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Global well-posedness of the elastic-viscous-plastic sea-ice
model with the inviscid Voigt-regularisation

Daniel W. Boutros, Xin Liu, Marita Thomas, Edriss S. Titi

Abstract

In this paper, we initiate the rigorous mathematical analysis of the elastic-viscous-plastic (EVP)
sea-ice model, which was introduced in [E. C. Hunke and J. K. Dukowicz, J. Phys. Oceanogr.,
27, 9 (1997), 1849–1867]. The EVP model is one of the standard and most commonly used
dynamical sea-ice models. We study a regularised version of this model. In particular, we prove
the global well-posedness of the EVP model with the inviscid Voigt-regularisation of the evolution
equation for the stress tensor. Due to the elastic relaxation and the Voigt regularisation, we are
able to handle the case of viscosity coefficients without cutoff, which has been a major issue
and a setback in the computational study and analysis of the related Hibler sea-ice model, which
was originally introduced in [W. D. Hibler, J. Phys. Oceanogr., 9, 4 (1979), 815—846]. The EVP
model shares some structural characteristics with the Oldroyd-B model and related models for
viscoelastic non-Newtonian complex fluids.

1 Introduction

1.1 Formulation of the EVP model

Sea-ice dynamics has a strong influence on the global climate, for instance, through heat exchange
with the atmosphere and the ocean around the Arctic area as well as the reflection of sunlight. Despite
the development of sea-ice modeling over many decades, its complexity continues to pose significant
challenges for numerical simulations of the sea-ice cover (cf. [25]). For these reasons, an enhanced
theoretical understanding of the fundamental dynamical sea-ice models and their rigorous mathemat-
ical analysis is of great importance and substantial interest.

Over several decades there have been significant advances in the rigorous mathematical analysis of
oceanic and atmospheric dynamics. In contrast, there have been relatively few works which obtain
rigorous results in the mathematical study of sea-ice dynamics. It is the purpose of this paper to
commence the rigorous mathematical analysis of the elastic-viscous-plastic (EVP) dynamical sea-ice
model.

The EVP model was introduced in [35] as a numerical regularisation of the Hibler model from [32].
The latter model describes sea-ice dynamics by using a viscous-plastic rheology, and the viscosity
becomes singular for small strain rates and degenerate for large strain rates.

We will denote the symmetric part of the gradient D(u) by

D(u) :=
1

2
[∇u+ (∇u)>]. (1.1)
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The strain rate is given by

D :=

(
2

e2

∣∣∣∣D(u)− 1

2
[TrD(u)]I2

∣∣∣∣2 +
∣∣TrD(u)

∣∣2)1/2

. (1.2)

Here u : T2 × [0, T ] → R2 is the unknown velocity and e > 1 is a constant, representing the ratio
of the major axis to minor axis lengths of the elliptic yield curve. Note that throughout this paper we
will use periodic boundary conditions and take our domain to be the two-dimensional flat unit torus T2

(i.e. [0, 1]2).

Then, the momentum equations of the Hibler sea-ice model [32] can be written as

m∂tu+mu · ∇u = ∇ · σ + Ta + Tw +mΩu⊥ −mg∇H0, (1.3a)

with the constitutive law for the stress tensor given by

e2D
P

(σ − 1

2
Tr σI2) +

D
2P

Tr σI2 +
D
2
I2 = D(u). (1.3b)

Here σ : T2 × [0, T ] → R2×2 is the stress tensor, and P > 0,m > 0, and Ω are given constants
which denote the pressure, the mass per unit area and the coefficient of the Coriolis force, respectively.
The functions Ta and Tw denote the wind and ocean stresses, and are defined in equations (1.3d) and
(1.3e), respectively. The given function H0 denotes the ocean surface topography. We also recall the
notation u⊥ = (−u2, u1)>. In order to fix ideas, we have omitted the thermodynamical equations
and purely focus on the dynamical part of the EVP model, and we therefore assume that P is a given
constant. The analysis of the EVP model coupled with the thermodynamical equations is a subject of
future work.

One can easily check from (1.3b) that σ becomes singular as the strain rateD (see (1.2)) approaches
zero, and becomes degenerate as D approaches infinity. This special structure, in particular, causes
significant difficulties for both the analysis as well as the numerical simulations. In fact, in Hibler’s
original paper [32], a cutoff of D is introduced to avoid this problem.

In order to facilitate the usage of explicit numerical schemes and therefore also of parallel computing,
it was proposed in [35] to modify the viscous-plastic sea-ice rheology (1.3b) by adding an artificial
elastic component. That is, one replaces the diagnostic, constitutive equation (1.3b) by the prognostic,
dynamically relaxed equation

1

E
∂tσ +

e2D
P

(σ − 1

2
Tr σI2) +

D
2P

Tr σI2 +
D
2
I2 = D(u), (1.3c)

where E > 0 is the (artificial) elastic modulus, which is constant. Formally, by sending E → ∞ in
(1.3c), one can recover (1.3b). In addition, we will show in this paper, that a cutoff of the strain rate D
is not necessary in the dynamical case with equation (1.3c) for E > 0. Note that in contrast to that of
the Hibler model, the stress tensor of the EVP model has become an independent dynamical quantity,
which requires its own initial data which need to be chosen adequately in numerical simulations.
Moreover, the parabolic structure of the full Hibler model (1.3a)-(1.3b) is lost due to this modification,
although it reemerges as a damping term in the EVP model.

The EVP model, which is given by equations (1.3a) and (1.3c), is one of the most important dynamical
sea-ice models and is a fundamental component of many climate models [7, 25, 40], including the Los
Alamos sea-ice model (CICE) [47], the Louvain-la-Neuve (LIM2) sea-ice model [7], the Massachusetts
Institute of Technology general circulation model (MITgcm) [56], and the Finite-Volume sea ice–ocean
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Elastic-viscous-plastic sea-ice model with inviscid Voigt–regularisation 3

model (FESOM) [23] (an overview of several models can be found in [33]). Furthermore, the wind
stress Ta and the ocean stress Tw are defined as follows

Ta := caρa|Ua|
(
Ua cosφ+ U⊥a sinφ

)
, (1.3d)

Tw := cwρw|Uw − u|
[
(Uw − u) cos θ + (Uw − u)⊥ sin θ

]
, (1.3e)

respectively. The other notation is introduced in Table 1. For the purposes of this paper, the geostrophic
wind and ocean currents Ua and Uw can be arbitrary functions inC([0, T ];H4(T2)), but we note that
the ocean velocity Uw is typically chosen as follows, cf. e.g. [23, 34],

Uw =

(
0.1(2y−L)

L
−0.1(2x−L)

L

)
, (1.4)

where L is the length scale of the domain [0, L]2. Note that this example is not periodic. Similarly, a
typical wind velocity is given by (cf. [34])

Ua =

(
5 +

[
sin
(
2πt
T

)
− 3
]

sin
(
2πx
L

)
sin
(
πy
L

)
5 +

[
sin
(
2πt
T

)
− 3
]

sin
(
2πy
L

)
sin
(
πx
L

)) . (1.5)

The goal of this paper is to establish the global well-posedness of a regularised version of the EVP
system, i.e. equations (1.3a) and (1.3c)-(1.3e). To simplify our presentation, we will fix e ≡ 2 in the
rest of this paper, as is commonly done in the sea-ice modelling literature. However, we emphasise
that the results of this paper do not depend on the choice of e.

Symbol Meaning Typical value
c ice compactness (area covered

by ‘thick’ ice)
0 ≤ c ≤ 1

ca air drag coefficient 1.2 · 10−3

cw ocean drag coefficient 5.5 · 10−3

e ratio of major axis to minor axis
lengths of the elliptic yield curve

2

E elastic modulus 0.25
g gravitational constant 9.81 m s−1

H0 sea surface height
H height of ‘thick‘ ice
m mass per unit area
Ω rotation parameter 1.46 · 10−4 s−1

P internal ice strength
P0 internal ice strength parameter 27.5 · 103 N/m3

φ air turning angle 25◦

ρa air density 1.3 kg/m3

ρw ocean water density 1026 kg/m3

θ water turning angle 25◦

Ua geostrophic wind equation (1.5)
Uw geostrophic ocean current equation (1.4)

Table 1: Index of notation and typical values of several of the parameters, which are taken from [34,
35, 46, 57].
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1.2 The linear ill-posedness of the unregularised EVP model

Before we state the main result of this paper, we emphasise here that a regularisation of the EVP
model is necessary to establish the well-posedness in Sobolev spaces. Indeed, consider the following
one-dimensional version of the EVP model

∂tu = ∂xσ, (1.6a)

∂tσ +
5
√
|∂xu|2 + ε2

2P
σ +

√
|∂xu|2 + ε2

2
= ∂xu, (1.6b)

where u and σ are now scalar quantities, and we have regularised and simplified the strain rate

D =
√

5
4
|∂xu| from (1.2) by

√
|∂xu|2 + ε2 for some ε > 0. Note that we have omitted the external

forces as well as the advection term (cf. point (ii) of Remark 1.3). By linearising system (1.6) around
a given solution (u, σ) to (1.6) we find the following equations

∂tul = ∂xσl, (1.7a)

∂tσl = − 5

2P

√
|∂xu|2 + ε2σl +

[
1− 5

2P

σ∂xu√
|∂xu|2 + ε2

− 1

2

∂xu√
|∂xu|2 + ε2

]
∂xul, (1.7b)

where (ul, σl) is the solution of the linearised system (1.7a)-(1.7b). Then, after taking a spatial deriva-
tive of equation (1.7b) and using equation (1.7a), one has

∂ttul =− 5

2P

√
|∂xu|2 + ε2∂tul +

[
1− 5

2P

σ∂xu√
|∂xu|2 + ε2

− 1

2

∂xu√
|∂xu|2 + ε2

]
∂xxul

− 5

2P

∂xu∂xxu√
|∂xu|2 + ε2

σl −
∂

∂x

[
5

2P

σ∂xu√
|∂xu|2 + ε2

+
1

2

∂xu√
|∂xu|2 + ε2

]
∂xul.

(1.8)

Therefore, if at a space-time point (x0, t0) ∈ T× [0, T ] we have

1− 5

2P

σ∂xu√
|∂xu|2 + ε2

− 1

2

∂xu√
|∂xu|2 + ε2

< 0, (1.9)

then equation (1.8) becomes locally elliptic near the point (x0, t0), which leads to an instability and
therefore the ill-posedness in the sense of Hadamard [30]. In a forthcoming paper [8], we will address
the linear ill-posedness of the (unregularised) EVP model in all Sobolev spaces in a rigorous manner
using this new instability (ill-posedness) that we have discussed above.

Remark 1.1. We emphasise that the instability described above is fundamentally different than the
(formal) ill-posedness/instability results that have been reported in the sea-ice modelling/physics liter-
ature [26–28, 61]. These results rely crucially on the absence of the viscosity cutoff (i.e. ε = 0) and
are found for mainly the Hibler model (with the exception of [52, 67], which consider the (revised) EVP
model as well). The rigorous analysis in [53] demonstrates that the linear ill-posedness is not present
in the case of the Hibler model with ε > 0. The linear instability of the EVP model described in this
section is present regardless of the value of ε and therefore pertains to a new kind of instability that
has not been reported in the literature before, and in particular it does not apply to the Hibler model.
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1.3 Main result of this paper

We consider the following regularisation of the EVP model (i.e. equations (1.3a) and (1.3c)):

∂tu = ∇ · σ + Ta + Tw + Ωu⊥ − g∇H0, (1.10a)

1

E
∂t
(
σ − α2∆σ

)
+

4D
P

(σ − 1

2
Tr σI2) +

D
2P

Tr σI2 +
D
2
I2 = D(u), (1.10b)

u|t=0= u0, σ|t=0= σ0. (1.10c)

In this model we have included the Voigt regularisation on the elastic part of the rheology in the
EVP model [35] by means of the inclusion of the term −α2∂t∆σ for some fixed α > 0 in equation
(1.10b). The drag forces Ta and Tw are taken as in equations (1.3d) and (1.3e), respectively. Note that
throughout this paper we will assume that σ(x, t) is a symmetric matrix, although this is not necessary
for the results that we will prove. Next, we will simplify the strain rate D from equation (1.2) by

D := |D(u)|, (1.11)

without fundamentally changing the analysis presented below, see Section 5 for more discussion. The
system we will therefore consider in this paper, which we call the Voigt-EVP system, is given by

∂tu = ∇ · σ + Ta + Tw + Ωu⊥ − g∇H0, (1.12a)

1

E
∂t
(
σ − α2∆σ

)
+

4D
P

(σ − 1

2
Tr σI2) +

D
2P

Tr σI2 +
D
2
I2 = D(u), (1.12b)

u|t=0= u0, σ|t=0= σ0. (1.12c)

Now we are ready to state our main result, i.e., the global well-posedness of the Voigt-EVP system:

Theorem 1.2. Let u0 ∈ H2(T2) and σ0 ∈ H3(T2) (which is symmetric) be given. Moreover, we
assume that P > 0 is a given constant, Ua, Uw, H0 ∈ C([0, T ];H4(T2)) and we let θ ∈

[
0, π

4

]
.

The Voigt-EVP system (1.12) has a unique global strong solution (u, σ) on the time interval [0, T ] for
any T > 0. The solution (u, σ) has the following regularity

u ∈ C([0, T ];H2(T2)), σ ∈ C([0, T ];H3(T2)).

In addition, we have the estimate

‖u‖C([0,T ];H2(T2)) + ‖σ‖C([0,T ];H3(T2)) + ‖∂tu‖L∞((0,T );H2(T2)) + ‖∂tσ‖L∞((0,T );H3(T2))

≤ C exp(exp(exp(exp(exp(CT ))))),

where C > 0 is a constant, depending on E , α, Ua, Uw, g,H0, u0, σ0, ca, cw, ρa, ρw, P, φ, and θ.

We note that the superexponential bound from Theorem 1.2 originates from the repeated use of (log-
arithmic) Grönwall inequalities for the a priori estimates at the L2(T2), Ḣ1(T2) and Ḣ2(T2) level.

Remark 1.3. (i) The Voigt regularisation in equation (1.12b) is in the same spirit as the original
numerical regularisation of the Hibler model from [35]. Namely, we seek an inviscid regulari-
sation of the EVP model, which is suitable for numerical computations. The advantage of the
Voigt regularisation is that on the one hand, like the original EVP model, it shares the same
steady state(s) with the Hibler model. On the other hand, the Voigt regularisation constitutes a
relatively modest (nonviscous) modification of the (artificial) elastic component of the rheology
in the EVP model.
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(ii) For the momentum equation of the Voigt-EVP model, we have omitted the advection term, in
which we follow the approach in [35]. As it has been remarked in [35], the advection term is at
least one order of magnitude smaller than the acceleration term and therefore it has not been
included in the EVP model. In the evolution equation for the stress tensor we also do not include
an advection term, as it would affect the steady states of the EVP model, which would then lose
its purpose as an approximation of the Hibler model.

(iii) We note that the assumption θ ∈
[
0, π

4

]
on the water turning angle, lies within the standard

range in sea-ice modelling (see for example [31, 49]).

In order to prove Theorem 1.2, we will consider an intermediate system given by

∂tu = ∇ · σ + Ta + Tw + Ωu⊥ − g∇H0, (1.13a)

1

E
∂t
(
σ − α2∆σ

)
+

4Dε
P

(σ − 1

2
Tr σI2) +

Dε
2P

Tr σI2 +
Dε
2
I2 = D(u), (1.13b)

u|t=0= u0, σ|t=0= σ0. (1.13c)

In this model, the strain rate D in system (1.12) has been regularised by

Dε :=
√
|D(u)|2 + ε2, (1.14)

for some ε > 0, where we recall that D(u) denotes the symmetric part of the gradient, see equation
(1.1).

Then, by establishing uniform-in-ε estimates of the solutions to system (1.13) globally in time, we will
be able to send ε→ 0 and obtain the (unique) solution to system (1.12). As a byproduct of this proof,
we also obtain the global well-posedness of the intermediate system (1.13a)-(1.13c) as stated below:

Corollary 1.4. Under the same conditions on u0, σ0, Ua, Uw, H0, and θ as in Theorem 1.2, for any
T > 0 the intermediate system (1.13) is globally well-posed. The unique global solution (u, σ) has
the same regularity as in Theorem 1.2.

Remark 1.5. (i) The benefit of introducing Dε in the intermediate system (1.13) is that it regu-
larises the strain rate D and allows one to take its derivatives directly. We emphasise that such
a regularisation serves as a cutoff of the bulk and shear viscosities and has an important role
in sea-ice modelling as it describes the yield curve of sea-ice, as part of the viscous-plastic
rheology introduced in [32].
Moreover, it is a natural numerical regularisation for the strain rate, which was first introduced in
[41], cf. [57]. Note that in practice, ε should be smaller than 10−9 s−1 [7]. For these reasons the
study of the intermediate system (1.13) has its value independent of its role as an approximate
system for the Voigt-EVP model.

(ii) The proof of Theorem 1.2 implies that the limit as ε → 0 of the intermediate system (1.13),
i.e. removing the bulk and shear viscosity cutoff, is stable in the sense that the solutions remain
close to each other for all small ε. Our results are therefore very much in agreement with the
numerical simulations in [7], where it was found that the dynamics of the EVP model is not very
much affected by the value of ε.

(iii) In [53], the approximation (1.14) is also used for the Hibler model (1.3b) as a regularisation
of the strain rate, and it is shown that for any fixed ε > 0, the resulting system of equations
is locally well-posed. However, as demonstrated by the numerical evidence in [7], the limit as
ε→ 0 for the Hibler model is very unstable. The analysis of the limit as ε→ 0 remains open.
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Elastic-viscous-plastic sea-ice model with inviscid Voigt–regularisation 7

(iv) Instead of (1.14), our analysis works for a larger class of regularisations for the strain rate D.
See Section 5 for more discussion.

1.4 Overview of the literature

The sea-ice modeling literature

Sea ice is a highly complex material and modelling its dynamics and rheology poses significant chal-
lenges. In fact, numerous sea-ice models have been developed over time [25]. The Arctic Ice Dynamics
Joint Experiment suggested an elastic-plastic rheology for modelling sea ice [22]. The Hibler sea-ice
model was introduced in [32], which uses a viscous-plastic rheology which has become one of the
standard sea-ice rheologies.

The Hibler model has been a very successful model in reproducing observed sea-ice drift [54]. How-
ever, its use in practical computations turns out to be very expensive [7, 40], particularly so when
using an explicit numerical method [38]. Instead, implicit methods are employed in order to compute
solutions of the Hibler model, for example the line relaxation method [68] as well as the Jacobian-free
Newton Krylov solver [46, 55, 62] to mention some.

The elastic-viscous-plastic (EVP) sea-ice model was introduced in [35] in order to improve the com-
putational efficiency of sea-ice modelling. Specifically, the EVP model is a modification of the Hibler
model, as an elastic (relaxation) term is introduced into the constitutive relation. The advantage of
the EVP formulation over the Hibler model is that it is expected to be more amenable to the use of
explicit numerical schemes for computational modelling, and hence facilitates the use of parallel com-
puting [34], see also [36]. As a result, numerically solving the EVP model significantly reduces the
computational cost compared to the use of implicit schemes for the Hibler model [7].

In addition, the EVP model (1.3a) and (1.3c) has the advantage that its computational performance is
not affected by the value of the strain rate regularisation parameter ε, while the Hibler model requires a
small value of ε in the viscosity regularisation to accurately model plastic behaviour as shown in [7], cf.
Remark 1.5. Because of the aforementioned reasons the EVP model has become one of the standard
and most commonly used sea-ice models in contemporary climate modelling [7, 25, 40].

Over time, several modifications of the EVP model were introduced which have better numerical per-
formance in simulations. For example, in [34] the elastic parameter was redefined to depend on the
strain rate. The reason for this modification was to prevent the computed stresses from lying outside
the yield curve (cf. [32]) during the (numerical) subcycling process.

However, although the EVP model was originally introduced as a reformulation of the Hibler model
which was more suitable for numerical purposes, it remains unclear whether it successfully approxi-
mates the Hibler model, i.e. by sending E → ∞ in equation (1.3c) to obtain (1.3b). In particular, it
was found in [39, 46, 54, 56], see also [6], that the numerically computed solutions of the EVP and the
Hibler models can differ substantially, even for very small subcycling time steps. Note that this does not
necessarily imply that either sea-ice model is physically more accurate, but just that their rheologies
are fundamentally different from a computational point of view [46].

Nevertheless, within the subcycling time steps, the effect of the artificial elasticity in the rheology is
‘damped’ over the larger timescale, although it was found in [46] that the damping effect is weaker in
areas of rigid ice, i.e. the regions with high concentration of ice and small strain rates.
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The mathematical analysis literature

The first results in the rigorous analysis of sea-ice dynamics only appeared very recently. The local
well-posedness of the Hibler model was proved independently in [10, 53]. Both of these papers slightly
modified the original viscosity cutoff from [32] by introducing a regularisation of the form (1.14), which
is required to avoid the singularity when D(u) = 0.

To be more precise, in [10], additional artificial diffusion terms were considered in the thermodynam-
ics, which make the system fully parabolic. These additional diffusion terms made it possible to prove
global existence of strong solutions for small data in [10]. Meanwhile, the study in [53] retained the
original mixed hyperbolic-parabolic character of the Hibler model. A different regularisation of the vis-
cosities was studied in [17], namely the replacement of the Heaviside cutoff by a hyperbolic tangent,
where the authors establish the linear well-posedness.

The interaction between sea-ice and a rigid body for the fully parabolic Hibler model was then studied
in [5]. Time periodic solutions for the parabolic regularisation of the Hibler model, were constructed in
[11] in the case of periodic wind forcing. See [4] for some results on the coupling with oceanic and
atmospheric dynamics. The free-boundary problem of shallow (land) ice-sheets was studied in [60].

In addition, in [57], under the assumption of the existence of smooth solutions, a formal H1-estimate
was derived for the Hibler model as well as for a modified version of the EVP model in the formulation
introduced in [34]. This formulation of the EVP model from [34] has a very different structure to our
setting. The gradient estimates in [57] strongly rely on the cutoff of the bulk and shear viscosities in
the constitutive relation, and also on the linearisation of the ocean drag term. In the revised EVP case,
the additional assumption that Tr σ = 0 is made in [57]. The a priori estimates in [57] do not seem
sufficient to deduce the existence of solutions for the revised EVP model, but instead are used in [57]
to check the consistency of a numerical discretisation scheme for these sea-ice models.

We also note that the EVP model (1.3a) and (1.3c) shares some structural similarities with several
models for non-Newtonian flows, for example the Oldroyd-B model, see for example [18, 19, 21, 24, 29,
42, 50, 51] and references therein, and other viscoelastic flow models, which have been studied in [2,
14, 15] and references therein. Finally, we note that our treatment of the viscosity regularisation (1.14)
is in some sense related to results for non-Newtonian fluid models with shear dependent viscosities,
see for example [3] and references therein.

As has been mentioned in point (i) in Remark 1.3, in this work we have chosen to use the (inviscid)
Voigt regularisation for the EVP model. To the best of our knowledge, the Voigt regularisation in the
context of the Navier-Stokes equations has first been rigorously studied in [58, 59]. Much later, the
existence of solutions for such Kelvin-Voigt-type systems with non-constant density has also been
investigated in [1] and see references therein. Moreover, the Voigt regularisation has been investigated
extensively in the context of turbulence modelling, for example in [43–45]. More recently, it has also
been used as a regularisation mechanism to study steady states [20], see also [37]. We also remark
that employing the Voigt regularisation typically leads to equations of pseudo-parabolic type, which
have been studied in [63–65] (and see references therein).

The rest of this paper is organised as follows. In Section 2, we will recall some inequalities that we will
use throughout this paper. In Section 3, we will establish the global well-posedness of the intermediate
system (1.13). Following this, in Section 4, we finish the proof of Theorem 1.2, namely the global well-
posedness of the Voigt-EVP model (1.12). We will provide some concluding remarks in Section 5.
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Elastic-viscous-plastic sea-ice model with inviscid Voigt–regularisation 9

2 Preliminaries

Throughout this paper, we will use the notation C to denote a generic constant, which might differ
from line to line. For any quantities A,B ≥ 0, we shorten the notation A ≤ CB for some positive but
finite constant C as

A . B. (2.1)

We recall a few results that will be used in this paper. We first recall the Brézis-Gallouët–Wainger
inequality, which was originally proved in [12, 13]:

Lemma 2.1 (Brézis-Gallouët–Wainger inequality). Let v ∈ H2(T2) (where v is dimensionless), then
it satisfies the following inequality

‖v‖L∞ ≤ C

(
‖v‖H1

√
log

(
1 + CL‖v‖H2

)
+ 1

)
, (2.2)

where we note that the constant CL depends on the length scale of the torus (which we take to be
unit length in our case), while C is a dimensionless constant.

We will also use the Ladyzhenskaya inequality in two space dimensions

‖f‖L4 . ‖f‖1/2L2 ‖∇f‖1/2L2 + ‖f‖L2 ; (2.3)

as well as the logarithmic Grönwall inequality, which in this form can be found in [16, Lemma 2.5]:

Lemma 2.2 (Logarithmic Grönwall inequality). Let T > 0, and assumeA : [0, T ]→ [0,∞) is a non-
negative absolutely continuous function. Further assume there exist nonnegative L1(0, T ) functions
f, g, and h such that

d

dt
A(t) ≤

[
g(t) + h(t) log(A(t) + e)

]
A(t) + f(t). (2.4)

Then we have the following estimate

A(t) ≤ (2F (t) + 1)eF (t), (2.5)

where we have introduced the following function

F (t) := e
´ t
0 h(s)ds

(
log(A(0) + e) +

ˆ t

0

[
g(s) + f(s)

]
ds+ t

)
. (2.6)

In order to prove the uniqueness of strong solutions in the subsequent sections, we will need to prove
a bound on the difference of the strain rates.

Lemma 2.3. Let v1, v2 ∈ H2(T2) and recall that the notation D(v) was defined in equation (1.1),
then we have ∥∥∥√|D(v1)|2 + ε2 −

√
|D(v2)|2 + ε2

∥∥∥
L2
≤ ‖∇v1 −∇v2‖L2 , (2.7)

for all ε ≥ 0.
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Proof. One can directly compute

|
√
|D(v1)|2 + ε2 −

√
|D(v2)|2 + ε2| =

∣∣∣∣∣ [D(v1) +D(v2)] : [D(v1)−D(v2)]√
|D(v1)|2 + ε2 +

√
|D(v2)|2 + ε2

∣∣∣∣∣
≤ |D(v1)−D(v2)|.

This implies inequality (2.7) for smooth v1 and v2. For v1, v2 ∈ H2(T2), one can proceed by choosing
smooth approximating sequences of H2(T2) functions and conclude the proof.

Although it is not necessary for the construction, we show in the following lemma that σ remains
symmetric under the evolution of the Voigt-EVP model if it is initially symmetric:

Lemma 2.4 (Invariance of the symmetry). Consider a solution (u, σ) to either system (1.12) or (1.13),
which has the regularity described in Theorem 1.2, with σ0 ∈ H3(T2;R2×2) being symmetric. That is,
u ∈ C([0, T ];H2(T2)) and σ ∈ C([0, T ];H3(T2)) for arbitrary T > 0. Then σ(x, t) = σ(x, t)>

for all 0 ≤ t ≤ T and all x ∈ T2.

Proof. Denote the antisymmetric part of σ by

W (σ) :=
1

2
(σ − σ>). (2.8)

Then, from equation (1.12b) or equation (1.13b), one has

1

E
∂t(I − α2∆)W (σ) +

4H

P
W (σ) = 0, (2.9)

for H = D or H = Dε. Note that this equation holds in C([0, T ];H1(T2)). Subsequently, the
standard L2-estimate for W (σ) yields

sup
t∈[0,T ]

[
‖W (σ)(t)‖2L2 + α2‖∇W (σ)(t)‖2L2

]
≤ ‖W (σ0)‖2L2 + α2‖∇W (σ0)‖2L2 = 0. (2.10)

This finishes the proof.

3 Global solutions to the intermediate system (1.13)

Our strategy of establishing the global solvability of system (1.13) is the following: First, we will write
down the Galerkin approximation scheme. At each level of the scheme, by directly applying the Picard
theory we obtain a local-in-time solution of the Galerkin system. Second, we establish better regularity
for the approximating solutions (as well as their global existence in time), and pass to the limit in the
Galerkin scheme. Finally, we establish the uniqueness of the strong solution.

3.1 The Galerkin approximation scheme

We look for a solution of the type

uN(x, t) =
∑

k∈Z2,|k|≤N

ûk(t)e
2πik·x, σN(x, t) =

∑
k∈Z2,|k|≤N

σ̂k(t)e
2πik·x,
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Elastic-viscous-plastic sea-ice model with inviscid Voigt–regularisation 11

which satisfies the following Galerkin system (together with the usual condition that uN and σN are
real-valued):

∂tuN = ∇ · σN + PNTa + PNT Nw + Ωu⊥N − gPN∇H0, (3.1a)

1

E
∂t
(
σN − α2∆σN

)
+ PN

[
4DNε
P

(σN −
1

2
Tr σNI2)

]
+ PN

[
DNε
2P

Tr σNI2
]

+
PNDNε

2
I2 = D(uN),

(3.1b)

u|t=0= PNu0, σ|t=0= PNσ0, (3.1c)

where PN is the projection onto the Fourier modes up to order N , including the zeroth mode. In
system (3.1), we have used the notation

T Nw = cwρw|Uw − uN |
[
(Uw − uN) cos θ + (Uw − uN)⊥ sin θ

]
(3.2)

and

DNε =
√
|D(uN)|2 + ε2. (3.3)

Notice that system (3.1) is a first-order system of ordinary differential equations for {ûk, σ̂k}|k|≤N ,
with a locally Lipschitz continuous vector field with respect to the unknowns. Thus, the Picard theory
implies that, for each initial datum (PNu0, PNσ0), there exists a unique local-in-time solution.

3.2 Uniform-in-(N, ε) estimates

To establish the uniform-in-N estimates for the solutions of system (3.1), let

τN := σN +
P

2
I2. (3.4)

Recall that the pressure P > 0 is constant. We then rewrite equation (3.1b) as follows:

1

E
∂t

(
τN − α2∆τN

)
+ PN

[
4DNε
P

(
τN −

1

2
Tr τNI2

)]
+PN

[
DNε
2P

Tr τNI2
]

= D(uN).

(3.5)

L2-estimate. We start by computing the L2(T2) estimates for the solution of system (3.1) on its
maximal (positive) time interval of existence. Taking the L2-inner product of (3.1a) and (3.5) with uN
and τN , respectively, applying integration by parts, and summing the results yields

1

2

d

dt

[
‖uN‖2L2 + E−1‖τN‖2L2 + α2E−1‖∇τN‖2L2

]
+

ˆ
T2

[
4DNε
P
|τN −

1

2
Tr τNI2|2 +

DNε
2P
|Tr τN |2

]
dx

=

ˆ
T2

[
Ta + T Nw + Ωu⊥N − g∇H0

]
· uN dx ≤ C + C‖uN‖2L2 ,

(3.6)
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thanks to the following estimate:
ˆ
T2

T Nw · uN dx = cwρw

ˆ
T2

|Uw − uN |
[
(Uw − uN) cos θ + (Uw − uN)⊥ sin θ

]
· uN dx

= cwρw

ˆ
T2

|Uw − uN |
[
Uw cos θ + U⊥w sin θ

]
· uN dx

−cwρw
ˆ
T2

|Uw − uN ||uN |2 cos θ dx . 1 + ‖uN‖2L2 ,

where we use the fact that cos θ ≥ 0 since θ ∈ [0, π
4
]. Notice that the constant C ∈ (0,∞) in (3.6)

depends only on Ω, g, P,H0, Ua, Uw, ca, cw, φ, θ, ρa, and ρw, but not on ε andN . Moreover, we also
have used the following cancellation, which is similar in structure to the Oldroyd-B model,

ˆ
T2

[
uN · (∇ · σN) + τN : D(uN)

]
dx = 0. (3.7)

Therefore, applying the Grönwall inequality to estimate (3.6) on a time interval of existence [0, T ] of
the approximating Galerkin solution leads to

sup
t∈[0,T ]

[
‖uN(t)‖2L2 + E−1

∥∥∥∥σN(t) +
P

2
I2
∥∥∥∥2
L2

+ α2E−1
∥∥∥∥∇[σN(t) +

P

2
I2
]∥∥∥∥2

L2

]
≤ CeCT , (3.8)

uniformly in N . Since the right-hand side remains finite for any T < ∞, we conclude that the time
interval of existence of the approximating Galerkin solutions is [0,∞) and estimate (3.8) therefore
holds for any T <∞.

H1-estimate. Now we turn to the Ḣ1(T2) estimates. Denote by

Vw := Uw − uN . (3.9)

Recalling (3.2), one can write

−
ˆ
T2

PNT Nw ·∆uN dx =
2∑
i=1

ˆ
T2

PN∂iT Nw · ∂iuN dx =
2∑
i=1

ˆ
T2

∂iT Nw · ∂iuN dx

=
2∑
i=1

ˆ
T2

∂iT Nw · ∂iUw dx−
2∑
i=1

ˆ
T2

cwρw
[
∂i(|Vw|Vw) cos θ

]
· ∂iVw dx

−
2∑
i=1

ˆ
T2

cwρw∂i(|Vw|V ⊥w ) · ∂iVw sin θ dx =: I1 + I2 + I3.

(3.10)

For i = 1, 2, one can calculate

∂i(|Vw|Vw) = |Vw|∂iVw +
Vw · ∂iVw
|Vw|

Vw. (3.11)

Then directly one can estimate (where the constants can depend on ‖∂iUw‖L∞)

|I1| . ‖Vw‖L2‖∇Vw‖L2 . 1 + ‖uN‖2L2 + ‖∇uN‖2L2 , (3.12)

|I3| ≤ cwρw| sin θ|
ˆ
T2

|Vw||∇Vw|2 dx. (3.13)
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Meanwhile, substituting (3.11) in I2, one can compute

I2 = −cwρw cos θ

ˆ
T2

(
|Vw||∇Vw|2 +

∣∣∇(|Vw|2)∣∣2
|Vw|

)
dx. (3.14)

Consequently, (3.10)–(3.14) leads to

−
ˆ
T2

PNT Nw ·∆uN dx =

ˆ
T2

∇T Nw : ∇uN . 1 + ‖uN‖2L2 + ‖∇uN‖2L2 (3.15)

for θ satisfying
cos θ − | sin θ| ≥ 0, (3.16)

which holds for θ ∈
[
0, π

4

]
.

Taking the L2-inner product of (3.1a) and (3.1b) with −∆uN and −∆σN , respectively, applying inte-
gration by parts, and summing up the results leads to the following estimate

1

2

d

dt

[
‖∇uN‖2L2 + E−1‖∇σN‖2L2 + α2E−1‖∆σN‖2L2

]
=

ˆ
T2

{[
4DNε
P

(σN −
1

2
Tr σNI2)

]
: ∆σN +

DNε
2P

Tr σNI2 : ∆σN +
DNε
2

Tr ∆σN

}
dx

+

ˆ
T2

∇
[
Ta + Ωu⊥N − g∇H0

]
: ∇uN dx+

ˆ
T2

∇T Nw : ∇uN dx

+
2∑
i=1

ˆ
T2

[
∂iuN · (∇ · ∂iσN) + ∂iσN : D(∂iuN)

]
dx

. ‖DNε ‖L2‖σN‖L∞‖∆σN‖L2 + ‖∆σN‖2L2 + ‖∇uN‖2L2 + ‖uN‖2L2 + 1

.
[√

log(e+ CLR1‖σN‖H2)‖σN‖H1 + 1
] [
‖∇uN‖2L2 + ‖∆σN‖2L2

]
+ ‖∆σN‖2L2 + ‖∇uN‖2L2 + ‖uN‖2L2 + 1, (3.17)

where we have used (3.15), the Brézis-Gallouët-Wainger inequality (2.2), as well as Young’s inequality.
Note that we have introduced a constant R1 > 0 in order to make the quantity R1σN dimensionless
(so that we can apply the Brézis-Gallouët-Wainger inequality). One can choose R1 = ‖σ0‖−1L∞ for
example (for nonzero initial data).

Thanks to the L2-estimate in (3.8), we can apply the logarithmic Grönwall inequality from Lemma 2.2
to (3.17) which leads to the following triple-exponential bound

sup
t∈[0,T ]

[
‖∇uN‖2L2 + E−1‖∇σN‖2L2 + α2E−1‖∆σN‖2L2

]
≤ C exp(exp(exp(CT ))), (3.18)

for someC independent ofN, ε, and T , but depending on E , α, and the initial data. Note that the triple-
exponential nature of the bound comes from the application of the logarithmic Grönwall inequality to
the single-exponential L2-estimate (3.8).

H2-estimate. One can compute directly that

∇DNε =
D(uN) :

[
∇D(uN)

]
DNε

=
1
2
∇|D(uN)|2

DNε
,

‖∇DNε ‖L2 . ‖∆uN‖L2 , where the constant is independent of ε and N.

(3.19)
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In addition, we recall the following computation from [53, p. 22-23], for i, j = 1, 2, with Vw given in
(3.9),

∂2ij
(
|Vw|Vw

)
= |Vw|∂2ijVw +

Vw · ∂iVw
|Vw|

∂jVw +
Vw · ∂jVw
|Vw|

∂iVw

+

(
Vw · ∂2ijVw + ∂iVw · ∂jVw

|Vw|
−
[
Vw · ∂iVw

]
·
[
Vw · ∂jVw

]
|Vw|3

)
Vw.

(3.20)

Therefore, one has the following estimate∥∥∇2
(
|Vw|Vw

)∥∥
L2 ≤ ‖Vw‖L∞‖Vw‖H2 + ‖Vw‖2W 1,4

.
(
‖Vw‖L∞ + ‖Vw‖H1

)
‖Vw‖H2 , (3.21)

where we have applied the Ladyzhenskaya inequality (2.3).

Then, after taking the L2-inner product of (3.1a) and (3.1b) with ∆2uN and ∆2σN , respectively, using
integration by parts, and summing up the results, one obtains

1

2

d

dt

[
‖∆uN‖2L2 + E−1‖∆σN‖2L2 + α2E−1‖∇∆σN‖2L2

]
=−
ˆ
T2

[
4DNε
P
|∆(σN −

1

2
Tr σNI2)|2 +

DNε
2P
|∆ TrσN |2

]
dx

−
∑
i=1,2

ˆ
T2

[
4∂iDNε
P

∂i(σN −
1

2
Tr σNI2) +

∂iDNε
2P

∂i Tr σNI2
]

: ∆σN dx

+
∑
i=1,2

ˆ
T2

[
4∂iDNε
P

(σN −
1

2
Tr σNI2) +

∂iDNε
2P

Tr σNI2
]

: ∂i∆σN dx

+

ˆ
T2

∇
(
DNε
2

I2
)

: ∇∆σN dx+

ˆ
T2

∆

[
Ta + T Nw + Ωu⊥N − g∇H0

]
·∆uN dx

+

ˆ
T2

[
∆uN · (∇ ·∆σN) + ∆σN : D(∆uN)

]
dx

. ‖∇2uN‖L2‖∇σN‖L4‖∆σN‖L4 +
[
‖∇2uN‖L2‖σN‖L∞ + ‖∇2uN‖L2

]
‖∇∆σN‖L2

+
(
1 + ‖uN‖L∞ + ‖∇uN‖L2

)(
1 + ‖uN‖H2

)
‖uN‖H2 + ‖∆uN‖2L2 + 1

.

[
‖σN‖H1

(
1 +

√
log
(
e+ CLR1‖σN‖H2

))
+ ‖uN‖H1

(
1 +

√
log
(
e+ CLR2‖uN‖H2

))
+ ‖σN‖H2 + 1

]
·
[
‖uN‖2H2 + ‖σN‖2H3

]
+ 1, (3.22)

where we have used (3.21), the Brézis-Gallouët-Wainger inequality (2.2), as well as Young’s inequality.
Note that as before, we have used parameters R1, R2 > 0 in order to make the quantities R1σN and
R2uN dimensionless, so that we can apply the Brézis-Gallouët-Wainger inequality. One can choose
R2 = ‖u0‖−1L∞ for example (in the case of nonzero initial data).

From (3.22), by using the L2-estimate (3.8), the H1-estimate (3.18), and the logarithmic Grönwall
inequality in Lemma 2.2, we find the following bound:

sup
t∈[0,T ]

[
‖uN(t)‖2H2 + ‖σN(t)‖2H3

]
≤ C exp(exp(exp(exp(exp(CT ))))), (3.23)
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for some constant C which is independent of N, ε, and T , but which depends on E , α, and the
initial data. Note that the quintuple-exponential growth in time of the bound originates from the single-
exponential respectively triple-exponential growth in time of the L2 and H1-estimates, and the subse-
quent application of the logarithmic Grönwall inequality.

Estimate on the time derivative and summary. Thanks to (3.23) and system (3.1), one can obtain
directly that

sup
t∈[0,T ]

[
‖∂tuN(t)‖2H2 + ‖∂tσN − α2∂t∆σN‖2H1

]
≤ C exp(exp(exp(exp(exp(CT ))))). (3.24)

Meanwhile, by directly applying integration by parts we deduce that

‖∂tσN − α2∂t∆σN‖2H1 = ‖∂tσN‖2H1 + α4‖∂t∆σN‖2H1 + 2α2‖∂t∇σN‖2H1 .

Hence, equations (3.23) and (3.24) yield

sup
t∈[0,T ]

[
‖uN(t)‖H2 + ‖σN(t)‖H3 + ‖∂tuN(t)‖H2 + ‖∂tσN‖H3

]
≤ C exp(exp(exp(exp(exp(CT ))))),

(3.25)

again for some constant C , which is independent of N, ε, and T , but depends on E , α, and the initial
data.

3.3 Well-posedness of the intermediate system (1.13)

Passing the limit N → ∞ and existence of the strong solution. For any fixed T ∈ (0,∞) and
ε ∈ (0,∞), from the bound (3.25) and by applying the Aubin-Lions compactness lemma (see [9,
Theorem II.5.16]), one has the following convergence results: for a suitable subsequence ofN →∞,

uN
∗
⇀ u weakly-∗ in L∞((0, T );H2(T2)), (3.26)

∂tuN
∗
⇀ ∂tu weakly-∗ in L∞((0, T );H2(T2)), (3.27)

uN → u strongly in C([0, T ];H1(T2)), (3.28)

σN
∗
⇀ σ weakly-∗ in L∞((0, T );H3(T2)), (3.29)

σN → σ strongly in C([0, T ];H2(T2)), (3.30)

∂tσN
∗
⇀ ∂tσ weakly-∗ in L∞((0, T );H3(T2)), (3.31)

where u ∈ L∞((0, T );H2(T2)), ∂tu ∈ L∞((0, T );H2(T2)), σ ∈ L∞((0, T );H3(T2)), and
∂tσ ∈ L∞((0, T );H3(T2)) with the same estimates as in (3.25) with (uN , σN) replaced by (u, σ),
i.e.,

sup
t∈[0,T ]

[
‖u(t)‖H2 + ‖σ(t)‖H3 + ‖∂tu(t)‖H2 + ‖∂tσ‖H3

]
≤ C exp(exp(exp(exp(exp(CT ))))),

(3.32)

for some constant C independent of ε and T , but depending on E , α, and the initial data. We also
have u ∈ C([0, T ];H2(T2)) and σ ∈ C([0, T ];H3(T2)) thanks to [66, Lemma 1.3.2, p. 196].

It is clear that one can pass to the limit in the linear terms of the Galerkin system (3.1). To show the
convergence of the nonlinear terms, first we observe that DNε → Dε in C([0, T ];L2(T2)). In fact,
due to Lemma 2.3, we have by using (3.28)

‖DNε −Dε‖C([0,T ];L2(T2)) ≤ C‖uN − u‖C([0,T ];H1(T2))
N→∞−−−→ 0.
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Notice that this bound holds pointwise in time, as will generally be the case for the estimates in this
part of the paper. We will therefore omit the temporal part of the norm in this section. Next, by using
(3.30) one can estimate that∥∥∥∥4DNε

P
σN −

4

P
Dεσ

∥∥∥∥
L2

. ‖DNε −Dε‖L2‖σN‖L∞ + ‖Dε‖L2‖σN − σ‖L∞
N→∞−−−→ 0,

by the convergence of bothDNε as well as σN . Similarly, we know that the other nonlinear terms in the

evolution equation for the stress tensor, i.e. − 3
2P
DNε Tr σNI and D

N
ε

2
I , converge to − 3

2P
Dε Tr σI

and Dε
2
I in L∞((0, T );L2(T2)) respectively.

Finally, we need to show that the ocean stress term T Nw converges. We have

‖T Nw − Tw‖L2 . ‖|Uw − u| − |Uw − uN |‖L4

∥∥∥∥[(Uw − uN) cos θ + (Uw − uN)⊥ sin θ

]∥∥∥∥
L4

+ ‖|Uw − u|‖L4

∥∥∥∥[(u− uN) cos θ + (u− uN)⊥ sin θ

]∥∥∥∥
L4

. ‖u− uN‖L4
N→∞−−−→ 0.

Therefore all the terms in the Galerkin system (3.1) converge, and (u, σ) solves the intermediate
system (1.13). This concludes the proof of the existence of a strong solution to the intermediate model
(1.13).

Stability and uniqueness.

Suppose that (u1, σ1), (u2, σ2) ∈ C([0, T ];H2(T2))×C([0, T ];H3(T2)) are two strong solutions
to the intermediate model (1.13). Let

δu := u1 − u2, δσ := σ1 − σ2.

The system satisfied by the difference (δu, δσ) is then given by

∂tδu = ∇ · δσ + Tw,1 − Tw,2 + Ω(δu)⊥, (3.33a)

1

E
∂t
(
δσ − α2∆δσ

)
+

4Dε,1
P

(σ1 −
1

2
Tr σ1I2)−

4Dε,2
P

(σ2 −
1

2
Tr σ2I2) (3.33b)

+
Dε,1
2P

Tr σ1I2 −
Dε,2
2P

Tr σ2I2 +
Dε,1 −Dε,2

2
I2 = D(δu), (3.33c)

where we have introduced the following notation for i = 1, 2

Tw,i = cwρw|Uw − ui|
[
(Uw − ui) cos θ + (Uw − ui)⊥ sin θ

]
, (3.33d)

Dε,i =
√
|D(ui)|2 + ε2. (3.33e)

We observe that ∂t(δu) ∈ L∞((0, T );H2(T2)) and ∂t(δσ) ∈ L∞((0, T );H3(T2)), and therefore
we can take the L2-inner product of equations (3.33a) and (3.33b) with δu respectively δσ. We there-
fore compute the L2-estimates on the difference (δu, δσ) as follows (using a cancellation similar to
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(3.7))

1

2

d

dt

[
‖δu‖2L2 + E−1‖δσ‖2L2 + E−1α2‖∇δσ‖2L2

]
= −
ˆ
T2

Dε,1 −Dε,2
2

Tr δσ dx

−
ˆ
T2

[
4Dε,1
P

(σ1 −
1

2
Tr σ1I2)−

4Dε,2
P

(σ2 −
1

2
Tr σ2I2)

]
: δσ dx

−
ˆ
T2

[
Dε,1
2P

Tr σ1I2 −
Dε,2
2P

Tr σ2I2
]

: δσ dx

+

ˆ
T2

(
Tw,1 − Tw,2

)
· δu dx =: J1 + J2 + J3 + J4.

(3.34)

Applying Hölder’s inequality, inequality (2.7), and the Ladyzhenskaya inequality (2.3) yields

|J3| .
ˆ
T2

|Dε,1 −Dε,2||Tr σ1||Tr δσ|+ |Dε,2||Tr δσ|2 dx

. ‖σ1‖L∞‖Dε,1 −Dε,2‖L2‖δσ‖L2 + ‖Dε,2‖L2‖δσ‖2L4

. ‖σ1‖L∞
[
‖∇δu‖2L2 + ‖δσ‖2L2

]
+ ‖∇u2‖L2

[
‖δσ‖2L2 + ‖∇δσ‖2L2

]
.

Similarly, we find

|J2| . ‖σ1‖L∞
[
‖∇δu‖2L2 + ‖δσ‖2L2

]
+ ‖∇u2‖L2

[
‖δσ‖2L2 + ‖∇δσ‖2L2

]
,

|J1| . ‖∇δu‖L2‖δσ‖L2 ,

and

|J4| . (‖u1‖L∞ + ‖u2‖L∞ + ‖Uw‖L∞)‖δu‖2L2 .

Combining these bounds we get that

1

2

d

dt

[
‖δu‖2L2 + E−1‖δσ‖2L2 + E−1α2‖∇δσ‖2L2

]
. (‖σ1‖L∞ + 1)

[
‖∇δu‖2L2 + ‖δσ‖2L2

]
+‖∇u2‖L2

[
‖δσ‖2L2 + ‖∇δσ‖2L2

]
+ (‖u1‖L∞ + ‖u2‖L∞ + ‖Uw‖L∞)‖δu‖2L2 .

(3.35)

Meanwhile, to calculate the H1 estimate of the difference (δu, δσ), similar to (3.17), we have (by
using a cancellation similar to (3.7))

1

2

d

dt

[
‖∇δu‖2L2 + E−1‖∇δσ‖2L2 + α2E−1‖∆δσ‖2L2

]
=

ˆ
T2

Dε,1 −Dε,2
2

Tr ∆δσ dx+

ˆ
T2

[
4Dε,1
P

(σ1 −
1

2
Tr σ1I2)−

4Dε,2
P

(σ2 −
1

2
Tr σ2I2)

]
: ∆δσ dx

+

ˆ
T2

[
Dε,1
2P

Tr σ1I2 −
Dε,2
2P

Tr σ2I2
]

: ∆δσ dx+

ˆ
T2

∇
(
Tw,1 − Tw,2

)
: ∇δu dx

=: J5 + J6 + J7 + J8.
(3.36)

Similarly to the L2-estimate, we establish (by using inequality (2.7))

|J5 + J6 + J7| . ‖σ1‖L∞‖Dε,1 −Dε,2‖L2‖∆δσ‖L2 + ‖Dε,2‖L2‖δσ‖L∞‖∆δσ‖L2

+ ‖Dε,1 −Dε,2‖L2‖∆δσ‖L2

.
(
‖σ1‖L∞ + ‖∇u2‖L2 + 1

)[
‖∇δu‖2L2 + ‖δσ‖2L2 + ‖∆δσ‖2L2

]
.
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Finally, we estimate J8. Recalling the notation (3.9), we denote by

Vw,i := Uw − ui, i = 1, 2, (3.37)

and hence Vw,2 − Vw,1 = δu. Thus, by using identity (3.11), one can compute, for i = 1, 2,

∂i(|Vw,1|Vw,1 − |Vw,2|Vw,2) =− |Vw,1|∂iδu+

[
|Vw,1| − |Vw,2|

]
∂iVw,2

− Vw,1 · ∂iVw,1
|Vw,1|

δu− Vw,1 · ∂iδu
|Vw,1|

Vw,2 −
δu · ∂iVw,2
|Vw,2|

Vw,2

−
[
|Vw,1| − |Vw,2|

]
Vw,1 · ∂iVw,2
|Vw,1||Vw,2|

Vw,2.

Therefore, one has that, for i = 1, 2,

‖∂i(Tw,1 − Tw,2)‖L2 . (‖Vw,1‖L∞ + ‖Vw,2‖L∞)‖∂iδu‖L2 + (‖∂iVw,1‖L4 + ‖∂iVw,2‖L4)‖δu‖L4 .
(3.38)

Hence one has by using (3.37)

|J8| . ‖∇δu‖L2

[(
‖Uw − u1‖L∞ + ‖Uw − u2‖L∞

)
‖∇δu‖L2

+
(
‖∇(Uw − u1)‖L4 + ‖∇(Uw − u2)‖L4

)
‖δu‖L4

]
.
(
‖Uw − u1‖H2 + ‖Uw − u2‖H2

)
‖δu‖2H1 .

(3.39)

Thus, we have derived the following from estimate (3.36),

1

2

d

dt

[
‖∇δu‖2L2 + E−1‖∇δσ‖2L2 + α2E−1‖∆δσ‖2L2

]
. (1 + ‖σ1‖H2 + ‖σ2‖H2 + ‖u1‖H2 + ‖u2‖H2)(‖δu‖2H1 + ‖δσ‖2H2).

(3.40)

Consequently, combining estimates (3.35) and (3.40) leads to

1

2

d

dt

[
‖δu‖2L2 + ‖∇δu‖2L2 + E−1‖δσ‖2L2 + E−1(1 + α2)‖∇δσ‖2L2 + E−1α2‖∆δσ‖2L2

]
. (1 + ‖σ1‖H2 + ‖σ2‖H2 + ‖u1‖H2 + ‖u2‖H2)(‖δu‖2H1 + ‖δσ‖2H2),

(3.41)

from which the stability (i.e. the continuous dependence on the initial data) and uniqueness of the
strong solution follows. This concludes the proof of the global well-posedness of the intermediate
model (1.13).

4 Proof of Theorem 1.2

Thanks to (3.32), where the estimate is independent of ε, one can pass to the limit ε→ 0 for a subse-
quence of solutions to the intermediate system (1.13), denoted as {(uε, σε)}, with the convergence
in the same spaces as in equations (3.26)–(3.31) with N → ∞ replaced by ε → 0. The limit is
denoted as (u, σ), and the limit satisfies estimate (3.32). It is left to verify that (u, σ) is a solution to
the Voigt-EVP model (1.12).
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First we prove that
√
|D(uε)|2 + ε2 → |D(u)| in L∞((0, T );L2(T2)). Indeed, note that for all

t ∈ [0, T ] ∥∥∥√|D(uε)|2 + ε2 − |D(u)|
∥∥∥
L2
≤
∥∥∥√|D(uε)|2 + ε2 −

√
|D(u)|2 + ε2

∥∥∥
L2

+
∥∥∥√|D(u)|2 + ε2 − |D(u)|

∥∥∥
L2
≤ C‖uε − u‖H1 + ‖ε‖L2

ε→0−−→ 0,

where we have used Lemma 2.3, the convergence uε → u in C([0, T ];H1(T2)) and the elementary
inequality

√
y + z ≤ √y +

√
z for y, z ≥ 0. It is clear that the linear terms in equations (1.13a)-

(1.13b) converge. We now show that the nonlinear terms in the equation for the stress tensor converge.
In particular, for all t ∈ [0, T ] we have∥∥∥∥4

√
|D(uε)|2 + ε2

P
σε −

4

P
|D(u)|σ

∥∥∥∥
L2

. ‖
√
|D(uε)|2 + ε2 − |D(u)|‖L2‖σε‖L∞

+ ‖|D(u)|‖L2‖σε − σ‖L∞
ε→0−−→ 0.

In a similar fashion, one can show that the terms −3
2

√
|D(uε)|2+ε2

P
Tr σεI2 and

√
|D(uε)|2+ε2

2
I2 con-

verge to−3
2
|D(u)|
P

Tr σI2 and |D(u)|
2

I2 in L∞((0, T );L2(T2)). Finally, we show that the ocean stress
term T εw converges. We find

‖Tw,ε − Tw‖L2 . ‖|Uw − u| − |Uw − uε|‖L4

∥∥∥∥[(Uw − uε) cos θ + (Uw − uε)⊥ sin θ

]∥∥∥∥
L4

+ ‖|Uw − u|‖L4

∥∥∥∥[(u− uε) cos θ + (u− uε)⊥ sin θ

]∥∥∥∥
L4

. ‖u− uε‖L4
ε→0−−→ 0,

where again the convergence is uniform in time for the fixed time interval [0, T ]. Therefore we conclude
that (u, σ) is a global strong solution of the Voigt-EVP model.

To show the (global) well-posedness, one can repeat similar arguments as in Section 3.3. Conse-
quently, one can obtain the analogous version of estimate (3.41), and therefore conclude the stability
and uniqueness of the Voigt-EVP model. This finishes the proof of Theorem 1.2.

Remark 4.1. We remark that the proof of the convergence of the solutions in the viscosity cutoff limit
ε → 0, is in some sense related to the approach in [3], in which the local well-posedness of a model
for non-Newtonian incompressible flows with power-law stress tensor was established uniformly in the
cutoff parameter of the viscosity.

5 Discussion and conclusion

In this paper we commenced the rigorous analytical study of one of the fundamental models of sea-
ice dynamics, namely the elastic-viscous-plastic (EVP) sea-ice model. We introduced a regularised
version of the EVP model, by means of the Voigt regularisation, which is inspired by the original elastic
regularisation of the Hibler model in [35] (as both regularisations formally do not impact the asymptotic
dynamics). We have shown this Voigt-EVP model to be globally well-posed. One interesting question,
which we leave to future work, is whether the Voigt-EVP model also has a suitable notion of weak
solution.
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Due to the (formal) linear ill-posedness of the EVP model as discussed in Section 1.2, it seems neces-
sary to introduce a regularised version of the EVP model of the type (1.12a)-(1.12c), in order to obtain
a well-posed sea-ice model. Finally, in order to conclude the proof of the global well-posedness we
took the limit of the viscosity cutoff parameter ε going to zero (while keeping the Voigt regularisation),
and obtain that the Voigt-EVP model is globally well-posed.

Moreover, we would like to mention that over time several related models to the EVP model have been
developed in the sea-ice literature, see for example [7, 34]. The approach developed here will also
have potential applications in the rigorous study of several of these related sea-ice models.

We will make several remarks on straightforward extensions of our results, which have been omitted
for reasons of brevity but can be treated by using the approach developed in this paper.

About the advection term If one includes an advection term in the momentum equation of the
intermediate system (1.13a)-(1.13c), by applying the same methods as in this paper, one can prove
the local well-posedness of the intermediate system by using similar estimates as in this paper. Note
however that the existence time will most likely depend on ε (unlike for Corollary 1.4). This therefore
prohibits taking the limit ε→ 0, as we have done in the proof of Theorem 1.2.

Using the original strain rate We remark that the replacement of D by |D(u)| in the Voigt-EVP
model is done merely for the sake of convenience. In fact, by using the approach from this paper one
can prove the global well-posedness of the model (1.13a)-(1.13c) in which Dε has been replaced by√

D2
+ ε2 =

√
2

e2
|D(u)− 1

2
[TrD(u)]I2|2 + |TrD(u)|2 + ε2.

This can be done by using similar estimates as in Section 3, but by using the following inequalities∥∥∥∥√D2
+ ε2

∥∥∥∥
L2

. ‖∇u‖L2 + ε,

∥∥∥∥∇(√D2
+ ε2

)∥∥∥∥
L2

. ‖∆u‖L2 .

Subsequently, one can proceed as in the proof of Theorem 1.2 and send ε → 0 in order to obtain a
solution of the Voigt-EVP model with the original strain rate.

Different regularisations of the strain rate We also note that, in addition to (1.14), different regu-
larisations of the strain rate have been used in the sea-ice literature. For example, one can set maximal
values for the shear and bulk viscosities, as is done in [32]. This means that, instead of Dε, one uses

max{D, ε} =
D + ε

2
+

1

2
|D − ε|. (5.1)

One can choose to regularise this cutoff by the following function for some γ ∈ (0, ε)

Dε,γ :=
D + ε+ γ

2
+

1

2

√
|D − ε|2 + γ2. (5.2)

Then one finds ∥∥Dε,γ∥∥L2 . ‖∇u‖L2 + γ + ε,
∥∥∇Dε,γ∥∥L2 . ‖∆u‖L2 .

It is straightforward to repeat the proof of Theorem 1.2 to obtain a global strong solution of the Voigt-
EVP model with the viscosity regularisation from equation (5.1) by taking the limit γ → 0. Moreover,
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one can also choose to regularise the viscosities by means of the hyperbolic tangent, as was intro-
duced in [48], see also [17], but again one can treat this regularisation by similar methods as in this
paper. Generally speaking, one can treat any C2 approximation of D by relying on the approach of
this paper.
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