of the relative energy inequality in Theorem We first collect some useful lemmata.

3.2.1 Mathematical toolbox

We start off by recalling some estimates needed throughout the proof. First, we prove a simple estimate for the
squared difference of two square roots, this is a special case of [Las21}, Lem. 2.8].

Lemma 3.2. Forallz,y € R withx > 0 andy > 0, we have

(f_\/?jyfﬂ?—y—y(lnx—lny), (13)

Proof. For x,y > 0 the inequality follows by a simple expansion of the left-hand side using that In (%) =
Inz —Iny and aln(z) = In(z*) for a > 0:

(Vo - vi) =z —2vayy+y =2 -y -2/ (Vo - V)
evon(3) (i)
=z —y—y(nz—Iny) —2yy (V- Vy— vy (In vz —Inyy))

<z-y-y(nz—-Iny),

since \/z — /y — /¥ (Iny/z —In/y) > 0. The latter follows from the convexity of the exponential. Since
y — ylny is continuous on [0, co) inequality remains true for all y > 0. O

Next, we show a neat gradient reformulation.

Lemma 3.3 (Gradient trick). Let f € Wh1(Q) and f > 0 be such that /J € W12(Q) holds, then
2
2V\/f —2 jciv\/f—Q\/?v\/f+2§v\/?=—\/fv<1—\/?> (14)
holds for all f € C*(€) with f > 1> 0.

Proof. An algebraic transformation of the left-hand side of yields

QV\/fz\/?v\/sz\/?vﬁ+2§v\/fT
:2<vﬁ—\/?vﬁ>(1— *J’;):z\/fT v\/‘/ff—\;f»vﬁ (1—\/7)
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i ivati i £\ _ (YWFE VS F
Using the product rule for weak derivatives [Zei90, Prob. 21.3d], we have V < 7 ) = ( i 7 V\/JT)
and thus obtain (T4). O

Finally, we recall an estimate of the trilinear part of the Navier—Stokes equations. Here, we follow an estimate
from the proof of [Las22, Prop. 3.1].

Lemma 3.4 (Estimate for the trilinear term of the Navier—Stokes equations). Forv and v fulfilling the regularity of
U and @ respectively, it holds that

N . . 1 . . .
Re/g((v Vv)- o+ ((0-V)0) -vde < 1 IV(v— U)H%Q(Q) + CRe* ||’UH%6(Q) |lv — U||%2(Q) . (15)

Proof. Using the fact that the trilinear term is skew-symmetric in the last two entries, i.e. that fQ(v~V)w~w de =0
for all v, w € W;2(£2), we can expand the left-hand side of

/(v-V)v-m(f)-V)ﬁ-udx:/ (v=%)-V) (v —8) 0+ B-V)v-5+ (5 V)5 vda
Q Q

:/ (v—12)-V)(v—3) da.
Q

We now apply Halder’s inequality, the Gagliardo—Nirenberg inequality with 3 = X (3 — 3) + (1 — \)3, that is
with A = % the norm inequality ||v||W1,2(Q) <C HV’U”Lz(Q) forallv € Wol’g(Q), and Young's inequality with

p= 1%\ and p/ = % in order to obtain

Re/g('v Vo + (8- V)5 vde < Relv — 5l 1) IV (0 — 8 20 18] 15 (0

< CRe v = 8]l oiq, IV(© = 8)lI3aq, 19l oo

1 .\ (12 44 2
< 7 V(v = 9)l[72(q) + CRe (|0l 76 () lv = D72 -

3.2.2 Proof of the relative energy inequality

With these tools at our fingertips, we turn to the proof of the relative energy inequality (12). This proof is rather
technical and long. A reader more interested in a posteriori error estimates to the SNPP system may skip this
section and continue with Section [4] for the existence proof of strong solutions to the NSNPP and SNPP systems
or even Section 5] for the proof of the error estimates.

Proof (of Proposition[3.1). The proof is based on a combination of appropriately testing the weak formulation
and the system operator .4, adding the energy inequality and then estimating the resulting terms using an
integration by parts on the boundary, that is for f € WP(T') and v € W1/ (T') it holds:

/pr-v—f(v~n)Vp-n—&-v-fodazo (16)
r

where Vrf and Vr - v denote the surface gradient and the surface divergence, respectively, see [HLP25|
Cor. A.25]. We refer the interested reader to [HLP25, Appendix A.1] for a short introduction into surface
differential operators. We test the weak formulation of v and the weak formulation of ¢* with — and
—([F +2) = —(Inét + b+ 2) respectively, where the chemical potential A+ is given by iF := Inét + 4.
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Adding the energy inequality (5) and adding and subtracting the system operator .A (@) tested with an appropriate
- T
test function, namely (fb —v, Z (@ - ) k(- ¢)) , we obtain

[ el + [t mes 0] + Jvuig g ae+ 5 [ o] |
o [ e [favvis s @w\i(d)]‘dm
. <Re/ﬂv.f,dm:+
- [/ (it +2) da:
//A (B -v)+ [Aai(ﬁ) (;(?—Ci)iw—w))] dwds—/o/ratwdads
/ / Ag(@) - (0 —v) + [Agi(ﬁ) (; (5ici)i(¢¢))]*dm (17)

for all t € [0, T)]. Here, we used the assumption, that the test function ¢t > 1> 0is bounded away from zero,

allowing us to test with (¢+)~1. We now explicitly calculate the left-hand side of (T7). We first consider the terms
coming from the Navier—Stokes equation, that is

t
[/ Re|v|2—Re/'v~f)dw] +
Q Q 0

t
//—Re’u&giﬂ—v'u:V1~)+Re(v-V)v~'B+(C+—c)Vz/;-f)dmds)
0 JQ

+
//—ciat,u — o Vit + Ad)(Vet £ ctvy) - vit da:ds]

t
//|Vv|2+Rev3tiz—V'v:VfJ—Re(U-V)vﬂfjdmds
0 JQ

// )V - v+(Reatf;—M+Re(ﬁ-vw+vp'+(é+—é—)vd).(f;—v)dwds
:[/ |v—v|2dw} //\v —Re(v-V)v-9—Re(d-V)o-vdads
// V- (0—v)— (¢ =)V - o da ds. (18)

Now we consider the terms of (17) coming from the Nernst—Planck—Poisson part including a time derivative or no

time integral, that is

t t

/ [hqc +1) — cH(at +2] *|V¢‘g de + - /|w2da} —/ /atfwdods
0 o Jr

+/ / [ciatﬂi]idmdwr/o /Q[atéi <;E (&f - cF) i(ﬁ;gp))]idwds
_ / Jot -t — (et lnci)]i+1|vw|§(d) (C+C)1/~’d$+;/r|l/1|2da}
_/ /3tf¢d0ds+/ / D)o+ (@ — &) (W —¢) dzds

= /[i—c (ln et lnci)]i—k2|V¢|§(d)—S(d)Vqui/;dm—k/F;|1/J|2—7w1[}+£1;d0}

t

0

t

0
t
—/ /8t§wdads+/ /s(d)w-vatzMs(d)vaﬁz.V(z/?—w) dz ds
0 JI 0 JQ
t ~ ~ ~ ~ ~ ~
4 / / e — €0 + 0D — ) — BE(P — ) do ds
t
[/ [i—c (lnet lnci)]i—l—;|V(w—1;)|%(d)dw+/r72—|1b—1/~)2d0} ;
+/O /Fat@—s)(w—&) do ds, (19)
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where we used the Poisson equation for ¢» and 1; for the second equality. The terms on the first line on
the right-hand side fit nicely into the relative energy (7). We now turn to the terms in coming from the
Nernst—Planck—Poisson part and including v or v,

¢ _ot +
/ / [civ-vgi aif;-v( = + (¢ — w))] da ds
//[c v - Vlnci] +(c"—c)v- de:rds

//[v Vet — o Vlnci] (et =)o - V(¥ — 1) dx ds. (20)

Next, we consider the terms in coming from the Nernst—Planck—Poisson part including dissipation terms,

/ A [\Wf EVETY[ = AV £ V)T ]idwds
+/0 /Q[A(d)(VEiiainﬁ).v(_éfi(1/3_¢)>]&dmds
:/Ot/Q [4\Vx/c?\i(d)]i+ Wt NA)VVet -V — 4V A(d)VVe -V + [cilw\i(d)]idwds

t ~
+ /0 /Q ~)A(@Vet - Vi 5ﬂif (" +c)A@)VY - Vi dads

t
+ / / ~Ad)V(cT =) Vi — T Ad)V - VInet + ¢ A(d)Vy - Viné dz ds
0 JQ

" /t/ L A@YE T ATV 4 e A@T I e s
o Ja == (é:l:)2

_ct

+ /Of/QA(d)V(5+ — &) V@ — ) +ETAd) VY-V (;) — & Ad)VY -V < = ) de ds

=Tveve + Tyy vg + Tve, vy (21)

where we grouped the terms quadratic in Vc+, V&t in the terms quadratic in V1, Vi in and
the mixed terms in so that

+
+ +
Tye,ve :/Q [4|V\/ci|3\(d) - 8\/2?A(d)V\/ci - VVEE +4Z—iA(d)V\/6i : v\/ai] dz,

Toy,vi = /Q |10 |~ (€ +IA@VE - VI + (@ +E)ADVE V(- ) da,
and

Tyevy = /QNCTA(d)v\/cT Vip — Ve A(d)VVe - Vi da

— )V —ctA@d)VY - VInet + ¢ A(d)Vy - VIné da
+

[ -a
+/QA(d)V(5+7c ) - V(@) — ) + T A(d) Vi -V ( i >5A(d)V1/~J~V<~C_> d.

C
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We can rewrite Ty vz as

+=

:/ [4|v¢c?|§(d) - 8\/§A(d)v@~v@+4iA(d)v\/§.v\/§] dz
Q c c
— /Q [4|v\/7i VVEE R () +8 (1 - \/i> A(d)VVEE . v\/cT} dz

+/Q [4 (Ci - 1) A(d)V\/&TPV\/ETE]ida:

==

+
:/ J AV VeE - VVER o [ da
Q

B +
+ + +
+/ AA(d)VVEE - <2V\/c? — 2/ L VVeE 12 vVEE - 2\/ZV\/5i>] da
Q c & c

_ +
+ T

— o _ < ot . &t T

/Q4<5i“ 2\/Ei>A(d)V\/ Y ]d

[4|V\/c?— v@\i(d)]idm

Len?/Q
+

Now, we rewrite

[Fow.vil= /Q [Ciw‘”'i(d)]i_ (" +c)A@VY - VY + (& +E)A)VY - V(P — ) de
:/ iv _ )2 ~i_iAdV~-V~— :td
A [c V(¥ ¢)|A(d)+(c EYA()VY - V(¢ w)] z

and finally for [Ty, vy} we find

MTveve= /QzA(d)V(c+ — )V = Ad)V(cT —¢7) Vi — " A(d)Vi) - VIne de

- / A)VY-VIneg — Ad)V(ET —¢) -V — ) — A(d)VY - Ve da
Q

- _ cf - PR
+/§2A(d)v¢~vc + AV Vet~ AV Ve de

= /Qm(d)v(c+ —c =T =) VW —)+ Ad)V(Er —¢7) - V(i — ) da

+ — + y — y
+/ —%A(d)w Vet + S A@ VY- vE + %A(d)w Vet - %_A(d)w Ve dw
Q

=
+

| 2 2
—/ WEN)VVEE -V (1 - Ci) +4 <1 = Ci> A(d)VVEE . V\/&E}idw.
Q & c

(22)

(23)

= /QQA(d)V(c+ —c—@Er-) -V —-9) + [i (1 - Zi) Ad)VEE -V (i — 1;)] da. (24)
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Inserting (18)—(24) back into (17), we obtain

t

Re - _ _ 1 ~ T ~

t ~
+/0 /QIV(v—i;)|2+ [4|v\/c?—v\/é?|i(d)+ci|V(¢—¢)\i(d)]idwds

0

+/Ot/Q2A(d)V(c+c — (=) V(@ —¢)deds
S/Ot/QA;,(a)-(@—v)Jr [Aéi(a) (; (éi—ci)i(zﬁ—wo]ida:ds
+Re/0t/ﬂ(v.V)v.13+(13~V)f;.vdmds/Ot/ﬂ(ﬁ5)%/3-(131;)(c+c)v¢-f;da;ds

3 - - &
—/ / [civ~V1n6i:|:civ-V¢+f)-Vci—cifJ~Vln6iZ|ZEi13-V(w—w)] de ds
0 JQ

- /t/ [ﬂ: <1 - Ci) Ad)VEE V(i — ) + (5 — AV - V(P — w)]ida: ds
0 Ja &t

t c:t 2 C:I: 2 ] i +
_/[)/Q[_z;\/cTA(d)V\/c?.v(l—\/;) —4(1— ci> A(d)v\/c?.v\/c?} de ds

t ~ ~
- / / (€ — &)W — §) dods. (25)
o JI

To arrive at the dissipation potential (8) on the left-hand side, we perform an integration by parts on the last term
on the left-hand side, which is rather involved since we need to handle a lot of boundary terms. For some of the
following transformations, we need more regularity for v, ¢) and d. To make these calculation rigorous, we can

take a smooth approximation (dy, ), C C°°(Q2) [Pla24b, Lem. A.13] of the director field d, such that d,, - n =0
onT foralln € N, as well as v, and 1, such that

—V - (E(dn)Vin)=ct —¢c™ inQ and E(dy)Vin -n+710,=¢ onl

—V - (E(dp)Vip)=c¢t —¢ inQ and E(dn)Vin n+7P, =6 onl

almost everywhere in (0, 7). Elliptic regularity yields that v, (), (t) € W33/2(Q) for all n € N, since
cE(t), & (t) € WE3/2(Q) for almost all £, which follows from vc* € L2(0,T; W12(Q)) and the product rule
for weak derivatives. To keep things simple, we will not do this approximation. An interested reader can find the
details in [Pla24bl Chap. 4]. We now integrate the last term on the left-hand side of by parts:

/Q V(ct — ¢ — (@ - &) AdV(¥ - ) do
- _/ (cF—c =@ —& )V (A(d)Vw - 1/7)) dz
Q
+ / ("= —@E" —&)NAAV(E —¢) -ndo
I
_ /Qv (E@V(@-9)) V- (AM@V( - 1)) do

—|—/F(c+—c_—(é+—5_)) (f—g—T(w—@) do, (26)

where the first equality follows from an integration by parts and the second by using V - (A(d)V () — ¢)) as a
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test function in the Poisson equation (Td). Integrating the volume term by parts twice, we obtain

[V (@ -9) V- (M@ - ) do
Q
-~ | e@vw-i)- V( (MA@ ) da
/v Ald ))S(d)vw—zz).nda
—— [ @y i) v (v (@) ) a
+ [V (V@ =) (e=E-rw =) @
~ ~\T
- [ V(e@vw-) v (A@V-9) do
~\T
- [ (7 (a@vtw-0) " n) -e@vie - i as
I

~—
—
2
|
Iy
|
2
<=
|
<
S~—
~—
o
)

+ [V (A@vw =) @7)

Expanding the matrix scalar product in the volume integral of and using the symmetry of Vz(w — 1[)) together
with A : BT = AT . B, we note that

V(e@Vw )V (M@ -9)
= V3¢ — )P +erv((d - V(¥ —9)d)T : V((d- V(¢ —))d)

+(E+ ANV =) V((d- V(i —1)))d). (28)

=47

The first term already gives us a second order term of (¢) — i) with a good sign. Using
V((d-V(—$)d) = (d- V(- 9)Vd+de (Va V(@ —0) +de (VA —d)d),  (29)

we can rewrite the remaining terms [{ and [id] First, using (a ® b) : A = a - Aband (a ® b)c = (b ¢)a, we
rewrite

0= ((@ V(- §)vd’ + (vd'V(y - ) @ d+ (V3w - §)d) @ d)
(@ V(- 9)Vd+do (V' V(- ) +de (V2 - ))d))
= (d- V(¥ = ¢))’Vd" : Vd +2(d- V(4 —))(Vdd) - (Vd' V() 1))
+2(d- V(¢ = 9)) (V¢ = 9)d) - (Vdd) + |Vd" V(¢ - ) - df?
+2(d- V(¢ — P)d)(Vd V(¥ —¢) - d) + [(VE(¥ — §)d) - d]*.
The only term quadratic in the second order derivative of (1) — 15) is the last one, which has a good sign. Secondly,
we rewrite [i7] again using (29):
= (d- V(¥ —¥)V (¥ —1): Vd
+ VW= 9): (Ao (VAT —) + V3 —9) : (4o (V2 - )d))
= (d- V(¢ =)V =) : Vd+ Vd' V() =) - (V2 = d)d) + V(¢ — )d|>.
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Inserting the expansions of i and ii back into (28), we obtain

v (E@vee - 9) v (A@vEs - 9)
= V2 =)+ eX(V2 (¢ = )d) - d* + AV V() — ) - d]* + (e + NV (¢ — ¥)d|?
+eXd- V(Y —))2Vdl : Vd + 2eN(d - V(¢ — ))(Vdd) - (VAT V(¢ — 1))
+2eN(d- V(¢ — ) (V¢ — )d) - (Vdd) + 2eA(d - V(¢ — )d)(Vd V(i) — 4)) - d)
+(e+ M-V =)V (=) : Vd+ (e + N)VA V(¢ — ) - (V2 (¢ — P)d). (30)

The volume term on the right-hand side of now again only contains second order derivatives of ¢ and 1E
but the boundary integrals also contain second order derivatives, which we cannot control using W?22(Q) <
WLQ(F). In order to have only first order derivatives on the boundary, we integrate the boundary integrals in
by parts. Using the formula for the surface gradient and surface divergence, see [HLP25, Thm. A.18 and
Thm. A.21],

V-v=Vr-v+V( -n)n, Vrf=Vf—(Vf-n)n, (31)

the boundary integral on the last line on the right-hand side of becomes

|9 (A@vw-D) (6= E=rtw =) do

o,
+/F (¢=€-rw-0)V (ADVW-9))n ndo
g

(A@Vr( =) - Ve(w =3 do = [ (A@Ve(v =) - Ve~ &) do
+ /F (€=E=7(W=9)*(Vr-m) + (€ == r(w =)V (ADV(E ) n-nds,  (32)

where we used that the normal parts of the gradient of () — 1[)) vanish in the scalar product with d, since d fulfills
the boundary conditions d - n = 0 on I'. The first term on the right-hand side has a good sign and is part of the
dissipation potential, the second and third integral will be part of the ()R (u|w) and Qg (£|§) terms and the
last integral will cancel with part of the remaining boundary integral in the second line of the right-hand side of
({27). So far we did not use the trace operator S or the trace extension operator E for the sake of readability since
all boundary integrals so far could intuitively be understood in the sense of traces. Now we would like to take the
full gradient of the outer normal vector n. To give this meaning we could use the trace extension operator F, then
E(n), is a function on the whole domain 2. By assumptions from Definition we have that I' is smooth and
thus n and E(n) are arbitrarily smooth. Out of context it should be clear whether we need n to be defined in Q
or on I' and thus for the sake of readability we refrain from writing S and E. We find for the boundary integral on
the second line on the right-hand side of

f/F (v (A(d)v(wzz?))Tn> E@Y () D) do

B _/r [V (A(d)vw — ) n) —Vn AV — )| - E(@)V (¢ — ) do. (33)

The second term already is of lower order, that is only first order derivatives of 1) appear, and thus parts can
be absorbed into the dissipation potential and the rest fits into the term K(@)R (u|w). To reduce the order of
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derivatives in the first term we use the surface gradient and integrate by parts.

[ v (A )-n) - E@V(— V) do

\

/ Vi (A@Y(w ~ ) -n) + (V (M@~ 5) - n) -n) n| - E@TV(© - ) do
)-n) Vr- (E@V(e =) do
AV =) - n) (E@V(¥ =) -n)(Vr 1) do

En

Bl
’—J\
/_\

|
-
/N VR

+ /F Vv (A(d>v(¢ — 1) n) n) (7-(1/1 D) — (€ - @) do
- (Tvp(w — ) = V(€ - 5)) . (S(d)V(z/) _ 1;)) do
+ (v (A@T@=)-n) -n) (rw— D)~ - ) do

<

I
\]

(6= D) do = [ Vr(e =9 (E@Tr(w 1)) do
(V(A@V@ =) -n)-n) (r—d) - (€-&) do
Vel = D) do = [ Vo€ =9 (E@Trw 1)) do

I
\]

_|_

+

W —)—(E— 5)) \Y (A(d)V(w - u?))Tn ndo
n” (A@)V (- ¥)) -ndo, (34)

’—J\
TR

—~

S

“@

S~—

’w?

’ax"

S~—"
N—

where the curvature term appearing on the first integration by parts cancels with the curvature term on the second
integration by parts. As mentioned before, some of the boundary terms, here the terms in the third integral on the
right-hand side, cancel with the last boundary integral on the right-hand side of (32). This simply follows from
An-n = ATn - n. Inserting (27) and ([30)—(34) and back into (26) we obtain

/vc —c =@ =) - AdV W — ) de
= [ 1920 = )+ 2NV = )d) - df + XTIV = ) - + e+ N VAW — D) da
+/Qs)\(d~V(w71Z)))2VdT:Vd+2€)\(d~V(¢f1ZJ))(Vdd)~(VdTV(;/;—1/~;))dm
+ /Q 2eA(d- V(¢ — ) (V2(¥ = d)d) - (Vdd) +2eM(d - V(¢ — 4)d)(Vd" V(¢ — P) - d) d
+ [ e+ NV = 6) VA = 0) s d + (e + ATV (0= D) - (V20 = )d) do
- [t = =@ = N@= 9ot [1Vel = D) do 7 [ 190w = D)l do
+ (¢t e =@ —E)NE -6~ (Ad) + E@) V(¥ — ) - Vi€ — &) do

+ [ (rw =) - €~ &) (YTAD YV - ) ndo

+ [ (VnTA@V( —4)) - E@V (Y —P)do+ [ (€ —E—7(¥ — )2 (Vr -n) do.
T

— S 5— 5—

DOI 10.20347/WIAS.PREPRINT.3208 Berlin 2025



R. Lasarzik, L. Plato 20

Inserting this back into (25), we obtain

t
- U ey — 82 + [j: i_ci(lnéﬂ:_1nci)]i+%|V(¢—z/;)|%(d) dm+/ 72—|¢_1;|2d0}
I 0

- -+ -
/ / V- D) + JAVVEE - TVER ) + VW~ D | +2V20 - ) dw ds

+ / / 2eM(V2(W — 9)d) - dI? + 2eA VAT V(4 =) - dI? + 2(e + 1) VP (¢ — ))d| de ds
Q
0 ; N y
+2T/0 /F|VF(1/J—¢)\A(,1)+|Vp(¢—¢)|g(d) do ds

S/Ot/QAf,(&)~(f;—v)+ [Agi(a)<i(cﬂt—c )i(z;—w))]idmds

t
e v-Viv-o v-V)v-vde — )W (0—v)— (¢t —¢c -vdx ds
[ Re [ 0954 @ )wds - [ (@ =00 (6 -0) = (F — ) Vo ddz
=1

=:11I

t d 5 5
+/ —/ [civ~V1n6i:I:ci'v~V7,/1+'D~Vcifcif;~V1n6i:Féif)-V(wfw)]ida: ds
0 Q

+=I1

-, [( 5 ) M@ T )+ —ci>A<d>wvw—w>]idxds

=:1II

t C:l: 2 C:I: ) +
+/0 /Q [4\/5?A(d)vx/5?.v (1—\/;> +4<1— \/c:) A(d)v\/g?.v\/g] da ds

=1V
- /t 2/ M- V(0 — 0)2VdT : Vd + 2eMd - V(i — §))(Vdd) - (VdTV (i) — ) da ds
0 Q
=V

t
- [ aer [ (@ = D)V~ D)d) - (V) + (d- V20— §)a)(VaTV () - ) da ds

+=V
t
—/0 2/9(5—1—)\)(d-V(1/J—1ﬁ))V2(w—1/~)):Vd—i—(e—&-/\)VdTV(w—qﬁ)- (v2(w—z/3)d) dz ds
+=V
t
T ct—c—(ct—-c —)do — 27 — nt —)) -ndo ds
+/02 /F( ( )W — ) do 2 /F(w 5) (VnTA@V( 1)) -ndo d
=:VI =:VII
/ / (VnTAQ@VW ~ ) - E@V@ - D) do+ [ %€ - ) - D)do ds
I
=: VIII =:IX

// ¢t == (@ =€ = § do— [ 2AAd)+ E@)Ve(w — ) Tr(E ~ & do ds
=:XI
t
& T n c TN\ 2
+ [ [ 2= (Vn A<d>vw—w)) mdo=2 [ (€= E=rw-0)A(Ve mydods. @)

=:XII =: XIII
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Now, we can start estimating the right-hand side to absorb it partly into the dissipation potential WW(u|@), partly
in KC(@)R (u|w), and partly into the operator Qg (£[€). For we use Lemmaand note that

1 -
(1] < 5 19 - 9)a0) + CR fallls e (Re o - 2132y - (36)

For[[Ilwe have that some terms cancel each other out so that

I = / / V1/1 ’U—|—( —c )V -0 — [Ci'u'VhlEi :Fci'v'V@/;]idmds
+/0/Q[ciff-wnéiwia-w]idwds
t
:/0 /fz(c+_c__(é+_5_)) (Vz/;-(i)—v)—&-f: ) [i Vlnci] da ds
t ) 7 -
:/0 /Q(c'*'—c_—(é"'_é_)) (Vw'(N_v)+i"v(1/J—1Z)))+[(Ci—éi)(i)—v)-vméi] de ds
_ /ot /Q (et — )6 —v) - (VIne® £ Vi) £ (* — 5 - V(6 — )] dads, -

where we used that [, & @ - VIn & dz = 0 due to & € L2(0,T; W,2(R2)). To find an upper bound for the first
term on the right-hand side, we make use of Lemmaand the expansion z—y = (v — /1) +2/5(vVZ— /%),

/Q [(ci _ &)@ —v)-V (mai + @)]idx

Q[(\/CI\/5?)2(@v)~V(1n5ii"z)>+2\/EI(\/C?\/g> (ﬁv).V(lnéiiqjj)]ﬁdﬂJ

< [Hv (méii&)HLm(Q) ’ o IIU—@IILa(Q)]i

+ [HQ\/ETEV (né =) HLOO(Q) H\/c? - \/ETEHLQ(Q) Il — @|L2(Q)]f (38)

(V- 7)

The second line of the right-hand side is already nice and can be absorbed into the term K(@)R(u|@) and
W(u|@) by Young’s inequality and the norm inequality ||v — f1||L2(Q) <C|V(v - f))HLz(Q), which follows from

[HN&TEV (ln &t 1 1/3) HLOO(Q) H\/c? . \/a?HLZ(Q) o — 1~;|L2(Q)]i

2
ot

= —

j: ~
<8V =)z +C <[||5i”?/vlvoo(n)] + ||1/JH§V1,00(Q) + 1) ‘

where we use the lower bound [ of the test function ¢+ from the definition of[@to estimate

po . ~ + 1 . .y -
N G | N I R A R E N |
_ + -
<C <[||Ci“W1700(Q)] + H%/JHIQ/I/Loo(Q))

to fit this term into K(@). We then apply Lemmato upper bound the L?(Q)—norm of V¢ — VéE by the
logarithm term of the relative energy. To estimate the first line of the right-hand side of (38), we use Young’s and
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the Gagliardo—Nirenberg inequalities with A = % to obtain

+
[HV (lnéi ii))Hme) H(@ @)2 A1) o= ﬁ”m(m]
<1V - D)a + | [vmet 0 ([VeE - Ve mem]

<OV -~ By + | v(m@w)u;ﬂ Ve v, o [V - “EHWJ

~ 1 C "
§6||V(v—’v)\|%2(ﬂ)+ 1lIVeE - \/?HW“(Q]

+
Q)] (39)

To estimate the right-hand side further, we make use of the energy inequality (5), which implies

6
ot

= —

- C[HV (hléi + ‘D H;(ﬂ) ‘

Re + 1 e
[/Q ol feF et £ 1)+ 1+ 5 Velg g e+ 5 /F 9|2 da] (t) < € (E(ug) + C(€))
for some constant C'(£) depending on &, where we added one in the integral to make the charge contribution to

the energy non-negative. We can use this estimate to upper bound pth-powers of the relative energy for p > 1.
More explicitly, using (a + b)? < 2P(|a[P + [b|P) for a,b € R, we estimate:

(@) e (o ee ) o (o)« (o))
§23p(</gci(lnci+1)+1da:> o HL1(§2>

< 2% ((e'C(E(uo) + CON" + 1710y ) = C (1 + 1 Faey)  40)

for the charge part of the relative energy, using the pointwise estimate < z(lnx + 1) + 1 for z > 0. This gives
an upper bound for the L?(Q2)-norm for Vet — V&t and vVe= — V. Using with p = 2, we can estimate

(39) further by
+
[v =2l 160
Lt Q) “)

I (e <)

< 59(0 — )2y + 4HW \EHW”Q)FC[HV(IH 01
+
)]

o)
+
L2 Q)]
+C ([Hv (ne* +9) HLoo(QI“L [Héiﬂil(g)]i* 1) R(ula) 1)

where we again used Lemma(3.2] The term in front of R(u|a) can be estimated by

—+ ~\ |14 B ~—+ ~+ (14 - 4
e ([I¥ G ] + ] 1) =€ ([iHhnin] 1 1)

(V7 vy

&t

6 +
2(9)]

<8V - )| 2aq) + ‘v\/c? F)‘

H

+ C[(HV (lnéi i&) ’LW(Q)

<5V —9)l[72(q) + 4HVF r)’

&t

orp) V- v
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Now, we are done with the first term from (37). For the remaining term of (37), we note that

+
+(cF - &) -V — 1) dm]

|

S~

_ [ﬂ:/ @(@_@)@.v<¢_@+@(@_@)f,.w_@dwf
Q

< IV Ve g [VeET 0 = 0

o) ||f:Loo(Q)T

+
L2(Q) H \/Ef)HLOO(Q)] ’ (42)

T I

L2(Q)

where we used z — y = z(v/z — /y) + Vy(v& — \/y) for z,y > 0. Putting (38), (1), and together and

again employing Lemma[3:2] we obtain

0 < € (1ol + [ s en] + 19l ey + 1) Rl
+=
oV - o [+ 1190 - 0 + Ve - o

+=
s ] (43)

The estimate of [[TT] works similar to (42):

c* ~ ~
|IH|=‘[—/Qi(1—5i) AT (=) + —ci>A<d>vw-v<w—¢>dwT

[/ (@ — H)A(d) (sz +Vin éi) V() — ) da
Q

o [A@V (£ me) HMJ

|VeEAw@v (mnaﬂ:)um)]i

Vet — Vet V(¢ —

o]
|veE - veE

oo

L2(Q)

<c ﬂ M)V (£ Ine*) HLM(Q) n H@A(d)v (9 me*) HLOO(Q)]iR(um)

L2(9)
[VeEvw -9,

9 +
: 44
) (Q)] (44)
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Next, we estimate [[V}

2 2 B
V] = /94\/5?A(d)v\/a? \Y% (1 - \/i> +4 (1 - @) A(d)v\/a?v\/e?dm]

< / (@A( W@) (( (VEE - ﬁ)v( VE- V) ]
[ A Vlnc .VInétde

L (V- V) v (Vi - VE)) dw]i

+
LW(Q)]
+
ct ? ] . (45)
L2(Q)

[ Jc? A (d)VInét - Vinet olac]i

([ IVVE): Z) s

[HA )V In &t VlnchHLoo T) R(u|ﬁ)+4[H

For[V] we note

)vf)

ot —

4
(V] < 6l |V = D), )

+ (8eA Nl 1,00 ) + 4+ X) 1.0

2(Q) HVQW -¥) L2(Q)

+ 0 (14 1oy ) (46)

< é V2w - i

%)

For the boundary integral we use the trace estimate [DiB10, Prop. 8.2], which gives for all p € [1, 3) that there
exists a C' > 0 such that for all § > 0 and all u € WP (1), we have that

1 2p
||u||§q(r) <6§|vul?, oy +C <1+ >||uL ) for a€ {1, (3_p)].

Thus, using z — y = (V@ — )% + 27 (V& — /), we obtain
VD = |or [ (" = = @ =@ =) do

< [27'

< ol & sy

] [0

(Jc?—\/a?) +4THF(F VeE)

L4/3

2 +w@mmﬁwﬁw$wmm

<or [JHVJEV\/EHLQ(Q) +C < > |ve= - veE Lz(Q)] L P

R O T N R

glmwﬁt = I+c@+wmwwwm )M%¢ fmmf
[Mr@MAww%MWWWWJw
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. —1
where we have chosen § = (C’eT(S(uo) +C(&) + ||wHL°°(O,T;W1»2(Q)) + 87) and used that

1l oo 0 712 () < € sup (E(w)(t) +1) < CeT (E(ug) + C(€))
te(0,T)

by the energy inequality. For[VII] we note that

\m|—27/w 3) (YT M@V = 1)) -ndo| < CUA@D ey [ = D oy V@ =D 2y
< CIA@)llyro o) 1€ = Pl = Pllezo
< CIA@) sy [ = Fley + 511 = Sy
= (11 +1) (IV@ = D) agay + 10 = Pl 2ery) + 51920 = D2y

< O (Il sy + 1) ROl + 5[V2W ~ D)2 q): (48)

and for [VIII} again using [DiB10| Prop. 8.2], we have

m|2‘ / (VT MA@V (0~ 1)) - E@V( - ) do
< ClA@Dlyrr.oe () (@) .oy [T = D) 721y
1 ~ -
< CIA@ Iy eqay WE@rmey (€ (14 3) V00 = D)y + 81720 = ) 2y

| ~
< C (14 |l (g ) ROl@) + 5 [[V20 = B)]|72(0)- (49)

For[[X] we estimate

[X] = \/Faaé—&)w—u?) do

1 ~ 1 -
< 10~ Oaqry + 5100~ D2y < 1€~ O[22 + ~Rluli) (50)

and forsimilarly toagain using [DiB10, Prop. 8.2] and = — y = (v — /¥)? + 2/ (VT — /) , we find

X -2 /F<C+ S - @ - Hdo
<ae= gy (V- Vo * 2 2 - ]
<2 [ Hv\/? vVt L2(9)+C<1+1> = ;(QI
+0H5—5 | N e |

<sflvveE-wval, %%+wadwgﬂﬁﬁﬁf

+
VT~ VaE LQ(Q)] 5

_ —1
where we have chosen § = (8 (1 + 1€ - §HL4(F))) and used the embedding W2(T') < L4(I") [DD12,

Rl W S

S
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Thm. 3.81]. For[X]} we again use [DiB10, Prop. 8.2] and estimate

B0 =2| [ ~(A@ + E@)Vew - ) V(e - &) do
<[[Vre =8|, + 1A+ E@D e HV“/’ ey
< |90 =8 uyp, + Ol e [0 =)
< |- gHWM(Fwnanl,m(m (c<1+ )76 =0y 21720 =)
<Je=&lna * 15 2@ =9, +0(1+Hdllwm ))\ Mgy 2

-1
where we have chosen d = (16 (1 + C ||d||%/vl’°°(9) and estimated the norm of the surface gradient of ¢
by the norm of the full gradient, cf. [HLP25, Lem. A.36]. For[XI]|similarly to [VIII, again using [DiB10, Prop. 8.2],
we find

[XIO) =2 ’/F —(£—=9) (VnTA(d)V(¢ - @)) ‘ndo

<le =&l 2y + CIADIF ooy V@ = D) 72 ry

1 - 12
ooy O (14 3) 196 =Dae))

<|le—&ll7a + EHV?(w = )72y + C (14 Il IV = )72 (53)

< e~ 22y + e (HW%w—w

-1
where we have chosen § = (16 (1 +C HdH%Vl,OO(Q))) . Finally, we turn to the curvature term [XIII|and find

|XTI1| < 2

<O (o= dlemy - Ely) . 64

(€ —&—71(—1)X(Vr-n)do

Putting (36) and (43)—(54) back into (35), we obtain

t
R(ula)|f + i W(ul@) ds

a5 i) (= (= )+ (- i:c )R (ul (€€
< [ [ As@--v+ [Aai(u) (@ -z w>)] da + K(@)R(ul@) + Qa(¢[€) ds

w5 [ 190 -9l [H@W—z/?) v

g/ﬂh%#—vﬁﬂfZ]ls
0 L)

ds

2(Q)

- 12
)] +||v2w -9,

Thus, we get
e 1t -
ot 3 /0 W(ul|n) ds
+ +
o (14 4 ”
< Ag(a) - (0 —v) + | Az (@) 6?(0 — ")+ W —v) || deds
0 Jo
t ~,

+ /0 K(@)R(ulw) + Qg (£]€) ds. (55)

An application of Gronwall’s inequality yields the relative energy inequality (12). O
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4 Existence of local-in-time strong solutions to the anisotropic NSNPP and
SNPP systems

In this section, we will prove the existence of local-in-time strong solutions to the NSNPP as well as the SNPP
system. The existence of strong solutions to certain isotropic SNPP systems is already known global-in-time, see
for example [CIL21]. However, this result makes use of identifying the electromigration term in the Nernst—Planck
equations with the Poisson equation. Due to the difference in the anisotropy matrices £(d) and A(d) we cannot
derive such an a priori bound and we need to restrict our selves to local-in-time strong solutions. In the following
we will show this existence of local-in-time strong solutions both for the NSNPP and the SNPP system by deriving
a priori estimates which allow us to use an ODE comparison principle. To make these rigorous we need to use
an appropriate regularized system, which allows us to test the (Navier—)Stokes equation with v — Av and the
Nernst—Planck equations with ¢= — Ac®, which we will introduce in the following.

Choosing a Galerkin basis of eigenfunctions of the Stokes operator for the Navier—Stokes equation allowing
us to test with the Stokes operator of v and an elliptic regularization for the NPP part of the system we find
a global strong solution to this regularized system using a similar fixed point argument as in [HLP25|. For an
approximation vy, € V,, where V}, is the span of the finite eigenfunction basis {w’", ... ,w”Nlm}, and the
regularization coefficient x,, > 0 we consider the regularized coupled system:

(Re (0rvm + (vm - V)om) — Avp + Vpm + (6, = ¢30)Vbm, w) ;2 =0 in (0,T) forall w € V;,, (56a)
V-vym=0 1in(0,T)xQ (56b)

Bt + V- (chvm) — V- (Ad)(VeE £ cEVm)) =0 in(0,T) x Q, (56¢)

—V - (E(d)Vibm) — Sk, (¢t —¢,) =0 in(0,T) xQ (56d)

where (-, )72 denotes the L?(Q) scalar product and Sy, is an elliptic regularization operator [HLP25, Def. 4.1],
which is given by the solution operator to the anisotropic Poisson equation, that is Sy, (f) = ¢, where

©—knV - (E(d)Vy)=f inQ, Ed)Vo+T1p=¢ onT.

In the following existence proof of local strong solutions the precise form of this elliptic regularization is not used
directly, we only make use of the elliptic regularity and that for x,, ~\ 0 it approximates the identity operator. That
is for k,;m \, 0 and f,, — fin L?(Q) we find Sk, (fm) — f in L2(Q). Additionally, we equip system with
the initial conditions
Vm(0) = vom € Vin,  c5(0) =ct € LX Q)4  inQ
and the boundary conditions
v =0, Ad)(Veh £cEV,) - n=0, Ed)Vm-n+7n=E¢  on0,T] xT.

Equation is a standard Galerkin discretization of the Navier-Stokes equation, which can be seen as a non-
linear system of ordinary differential equations (ODE). A solution vy, then is the vector v, = (7", ... ,v?\}m) €
C1([0,T]; RNm) such that vy, = > vmw!™ fulfills for all test functions from the finite dimension test space
Vin. As already indicated here we will use v, both for the vector-valued function with values in R™Vm as well as
the abstract function with values in the Sobolev space W22(£2), which a common abuse of notation, and we
equip the space RV with the norm ||v,y ||, := HZU["W{"HWM - In the following proposition we will prove
the existence of global strong solutions to the regularized system via a Schauder fixed point argument.

Proposition 4.1. Foreverym € N, Re > 0,7 > 0, ki > 0, vom € Vin, c(jf € LZ(Q)+, d e 04’1(5)
withd-n =0o0nT,and§ € W1’2(0, T; W“(F)), the regularized system has a global strong solution
U = (Vm, cE, m) such that

vm € AC([0,T); Vi), ¢, e C([0,T]; L2(Q)) N L2(0,T; WH2(Q)) n Wh2(0, T; W—12(Q))
Um € C([0,T]; WH2(Q)) n L2(0, T; W32(Q)) n W20, T; W32(Q))

and the equations in are fulfilled pointwise almost everywhere.
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Proof. We use a Schauder fixed-point argument. For fixed vy, € span{ws,...,wy, } € L>(0,7;L*(Q))
with s > d and k,, > 0 we already know that the regularized NPP subsystem (56c)—(56d) has a weak
solution (¢, b)) with ¢ e C([0,T); L2(Q)) N L2(0,T; WH2(Q)) n wh2(0, T; W~12(Q)) and ¢, €
([0, T]; W42()) N L2(0, T; W32(Q)) n W2(0,T; W32(Q)), which follows from [HLP25, Prop. 4.3] and
elliptic regularity. Here, we used that we have d € C%1(Q) and ¢ € C([0,T]; W%2(I")) in order to ob-
tain information on the fifth order derivative of v, by elliptic regularity [GT01, Thm. 9.19]. Now, we have
(ch =) Vb € C([0, T; L?(2)) for the right-hand side of and thus the solutions to the finite dimensional
system of ODEs has a unique local-in-time solution v,,, € C1([0, T*); R¥™) due to the Picard—Lindelsf
theorem, since on the discrete level we solve an ODE with polynomial and thus locally Lipschitz continuous
right-hand side [EmmO04, Thm. 7.2.3]. This local solution can be extended to the whole time interval [0, T'] with
classical a priori estimates for v,,,, which are derived by testing with the Stokes operator applied to v, and give
the boundedness in L (0, T; W12(2)) for vy € Wy 2 (€2) [BF13, Sec. V.2].

We now define the solution operator 7, : C([0, T]; RNm) — C([0, T]; R™V™) that decouples the (Navier—)Stokes
and Nernst—Planck—Poisson (NPP) part of system by mapping a given v, to the solution (C$7¢m) of
the NPP sub-system (56c)—(56d) and then giving the solution w,,, to the (Navier—)Stokes equation for
the right-hand side given by this (c%, tm ). The operator T, maps the closed and convex set: M := {v €
C([0, T); RNm)| ||v]|,,, < Cps} onto itself, where C); is such that

va||Loo(o,T;W§;§(Q)) < C (e = em)Vebml| oo 0. 12200 < € [Hcg:lHLOO(O,T;LQ(Q))TvamHLw((OvT)XQ)

+ +=
=C [HCmHLoo(o,T;L?(Q))] [¥mll Lo 0. rw12(0)) < Clom, T) =: Ca, (57)

where the last inequality follows from [HLP25, Lem. 4.5] and is independent of v,,. If we show in addition that
Tm is continuous and compact, then, by Schauder’s fixed point theorem [Rou13, Thm. 1.9] there exists a fixed
point vy, € M such that T, (vm,) = vm.

We first show the compactness of Tp,. Let (vmn)n € C([0,T];RVm) be a bounded sequence and let
(C%,na¢m,n)n be the corresponding solutions to the Nernst—Planck—Poisson system. The compactness in
space simply follows by the boundedness of v,, in L°(0, T; W12(Q)) since RV is finite dimensional. For
the compactness in time we need an estimate for the time derivative. For Re > 0 we know that Oiv., 1, is
bounded in L2(0, T; L?(Q2)) [BF13, Sec. V.2]. For Re = 0 the solution operator Agl Wh2(Q) = Wol’UZ(Q)
to the (discretized/ finite dimensional) stationary Stokes equation is a bounded linear operator and thu7s the
boundedness of 0:((c;h, , — Cmn) Vmn) € L2(0,T; W~12(Q)) (which follows from a simple testing of
the Nernst—Planck equation (56c)) implies the boundedness of ;v ,, = atAgl((cjn,n = Cmn)Vimn) =
A Oe((hm — Emn)Vmom)) € L2(0,T; W12(Q)) (by basic properties of the Bochner integral [EmmO04),
Thm. 7.1.15iii)]). And thus by the compact embedding

L0, T;RNm) nWh2(0, T; L2(Q)) < C([0, T); RYV™)
see for example [Sim86, Cor. 4], we find a subsequence of (7, (Vi n ) )n convergent in C([0, T]; RVm) and the

compactness of 7, follows.

Next, we show the continuity of Ty,. Let (vm.n)n € C([0,T];RN™) be a sequence converging to vy, €
C([0,T);RNm). Then we find that (¢, ,,), converges to cif in C([0,7]; L2(R2)) N L*(0, T; WH2(Q)) and
consequently (Y, n)n cONVerges to vy, in C([0, T]; W*2(Q)) N L2(0, T; W52(Q)) by elliptic regularity. Before
we show the convergence of (07:7‘:1,71)71 we note that this already implies the continuity of 7;,. Subtracting the
equation for 7 (vm,n) = Um,n and T (vy,) = Up, and testing with the difference we obtain:

Re d

_ _ 2 3 _ _
?a vayn - vaL2(Q) + i /Q |V('Um7n - ’Um)|2 dx

< CRe* [Tl 760y [[Tmm — 6”1”%2(9)

+ H(c;";z,n - C;%n)VZ/)mm - (C;ri_L - c;],)vmeL2(Q) Hﬁm,n - ﬁmHL2(Q) ) (58)
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where we used Lemma|3.4]to estimate the trilinear term in the Navier—Stokes equation.

For Re = 0, that is for the SNPP system, we can use Young's inequality to absorb the ||z, — ﬁmHLQ(Q)—term
from the last term on the right-hand side into the gradient term on the left-hand side using ||’Um||W1,2(Q) <
0

Cl[Vvml|12(q)- Taking the supremum over the time interval [0, T'] we find for Re = 0:

HT('Um,n) - T(Um)Hc([o,T];RNm) = Hﬁm»” - ﬁmHC([O,T];IRiNm)

<C ||(cr—’r—1,n - c;"z,n)vwm,n - (Cr—; - C%)V¢m|\c([07T];L2(Q))

<O || e = I T gy * € BT (T = )]

¢ H [i(cfj’[%” B Ci)]iuc([o,ﬂ;m(ﬂ)) ||Vwm’””C([O,T];L”(ﬂ))

I

([0,T;L2())

[0,T];L2(<2)) IVm.n - V¢m|’0([0,T;W2,2(Q)) — 0. (59)

For the NSNPP system, so for Re > 0, we use and apply Gronwall’'s lemma to find:

Re | _ _
5 @ =Bm) 0|72

LY [YCR3|[Bm|* g, +1) dr _ _ 2
< Re /0 efs L6(Q) ||(C:§L’n — cmm)vwmm - (c:rn - Cm)VQZJmHLQ(Q) ds
since Uy,,» and v, emanate from the same initial data. As in we find that the convergence of (cﬁm)n in

C([0,T); L?()) is enough to show the convergence of (U, )n- Here, only the L2(£2) convergence is shown or
the convergence in the norm induced by ||-[| 72(qy in RV But as all norms are equivalent in finite dimensional

vector spaces, we can deduce the convergence of (T, n)n t0 Ty, also in C([0, T1; RNm).

The convergence of (cﬁcmn)n also follows from a Gronwall type argument. We subtract the equations for CT:%,TZ

and ¢t and test with chn’n — ¢t to find:

d +
[dt et = cilEay + [ 1960~ G dm]
+
= [ v = i) - V(6 = )+ A (65 Vi — G V) - V(e = 5] da
1 2 2 i
< 5 19— 2y + € om0 0 |
+C [H (C;En’n — C,,in)vwm,n + Ci(vwm,n — Vwm) ||iz(ﬂ)]i
1 a2 T L2 2 + 2 T
< 5 NI = 72| + O lelZs | oman = vmllio + O |lehn = il |

where we used that v, , and vy, are divergence free and elliptic regularity to find ||ty n — ¢m||w472(9) <

+
C [Hcﬁin — c$‘|L2(Q)] . The convergence of (cﬁn)n follows from absorbing the first term on the right-hand

side into the left-hand side and applying Gronwall’s lemma to find that
+ + 2 cr [t + 12 2
= Ol <€ [ fleilGaay| Iomn — vl as

2 2
< C ¢ lvmm = vml|e o, 1pm3m) [HCT:‘T:LHLZ(O,T;WL?(Q))T (60)

and using the convergence of (Vs )n 10 vy, in C([0, T]; RNm). Finally, we show the uniqueness of such a fixed
point, which follows by similar Gronwall argument. We assume that there are two fixed points v, = T (vm)
and 9y, = T (9 With corresponding solutions (3, ¢y,) and (&, ¥ ) to the Nernst—Planck—Poisson system.
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Plugging in into the estimate for vy, and o, we find:

Re d 2
i 1 m = 5@ + 5 [ [V —om)2de

+
~ 2 -
< ORe [[omlba [0 — Bl 3 + C’eCt/O et 0 Tom = Bl ds.

For the SNPP system, that is for Re = 0, the embedding W12(Q) — L5(Q) combined with the estimate
H’UHWOLQ(Q) <C HV'U”LQ(Q) and an application of Gronwall’'s inequality yields v,, = ¥,,. For the NSNPP
system with Re > 0 we integrate in time to find

R, 3 3 [t _
76 (v — vm)(t)H%g(Q) + 1/0 /Q |V (vm — vm)‘Q dx ds
4 ¢ 4 ~ 2 ! C ’ + 12 - 2
S CRe /O vaHL6(Q) H'Um _vaL2(Q) dS“v‘C/(\) e T/O [HCWHLS(Q)] va _vaL6(Q) dsdr
4 t 4 ~ 2 Ct ¢ + 12 - 2
< CRe /0 H'umHL@(Q) [lom —vaLz(Q) ds + Cte /0 [HCmHLS(Q)] lvm — vm||L6(Q) ds,

where we used ||vy,0 — f;mpHQLQ(Q) = 0 and thus by another application of Gronwall’s lemma we find that
U = U, also for Re > 0. O

Our next order of business is to prove the existence of local strong solutions to the original (unregularized)
system cf. Theorem2.7] This is done in the following proof. Now all the estimates need to be independent of the
discretization and regularization parameters m and k,, (in contrast to the previous proof).

Proof (of Theorem[2.7). We introduce the time dependent function 7(t) := Hci||w1 2(q) + Re Hf)||%,v1,2(9) +1
and will derive estimates to show a bound of the form 0;n < Cn™ for some n € N (which is unconnected to the
regularization from before) from which we will deduce the local-in-time existence of a solution @ for vanishing
regularization. A bootstrap argument then allows us to show that these solutions are strong and lie in which
we will show at the end of this proof. To make this rigorous we need to use the solution to the regularized system.
We omit here the regularization coefficients m and «,, for readability and just recall that the Galerkin basis for
the (Navier—)Stokes equation in was chosen such that we are allowed to test with v,,, — Awv,,,, which we will
proceed to do now. We first test the (Navier—)Stokes equation with © — Aw to find:
Re d

77/ |@|2+|Vﬁ\2dm+/ IVo|? + |A%|? dz

= / Re(v- V)0 - A% — (67 — &)V - (0 — AD) de. (61)
Q

We can estimate the first term on the right-hand side by an application of the Gagliardo—Nirenberg and Young’s
inequalities for any 6 > 0 :,

\Re [0+ 910 80 de| < Re |20y 9l 1300y o110

< CRGHAUIILQ(Q Py @ 19llLse) < 01|1A%]I72 () + CRe [V [j1.2(q) -

For the second term on the right-hand side of we find

) -2 ~+1|2 B ill?
<9 (Hv||L2(Q) + ||AvHL2(Q)> + C[HC ||L3(Q)] HV L5(Q

+
<8 (19130) + 18813200 ) + |1 ey ]

where we used Sobolev’s embedding TW12(Q2) < L5(2) and that by elliptic regularity we have

+ +
1990 oy < 19Ny < CHIE s @f < € 1l 20y |

/ (¢F =& )V - (0 — AD) dae
Q
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Next, we test the Nernst—Planck equations with ¢= — A& to find:

d

i d - _ b ko i
aHciHiQ(Q)JraHVciHig(Q)+/Q|Vci\i(d)f(A(d)(Vcij:cng/J))~V(Aci)da:

:q:/ FEA(A)VY - Vet dw+/(vai - D)AET da, (62)
Q Q

=4 =41

here we used that v has vanishing divergence and no slip boundary conditions, so that
1 1
/ o - Vet de = 7/ o-V(et)2de = —7/(éi)2V~f)dw+/(éi)2iz-nda:0
Q 2 Ja 2 Ja r

by an integration by parts and the no-flux boundary conditions A(d)(VEjE + Einﬁ) -n = 0, which are indeed
fulfilled on the regularized level cf. Proposition For the last term on the left-hand side to give us a good term
in the second derivative of ¢+ we need to integrate by parts:

—/ (A(d)(VEt +6TVe)) - V(AFT) da = —/ (A(d)(VEt +6TVy)) - V- (V2eh) da
Q Q
= / V(A(d)(VEt £&EVe)) : v2et da — / V2etn - (A(d)(VEE £ & VY)) do. (63)
Q T

The volume term gives us a good term in the second derivative of ¢+ and lower order terms, which can be
estimated. Using (a ® b)e = (b- ¢)a and V(fa) = fVa + a ® V f we find:
V(A(d)(VEE £&7Ve)) - v2et
= V2?2 + Ad® (V2etd)) : v2et + A ((d Ve Vd +d® VdTvei) V2t

=111

+ (5iv2z/3 LV @ VEE $ A (VY- d)Vd + A © V(EE (V- d))) L V2t

=i
The first two terms have a good sign
IV2eE 12 + M(d @ (V2eTd)) : Vet = |[V2et 2 + A\ Vv2etd)?

and the remaining terms can be estimate for d smooth enough (which is the case here since by Assumption[2.4]
we have d € C4(Q)):

B

< C|IV2E | L2 (HVEiHLQ(Q) H1E N L V2% gy + 1V | 20y 199 oo

11 1o V9 1)
_ 4 4
= 0V2E a0 + € (1Y 120 + 15220y + 1)
where we used that HJ)HWg’Q(Q) <C Héiuww(g) and the boundedness of d in W1°(Q). To handle the

boundary term on the right-hand side of (63), we use the surface gradient and the identity: Vf = Vpf+(Vf-n)n.
Plugging this into the boundary term of we obtain

—/Fv%in C(A(d)(VEE £ V) do
=— /F (V(Vet -n) — vnT'vet) . (A(d)(VEr £EEVe)) do
= /F (Vp(VET - n) + (V((VEE - n)) -n)n — vl Vet) - (A(d)(VEt £65VY)) do
= /F (Vp(VET - n) — vnT Ve - (A(d)(VEE £65VY)) do

4 /F Ve(EE (V- n) - (A(d)(VEE + 65 V) + (VT Vet) - (A(d)(Vet + Vi) do
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where we used the no-flux boundary conditions for the second to last equality and d - n = 0 on I', so that
Vet - n = Ad)Vet - n = FEA(d)VY - n = TV - n for the last equality. To estimate the remaining
boundary terms we note:

/F (Vn!'Vet) - (A(d)(VE: + & V1)) do < C Ve[ + CIIVE | Loy 15 gy 199y
< 0V 7o) + € (IVF oy + 18 oy + 1)

where we used the embedding W1:2(Q2) — L*(I") for space dimension three, the elliptic bound ||V7JJHL4(F) <

CHJ)HW?»?(Q) <C Héi”LQ(Q) and the trace estimate from [DiB10, Prop. 8.2]. For the other boundary integral
we need to work a bit more:

/ Vr(E (V9 - n)) - (A(d)(VeE £ Vi) do
:/F((w-n)vpa +aivp(qu-n))-(A(d)(veiiaiw))da

<C (HVéiHLQ(F) IV oo oy + 13 M oy HV%HUL(F)) (HVéiHm(r) + HVWH(F))
<C HVEiHiZ(r) [V ooy + 0 HVEiHi%r) +C HéiHiél(r) HV%H;(F)
+ OVl 2oy IVl 0y + CE N ey 1V oy V0 2y
< 0V gy + € (1l 2 + 1)
where we used ||V f{| 2y < C [V fl 12y ||V1/~’||L<>o(r) = CHW/;HWM(Q) = CWHWM(Q) <C HéiHWL2(Q)

and HV%HM(F) < CHV%HWLQ(Q) < CWHWS’Q(Q) < CHEinl,z(Q . Now, we can use Hélder's and
Young's inequalities and elliptic regularity to estimate the right-hand side of . For the first term ¢ we note:
< C & Loy [AD V| ooy VE | 20
4 113/2 4 113/2 . .
< C [l a0y 1V 220y < € 16 220 + € 1V 12y -

For the second term 7 we observe:
3/2
L2(Q)

HVEiHB ‘*‘CHVU||L2

@< C|[VE | ooy 1ol s(0y 188 | 2y < C V& [ Hhtg) 198y [ 726

< 5Hv25iHL2(Q +C||VEE | fagqy 18Iz < 5Hv2 i] .

The last term on the right-hand side can be estimated using (61). Recalling the definition of 1 := HCiH%/W 2(Q) +

Re Hf:H%,Vl 2() +1, we can estimate C ||VvHL2 ) dependent on the Reynolds number Re. For Re > 0 we have

C ||Vv\|L2 © < Ro L3 and for Re = 0 we have C ||V’UHL2 ) < C[HciHW1 2(9)] < C15. Putting all of the
above together and we obtain:

1 - -
By + 5/ Vo[ +|A0]% + [V2cE]? + A V2cEd)? da < Cren®
Q

with CRre = C independent of Re for Re = 0 and Cge = C'(Re™! + Re + 1) for Re > 0. By an ODE comparison
principle we can deduce that there exists a 7* > 0 such that we have a solution & € L2(0,T; W22(Q)),

£ e L0, T; Wh2(Q)) N L2(0, T; W22(Q)) and thus ¢ € L>(0,T; W32(Q2)). All of the above estimates
are independent of the regularization parameters x,, and m. So we directly get weakly convergent subsequences
for vanishing regularization in the appropriate spaces. To pass to the limit in the (nonlinear) weak formulation we
additionally need to have some strong convergence. Using the Nernst—Planck equations we find an additional
estimate for 9;¢* in L2(0,T; L?(Q)) and thus using the compact Aubin-Lions embedding:

L2(0,T; W22(Q)) n W20, T; L2(Q)) —— L2(0,T; W12(Q))
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see for example [Rou13, Lem. 7.7], we find &5 — &+ in L2(0, T; W12(Q)) and thus by elliptic regularity ), — 1)
in L2(0,T; W32(Q)), which is enough to pass to the limit in the weak formulation of the fully coupled SNPP
system. For the limit passage for vanishing regularization for the fully coupled NSNPP system we additionally
need some strong convergence of the regularized velocity field. For that we use thar for Re > 0 we have that
D is bounded in L (0, T; WH2(Q)) N L2(0, T; W22(£)) independently of the regularization by the definition
of 7. Thus we have that f,, := Ay, — Re(@m - V)0m — (G — &,,)Viby, is bounded in L2(0,T; L?(Q))
independently of m and by we find

Re 8y9m = P, (Af;m — Re(m - V)om — (& — @)V&m) :

where Py, : LQ(Q) — Vi = LQ(Q) denotes the L2-orthogonal projection onto the discrete Galerkin space.
This implies that also 9;,, is bounded in L?(0, T; L?(£2)) independently of m by the stability of the projection
Py,. Using the compact embedding L2(0, T; W22(Q)) N W12(0,T; L?(Q)) << L*(0,T; W52(Q)) we get
the strong convergence of @, in L2(0, T; W12(Q)) and we can thus pass to the limit in the non-linear term of
the Navier—Stokes equations.

We now turn our attention to additional regularities of this solution to guarantee that o = (o, &+, @) which
follow by a standard bootstrap argument using maximal LP—regularity.

Regularity of © for the NSNPP system: To obtain the L>°((0,T") x €)-bound for the velocity © in the NSNPP
system, we use the maximal LP-regularity of the Stokes operator. We first note that:

Re 8y — AD + Vp=—Re (& V) — (67 — &)V € L/2(0,T; LV/?(Q)), (64)

since © € Wh2(0,T; L2(Q)) N L2(0,T; W22(Q)) — L00,T; L)) n L19/3(0, T; w10/3(Q)). Then,
using the maximal LP—regularity of the Stokes operator and the embedding

WHS2(0, 75 L5/2(9)) 0 L¥2(0, T; W>¥/2(Q) = LP(0, T5 1P () N LP(0, T; WH3(92))

for all p € [1,00), we find that the right-hand side of is in L*(0,T; L*(€)) and thus by the embedding
Whd0,T; L*(Q)) N L0, T; W24(Q)) — C([0,T*] x Q) we find the required L>*~bound for ©. Thus we find
v has enough regularity to be in

Regularity for @ for the SNPP system: We first note that by using ¢+ € L>°(0, T; W12(Q)), ¢ € L>(0,T; W32()),
and the regularity results of the Stokes operator

AD+ Vp=—(E" —& )V e L0, T; L°(Q))

we now have ¥ € L>®(0,T; W25(Q)) < L>°((0,T) x Q)) [BF13, Thm. IV.6.5 and Thm. IV.6.6]. Using maximal
LP—regularity for the diffusive part of the Nernst—Planck equations, that is:

et —V - (A(d)VED) =V -0 + VEr -0 £ Vet - Ad)VY £ 5V - (A(d) V) (65)

where the first term on the right-hand side vanishes, since v is divergence free. Since the right-hand side of
(65) is in L2(0,T; L%(52)), we first find &+ € Wh2(0, T; L2(Q)) N L2(0, T; W22(Q)) — L9(0,T; L1°(Q)) N
LYO/3(0,7; wh10/3((2)). The differentiability in time then extends to the solution & of the Stokes equations by
its linearity we have 8o = 0;((¢t — & )V4)). Thus we already find that @ fulfills the regularity of

Regularity for ¢* and ¢: With the L>—regularity for @ and the maximal LP—regularity for é* from
we find + in L°(0,7; W?10(Q)) and consequently we find that the right-hand side of is now even in
L19/3(0,T; L19/3((2)). Again using maximal LP-regularity we find:

&= e w1030, 1, L1/3()) n LYO/3(0, T; W10/3(Q)) — L0, T; W 19(Q)) N C([0, T*] x Q)
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Now, the right hand-side of isin L19(0, T; L'°(Q)) and maximal LP—regularity gives
& e w00, 7; L)) N L0, T; W19(Q)) — c/21+ ([0, T*] x Q)

for all « € [0,1/2), which is enough to find that also ¢+ and 1[) fulfill the regularity of

For these solutions uniqueness follows by the standard procedure of subtracting the equations for two solutions
and then testing with difference, where one uses that both ¥ and &+ are in L>°((0, T') x ©2). Gronwall's lemma then
gives us the uniqueness similarly to the uniqueness proof on the regularized level, cf. Proof of Propositiond.1 O

We finish this section by proving the comparison principle for the strong solution to the charge equation (1c).

Proof (of Proposition[2.9). We subtract the equation for the sub-solution ¢+ from the equations for the super-
solution * and test with (¢ — ¢*)* to obtain

d1,,_ 2
2l = g / VEE ) da
g/(zi o V(@E& -t (et - cHTA@VY - V(e — )t da
Q
1 _ ~ _ 2
< 5 V@ = P o) + CIA@ o) VP e 0 165 = )2y

where we used that the convection term due to the velocity field v vanishes, since v is divergence free. Due
to the regularity of ¢ in[U] we have Vi) € L10(0, T; Wh10(Q)) — L10(0,T; L°°(£2)) and thus we can apply
Gronwall’s lemma to find

[ 2 2 ! -
5 1@ =)y ) < 5 1@ =) (720 o (/0 A F ) 1V 70 ds) =0

which directly implies ¢+ < ¢ almost everywhere and then with the continuity of this inequality even holds

everywhere. O

5 Proof of the error estimate

We will use the relative energy inequality and test it with the solution u of the SNPP system. We note that the
regularity weight C is bounded independently of the Reynolds number for bounded sequences of Reynolds
numbers.

Proof (of Theorem[2.71)). By the regularity of the strong solution & and the positivity of the charges,
cf. Corollary [2.70] we can use it as a test function in the relative energy inequality. Since the Nernst—Planck—
Poisson part in the SNPP and the NSNPP system are identical, only the term with A3 on the right-hand side of
the relative energy inequality (before the application of Gronwall’s inequality) remains, that is

/ Lo (i) ds</ (/ Ay vRe)dx> + K(@)R (e @) (s) ds.

To estimate the right-hand side we note

R(uge|w)(s)

/ Ag (@) - (0 — vge) de = Re/Q (00 + (V- V)D) (D — vge) d

R _ - . Re
< S 109 + (@ V)3 F20) + 5

=112
5 [vre — ’U||L2(Q) :
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By the regularity of the Stokes solution cf. the definition ofwe know that |00 + (0 - V)i)H?ﬁ(Q) e LY(0,7).
Thus, we obtain:

1 t t
R(uRe|ﬂ)(t)+§/ W (ur. @) dsg/ Re |04 + (8 - V)ol|22(q) + K(@)R (@) ds
0 0

and an application of Gronwall’s lemma yields

t ~
Rune @)(0) + 3 [ Wlaanfiel? X@ 4
0
t ~
< C’Re/ 1065 + (8- V)]|72 g s K@ Ar qg < C(@)Re 0 for Re\, 0. (66)
0

The convergence rate (6) follows by taking the square root in almost directly from the definition of the
relative energy R in and the relative dissipation potential 1V in (8), where the convergence of \/che in
L>(0,T; L?(Q)) follows from

Ve —vy)?<z—y—y(nz—Iny) forz,yecRaz>0,y>0,

see [Las21] Lem. 2.8]. O

Proof (of Corollary[2.13). The error estimate is a direct consequence of the relative energy inequality from
Proposition[3.1 O
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