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Approximation of time-periodic flow past a translating body by
flows in bounded domains

Thomas Eiter, Ana Leonor Silvestre

Abstract

We consider a time-periodic incompressible three-dimensional Navier-Stokes flow past a trans-
lating rigid body. In the first part of the paper, we establish the existence and uniqueness of strong
solutions in the exterior domain that satisfy pointwise estimates for both the velocity and pressure.
The fundamental solution of the time-periodic Oseen equations plays a central role in obtaining
these estimates. The second part focuses on approximating this exterior flow within truncated do-
mains, incorporating appropriate artificial boundary conditions. For these bounded domain prob-
lems, we prove the existence and uniqueness of weak solutions. Finally, we estimate the error in
the velocity component as a function of the truncation radius, showing that, as the latter passes to
infinity, the velocities of the truncated problems converge, in an appropriate norm, to the velocity
of the exterior flow.
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1 Introduction

Consider an incompressible viscous flow around a rigid body translating with a constant velocity ζ ∈
R3 \ {0}. For simplicity and without loss of generality, we take the kinematic viscosity of the fluid to
be equal to 1. To describe the motion of the fluid, we use a reference frame attached to the solid.
Additionally, we assume the fluid to be subject to an external body force and a distribution of velocities
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T. Eiter, A. L. Silvestre 2

along the fluid-solid boundary, both time-periodic of period T > 0. Under these conditions, the motion
of the fluid is governed by the following equations

∂tu−∆u− ζ · ∇u+ u · ∇u+∇p = f in T× Ω,

∇ · u = 0 in T× Ω,

u = h on T× Σ,

lim
|x|→∞

u(t, x) = 0 for t ∈ T.

(1.1)

Here and throughout the paper, Ω ⊂ R3 denotes the exterior domain occupied by the liquid, while
Σ := ∂Ω represents the common boundary between Ω and the compact set corresponding to the rigid
body. We assume that 0 ∈ R3 \ Ω. Since we are interested in time-periodic flows, the torus group
T := R/TZ serves as the time axis in system (1.1), so that all functions therein are time-periodic
with period T > 0. The functions u : T × Ω → R3 and p : T × Ω → R represent the unknown
velocity field and scalar pressure, respectively.

In the context of applications, a crucial question is how to numerically solve the exterior problem (1.1).
Truncating the fluid domain in order to discretize the equations using, for instance, finite elements
necessarily introduces artificial boundaries, which must be chosen so as to ensure the well-posedness
of the mathematical model and the numerical stability of the simulations. Prescribing the so-called “do-
nothing” condition [13,18] on the artificial boundaries arises naturally in the variational formulation after
multiplication of the term−∆u+∇p with a test function and integration by parts. However, as shown in
[1,15], this Neumann condition does not guarantee the well-posedness of the resulting boundary value
problem for the Navier-Stokes equations. In [2], the question of how to numerically solve the Dirichlet
problem for the Stokes system in the exterior of a three-dimensional bounded Lipschitz domain is
addressed using a modified “do-nothing” condition on the outer boundary of a truncated domain. A
similar idea was subsequently exploited for more complex fluid models in [3,4], and we adopt it in this
work, as described below.

Formulation of the problem. Our aim is to investigate how to approximate solutions (u, p) to sys-
tem (1.1), formulated in the unbounded domain Ω, by solutions (uR, pR) to problems posed within
bounded domains ΩR = {x ∈ Ω : |x| < R} for R > 0 sufficiently large. More precisely, we con-
sider solutions (v,p) = (uR, pR) to the truncated problems

∂tv −∆v − ζ · ∇v + v · ∇v +∇p = f in T× ΩR,

∇ · v = 0 in T× ΩR,

v = h on T× Σ,

BR(v,p) = 0 on T× ∂BR,

(1.2)

where BR is a suitable boundary operator. The artificial boundary condition BR(v,p) = 0 on T ×
∂BR must be selected to ensure both the well-posedness of the resulting mixed boundary value
problem and the convergence of uR to u as R→∞ in an appropriate norm. Our choice

BR(v,p)(t, x) =
x

R
·
(
∇v(t, x)−p(t, x)I− 1

2
v(t, x)⊗ v(t, x)

)
+

1 + sζ(x)

R
v(t, x) (1.3)

where sζ(x) := [|ζ||x|+ (ζ · x)] /2, is inspired by [3]. The present work is a generalization to the
time-periodic case of the results obtained in [3] for the steady problem (see also [4] for a linearized
steady flow around a rotating and translating body). Note that the operator BR defined in (1.3) contains
the pseudo-stress tensor T̃(v,p) = ∇v − pI. However, all results in this paper remain valid if T̃ is
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Approximation of time-periodic flow past a translating body by flows in bounded domains 3

replaced by the classical Cauchy stress tensor T(v,p) = ∇v + ∇v> − pI. Here, the gradient of
a vector-valued function of several variables is the transpose of the Jacobian matrix: (∇v)ij =

∂vj
∂xi
,

i, j = 1, 2, 3.

To present the main results of the paper, we introduce additional notation and recall basic properties
of the relevant function spaces and operators.

Notations. Throughout the paper, we will consistently use the same font style to represent scalar, vec-
tor, and tensor-valued functions. Standard notationsLp(O),W k,p(O) andHk(O) for suitable sets O
will be adopted for Lebesgue and Sobolev spaces, and we occasionally write ‖·‖p;D := ‖·‖Lp(O) and
‖·‖k,p;D := ‖·‖Wk,p(O) for corresponding norms. We further introduce homogeneous Sobolev spaces
by denoting u ∈ Dk,p(O) if and only u is locally integrable with∇ku ∈ Lp(O). We further introduce
the homogeneous By D(T) we denote the class of real-valued, infinitely differentiable, T-periodic
functions.

By I ∈ R3×3 we denote the three-dimensional identity matrix. We denote the Dirac delta distributions
on R3, T, and Z by δR3 , δT and δZ, respectively. Here T := R/TZ, where the period T > 0 is fixed
throughout the paper. The whole-space problem associated with (1.1) will be formulated in the locally
compact abelian group G := T×R3, and the Dirac delta distribution on G, δG, will be used to define
the fundamental solution of the time-periodic problem. In the context of the exterior problem Ω, the
symbol δΣ will denote the Dirac delta distribution with support Σ = ∂Ω ⊂ R3. By S′(R3) and S′(G)
we will denote the spaces of tempered distributions over R3 and G, respectively.

If X is a Banach space, we denote by Lr(T;X) the space of all Bochner measurable functions u :

T→ X such that ‖u‖Lr(T;X) :=
(

1
T

∫ T

0
‖u(t)‖rX dt

) 1
r
<∞, for 1 ≤ r <∞, and ‖u‖L∞(T;X) :=

ess supt∈[0,T] ‖u(t)‖X < ∞, for r = ∞. We denote by C(T;X) the space of continuous functions
f : T → X , which corresponds to the continuous functions f : [0,T] → X that satisfy f(0) =
f(T).

We will utilize a precise decomposition of the solution into a steady-state component and a purely
periodic component, as proposed and employed in [5–7, 12, 14]. Specifically, time-periodic functions
v : T → X are split into a steady-state part v0 = Pv and a purely periodic part v⊥ = P⊥v, where
the projections P and P⊥ are defined by

Pv :=

∫
T
v(t) dt =

1

T

∫ T

0

v(t) dt, P⊥v := v −Pv. (1.4)

To specify the class of admissible boundary traces of strong solutions to (1.1) we define

Tp,q(T× Σ) :=
{
v|T×Σ : v ∈ Lp(T;W 2,q(Ω)3), ∂tv ∈ Lp(T;Lq(Ω)3)

}
for p, q ∈ (1,∞), and we equip this space with the norm

‖h‖Tp,q(T×Σ) := inf
{
‖v‖Lp(T;W 2,q(Ω)) + ‖∂tv‖Lp(T;Lq(Ω)) : h = v|T×Σ

}
.

This function space can be decomposed into spaces of steady-state and of purely periodic functions,
given by

Tq(Σ) :=
{
Ph : h ∈ Tp,q(T× Σ)

}
, Tp,q⊥ (T× Σ) :=

{
P⊥h : h ∈ Tp,q(T× Σ)

}
.

Then Tq(Σ) coincides with the Sobolev–Slobodeckij space W 2−1/q,q(Σ). Similarly, one can identify
Tp,q(T × Σ) and Tp,q⊥ (T × Σ) with interpolation spaces, which are of Triebel–Lizorkin and Besov
type. Since these involved constructions are not necessary for our approach, we omit them here.
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T. Eiter, A. L. Silvestre 4

When studying the exterior problem, to quantify the decay of functions in a suitable way, we introduce
the weight function

ναβ (x; ζ) := |x|α(1 + sζ(x))β, sζ(x) :=
1

2

[
|ζ| |x|+ ζ · x

]
for α, β ∈ R, and the corresponding weighted norms

‖v‖∞,ναβ (·;ζ);D := ess sup
x∈D

ναβ (x; ζ)|v(x)|,

‖v‖∞,ναβ (·;ζ);T×D := ess sup
(t,x)∈T×D

ναβ (x; ζ)|v(t, x)|,

where D ⊂ R3 is an open set. When β = 0, we simply write να := να0 (·, ζ), so that να(x) := |x|α.

Main results. The paper’s first main result, Theorem 3.1, establishes the existence and uniqueness
of strong solutions to problem (1.1), assuming that f ∈ L1

loc(T× Ω)3 and h ∈ Tp,q(T× Σ) with

‖Pf‖∞,ν5/21 (·;ζ);Ω + ‖P⊥f‖∞,ν4(·;ζ);T×Ω + ‖h‖Tp,q(T×Σ)

sufficiently small. The corresponding solution (u, p) possesses the same decay as the time-periodic
fundamental solution, exhibiting an anisotropic decay determined by the steady-state part of the fun-
damental solution. The decay rates of the pressure and the purely periodic part of the velocity field
depend on whether the total flux Φ across Σ is constant in time, where by

Φ(t) :=

∫
Σ

h(t, x) · n dS(x).

Subsequently, we consider problem (1.2) incorporating the artificial boundary condition (1.3) on the
outer boundary of the truncated spatial domain. The second main result, Theorem 4.4, establishes
the existence and conditional uniqueness of weak solutions (uR, pR) to (1.2)-(1.3), under weaker
assumptions on the regularity of the boundary data and provided that ‖Φ‖∞,T is small.

Assuming the validity of the earlier well-posedness results, as the third main result of the paper, The-
orem 5.1, we prove the following convergence for the gradient of the velocity and for its trace on the
artificial boundaries:

‖∇u−∇uR‖L2(T×ΩR) + ‖u− uR‖L2(T×∂BR) ≤ CR−
1/2. (1.5)

Structure of the paper . A review of the fundamental solutions of the steady-state and time-periodic
Oseen equations, along with the estimates useful for our study, is provided in Section 2. Section 3
addresses the well-posedness of the exterior problem (1.1), including the precise spatial decay of
the velocity and pressure. In Section 4, we establish existence and conditional uniqueness of weak
solutions to the system (1.2)–(1.3). Finally, the estimate for the truncation error of the velocity field is
derived in Section 5.

2 Fundamental solutions

In this section, we introduce the fundamental solution of the time-periodic Oseen equations,
∂tu−∆u− ζ · ∇u+∇p = f in T× Ω,

∇ · u = 0 in T× Ω,

u = h on T× Σ.

(2.1)
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Approximation of time-periodic flow past a translating body by flows in bounded domains 5

We begin by recalling several fundamental solutions for steady problems. In R3, the fundamental
solution of the Laplace operator −∆ is given by

E(x) =
1

4π|x|
, (2.2)

that is, −∆E = δR3 in S′(R3). The fundamental solution of the 3D Stokes system is the pair
(Γ0

0, P ) ∈ S′(R3)3×3 ×S′(R3)3 given by (see, for example, [11])

(Γ0
0, P )(x) =

(
1

8π|x|
(I + x̂⊗ x̂) ,

1

4π|x|2
x̂

)
where x̂ := x/|x| (x ∈ R3 \ {0}), and the pressure component satisfies

P (x) = −∇E(x). (2.3)

The fundamental solution of the 3D Oseen system has the same pressure part, P (x) = −∇E(x),
and the velocity component is given by (see [11,19])

Γζ0(x) =
1

4π|x|
exp (−sζ(x)) I− |ζ|

16πsζ(x)
exp (−sζ(x))

(
x̂+ ζ̂

)
⊗
(
x̂+ ζ̂

)
− 1− exp(−sζ(x))

8π|x|sζ(x)
(I− x̂⊗ x̂)

+
|ζ|
16π

1− exp(−sζ(x))

sζ(x)2

(
x̂+ ζ̂

)
⊗
(
x̂+ ζ̂

)
.

(2.4)

In the time-periodic case, the fundamental solutions can be identified as solutions to a system of partial
differential equations on G. Following [5, 12, 14], the fundamental solution of the Stokes (ζ = 0) or
Oseen (ζ 6= 0) equations is a pair (Γζ , Q) ∈ S′(G)3×3 ×S′(G)3 satisfying{

∂tΓ
ζ −∆Γζ +∇Q− (ζ · ∇)Γζ = δGI,

∇ · Γζ = 0.
(2.5)

The pressure component is given by (recall (2.3))

Q = δT ⊗ P,

meaningQ(t, x) = δT(t)P (x). As in the Stokes case [14], the velocity part Γζ is a sum of the steady-
state Oseen fundamental solution and a purely time-periodic remainder satisfying good integrability
and pointwise decay estimates. The pressure part, as in the steady regime, is identical to that of
the Stokes case, that is, Q is independent of ζ . The velocity component Γζ admits the following
decomposition

Γζ = 1T ⊗ Γζ0 + Γζ⊥,

with Γζ0 the velocity part of the steady fundamental solution, defined in (2.4), and Γζ⊥ the purely periodic
part of Γζ , defined by

Γζ⊥(t, x) = F−1
G

[
1− δZ(k)

|ξ|2 + i
(

2πk
T
− ζ · ξ

) (I− ξ̂ ⊗ ξ̂)] ,
where FG : S′(G)→ S′(Ĝ), Ĝ := Z× R3, is the Fourier transform on the group G.

We recall pointwise estimates of the different parts of the fundamental solution.
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T. Eiter, A. L. Silvestre 6

Proposition 2.1. For all α ∈ N3
0, r ∈ [1,∞) and ε > 0 there are C1, C2 > 0 such that for all

x ∈ R3 with |x| ≥ ε it holds

|Dα
xΓζ0(x)| ≤ C1ν

−1−|α|/2
−1−|α|/2(x; ζ), (2.6)

‖Dα
xΓζ⊥(·, x)‖Lr(T) ≤ C2ν

−3−|α|(x). (2.7)

Here C1 = C1(α, r, ε) > 0 and C2 = C2(α, r, ε, θ) > 0 are independent of ζ and T if T|ζ|2 ≤ θ.

Proof. See [9, Lemma 3.2] and [6, Theorem 1.1]. For the uniformity of the estimates, see also [7,
Theorem 5.8].

When using the anisotropic estimates of Γζ0, we will come across integrals of the form

JR(a, b) :=

∫
∂BR

|x|−a(1 + sζ(x))−b dS(x) =

∫
∂BR

ν−a−b (x; ζ) dS(x) (2.8)

for a, b ≥ 0, R > 0. In [10, Lemma 2.3] (see also [3, Lemma 3.1]), using polar coordinates, it is
shown that

JR(a, b) ≤ C(b)R2−a−min{1,b}, b 6= 1. (2.9)

When dealing with Γζ⊥, we shall need the following integrability properties of Γζ⊥.

Proposition 2.2. We have

∀q ∈
(

1,
5

3

)
: Γζ⊥ ∈ L

q(T× R3)3×3, (2.10)

∀q ∈
[
1,

5

4

)
: ∂jΓ

ζ
⊥ ∈ L

q(T× R3)3×3 (j = 1, 2, 3). (2.11)

If 0 < |ζ| ≤ ζ0 for some ζ0 > 0, the respective Lq-norm can be bounded uniformly in ζ .

Proof. See [6, Theorem 1.1] and [7, Theorem 5.8].

3 Existence in the exterior domain

We return to the problem (1.1) in the exterior domain Ω and show existence of solutions with suitable
decay properties. In what follows, we use the decomposition of time-periodic functions into a steady-
state part f0 = Pf and a purely periodic part f⊥ = P⊥f introduced in (1.4). Our aim is to prove:

Theorem 3.1. Let Ω ⊂ R3 be an exterior domain with C2-boundary Σ = ∂Ω. Let ζ0 > 0 and
p, q ∈ (1,∞). Then there exists ε > 0 such that for all f ∈ L1

loc(T × Ω)3 and h ∈ Tp,q(T × Σ)
satisfying

‖Pf‖∞,ν5/21 (·;ζ);Ω + ‖P⊥f‖∞,ν3+δ(·;ζ);T×Ω + ‖h‖Tp,q(T×Σ) ≤ ε2 (3.1)

for some δ ∈ (0, 1], and for all ζ ∈ R3 \ {0} with |ζ| ≤ ζ0, there exists a unique strong solution
(u, p) to (1.1) satisfying

u ∈ Lp(T;D2,q(Ω)3), ∂tu ∈ Lp(T;Lq(Ω)3), p ∈ Lp(T;D1,q(Ω))
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and

‖∇2u, ∂tu,∇p‖Lp(T;Lq(Ω)) + ‖Pu‖∞,ν11 (·;ζ);Ω + ‖∇Pu‖∞,ν3/2
3/2

(·;ζ);Ω + ‖Pp‖∞,ν2;Ω

+ ‖P⊥u‖∞,ν2;T×Ω + ‖∇P⊥u‖∞,ν3;T×Ω + ‖P⊥p‖∞,ν1;T×Ω ≤ ε.
(3.2)

If the boundary data satisfies

∀t ∈ T :

∫
Σ

∂th(t, x) · n dS(x) = 0, (3.3)

then

‖P⊥u‖∞,ν3;T×Ω + ‖∇P⊥u‖∞,ν3+δ;T×Ω + ‖P⊥p‖∞,ν2;T×Ω ≤ ε. (3.4)

Remark 3.2. Condition (3.3) means that the total boundary flux

Φ(t) :=

∫
Σ

h(t, x) · n dS(x) (3.5)

is constant in time, that is, d
dt

Φ ≡ 0. If this is satisfied, then the decay rate of the pressure is |x|−2,

while for non-constant total flux, the pressure only decays like |x|−1 as |x| → ∞. Similarly, the decay
of the purely periodic part of the velocity field is faster in this case. This observation is in accordance
with [8], where the decay rates for time-periodic weak solutions to (1.1) were derived.

A similar existence result was obtained in [7], but with a different spatial decay rate of the solutions.
Since the decay assumptions on external forces considered in [7, Theorem 4.2] are weaker, the de-
cay rates of the derived solutions are slower as well. In contrast, for solutions established in Theo-
rem 3.1 the velocity field u has the same decay as the time-periodic fundamental solution, namely
the anisotropic decay determined by the steady-state part. Moreover, the purely periodic velocity field
P⊥u decays faster than the steady-state part Pu, and the decay rate is improved if (3.3) is satisfied,
that is, for constant total boundary flux. For δ = 1, this pointwise behavior coincides with the decay
observed for weak solutions when f has compact support, see also [8], and can thus be considered
the optimal decay rate.

Firstly, we will study a linearized version of problem (1.1), with focus on specific pointwise estimates.
Then, a fixed point argument yields the result of Theorem 3.1.

3.1 Linear theory

To prove Theorem 3.1, we first study the associated linear problem (2.1). For pointwise decay es-
timates of the velocity field u = u0 + u⊥ split into steady-state and purely periodic parts, we ex-
tend the velocity and pressure to zero outside the domain Ω and employ the representation formulas
(see [8,19])

u0 = Γζ0 ∗R3 [f0χΩ + n · T̃(u0, p0)δΣ + (ζ · n)h0δΣ]

+ Γζ0 ∗R3 ∇ · [(n⊗ h0)δΣ]− P ∗R3 [n · h0δΣ],
(3.6)

u⊥ = Γζ⊥ ∗G [f⊥χΩ + n · T̃(u⊥, p⊥)δΣ + (ζ · n)h⊥δΣ]

+ Γζ⊥ ∗G ∇ · [(n⊗ h⊥)δΣ]−Q ∗G [n · h⊥δΣ],
(3.7)

DOI 10.20347/WIAS.PREPRINT.3206 Berlin 2025
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where T̃(v, q) = ∇v − qI denotes the Cauchy pseudo-stress tensor for the velocity-pressure pair
(v, q). The corresponding formulas for the pressure are given by

p0 = c0 + P ∗R3 [f0χΩ + n · T̃(u0, p0)δΣ + (ζ · n)h0δΣ]

+ P ∗R3 ∇ · [(n⊗ h0)δΣ]

+ P ∗R3 [ζ(h0 · n)δΣ],

(3.8)

p⊥ = c⊥ +Q ∗G [f⊥χΩ + n · T̃(u⊥, p⊥)δΣ + (ζ · n)h⊥)δΣ]

+Q ∗G ∇ · [(n⊗ h⊥)δΣ]

+Q ∗G [ζ(h⊥ · n)δΣ] + (δT ⊗ E) ∗G [(∂th · n)δΣ]

(3.9)

where c(t) = c0 + c⊥(t) is a function only depending on t.

We next prepare several estimates of the convolutions appearing in (3.6)–(3.9). We define the Eu-
clidean ball of radius R > 0 by BR = {x ∈ R3 : |x| < R}, along with the exterior domain
BR = {x ∈ R3 : |x| > R}, and the spherical shell BR1,R2 = {x ∈ R3 : R1 < |x| < R2}.
Firstly, we consider the terms with contributions at the boundary.

Lemma 3.3. Let S > 0 such that Σ ⊂ BS . Let ζ ∈ R3 such that 0 < |ζ| ≤ ζ0 for some ζ0 > 0.
Then there is C = C(Σ, S, ζ0,T) > 0 such that for all ψ = ψ1δΣ with ψ1 ∈ L1(T × Σ), and for
|x| ≥ S it holds

ν1
1(x; ζ)

∣∣|Γζ0 ⊗ 1T| ∗ ψ(t, x)
∣∣+ ν

3/2
3/2(x; ζ)

∣∣|∇Γζ0 ⊗ 1T| ∗ ψ(t, x)
∣∣

+ ν2
2(x; ζ)

∣∣|∇2Γζ0 ⊗ 1T| ∗ ψ(t, x)
∣∣

+ |x|3
∣∣|Γζ⊥| ∗ ψ(t, x)

∣∣+ |x|4
∣∣|∇Γζ⊥| ∗ ψ(t, x)

∣∣+ |x|5
∣∣|∇2Γζ⊥| ∗ ψ(t, x)

∣∣
+ |x|

∣∣(E ⊗ δT) ∗ ψ(t, x)
∣∣+ |x|2

∣∣|Q| ∗ ψ(t, x)
∣∣+ |x|3

∣∣|∇Q| ∗ ψ(t, x)
∣∣

≤ C‖ψ1‖L1(T×ΩR).

(3.10)

Moreover, if
∫

Σ
ψ(t, x) dS(x) = 0, then

|x|2
∣∣(E ⊗ δT) ∗ ψ(t, x)

∣∣+ |x|3 ∣∣|Q| ∗ ψ(t, x)
∣∣+ |x|4 ∣∣|∇Q| ∗ ψ(t, x)

∣∣ ≤ C‖ψ1‖L1(T×Σ). (3.11)

Proof. Let R ∈ (0, S) such that Σ ⊂ BR. For |x| ≥ S > R ≥ |y| we have

|x− y| ≥ |x| − |y| ≥ (1−R/S)|x| ≥ S −R,
(1 + 2ζ0R)(1 + sζ(x− y)) ≥ 1 + 2|ζ||y|+ sζ(x− y) ≥ 1 + sζ(x).

This yields ναβ (x; ζ) ≤ C ναβ (x − y; ζ) for α, β ≥ 0 and a constant C = C(α, β,R, S, ζ0) > 0.
Therefore, for any function Θ with |Θ(t, z)| ≤ Cν−α−β (z; ζ) for |z| ≥ S −R, we obtain

∣∣Θ ∗ ψ(t, x)
∣∣ ≤ C

∫
T

∫
Σ

ν−α−β (x− y; ζ) |ψ1(s, y)| dS(y)ds

≤ Cν−α−β (x; ζ)‖ψ1‖L1(T×Σ).

In this proof and the ones that follow, C represents a generic constant that may take different values
in different steps of the argument. Moreover, if |∇Θ(t, z)| ≤ Cν−α−β (z; ζ) and

∫
Σ
ψ(t, y) dS(y) = 0,
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Approximation of time-periodic flow past a translating body by flows in bounded domains 9

then we obtain∣∣Θ ∗ ψ(t, x)
∣∣ =

∣∣∣∫
T

∫
Σ

(
Θ(t− s, x− y)−Θ(t− s, x)

)
ψ1(s, y) dS(y)ds

∣∣∣
=
∣∣∣∫

T

∫
Σ

∫ 1

0

y · ∇Θ(t− s, x− θy)ψ1(s, y) dθdS(y)ds
∣∣∣

≤ CR

∫
T

∫
Σ

ν−α−β (x− y; ζ) |ψ1(s, y)| dS(y)ds

≤ Cν−α−β (x; ζ)‖ψ1‖L1(T×Σ).

Due to the estimates (2.6), (2.7) and the decay properties of E, Q and ∇Q, the claim follows from
this general result.

We now consider convolutions of the fundamental solution with functions with suitable spatial decay.
Since we assume different decay estimates of the steady-state and the purely periodic part, we study
them separately. For the steady-state part, we have the following result.

Lemma 3.4. There is C > 0 such that for all ζ ∈ R3 with 0 < |ζ| ≤ ζ0 for some ζ0 > 0, for all

g ∈ L6/5(R3) with ν5/2
1 (·; ζ) g ∈ L∞(R3), and for all x ∈ R3 \ {0} it holds

ν1
1(x; ζ)

∣∣|Γζ0| ∗ g(x)
∣∣+ ν

3/2
3/2(x; ζ)

∣∣|∇Γζ0| ∗ g(x)
∣∣

+ |x|2
∣∣|P | ∗ g(x)

∣∣ ≤ C‖ν5/2
1 (·; ζ) g‖L∞(R3).

Proof. This follows from [3, Theorem 4.7].

For the purely periodic part, we have the following estimates.

Lemma 3.5. Let ε > 0, r ∈ [1,∞) and µ > 3. Then there is C > 0 such that for all ζ ∈ R3 \ {0}
and g ∈ L1

loc(T× R3) with (1 + νµ)g ∈ Lr(T;L∞(R3)3), and for all x ∈ R3 with |x| ≥ ε it holds

|x|3
∣∣|Γζ⊥| ∗ g(t, x)

∣∣+ |x|min {µ,4} ∣∣|∇Γζ⊥| ∗ g(t, x)
∣∣

+ |x|2
∣∣|Q| ∗ g(t, x)

∣∣ ≤ C‖(1 + νµ)g‖Lr(T;L∞(R3)).

Proof. Set M := ‖(1 + νµ)g‖Lr(T;L∞(R3)). We start with the estimate of |Γζ⊥| ∗ g. We use Hölder’s
inequality on T and Minkowski’s integral inequality and split the spatial integral into three parts to
obtain

∣∣|Γζ⊥| ∗ g(t, x)
∣∣ ≤ ∫

R3

(∫
T

∣∣Γζ⊥(t− s, x− y)
∣∣r′ ds

)1/r′(∫
T

∣∣g(t, y)
∣∣r ds

)1/r

dy

≤ CM

3∑
j=1

∫
Aj

(∫
T

∣∣Γζ⊥(s, x− y)
∣∣r′ ds

)1/r′(
1 + |y|µ

)−1
dy =: CM

3∑
j=1

Ij

where r′ = r/(r − 1), and we set A1 = BR, A2 = B4R and A3 = BR,4R with R = |x|/2. First,
since |y| ≤ R implies |x− y| ≥ |x|/2, we can use (2.7) to obtain

I1 ≤ C

∫
BR

|x− y|−3(1 + |y|µ)−1 dy ≤ C|x|−3

∫
BR

(1 + |y|)−µ dy ≤ C|x|−3
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since µ > 3. For the second integral, we again use (2.7) and that |y| ≥ 4R implies |x− y| ≥ |y|/2
to obtain

I2 ≤ C

∫
B4R

|x− y|−3(1 + |y|)−µ dy ≤ C

∫
B4R

|y|−3|y|−µ dy = C|x|−µ.

For the third integral, we note that r′ > 1 and µ − 3 > 0, so that we can choose r̃ ∈ (1, 5/3) such
that r̃ < r′ and 3/r̃′ < µ− 3. Then Hölder’s inequality and (2.10) yield

I3 ≤ C|x|−µ
(∫

BR,4R

1dy

)1/r̃′(∫
T

∫
BR,4R

∣∣Γζ⊥(s, y)
∣∣r̃ dyds

)1/r̃

= C|x|−µR3/r̃′
(∫

T

∫
BR,4R

∣∣Γζ⊥(s, y)
∣∣r̃ dyds

)1/r̃

≤ C|x|−µ+3/r̃′ ≤ C|x|−3.

Collecting the estimates of I1, I2 and I3, we arrive at∣∣|Γζ⊥| ∗ g(t, x)
∣∣ ≤ C|x|−3

as asserted. For the estimate of |∇Γζ⊥| ∗ g we proceed similarly. At first, we obtain

∣∣|∇Γζ⊥| ∗ g(t, x)
∣∣ ≤ CM

3∑
j=1

∫
Aj

(∫
T

∣∣∇Γζ⊥(s, x− y)
∣∣r′ ds

)1/r′(
1 + |y|

)−µ
dy =: CM

3∑
j=1

Jj

for the sets Aj , j = 1, 2, 3, as before. Repeating the above arguments, we can estimate J1 and J2

as

J1 ≤ C

∫
BR

|x− y|−4(1 + |y|)−µ dy ≤ C|x|−4

∫
BR

(1 + |y|)−µ dy ≤ C|x|−4,

J2 ≤ C

∫
B4R

|x− y|−4(1 + |y|)−µ dy ≤ C

∫
B4R

|y|−4|y|−µ dy = C|x|−1−µ,

and for J3 we use∇Γζ⊥ ∈ L1(T× R3) by (2.11) to deduce

J3 ≤ C(1 + |x|)−µ
∫
T

∫
BR,4R

∣∣∇Γζ⊥(s, y)
∣∣ dyds ≤ C|x|−µ.

In total, these estimates yield ∣∣|∇Γζ⊥| ∗ g(t, x)
∣∣ ≤ C|x|−min {4,µ}.

For the convolutions with Q = P ⊗ δT, we use |P (x)| = C|x|−2 and argue similarly.

We now combine the derived pointwise estimates with the results on time-periodic maximal regularity
established in [7]. This leads to existence of solutions with suitable spatial decay.

Theorem 3.6. Let Ω ⊂ R3 be an exterior domain with C2-boundary, and let ζ0 > 0 and p, q ∈
(1,∞). Let h ∈ Tp,q(T × Σ), and let f ∈ L1

loc(T × Ω)3 such that f = f0 + f⊥ satisfies

ν
5/2
1 (·; ζ) f0 ∈ L∞(Ω)3 and ν3+δf⊥ ∈ Lp(T;L∞(Ω)3) for some δ > 0. For any ζ ∈ R3 \ {0}

there exists a unique solution (u, p) to (2.1) satisfying

u ∈ Lp(T;D2,q(Ω)3), ∂tu ∈ Lp(T;Lq(Ω)3), p ∈ Lp(T;D1,q(Ω)), (3.12)
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and the estimates

‖∂tu‖Lp(T;Lq(Ω)) + ‖∇2u‖Lp(T;Lq(Ω)) + ‖∇p‖Lp(T;Lq(Ω))

≤ C
(
‖f‖Lp(T;Lq(Ω)) + ‖h‖Tp,q(T×Σ)

)
,

(3.13)

ν1
1(x; ζ)

∣∣u0(x)
∣∣+ ν

3/2
3/2(x; ζ)

∣∣∇u0(x)
∣∣+ |x|2

∣∣p0(x)
∣∣

≤ C
(
‖ν5/2

1 (·; ζ) f0‖L∞(Ω) + ‖h0‖Tq(Σ)

)
,

(3.14)

|x|2
∣∣u⊥(t, x)

∣∣+ |x|3
∣∣∇u⊥(t, x)

∣∣+ |x|
∣∣p⊥(t, x)

∣∣
≤ C

(
‖ν3+δf⊥‖Lp(T;L∞(Ω)) + ‖h⊥‖Tp,q(T×Σ)

)
.

(3.15)

If the total flux through Σ is constant, that is, if (3.3) holds, then (3.15) can be replaced with

|x|3
∣∣u⊥(t, x)

∣∣+ |x|min {3+δ,4}∣∣∇u⊥(t, x)
∣∣+ |x|2

∣∣p⊥(t, x)
∣∣

≤ C
(
‖ν3+δf⊥‖Lp(T;L∞(Ω)) + ‖h⊥‖Tp,q(T×Σ)

)
.

(3.16)

Here C = C(Ω, p, q, δ, ζ0) > 0 if |ζ| ≤ ζ0.

Proof. We first show that f ∈ Lp(T;Ls(Ω)) for all s ∈ (1,∞). With the integral JR(a, b) from (2.8)
and the estimate (2.9) we obtain∫

BR
|f0(x)|s dx ≤ ‖f0‖s∞,ν5/21 (·;ζ);Ω

∫ ∞
R

Jr(
5s
2
, s) dr ≤ C‖f0‖s∞,ν5/21 (·;ζ);Ω

∫ ∞
R

r−5s/2+1 dr.

Moreover, we have∫
T

(∫
Ω

|f⊥(t, x)|s dx

)p/s
dt ≤ ‖f⊥‖p∞,ν3+δ;T×Ω

(∫
Ω

|x|−(3+δ)s dx

)p/s
.

Since the remaining integrals in both estimates are finite, we obtain f ∈ Lp(T;Ls(Ω)3) for any
s ∈ (1,∞). Therefore, the existence of a solution (u, p) in the class given by (3.12) and subject to
inequality (3.13) follows from [7, Theorem 4.7]. Since we can choose any s < 2, the velocity field
solution satisfies u ∈ Lp(T;Lq(Ω)3) for q ∈ (2,∞) and is unique. Moreover, the pressure field is
unique up to addition by a function constant in space, which corresponds to the function c = c0 + c⊥
in the representation formulas (3.8) and (3.9) for the pressure. Fixing c ≡ 0, we ensure uniqueness of
p.

To derive the pointwise estimates (3.14), (3.15) and (3.16), we use the representation formulas (3.6)
and (3.7) for the steady-state and purely periodic parts of the velocity field. Similarly, we use (3.8)
and (3.9) to obtain the estimates of the pressure p. Then the asserted estimates follow directly from
Lemma 3.3, Lemma 3.4 and Lemma 3.5, where we use

‖n · T̃(u0, p0)‖L1(Σ) ≤ C‖T̃(u0, p0)‖W 1,q(ΩR)

≤ C
(
‖∇2u0‖Lq(Ω) + ‖∇p0‖Lq(Ω) + ‖h0‖Lq(Ω)

)
≤ C

(
‖f0‖Lq(Ω) + ‖h0‖Tq(Σ)

)
,

‖n · T̃(u⊥, p⊥)‖L1(T×Σ) ≤ C‖T̃(u⊥, p⊥)‖Lp(T;W 1,q(ΩR))

≤ C
(
‖∇2u⊥‖Lp(T;Lq(Ω)) + ‖∇p⊥‖Lp(T;Lq(Ω)) + ‖h⊥‖Tp,q(T×Σ)

)
≤ C

(
‖f⊥‖Lp(T;Lq(Ω)) + ‖h⊥‖Tp,q(T×Σ)

)
due to (3.13), where we choose any R > 0 such that ∂Ω ⊂ BR. Observe that in the general
case, the pointwise asymptotic behavior of u⊥, ∇u⊥ and p⊥ is determined by the latter term in the
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representation formulas (3.7) and (3.9), which leads to estimate (3.15) by using estimate (3.10) from
Lemma 3.3. If we assume (3.3), we also have∫

Σ

h⊥(t, x) · n dS(x) = 0,

so that those terms can be estimated with (3.11) from Lemma 3.3 instead, which leads to the better
decay rate stated in (3.16).

3.2 Solutions to the nonlinear problem

For k = 0, 1 and δ ∈ (0, 1], we introduce the function space

Xk :=
{
v ∈ Lp(T;W 2,q

loc (Ω)3) ∩W 1,p(T;Lq(Ω)3) : div v = 0, ‖v‖Xk <∞
}
,

‖v‖Xk := ‖∇2v‖Lp(T;Lq(Ω)) + ‖∂tv‖Lp(T;Lq(Ω))

+ ‖Pv‖∞,ν11 (·;ζ);Ω + ‖∇Pv‖∞,ν3/2
3/2

(·;ζ);Ω +Nk(P⊥v)

where
N0(w) := ‖w‖∞,ν2;T×Ω + ‖∇w‖∞,ν3;T×Ω,

N1(w) := ‖w‖∞,ν3;T×Ω + ‖∇w‖∞,ν3+δ;T×Ω.

For given v ∈ Xk, we consider the problem
∂tu−∆u− ζ · ∇u+∇p = f −N(v, v) in T× Ω,

∇ · u = 0 in T× Ω,

u = h on T× Σ,

(3.17)

where the nonlinear term N is defined as

N(v1, v2) := v1 · ∇v2.

Below we show that the linear theory from Theorem 3.6 provides a solution (u, p) to this problem if
v ∈ Xk. This defines a solution map S : v 7→ u, and (u, p) solves the nonlinear problem (1.1) if
u is a fixed point of S. For obtaining such a fixed point, we first prove the following estimates of the
convection term, where we again distinguish steady-state and purely periodic part.

Lemma 3.7. Let k ∈ {0, 1} and let v1, v2 ∈ Xk. Then

‖ν5/2
1 (·; ζ)PN(v1, v2)‖L∞(Ω) + ‖ν7/2+k/2 P⊥N(v1, v2)‖L∞(T×Ω) ≤ C‖v1‖Xk‖v2‖Xk .

Proof. We set vj = zj + wj with zj := Pvj and wj = P⊥vj for j = 1, 2. Then we have

PN(v1, v2) = z1 · ∇z2 + P(w1 · ∇w2),

P⊥N(v1, v2) = z1 · ∇w2 + w1 · ∇z2 + P⊥(w1 · ∇w2).

Therefore, for x ∈ Ω we can estimate

ν
5/2
1 (x; ζ) |PN(v1, v2)(x)|

≤ C
(
ν1

1(x; ζ) |z1(x)| |x|3/2|∇z2(x)|+ ν0
1(x; ζ) |w1(t, x)||x|5/2|∇w2(t, x)|

)
≤ C‖v1‖Xk‖v2‖Xk ,
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and

|x|7/2+k/2 |P⊥N(v1, v2)(t, x)|
≤ C

(
|x| |z1(x)| |x|5/2+k/2|∇w2(t, x)|+ |x|2+k/2 |w1(t, x)| |x|3/2 |∇z2(x)|

+ |x|2+k/2 |w1(t, x)| |x|3/2 |∇w2(t, x)|
)

≤ C‖v1‖Xk‖v2‖Xk .

This shows the asserted estimates.

We can now show existence of a solution to (1.1) by a fixed-point argument.

Proof of Theorem 3.1. We set k = 0 in the general case and we set k = 1 when (3.3) is satisfied.
For ε > 0 consider the set

Xk,ε :=
{
v ∈ Xk : ‖v‖Xk ≤ ε

}
.

In virtue of Lemma 3.7 and Theorem 3.6, for any v ∈ Xk there exists a solution (u, p) to (3.17) with
the regularity stated in (3.12) and subject to the estimates

ν1
1(x; ζ)

∣∣u0(x)
∣∣+ ν

3/2
3/2(x; ζ)

∣∣∇u0(x)
∣∣+ |x|2

∣∣p0(x)
∣∣

≤ C
(
‖ν5/2

1 (·; ζ)PN(v, v)‖L∞(Ω) + ‖ν5/2
1 (·; ζ)f0‖L∞(Ω) + ‖h0‖Tq(Σ)

)
≤ C

(
‖v‖2

Xk
+ ε2

)
,

|x|2+k
∣∣u⊥(t, x)

∣∣+ |x|3+min {k,δ}∣∣u⊥(t, x)
∣∣+ |x|1+k

∣∣p⊥(t, x)
∣∣

≤ C
(
‖ν3+δP⊥N(v, v)‖Lp(T;L∞(Ω)) + ‖ν3+δf⊥‖Lp(T;L∞(Ω)) + ‖h⊥‖Tp,q(T×Σ)

)
≤ C

(
‖v‖2

Xk
+ ε2

)
.

For v ∈ Xk,ε, we thus have

‖u‖Xk ≤ Cε2 ≤ ε

if ε > 0 is chosen sufficiently small. Then the solution map S : v 7→ u is a well-defined self mapping
S : Xk,ε → Xk,ε. Moreover, for v1, v2 ∈ Xk,ε, the differences u = u1 − u2 and p = p1 − p2, where
uj := S(vj) with corresponding pressure pj , j = 1, 2, satisfy

∂tu−∆u− ζ · ∇u+∇p = −N(v1, v1) + N(v2, v2) in T× Ω,

∇ · u = 0 in T× Ω,

u = 0 on T× Σ.

Noting that

N(v1, v1)−N(v2, v2) = N(v1 − v2, v1) + N(v2, v1 − v2),

we can adapt the same argument as before to conclude the estimate

‖S(v1)− S(v2)‖Xk = ‖u‖Xk ≤ C(‖v1‖X + ‖v2‖Xk)‖v1 − v2‖Xk ≤ 2Cε‖v1 − v2‖Xk .

Hence, choosing ε > 0 sufficiently small, we obtain that S is also a contraction. Finally, the contraction
mapping principle yields the existence of a unique fixed point u = S(u) ∈ Xk,ε. If p denotes the
associated pressure, then (u, p) is a solution to (1.1) with the asserted properties.
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4 Existence in the truncated domains

Our aim is to find a solution (v,p) to the problem (1.2)–(1.3) defined in the truncated domain ΩR.

We seek a velocity field in the form v = h̃ + ϑ with h̃ an appropriate extension of h to ΩR and
ϑ ∈ L2(T;H1(ΩR)3) satisfying ϑ|Σ = 0 and∇ · ϑ = 0 in T× ΩR.

4.1 Functions spaces over the truncated domains

In what follows, the usual inner products in L2(ΩR) and L2(∂BR) will be denoted by (·, ·)ΩR and
(·, ·)∂BR , respectively. As in [3,4], we consider H1(ΩR) endowed with inner product and norm

(v, w)(R) := (∇v,∇w)ΩR +
1

R
(v, w)∂BR , ‖w‖(R) =

(
‖∇w‖2

2,ΩR
+

1

R
‖w‖2

2,∂BR

)1/2

(4.1)

and we equip the space of time-periodic functions L2(T;H1(ΩR)) with the norm

‖w‖(T,R) :=

(∫
T
‖w‖2

(R)dt

)1/2

.

Within this framework, the following estimate holds for time-periodic functions:

Lemma 4.1. Take a fixed S ∈ (0,∞) with ∂Ω ⊂ BS andR > S. Then there is a constantC(S) > 0
such that (∫

T×BR\BS

|u(t, x)|2

|x|2
dxdt

)1/2

≤ C(S)‖u‖(T,R)

for all u ∈ L2(T;H1(ΩR)).

Proof. We can directly apply the reasoning from [3, Theorem 3.6].

The space
WR :=

{
w ∈ H1(ΩR)3 : w|Σ = 0

}
,

with inner product and norm (4.1), will be relevant in the analysis of problem (1.2)–(1.3).

Consider the following subspaces of divergence-free functions of WR,

VR :=
{
ϕ|ΩR : ϕ ∈ C∞0 (Ω)3 and∇ · ϕ = 0 in Ω

}
,

VR := the closure of VR in H1(ΩR)3,

and the space
HR := the closure of VR in L2(ΩR)3.

If Ω is a domain with a Lipschitz continuous boundary, then

HR =
{
v ∈ L2(ΩR)3 : ∇ · v = 0 in ΩR and v · n = 0 on Σ

}
,

where n represents the unit outer normal on Σ, with ∇ · v = 0 and v · n interpreted in the weak
sense, and

VR =
{
v ∈ H1(ΩR)3 : ∇ · v = 0 in ΩR and v = 0 on Σ

}
.
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For 6/5 ≤ q1 < 6 and 4/3 ≤ q2 < 4, we have the embeddings

VR
c
↪−→ Lq1(Ω)⊕ Lq2(∂BR) ↪−→ V ′R, (4.2)

which are compact and continuous, respectively. For f ∈ L2(ΩR)3, a weak solution to the Stokes
problem 

−∆u+∇p = f in ΩR

∇ · u = 0 in ΩR,

u = 0 on Σ,

x

R
· ∇u−p

x

R
+

1

R
u = 0 on ∂BR,

is a field u ∈ VR such that

(∇u,∇ϕ)ΩR +
1

R
(u, ϕ)∂BR = (f, ϕ)ΩR ∀ϕ ∈ VR.

Based on this Stokes problem, it is possible to construct a special basis for the spaces HR and VR.

Lemma 4.2. The spectral problem

(∇Ψ,∇ϕ)ΩR +
1

R
(Ψ, ϕ)∂BR = λ(Ψ, ϕ)ΩR , ∀ϕ ∈ VR

admits a sequence {Ψk}k∈N ⊂ VR of non-zero solutions corresponding to a sequence {λk}k∈N of
eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ ...

which satisfies λk →∞ as k →∞.

Moreover, we can choose {Ψk}k∈N in such a way that it forms an orthonormal basis of HR and
{Ψk/λ1/2

k }k∈N is an orthonormal basis of VR.

Proof. Given Ψ ∈ HR, by Lax-Milgram Theorem, the problem

(∇u,∇ϕ)ΩR +
1

R
(u, ϕ)∂BR = (Ψ, ϕ)ΩR , ∀ϕ ∈ VR

has a unique solution u ∈ VR. The solution operator S : HR → HR, Ψ 7→ u, is compact, self-
adjoint and positive. Hence, HR admits an orthonormal basis of eigenfunctions Ψk ∈ VR of S with
corresponding eigenvalues µk satisfying µk > 0, for all k ∈ N, and µk → 0 as k → ∞. Thus,
defining λk = 1/µk, we obtain

(∇Ψk,∇ϕ)ΩR +
1

R
(Ψk, ϕ)∂BR = λk(Ψk, ϕ)ΩR ∀ϕ ∈ VR. (4.3)

Suppose that v ∈ VR satisfies (Ψk, v)(R) = (∇Ψk,∇v)ΩR + (Ψk, v)∂BR
/
R = 0 for all k ∈ N.

From (4.3), it follows that (Ψk, v)ΩR = 0 for all k ∈ N, and since {Ψk}k∈N is a basis of HR, we
conclude that v ≡ 0. Hence, the linear span of {Ψk}k∈N is dense in VR. From (4.3), we further obtain(

Ψk

λ
1/2
k

,
Ψj

λ
1/2
j

)
(R)

=

(
∇Ψk

λ
1/2
k

,
∇Ψj

λ
1/2
j

)
ΩR

+
1

R

(
Ψk

λ
1/2
k

,
Ψj

λ
1/2
j

)
∂BR

=
λk

λ
1/2
k λ

1/2
j

(Ψk,Ψj)ΩR =
λk

λ
1/2
k λ

1/2
j

δkj = δkj, ∀j, k ∈ N.

Therefore, {Ψk/λ1/2
k }k∈N is an orthonormal basis of VR.
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4.2 Weak solutions in the truncated domain

Assume Ω is a Lipschitz domain and recall the total flux of h over Σ, given by Φ(t) :=
∫

Σ
h(t, x) ·

n(x)dS(x). To simplify the presentation, for each fixed R, we define

c(u, v, w) :=

∫
ΩR

u · ∇v · w dx− 1

2

∫
∂BR

( x
R
· u
)

(v · w) dS(x), (4.4)

which is well defined for u, v, w ∈ H1(ΩR)3 and satisfies

c(u, v, v) = 0, ∀u ∈ HR, v ∈ VR. (4.5)

In what follows, σ(x) := ∇E(x) = − x
4π|x|3 . Observe that σ = −P for the pressure part P of

fundamental solution, defined in (2.3).

Lemma 4.3. Given h ∈ H1(T;H1/2(∂Ω)3) define Φ as in (3.5). Let R0 be such that ∂Ω ⊂ BR0 .

For any γ > 0, there exists h̃ ∈ H1(T;H1(Ω)3) satisfying{
∇ · h̃ = 0 in T× Ω,

h̃ = h on T× Σ,
(4.6)

and the estimate

|c(ϑ, ϑ, h̃)| ≤ γ‖ϑ‖2
(R) + ‖Φ‖∞,T

(
CS‖σ‖3,ΩR +

1

8πR

)
‖ϑ‖2

(R) in T (4.7)

for all R > R0, where CS is a Sobolev embedding constant.

Proof. Decompose

h(t, x) = [h(t, x)− Φ(t)σ|Σ(x)] + Φ(t)σ|Σ(x) =: h(1)(t, x) + h(2)(t, x), (t, x) ∈ T× Σ.

Then
∫

Σ
h(1)(t, x) · n(x)dS = 0 for all t ∈ T and∇ · σ = 0 in Ω.

For fixed R0 > 0 such that ∂Ω ⊂ BR0 , we can find (see [11, Lemma IX.4.1] and [17, Lemma 3.3])
w : T× ΩR0 → R3 such that 

∇× w = h(1) on T× Σ,

∇× w = 0 on T× ∂BR0 ,

w = 0 on T× ∂BR0 ,

and
‖w(t, ·)‖2,2,ΩR0

≤ C(ΩR0)‖h(1)(t, ·)‖1/2,2,Σ, t ∈ T,

so that w ∈ H1(T;H2(ΩR0)
3) along with the estimate

‖w‖H1(T;H2(ΩR0
)3) ≤ C(ΩR0)‖h(1)(t, ·)‖H1(T;H1/2(Σ)3).

Let 0 < ε < 1 and Ψε ∈ C∞(R;R) be such that Ψε(θ) = 1 for θ < exp(−2/ε)
2

, Ψε(θ) = 0 for
θ ≥ 2 exp(−1/ε), |Ψε(θ)| ≤ 1 and |Ψ′ε(θ)| ≤ ε/θ, for all θ > 0. Define d(x) as the distance of
a point x ∈ ΩR0 to the boundary ∂ΩR0 and let ρ(x) be the corresponding regularized distance (in
the sense of Stein). Using these, define the cut-off function for the domain ΩR0 ψε(x) := Ψε(ρ(x)),
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Approximation of time-periodic flow past a translating body by flows in bounded domains 17

and extend it by 1 to the exterior domain Ω. The extension satisfies (see [11, Lemma III.6.2] and [17,
Lemma 3.2])

ψε(x) =

{
1 if d(x) < exp(−2/ε)

2κ1
,

0 if d(x) ≥ 2 exp(−1/ε),

and ∇ψε(x) = Ψ′ε(ρ(x))∇ρ(x), |∇ψε(x)| ≤ εκ2/d(x), where κ1 and κ2 are positive constants
independent of the domain. Define

h̃(t, x) = h̃(1)(t, x) + h̃(2)(t, x) = ∇× (w(t, x)ψε(x)) + Φ(t)σ(x)

= ∇ψε(x)× w(t, x) + ψε(x)∇× w(t, x) + Φ(t)σ(x), (t, x) ∈ T× Ω,

where w is extended to 0 outside T × BR0 . Clearly, the function h̃ is divergence free. Now assume
R > R0. Then, for sufficiently small ε, following [11, Lemma X.4.2] or [17, Lemma 3.3], we can
estimate

|c(ϑ, ϑ, h̃)| =
∣∣∣∣∫

ΩR

ϑ · ∇ϑ · h̃ dx+
Φ(t)

8πR2
‖ϑ · n‖2

2,∂BR

∣∣∣∣
≤
∣∣∣∣∫

ΩR

ϑ · ∇ϑ · ∇ × (wψε) dx

∣∣∣∣+ |Φ(t)|
∣∣∣∣∫

ΩR

ϑ · ∇ϑ · σ dx

∣∣∣∣+
|Φ(t)|
8πR2

‖ϑ · n‖2
2,∂BR

≤ γ‖∇ϑ‖2
2,ΩR

+ CS‖Φ‖∞,T‖σ‖3,ΩR‖∇ϑ‖2
2,ΩR

+
‖Φ‖∞,T
8πR2

‖ϑ‖2
2,∂BR

,

where CS is a constant related with the Sobolev embedding in Ω, and ϑ ∈ L2(T;VR).

Taking into account the regularity of the external force used to solve the exterior problem, we can
assume that f ∈ L2(T × ΩR)3 in in (1.2)–(1.3). Regarding existence and uniqueness of weak
solution for (1.2)–(1.3), we fix

0 < γ < 1/2− ‖Φ‖∞,T
(
CS‖σ‖3,ΩR +

1

8πR

)
and a solenoidal extension h̃ ∈ H1(T;H1(Ω)3) given by Lemma 4.3. Then, we will seek the velocity
field for system (1.2) in the form v := uR = ϑ+ h̃ where ϑ ∈ L2(T;VR)∩L∞(T;HR). The velocity
ϑ and an associated pressure p should satisfy

d

dt

∫
ΩR

ϑ ·Ψ dx+

∫
ΩR

∇ϑ : ∇Ψ dx−
∫

ΩR

ζ · ∇ϑ ·Ψ dx−
∫

ΩR

p∇ ·Ψ dx

+

∫
ΩR

(ϑ · ∇)h̃ ·Ψ dx+

∫
Ω

(h̃ · ∇)ϑ ·Ψ dx+

∫
ΩR

(ϑ · ∇)ϑ ·Ψ dx

+

∫
∂BR

1

R
(1 + sζ(x))ϑ ·Ψ dS(x)−

∫
∂BR

1

2

(
ϑ · x

R

)
h̃ ·Ψ dS(x)

−
∫
∂BR

1

2

(
h̃ · x

R

)
ϑ ·Ψ dS(x)−

∫
∂BR

1

2

(
ϑ · x

R

)
ϑ ·Ψ dS(x)

=

∫
ΩR

f ·Ψ dx−
∫

ΩR

∂th̃ ·Ψ dx−
∫

Ω

∇h̃ : ∇Ψ dx

+

∫
ΩR

ζ · ∇h̃ ·Ψ dx−
∫
∂BR

1

R
(1 + sζ(x)) h̃ ·Ψ dS(x)

−
∫

ΩR

(h̃ · ∇)h̃ ·Ψ dx+

∫
∂BR

1

2

(
h̃ · x

R

)
h̃ ·Ψ dS(x), ∀Ψ ∈ WR,∫

ΩR

(∇ · ϑ)φ dx = 0, ∀φ ∈ L2(ΩR),
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in the sense of distributions in T.

It is convenient to recall (4.4) and introduce additional notations

a(v, w) :=

∫
ΩR

∇v : ∇w dx−
∫

ΩR

ζ · ∇v · w dx+

∫
∂BR

1

R
(1 + sζ(x)) v · w dS(x),

b(v, p) := −
∫

ΩR

(∇ · v)p dx,

(4.8)

so that the above system for (ϑ,p) can be reformulated in a more concise manner as
〈∂tϑ,Ψ〉+ a(ϑ,Ψ) + b(Ψ,p) + c(ϑ, h̃,Ψ) + c(h̃, ϑ,Ψ) + c(ϑ, ϑ,Ψ)

= (f,Ψ)ΩR −
(
∂th̃,Ψ

)
ΩR
− a(h̃,Ψ)− c(h̃, h̃,Ψ), ∀Ψ ∈ WR,

b(ϑ, φ) = 0, ∀φ ∈ L2(ΩR)

(4.9)

in T. Moreover, we introduce a different inner product on the space H1(ΩR)3, namely,

(v, w)(R,|ζ|) :=

∫
ΩR

∇v : ∇w dx+

(
1

R
+
|ζ|
2

)∫
∂BR

(v · w) dS

= a(v, w) +

∫
ΩR

ζ · ∇v · w dx−
∫
∂BR

1

R

(ζ · x)

2
(v · w) dS,

(4.10)

so that a(v, v) = ‖∇v‖2
2,ΩR

+
∫
∂BR

(
1
R

+ |ζ|
2

)
|v|2 dS(x) = ‖v‖2

(R,|ζ|), for v ∈ VR.

Theorem 4.4. Let f ∈ L2(T× ΩR)3 and h ∈ H1(T;H1/2(∂Ω)3) satisfying

2‖Φ‖∞,T
(
CS‖σ‖3,ΩR +

1

8πR

)
< 1. (4.11)

Then there exist v ∈ L2(T;H1(ΩR)3) ∩ L∞(T;L2(ΩR)3) and p0 ∈ L∞(T, L2(ΩR)), p1 ∈
L2(T;L2(ΩR)) as well as p2 ∈ L4/3(T;L2(ΩR)) such that, in the sense of distributions in T, it
holds 

d

dt

(∫
ΩR

v ·Ψ dx+

∫
ΩR

p0∇ ·Ψ dx

)
+

∫
ΩR

∇v : ∇Ψ dx−
∫

ΩR

ζ · ∇v ·Ψdx+

∫
ΩR

(v · ∇)v ·Ψ dx

+

∫
∂BR

1

R
(1 + sζ(x)) v ·Ψ dS(x)−

∫
∂BR

1

2

(
v · x

R

)
v ·Ψ dS(x)

+

∫
ΩR

(p1 + p2)∇ ·Ψ dx =

∫
ΩR

f ·Ψdx, ∀Ψ ∈ WR,∫
ΩR

(∇ · v)φ dx = 0, ∀φ ∈ L2(ΩR),

(4.12)

and ϑ := v − h̃, where h̃ from Lemma 4.3, satisfies the energy inequality∫
T

∫
ΩR

|∇ϑ|2 dxdt+

(
1

R
+
|ζ|
2

)∫
∂BR

|ϑ|2 dSdt

≤−
∫
T

∫
ΩR

∇h̃ : ∇ϑ dxdt+

∫
T

∫
ΩR

ζ · ∇h̃ · ϑ dxdt

−
∫
T×∂BR

1

R
(1 + sζ(x)) (h̃ · ϑ) dS(x)dt

+

∫
T

∫
ΩR

(
f − ∂th̃− v · ∇h̃

)
· ϑ dxdt+

1

2

∫
T×∂BR

( x
R
· v
)

(h̃ · ϑ) dS(x)dt

(4.13)
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Moreover, if another weak solution (ṽ, p̃) with ṽ ∈ H1(T× ΩR)3 exists such that

‖ṽ‖L∞(T;H1(ΩR)) ≤ δ (4.14)

with δ > 0 sufficiently small, then ṽ ≡ v.

Proof. We construct a time-periodic weak solution to problem (4.9) using the Galerkin method. In
order to find the velocity ϑ, let {Ψi}i∈N ⊂ VR be the complete orthonormal system in HR given by

Lemma 4.2. For each M ∈ N, let H(M)
R be the linear space generated by {Ψ1, ...,ΨM} endowed

with the inner product of HR, and let V (M)
R be defined in an analogous way with respect to the inner

product of VR.

In a first stage, approximate velocities ϑ(M) ∈ L∞(T;H
(M)
R ) ∩ L2(T;V

(M)
R ) will be sought in the

form

ϑ(M)(t, x) =
M∑
i=1

αi(t)Ψi(x), αj ∈ W 1,4/3(T). (4.15)

In order to determine the T -periodic functions α1, ..., αM , let F : T× RM → RM with components

Fm(t, α) =−
M∑
i=1

αi

[
a(Ψi,Ψm) + c(Ψi, h̃,Ψm) + c(h̃,Ψi,Ψm)

]
−

M∑
i,j=1

αiαjc(Ψi,Ψj,Ψm)

+
(
f − ∂th̃,Ψm

)
ΩR
− a(h̃,Ψm)− c(h̃, h̃,Ψm), m = 1, ...,M,

where (
f − ∂th̃,Ψm

)
ΩR
∈ L2(T), a(h̃,Ψm), c(h̃, h̃,Ψm) ∈ C(T), m = 1, ...,M.

Then (4.15), more specifically α = (α1, ..., αM), will be obtained as a T -periodic solution of the
systems of ODEs

α′ = F(t, α) in T. (4.16)

At this stage, M ∈ N is fixed. For a fixed α ∈ W 1,4/3(T)M , consider the linearized problem

α′ = L(t, α;α) in T. (4.17)

where
L( ·, · ;α) : T× RM → RM ,

Lm(t, α;α) = −
M∑
i=1

αiAim −
M∑
i=1

αi

[
c(Ψi, h̃,Ψm) + c(h̃,Ψi,Ψm)

]
−

M∑
i,j=1

αiαjc(Ψi,Ψj,Ψm) + gm(t), m = 1, ...,M,

and
Aim := a(Ψi,Ψm), i,m = 1, ...,M,

gm(t) :=
(
f − ∂th̃,Ψm

)
ΩR
− a(h̃,Ψm)− c(h̃, h̃,Ψm), m = 1, ...,M.
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In order to alleviate the presentation, we put

ψ0(t) := 1, ψck(t) :=
√

2 cos

(
2π

T
kt

)
, ψsk(t) :=

√
2 sin

(
2π

T
kt

)
, k ∈ N,

and recall the orthonormality relations for {ψ0, ψ
c
k, ψ

s
k : k ∈ N} in L2(T). A solution for the system

of ODEs (4.17) can be sought in the form of a Fourier series

αi(t) = αi0ψ0(t) +
∞∑
k=1

αcikψ
c
k(t) +

∞∑
k=1

αsikψ
s
k(t), i = 1, ...,M. (4.18)

It is convenient to write (4.17) as
α′ + Aα = G(α) in T (4.19)

with A := (Aim)1≤i,m≤M and G(α) = (Gm(α))1≤m≤M , where

Gm(α) := gm −
M∑
i=1

αi

[
c(Ψi, h̃,Ψm) + c(h̃,Ψi,Ψm)

]
−

M∑
i,j=1

αiαjc(Ψi,Ψj,Ψm) ∈ L4/3(T).

Based on (4.18), we define

α0 :=


α10

α20
...

αM0

 , αsk :=


αs1k
αs2k

...
αsMk

 , αck :=


αc1k
αc2k

...
αcMk

 , k ∈ N

and

Gm0 :=

∫
T
Gm(t)ψs0(t)dt, Gs

mk :=

∫
T
Gm(t)ψsk(t)dt, Gc

mk :=

∫
T
Gm(t)ψck(t)dt,

G0 :=


G10

G20
...

GM0

 , Gs
k :=


Gs

1k

Gs
2k
...

Gs
Mk

 , Gc
k :=


Gc

1k

Gc
2k
...

Gc
Mk

 , k ∈ N.

The Fourier coefficients of a solution α to (4.19) can be obtained by solving the sequence of linear
systems

Aα0 = G0,

[
A −2π

T
k IM

2π
T
k IM A

] [
αsk
αck

]
=

[
Gs
k

Gc
k

]
, k ∈ N. (4.20)

Here, IM is the identity matrix in RM×M . Note that the matrix A ∈ RM×M is positive definite since
we have

M∑
i,m=1

ziAimzm = a(Ψ,Ψ) = ‖∇Ψ‖2
2,ΩR

+

∫
∂BR

(
1

R
+
|ζ|
2

)
|Ψ|2dS (z ∈ RM , Ψ = ziΨi),

and the block matrices in (4.20), defined in terms of A and 2π
T
k IM , are nonsingular. For each k ∈ N,[

αsk
αck

]
=

[
A −2πk

T
IM

2πk
T

IM A

]−1 [
Gs
k

Gc
k

]

=

 (
A2 + 4π2k2

T2 IM
)−1

A 2πk
T

(
A2 + 4π2k2

T2 IM
)−1

−2πk
T

(
A2 + 4π2k2

T2 IM
)−1 (

A2 + 4π2k2

T2 IM
)−1

A

[Gs
k

Gc
k

]
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and, with Ak := T
2πk
A, for k ∈ N, we have[

αsk
αck

]
=

T

2πk

[
(A2

k + IM)−1AkG
s
k + (A2

k + IM)−1Gc
k

−(A2
k + IM)−1Gs

k + (A2
k + IM)−1AkG

c
k

]
, k ∈ N.

For any matrix norm ‖·‖, there exists a constant C > 0 such that ‖(A2
k + IM)−1‖ ≤ C , for

all k > ‖A‖. By Hausdorff-Young inequality, we have {Gs
k}k∈N, {Gc

k}k∈N ∈ `4(N)M and there-
fore, {kαsk}k∈N, {kαck}k∈N ∈ `4(N)M . From Hölder’s inequality, we obtain {αsk}k∈N, {αck}k∈N ∈
`4r/(4 + r)(N)M , for all r > 4/3. Thus {αsk}k∈N, {αck}k∈N ∈ `r(N)M , for all 1 < r < 4. This, in
turn, yields the existence of α ∈ L2(T)M solving (4.17), and from the identity (4.19), it follows that
α′ ∈ L4/3(T)M .

We can thus consider the mapping

M : W 1,4/3(T)M → W 1,4/3(T)M

M(α) = α.

Our aim is to establish existence of a fixed point of M.

In order to use the Leray–Schauder fixed-point Theorem, we first show that the solution of the problem

α′ + Aα = λG(α) in T (4.21)

are uniformly bounded with respect to λ ∈ [0, 1]. By taking the dot product of both sides of equation
(4.21) with α, we obtain

1

2

d

dt
|α|2 =−

M∑
i,m=1

αiAimαm − λ
M∑

i,m=1

αiαm

[
c(Ψi, h̃,Ψm) + c(h̃,Ψi,Ψm)

]
− λ

M∑
i,j,m=1

αiαjαmc(Ψi,Ψj,Ψm) + λ
M∑
m=1

gmαm, λ ∈ [0, 1].

Recalling (4.15) and using the orthonormality conditions that are induced by {ψ0, ψ
c
k, ψ

s
k : k ∈ N}

and {Ψ1, ...,ΨM} in L2(T, H(M)
R ), we get

1

2

d

dt
‖ϑ(M)‖2

2,ΩR
+ a(ϑ(M), ϑ(M)) + λc(ϑ(M), h̃, ϑ(M))

+ λc(h̃, ϑ(M), ϑ(M)) + λc(ϑ(M), ϑ(M), ϑ(M))

= λ
(
f − ∂th̃, ϑ(M)

)
ΩR
− λa(h̃, ϑ(M))− λc(h̃, h̃, ϑ(M)).

(4.22)

Since, by the time-periodicity of ϑ(M) and by (4.5), it holds∫
T

d

dt
‖ϑ(M)‖2

2,ΩR
dt = 0, c(h̃, ϑ(M), ϑ(M)) = c(ϑ(M), ϑ(M), ϑ(M)) = 0,

and, by direct calculation,

c(ϑ(M), h̃, ϑ(M)) = −c(ϑ(M), ϑ(M), h̃),
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we obtain

‖ϑ(M)‖2
(T,R) ≤

∫
T

(
‖ϑ(M)‖2

(R) +
|ζ|
2
‖ϑ(M)‖2

2,∂BR

)
dt

=

∫
T
a(ϑ(M), ϑ(M))dt

=λ

∫
T
c(ϑ(M), ϑ(M), h̃)dt+ λ

∫
T

(
f − ∂th̃, ϑ(M)

)
ΩR

dt

− λ
∫
T
a(h̃, ϑ(M))dt− λ

∫
T
c(h̃, h̃, ϑ(M))dt.

(4.23)

From Lemma 4.6, estimate (4.7), we conclude

λ

∫
T
c(ϑ(M), ϑ(M), h̃)dt ≤ γ‖ϑ(M)‖2

(T,R) + ‖Φ‖∞,T
[
CS‖σ‖3,ΩR +

1

8πR

]
‖ϑ(M)‖2

(T,R),

and since 1 − ‖Φ‖∞,T
[
CS‖σ‖3,ΩR + 1

8πR

]
> γ > 0, by estimating the remaining terms in the last

equality of (4.23), after estimating the remaining terms on the last equality, we arrive at

‖ϑ(M)‖(T,R) ≤
C(ΩR)

[
‖f‖L2(T×Ω) + (1 + |ζ|)‖h̃‖H1(T×Ω) + ‖h̃‖2

H1(T×Ω)

]
(
1− ‖Φ‖∞,T

[
CS‖σ‖3,ΩR + 1

8πR

]
− γ
)1/2 . (4.24)

By Poincaré inequality and the orthonormality conditions in L2(T, H(M)
R ), this implies

‖α‖L2(T)M = ‖ϑ(M)‖L2(T;HR)

≤CP (ΩR)‖ϑ(M)‖L2(T;VR) = CP (ΩR)‖ϑ(M)‖(T,R)

≤
CP (ΩR)C(ΩR)

[
‖f‖L2(T×Ω) + (1 + |ζ|)‖h̃‖H1(T×Ω) + ‖h̃‖2

H1(T×Ω)

]
(
1− ‖Φ‖∞,T

[
CS‖σ‖3,ΩR + 1

8πR

]
− γ
)1/2 ,

where CP (ΩR) is a Poincaré constant on ΩR. Then, going back to (4.21), we conclude that α ∈
W 1,4/3(T)M and α′ is also bounded by the data in L4/3(T)M .

Now, we show that the mappingM is compact. Suppose that the sequence {α(k)}k∈N ⊂ W 1,4/3(T)M

is bounded. We have

(α(k) − α(`))′ + A(α(k) − α(`)) = G(α(k))−G(α(`)) in T (4.25)

where, for each m ∈ {1, ...,M},

Gm(α(k))−Gm(α(`))

=
M∑
i=1

(α
(`)
i − α

(k)
i )
[
c(Ψi, h̃,Ψm) + c(h̃,Ψi,Ψm)

]
+

M∑
i,j=1

(α
(`)
i α

(`)
j − α

(k)
i α

(k)
j )c(Ψi,Ψj,Ψm)

=
M∑
i=1

(α
(`)
i − α

(k)
i )
[
c(Ψi, h̃,Ψm) + c(h̃,Ψi,Ψm)

]
+

M∑
i,j=1

[
α

(`)
j (α

(`)
i − α

(k)
i ) + α

(k)
i (α

(`)
j − α

(k)
j )
]
c(Ψi,Ψj,Ψm).

(4.26)
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The embedding W 1,4/3(T)M ↪→ C(T)M is compact, hence {α(k)}k∈N contains a subsequence
{α(k′)}k′∈N that converges in C(T)M . Let

ϑ(M,k′)(t, x) :=
M∑
i=1

α
(k′)
i (t)Ψi(x), ϑ(M,k′)(t, x) :=

M∑
i=1

α
(k′)
i (t)Ψi(x). (4.27)

The sequence {ϑ(M,k′)}k′∈N converges in L2(T;V
(M)
R ) and therefore it is a Cauchy sequence in

L2(T;VR). Taking the dot product of both sides of (4.25) with α(k)−α(`) and recalling (4.26), we get

‖ϑ(M,k′) − ϑ(M,`′)‖2
L2(T;VR) ≤

∫
T
a
(
ϑ(M,k′) − ϑ(M,`′), ϑ(M,k′) − ϑ(M,`′)

)
dt

≤ C(ΩR,M)
(
‖h̃‖H1(T×Ω)‖ϑ(M,k′) − ϑ(M,`′)‖L2(T;VR)‖ϑ(M,k′) − ϑ(M,`′)‖L2(T;VR)

+
(
‖ϑ(M,k′)‖L∞(T;VR) + ‖ϑ(M,`′)‖L∞(T;VR)

)
× ‖ϑ(M,k′) − ϑ(M,`′)‖L2(T;VR)‖ϑ(M,k′) − ϑ(M,`′)‖L2(T;VR)

)
.

As in previous estimates, by Poincaré inequality and the orthonormality conditions in L2(T, H(M)
R ),

we get
‖α(k′) − α(`′)‖L2(T)M = ‖ϑ(M,k′) − ϑ(M,`′)‖L2(T;HR)

≤CP (ΩR)‖ϑ(M,k′) − ϑ(M,`′)‖L2(T;VR),

and now we use the fact that {ϑ(M,k′)}k′∈N is a Cauchy sequence in L2(T;VR) to conclude that
{α(k′)}k′∈N is a Cauchy sequence in L2(T)M . From (4.25) and the previous estimates, we also get

‖(α(k′))′ − (α(`′))′‖L4/3(T)M ≤ ‖A(α(k′) − α(`′))‖L4/3(T)M + ‖G(α(k′))−G(α(`′))‖L4/3(T)M .

Using the strong convergence of {α(k′)}k′∈N in C(T)M , we conclude that M maps bounded se-
quences into relatively compact ones. In conclusion, the Leray–Schauder Theorem shows that the
mapping M has a fixed point.

We thus solved (4.16) withM fixed and obtained an approximate solution (4.15) which satisfies (4.24).
Now, we derive additional estimates for the sequence {ϑ(M)}M∈N. Actually, ϑ(M) ∈ C(T;VR), and
from the estimate (4.24) and the mean value theorem for continuous functions, we conclude the exis-
tence of t ∈ (0,T) such that

‖ϑ(M)(t)‖2
(R) =

∫
T
‖ϑ(M)‖2

(R)dt = ‖ϑ(M)‖2
(T,R)

≤
C(ΩR)2

[
‖f‖L2(T×Ω) + (1 + |ζ|)‖h̃‖H1(T×Ω) + ‖h̃‖2

H1(T×Ω)

]2

1− ‖Φ‖∞,T
[
CS‖σ‖3,ΩR + 1

8πR

]
− γ

.

(4.28)

From Poincaré inequality, we further get

‖ϑ(M)(t)‖2,ΩR ≤ CP (ΩR)‖ϑ(M)(t)‖(R). (4.29)

Now, on the time interval [t, t + T], we consider (4.22) (with λ = 1). Taking into account (4.5), we
have

1

2

d

dt
‖ϑ(M)‖2

2,ΩR
+ a(ϑ(M), ϑ(M))

= c(ϑ(M), ϑ(M), h̃) +
(
f − ∂th̃, ϑ(M)

)
ΩR
− a(h̃, ϑ(M))− c(h̃, h̃, ϑ(M)),

(4.30)
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where

a(ϑ(M), ϑ(M)) = ‖∇ϑ(M)‖2
2,ΩR

+

∫
∂BR

(
1

R
+
|ζ|
2

)
|ϑ(M)|2dS ≥ ‖ϑ(M)‖2

(R),

and ∣∣(f − ∂th̃, ϑ(M)
)

ΩR

∣∣ ≤ 1

4
‖ϑ(M)‖2

2,ΩR
+ 2‖f‖2

2,ΩR
+ 2‖∂th̃‖2

2,ΩR
,

|a(h̃, ϑ(M))| ≤ C(ΩR)(1 + |ζ|)‖h̃‖1,2,ΩR‖ϑ(M)‖(R) + |ζ|‖h̃‖1,2,ΩR‖ϑ(M)‖2,ΩR

≤ 1

4
‖ϑ(M)‖2

(R) +
1

4
‖ϑ(M)‖2

2,ΩR
+ C(ΩR)(1 + |ζ|)2‖h̃‖2

1,2,ΩR
,

|c(h̃, h̃, ϑ(M))| ≤ 1

4
‖ϑ(M)‖2

(R) + C(ΩR)‖h̃‖4
1,2,ΩR

.

We estimate the term c(ϑ(M), ϑ(M), h̃) using Lemma 4.6, apply the preceding estimates, and use
assumption (4.11) to deduce

d

dt
‖ϑ(M)‖2

2,ΩR
+

[
1− 2‖Φ‖∞,T

(
CS‖σ‖3,ΩR +

1

8πR

)
− 2γ

]
‖ϑ(M)‖2

(R)

≤‖ϑ(M)‖2
2,ΩR

+ C2(ΩR)(1 + |ζ|)2‖h̃‖2
1,2,ΩR

+ C3(ΩR)‖h̃‖4
1,2,ΩR

+ 4‖f‖2
2,ΩR

+ 4‖∂th̃‖2
2,ΩR

,

which we combine with (4.29) and the estimate (4.28) for ‖ϑ(M)(t)‖(R). The Grönwall Lemma and
the time-periodicity of ϑ(M) yield

‖ϑ(M)‖L∞(T;L2(ΩR)) ≤ C
(

ΩR,T, |ζ|, ‖f‖L2(T;L2(ΩR)), ‖h̃‖H1(T;H1(Ω))

)
. (4.31)

An estimate for the time derivative of ϑ(M) can be obtained as follows: for each M ∈ N, let PM be
the orthogonal projector onto span{Ψ1, ...,ΨM} in VR. Recall that, by Lemma 4.2, we have, for each
Φ ∈ VR,

‖PMΦ‖(R) ≤ ‖Φ‖(R), PMΦ→ Φ in VR as M →∞.
Since {Ψk}k∈N is a complete orthonormal system in HR, we have∫

ΩR

∂tϑ
(M) · Φ dx =

∫
ΩR

∂tϑ
(M) · (PMΦ) dx, ∀Φ ∈ HR

and therefore(
∂tϑ

(M),Φ
)

ΩR
+ a(ϑ(M),PMΦ) + c(ϑ(M), h̃,PMΦ)

+ c(h̃, ϑ(M),PMΦ) + c(ϑ(M), ϑ(M),PMΦ)

= (f,PMΦ)ΩR
−
(
∂th̃,PMΦ

)
ΩR
− a(h̃,PMΦ)− c(h̃, h̃,PMΦ), ∀Φ ∈ VR,

which, by setting
〈Av, w〉V ′

R,VR
:= a(v, w),

〈C(u, v), w〉V ′
R,VR

:= c(u, v, w),

can be written as

〈∂tϑ(M),Ψ〉V ′
R,VR

= −〈Av(M) + C(v(M), v(M)),PMΨ〉V ′
R,VR

+ 〈f − ∂th̃,PMΨ〉V ′
R,VR

, ∀Ψ ∈ VR, in T,
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where v(M) = ϑ(M) + h̃. By interpolation, from (4.24) and (4.31) we deduce that {v(M)}M∈N ⊂
L4(T;L3(ΩR)) is uniformly bounded. Since

‖A(v)‖V ′
R
≤ C(ΩR)(1 + |ζ|)‖v‖1,2,ΩR , ∀v ∈ H1(ΩR),

‖C(v, v)‖V ′
R
≤ C(ΩR)‖v‖3;Ω‖v‖1,2;Ω, ∀v ∈ H1(ΩR),

‖∂tϑ(M)‖V ′
R
≤ ‖A(v(M))‖V ′

R
+ ‖C(v(M), v(M))‖V ′

R
+ ‖f‖2,ΩR + ‖∂th̃‖2,ΩR ,

(4.32)

we conclude that {∂tϑ(M)}M∈N remains in a bounded set of L4/3(T;V ′R). Here, we used that, by
integration by parts and Sobolev embeddings, we have

c(u, v, w) =
1

2

∫
ΩR

u · ∇v · w dx− 1

2

∫
ΩR

u · ∇w · v dx ≤ C(ΩR)‖u‖3;Ω‖v‖1,2;Ω‖w‖1,2;Ω

if u ∈ VR. A combination with the above uniform estimates (4.24) and (4.31) enable us to assert the
existence of an element ϑ ∈ L∞(T;HR)∩L2(T;VR) with ∂tϑ ∈ L4/3(T;V ′R), and a sub-sequence
{ϑ(M ′)} of {ϑ(M)}M∈N such that

∇ϑ(M ′) → ∇ϑ in L2(T;L2(ΩR)) weakly,

ϑ(M ′) → ϑ in L∞(T;HR) weakly-*,

∂tϑ
(M ′) → ∂tϑ in L4/3(T;V ′R) weakly,

ϑ(M ′) → ϑ in L2(T;Lq1(Ω)) strongly, 1 ≤ q1 < 6,

ϑ(M ′)|∂BR → ϑ|∂BR in L2(T;Lq2(∂BR)) strongly, 1 ≤ q2 < 4,

where the latter convergences follow from the Aubin–Lions Theorem and the embeddings (4.2). Pass-
ing to the limit M ′ →∞ in (4.16), with standard arguments, we find that v := ϑ+ h̃ satisfies∫

T
(v(t), ψ′(t)Ψ)ΩRdt =

∫
T
a(v(t), ψ(t)Ψ)dt

+

∫
T
c(v(t), v(t), ψ(t)Ψ)dt−

∫
T

(f(t), ψ(t)Ψ)ΩR
dt, ∀Ψ ∈ VR, ∀ψ ∈ D(T). (4.33)

Since the function spaces{
Φ : T× ΩR → R3 : Φ(t, x) = ψ(t)Ψ(x), ψ ∈ D(T), Ψ ∈ WR

}
,{

η : T× ΩR → R : η(t, x) = ψ(t)φ(x), ψ ∈ D(T), φ ∈ L2(ΩR)
}

are dense in H1(T;WR) and in L2(T;L2(ΩR)), respectively, we obtain an equivalent definition of
weak solution (in the velocity variable):∫

T
(v(t),Φ′(t))ΩR dt =

∫
T
a(v(t),Φ(t)) dt

+

∫
T
c(v(t), v(t),Φ(t)) dt−

∫
T

(f(t),Φ(t))ΩR
dt, ∀Φ ∈ H1(T;VR).

(4.34)

The energy inequality (4.13) for ϑ is obtained from (4.30) and integration over T, as∫
T
‖ϑ(M ′)‖2

(R,|ζ|) dt =

∫
T
c(ϑ(M ′), ϑ(M ′), h̃) dt+

∫
T

(
f − ∂th̃, ϑ(M ′)

)
ΩR

dt

−
∫
T
a(h̃, ϑ(M ′)) dt−

∫
T
c(h̃, h̃, ϑ(M ′)) dt,
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where we use the above convergence results for the subsequence {ϑ(M ′)}M ′∈N to obtain, in particu-
lar, ∫

T
c(ϑ(M ′), ϑ(M ′), h̃)dt→

∫
T
c(ϑ, ϑ, h̃)dt,

and, by the lower semicontinuity of the norm,∫
T
‖ϑ‖2

(R,|ζ|)dt ≤ lim inf
M ′→∞

∫
T
‖ϑ(M ′)‖2

(R,|ζ|)dt

=

∫
T
c(ϑ, ϑ, h̃)dt+

∫
T

(
f − ∂th̃, ϑ

)
ΩR

dt−
∫
T
a(h̃, ϑ)dt−

∫
T
c(h̃, h̃, ϑ)dt

=−
∫
T
c(ϑ, h̃, ϑ)dt+

∫
T

(
f − ∂th̃, ϑ

)
ΩR

dt−
∫
T
a(h̃, ϑ)dt−

∫
T
c(h̃, h̃, ϑ)dt

=−
∫
T
c(v, h̃, ϑ)dt+

∫
T

(
f − ∂th̃, ϑ

)
ΩR

dt−
∫
T
a(h̃, ϑ)dt,

which is (4.13).

We have solved problem (4.33) in D′(T;V ′R) for the velocity field. Our aim now is to recover the
pressure. For this purpose, we follow the ideas of [16], and define F ∈ D′(T;W ′

R) as follows:

〈F(ψ),Ψ〉ΩR := −
∫
T

(v(t),Ψ)ΩR
ψ′(t) dt+

∫
T
〈Av(t) + C(v(t), v(t)),Ψ〉ΩRψ(t) dt

−
∫
T

(f(t),Ψ)ΩR
ψ(t) dt (Ψ ∈ WR, ψ ∈ D(T)),

where now 〈·, ·〉ΩR represents the duality pairing between W ′
R and WR.

Let PV ⊥
R

be the projection operator from WR onto V ⊥R , when considering the decomposition WR =

VR ⊕ V ⊥R , orthogonal with respect to the inner product of WR. Then P∗
V ⊥
R

: (V ⊥R )′ → W ′
R and its

range is given by

Ran(P∗V ⊥
R

) = V 0
R :=

{
F ∈ W ′

R : 〈F, u〉ΩR = 0, ∀u ∈ VR
} ∼= (V ⊥R )′.

From the previous results for the velocity field, we have F ∈ D′(T;V 0
R). This means

F = P∗V ⊥
R
F,

and P∗
V ⊥
R
F is given by

〈P∗V ⊥
R
F(ψ),Ψ〉 :=−

∫
T
〈P∗V ⊥

R
v(t),Ψ〉ΩRψ′(t) dt

+

∫
T
〈P∗V ⊥

R
Av(t) + P∗V ⊥

R
C(v(t), v(t)),Ψ〉ΩRψ(t) dt

−
∫
T
〈P∗V ⊥

R
f(t),Ψ〉ΩRψ(t) dt (Ψ ∈ WR, ψ ∈ D(T)).

Consider the operator B : V ⊥R → L2(ΩR) defined by

〈Bv, p〉 = b(v, p) = −
∫

ΩR

(∇ · v)p dx (p ∈ L2(Ω)),
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which is an isomorphism. Then B∗ : L2(ΩR)→ V 0
R = Ran(P∗

V ⊥
R

),

〈v,B∗p〉 = b(v, p) = −
∫

ΩR

(∇ · v)p dx (v ∈ V ⊥R ),

is also an isomorphism. Therefore, there exists p0 ∈ L∞(T;L2(Ω)), p1, p3 ∈ L2(T;L2(Ω)), p2 ∈
L4/3(T;L2(Ω)) such that∫

T
〈P∗V ⊥

R
v(t),Ψ〉ΩRψ′(t)dt = −

∫
T

∫
ΩR

p0(t, x)ψ′(t)(∇ ·Ψ)(x) dxdt,∫
T
〈P∗V ⊥

R
Av(t),Ψ〉ΩRψ(t)dt = −

∫
T

∫
ΩR

p1(t, x)ψ(t)(∇ ·Ψ)(x) dxdt,∫
T
〈P∗V ⊥

R
C(v(t), v(t)),Ψ〉ΩRψ(t)dt = −

∫
T

∫
ΩR

p2(t, x)ψ(t)(∇ ·Ψ)(x) dxdt,∫
T
〈P∗V ⊥

R
f(t),Ψ〉ΩRψ(t)dt = −

∫
T

∫
ΩR

p3(t, x)ψ(t)(∇ ·Ψ)(x) dxdt.

Hence

−
∫
T

(v(t),Ψ)ΩR
ψ′(t)dt−

∫
T

(p0(t),∇ ·Ψ)ΩR
ψ′(t) dxdt

+

∫
T
a(v(t),Ψ)ψ(t)dt+

∫
T
c(v(t), v(t),Ψ)ψ(t)dt

=

∫
T

(f(t),Ψ)ΩR
ψ(t)dt−

∫
T

(p1(t) + p2(t) + p3(t),∇ ·Ψ)ΩR
ψ(t)dxdt,

for all Ψ ∈ WR and ψ ∈ D(T), which shows (4.12). This completes the existence proof.

Concerning uniqueness, let us suppose that, in addition to the weak solution (v, p) already con-
structed, there exists a more regular solution (ṽ, p̃) as formulated in the theorem. To derive an esti-
mate of v := v− ṽ in the norm ‖·‖(R,|ζ|) defined in (4.10), we can argue as in the proof of Lemma 5.2
below, where we compare a weak solution with a strong solution in the exterior domain. Instead of us-
ing the strong formulation and integrating by parts in space, we here employ the weak formulation for
(ṽ, p̃). Since BR(ṽ, p̃) = 0 on ∂BR in a weak sense, several terms from the derivation of (5.2) do not
appear, and we arrive at∫

T
‖v‖2

(R,|ζ|) dt ≤
∫
T×ΩR

v · ∇v · ṽ dxdt− 1

2

∫
T×∂BR

(
v · x

R

)
(ṽ · v) dSdt

=−
∫
T×ΩR

v · ∇ṽ · v dxdt+
1

2

∫
T×∂BR

(
v · x

R

)
(ṽ · v) dSdt.

Then ∫
T
‖v‖2

(R,|ζ|) dt ≤ C(ΩR)
(
‖∇ṽ‖L∞(T;L2(ΩR)) + ‖ṽ‖L∞(T;L2(∂BR))

)
‖∇v‖2

L2(T×ΩR),

and ‖∇v‖2
L2(T×ΩR) = ‖v‖2

L2(T×∂BR) = 0 follows from the assumption (4.14) if δ > 0 is sufficiently
small.

Remark 4.5. A similar uniqueness result can be established under the assumption

‖ṽ‖L∞(T;L3(ΩR)) + ‖ṽ‖L∞(T;L2(∂BR)) ≤ δ,

instead of (4.14), in which case the last estimate is replaced with∫
T
‖v‖2

(R,|ζ|) dt ≤ C(ΩR)
(
‖ṽ‖L∞(T;L3(ΩR)) + ‖ṽ‖L∞(T;L2(∂BR))

)
‖∇v‖2

L2(T×ΩR).
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5 Estimates of the truncation error

Consider the strong solution (u, p) to problem (1.1) in the exterior domain Ω and the weak solution
(uR, pR) = (v,p) to problem (1.2) in the truncated domain ΩR, which were established in Theo-
rem 3.1 and Theorem 4.4, respectively. We provide an estimate of the approximation error under the
assumption that the total flux Φ through ∂Ω, defined in (3.5), is constant in time.

Theorem 5.1. Under the assumptions of Theorems 3.1 and 4.4, and if d
dt

Φ = 0, there exist positive
constants Ci, i = 0, 1, 2, independent of R, such that if ε ≤ 1/C0 then

‖∇u−∇uR‖L2(T×ΩR) + ‖u− uR‖L2(T×∂BR) ≤ (C1ε+ C2ε
2)

1

R1/2
. (5.1)

To prove Theorem 5.1, consider the error (w, q) := (u, p) − (uR, pR) associated with the approxi-
mation of (u, p) by (uR, pR). We measure this error in terms of the following inequality.

Lemma 5.2. The difference w := u− uR satisfies

‖∇w‖2
L2(T×ΩR) +

1

R
‖w‖2

L2(T×∂BR) +
|ζ|
2
‖w‖2

L2(T×∂BR)

≤
∫
T×ΩR

w · ∇w · u dx dt−
∫
T×∂BR

1

2

(
w · x

R

)
(u · w) dS(x)dt

−
∫
T×∂BR

1

2

(
u · x

R

)
(u · w) dS(x) dt+

∫
T×∂BR

1

R
(1 + sζ(x)) (u · w) dS(x) dt

+

∫
T×∂BR

x

R
· ∇u · w dS(x) dt−

∫
T×∂BR

p
( x
R
· w
)

dS(x) dt.

(5.2)

Proof. In what follows, we again consider the inner product (·, ·)(R;|ξ|) in H1(ΩR)3 defined in (4.10),
and the multi-linear forms a and c defined in (4.8) and (4.4), respectively. Recall the notation ϑ :=
uR − h̃, and define µ := u− h̃ ∈ H1(T;VR), so that w = u− uR = µ− ϑ. Then, we have∫

T
‖w‖2

(R,|ζ|)dt =

∫
T
(µ,w)(R,|ζ|)dt−

∫
T
(ϑ, µ)(R,|ζ|)dt+

∫
T
‖ϑ‖2

(R,|ζ|)dt

Integration by parts in ΩR and the fact that (u, p) is a strong solution to (1.1) yield∫
T
(µ,w)(R,|ζ|)dt

=

∫
T×∂BR

(
1

R
+
|ζ|
2

)
(µ · w) dSdt−

∫
T

(∂tu,w)ΩR
dt+

∫
T×ΩR

ζ · ∇u · w dxdt

−
∫
T×ΩR

u · ∇u · w dxdt+

∫
T
(f, w)ΩRdt−

∫
T×ΩR

∇h̃ : ∇w dxdt

+

∫
T×∂BR

x

R
· ∇u · w dS(x)dt−

∫
T×∂BR

x

R
· wp dS(x)dt.

We next take the test function Φ = µ = u−h̃ in the weak formulation (4.34), which is admissible since
µ ∈ L2(T;VR), h̃ ∈ H1(T;H1(Ω)3) and u ∈ H1(T;Lp(ΩR)3) for any p ∈ (1,∞). Decomposing
ϑ = uR − h̃, we get

−
∫
T
(ϑ, µ)(R,|ζ|)dt =−

∫
T
(uR, ∂tµ) dt+

∫
T
c(uR, uR, µ) dt−

∫
T
(f, µ)ΩR dt+

∫
T
a(h̃, µ) dt

−
∫
T

∫
ΩR

ζ · ∇ϑ · µ dxdt+

∫
T

∫
∂BR

1

R

(ζ · x)

2
(ϑ · µ) dS(x)dt.
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Since ϑ = uR − h̃ satisfies the energy inequality (4.13), we further have∫
T
‖ϑ‖2

(R,|ζ|)dt ≤
∫
T

(
f − ∂th̃, ϑ

)
ΩR

dt−
∫
T
c(uR, h̃, ϑ) dt−

∫
T
a(h̃, ϑ) dt.

To combine the terms in the above expressions, we take into account the identities

(f, w)ΩR − (f, µ)ΩR + (f, ϑ)ΩR = 0,

as well as∫
T

[
− (∂tu,w)ΩR

− (uR, ∂tµ)ΩR − (∂th̃, ϑ)ΩR

]
dt =

∫
T

[
− (∂tu, u)ΩR

+ (h̃, ∂th̃)ΩR

]
dt

=

∫
T

d

dt

∫
ΩR

[
− 1

2
|u|2 +

1

2
|h̃|2
]

dxdt = 0.

Due to the identity ∫
ΩR

ζ · ∇u · w dx−
∫

ΩR

∇h̃ : ∇w dx+ a(h̃, µ)− a(h̃, ϑ)

=

∫
ΩR

ζ · ∇µ · w dx+

∫
∂BR

1

R
(1 + sζ(x))h̃ · w dS(x),

we can further collect the terms related with ζ as∫
∂BR

(
1

R
+
|ζ|
2

)
(µ · w) dS +

∫
ΩR

ζ · ∇u · w dx−
∫

ΩR

∇h̃ : ∇w dx+ a(h̃, µ)

−
∫

ΩR

ζ · ∇ϑ · µ dx+

∫
∂BR

1

R

(ζ · x)

2
(ϑ · µ) dS(x)− a(h̃, ϑ)

=

∫
∂BR

1

R
(1 + sζ(x))(u · w) dS(x)−

∫
∂BR

1

R

(ζ · x)

2
(w · µ) dS(x) +

∫
ΩR

ζ · ∇µ · w dx

+

∫
ΩR

ζ · ∇µ · ϑ dx−
∫
∂BR

1

R

(ζ · x)

2
(ϑ · µ) dS(x)

=

∫
∂BR

1

R
(1 + sζ(x))(u · w) dS(x),

where we used integration by parts and that µ = w + ϑ. Recalling the property (4.5) of c, we further
have

c(uR, uR, µ)− c(uR, h̃, ϑ)

= c(uR, uR, µ)− c(uR, uR, ϑ) + c(uR, ϑ, ϑ) = c(u− w, u− w,w)

= c(u, u, w)− c(w, u, w)− c(u,w,w) + c(w,w,w) = c(u, u, w) + c(w,w, u).

In this way, we arrive at∫
T
‖w‖2

(R,|ζ|)dt

≤ −
∫
T×ΩR

u · ∇u · w dxdt+

∫
T×∂BR

x

R
· ∇u · w dS(x)dt−

∫
T×∂BR

x

R
· wp dS(x)dt

+

∫
T
c(u, u, w) dt−

∫
T
c(w,w, u) dt+

∫
T×∂BR

1

R
(1 + sζ(x))(u · w) dS(x)dt.

Invoking the definition of c, see (4.4), we conclude (5.2).
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With inequality (5.2) at hand, we now show that the velocity errorw tends to zero in appropriate norms.
It is useful to recall the properties of strong solutions in the exterior domain, as outlined in Remark 3.2.

Proof of Theorem 5.1. In order to estimate w, we use Lemma 5.2 and write (5.2) as∫
T
‖w‖2

(R,|ζ|) dt ≤
∫
T×ΩR

w · ∇w · u dx dt+

∫
T×∂BR

[
−1

2

(
w · x

R

)]
(u · w) dS(x) dt

+

∫
T×∂BR

[
−1

2

(
u · x

R

)]
(u · w) dS(x) dt+

∫
T×∂BR

1

R
(1 + sζ(x)) (u · w) dS(x) dt

+

∫
T×∂BR

x

R
· ∇u · w dS(x) dt+

∫
T×∂BR

[
−p
( x
R
· w
)]

dS(x) dt =:
6∑
i=1

Ij,

and we estimate I1, . . . , I6 separately.

Take a fixed S ∈ (0,∞) with ∂BS ⊂ Ω. Let R > S. From Lemma 4.1 and estimate (3.2) in
Theorem 3.1, we obtain∣∣∣∣∫

T×BR\BS
w · ∇w · u dxdt

∣∣∣∣ ≤∫
T×BR\BS

|w(t, x)|
|x|

|∇w(t, x)||x||u(t, x)| dxdt

≤C(S)‖w‖2
(T,R)‖u‖∞,ν1;T×BS

and therefore, by Poincaré’s and Hölder’s inequalities,

I1 ≤
∣∣∣∣∫

T×ΩS

w · ∇w · u dxdt

∣∣∣∣+

∣∣∣∣∫
T×BR\BS

w · ∇w · u dxdt

∣∣∣∣
≤C(S, ∂Ω)‖∇w‖2

L2(T×ΩS)‖u‖L∞(T;L3(ΩS)) + C(S)‖u‖∞,ν1;T×BS‖w‖2
(T,R)

≤C(S, ∂Ω)
[
‖u‖L∞(T;L3(ΩS)) + ‖u‖∞,ν1;T×BS

]
‖w‖2

(T,R)

≤C(S, ∂Ω) ε‖w‖2
(T,R).

From (3.2), we also get the following estimates for the integrals over T× ∂BR involving u:

I2 ≤
1

2

∫
T×∂BR

1

R
|w(t, x)|2 |x||u(t, x)| dS(x)dt

≤ 1

2
‖u‖∞,ν1;T×BS

1

R
‖w‖2

L2(T×∂BR) ≤ ε‖w‖2
(T,R),

and analogously,

I3 ≤
1

2R3/2

∫
T×∂BR

|x|2|u(t, x)|2 |w(t, x)|
R1/2

dS(x)dt

≤ C

R1/2
‖u‖2

∞,ν1;T×BS‖w‖(T,R) ≤
C

R1/2
ε2‖w‖(T,R)

and

I4 ≤
1

R3/2

∫
T×∂BR

|x| (1 + sζ(x)) |u(t, x)| |w(t, x)|
R1/2

dS(x)dt

≤ C

R1/2
‖u‖∞,ν11 (·;ζ);T×BS‖w‖(T,R) ≤

C

R1/2
ε‖w‖(T,R).

From (2.9), we obtain JR(3, 3) ≤ CR−2. Combined with estimates (3.2), this yields

I5 ≤ R1/2‖∇u‖∞,ν3/2
3/2

(·;ζ);T×BSJR(3, 3)1/2‖w‖L2(T×∂BR)

R1/2

≤ C
1

R1/2
‖∇u‖∞,ν3/2

3/2
(·;ζ);T×BS‖w‖(T,R) ≤ C

1

R1/2
ε‖w‖(T,R).
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Finally, the term with the pressure p is estimated as

I6 ≤
1

R3/2

∫
T×∂BR

|x|2|p(t, x)| |w(t, x)|
R1/2

dS(x)dt

≤ C

R3/2
‖p‖∞,ν2;T×BSR

‖w‖L2(T×∂BR)

R1/2
≤ C

R1/2
ε‖w‖(T,R)

by (3.4), which holds due to d
dt

Φ = 0.

In summary, we find

(1− C0ε)‖w‖2
(T,R) +

|ζ|
2
‖w‖2

L2(T×∂BR) ≤
1

R1/2
(C1ε+ C2ε

2)‖w‖(T,R).

If (1− C0ε) > 0, then (redefining the constants)

‖w‖(T,R) + ‖w‖L2(T×∂BR) ≤ C

(
‖w‖(T,R) +

√
|ζ|
2
‖w‖L2(T×∂BR)

)
≤ 1

R1/2
(C1ε+ C2ε

2),

which gives (5.1) and concludes the proof.

Remark 5.3. For the convergence statement of Theorem 5.1, we had to assume d
dt

Φ = 0, that is,
that the total flux through the boundary is constant in time. As shown in Theorem 3.1 this condition
ensures that the decay rate of the pressure is |x|−2, compare Remark 3.2. In the previous proof, this
lead to a suitable estimate of the term I6, which cannot be obtained form the weaker rate |x|−1 that
holds in the general case.

References

[1] M. Braack and P. B. Mucha. A directional do-nothing condition for the Navier-Stokes equations.
J. Comput. Math., 32(5):507–521, 2014.

[2] P. Deuring. Finite Element Methods for the Stokes System in Three-Dimensional Exterior Do-
mains. Mathematical Methods in the Applied Sciences, 20(3):245–269, 1997.
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