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Phase transitions for contact processes on sparse random
graphs via metastability and local limits

Lukas Lüchtrath, Benedikt Jahnel, Christian Mönch

Abstract

We propose a new perspective on the asymptotic regimes of fast and slow extinction
in the contact process on locally converging sequences of sparse finite graphs. We char-
acterise the phase boundary by the existence of a metastable density, which makes the
study of the phase transition particularly amenable to local-convergence techniques. We
use this approach to derive general conditions for the coincidence of the critical threshold
with the survival/extinction threshold in the local limit. We further argue that the correct time
scale to separate fast extinction from slow extinction in sparse graphs is, in general, the
exponential scale, by showing that fast extinction may occur on stretched exponential time
scales in sparse scale-free spatial networks. Together with recent results by Nam, Nguyen
and Sly (Trans. Am. Math. Soc. 375, 2022), our methods can be applied to deduce that
the fast/slow threshold in sparse configuration models coincides with the survival/extinction
threshold on the limiting Galton-Watson tree.

1 Introduction and main results

The contact process. Let G = (V,E) denote a locally finite connected graph with a ded-
icated root o ∈ V and we write (G, o) for the rooted graph. The contact process with infec-
tion rate λ > 0 on G is the family of set-valued continuous-time Markov processes

{
ξA =

(ξAt )t≥0 : A ⊂ V finite
}

. The law of ξA is determined by setting ξA0 = A and the transition
dynamics, for every v ∈ V ,

ξAt → ξAt \ {v} at rate 1,

ξAt → ξAt ∪ {v} at rate λ
∑

w : v∼w

1
{
w ∈ ξAt

}
. (1)

Here and throughout we write v ∼ w for {v, w} ∈ E. For ease of notation, we set ξvt = ξ
{v}
t

for v ∈ V and analogously drop the set notation for singletons in similar instances. We write Pλ
G

for the law of the contact process based on the graphG with infection rate λ. Three fundamental
and well-known properties of the contact process are

monotonicity: ξAt is stochastically increasing in λ and G,

attractivity: if A ⊂ B, then ξB stochastically dominates ξA, and

(self-)duality: Pλ
G(ξAt ∩B = ∅) = Pλ

G(ξBt ∩ A = ∅) for A,B ⊂ V finite.
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B. Jahnel, L. Lüchtrath, Ch. Mönch 2

Duality immediately guarantees that ξA is well-defined for any A ⊂ V.

The extinction time τ∅(A) of ξA denotes the time at which (ξAt )t≥0 first gets absorbed into the
state ∅. In this article, one central quantity of interest for the contact process on infinite graphs
is the survival/extinction threshold of (G, o), given by

λ1(G) = sup
{
λ > 0: Pλ

G(τ∅(o) =∞) = 0
}
,

which is guaranteed to be well-defined by monotonicity. Note that the definition of the critical rate
is independent of the choice of the root, since we assume G to be connected. For finite graphs,
the critical rate is 0 and contains no information about the dynamics of ξ, and we discuss more
appropriate thresholds for this setting below. Invoking monotonicity again, one sees that, for any
infinite connected graph G, the value λ1(G) is at most the extinction/survival threshold for the
contact process on N with nearest neighbour edges. The latter is well-known to be finite [Har]
and thus λ1(G) <∞. The survival/extinction threshold is also known as the lower critical value
for the contact process on G, the upper critical value being the threshold at which the infection
returns infinitely often to the root.

The contact process and related interacting particle systems were first systematically studied in
this form in the 1970s, see e.g. [Har, Gric]. Classical choices for G are homogeneous lattices
(usually the hypercubic lattice Zd) and their finite subgraphs [Gria, Grib, DG, CGOV, DL, DS].
Using the fact that the contact process is a form of oriented percolation, Bezuidenhout and
Grimmett famously proved that the critical contact process on Zd dies out [BGa] and established
exponential decay of the volume of the infected set in [BGb]. A comprehensive overview of the
classical theory is provided in the monographs [Liga, Ligb].

The fast/slow threshold of the contact process on random graphs. With the advent of
network science in the early 2000’s, interest in infection models on finite sparse random graphs
arose, as they serve as models for the spread of diseases or information in inhomogeneous
populations. Since the contact process dies out on any finite graph, the question of extinc-
tion vs. survival becomes a question of fast extinction vs. slow extinction. Here, slow extinction
means that the infection survives for a time that scales exponentially in the size of the graph. Let
(Gn)n∈N denote a sequence of finite graphs with Gn = (Vn, En). Assume that |Vn| → ∞,
then the fast/slow threshold for (Gn)n∈N is given by

λ+

(
(Gn)n∈N

)
= sup

{
λ > 0: lim

n→∞
Pλ
Gn

(
τ∅(Vn) > ec|Vn|

)
= 0 for all c > 0

}
.

The main purpose of this article is to investigate the question when λ+

(
(Gn)n∈N

)
and λ1(G)

coincide, provided that the finite graphs (Gn)n∈N approximate (G, o) in a suitable sense. To
formalise this, we use the framework of [AL07, vdH23, vdH24]. Let G∗ denote the space of
equivalence classes of connected locally finite rooted graphs modulo rooted isomorphisms,
equipped with the local metric d∗ and let P(G∗) denote the space of Borel probability measures
on G∗. We do not usually distinguish between rooted graphs and their equivalence classes in
the same vein as one commonly speaks of ‘a random variable X ∈ L1’. Let us note that
any locally finite rooted graph can be viewed as an element of G∗ if it is identified with the
connected component of its root. More background on G∗ as a metric space can be found in
[vdH24] and the references therein. Let (Gn)n∈N denote a sequence of finite connected random
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Contact processes on sparse random graphs via metastability and local limits 3

graphs Gn = (Vn,En) with |Vn|
n→∞−→ ∞ in probability. We say (Gn)n∈N converges locally in

probability to some random rooted graph (G , o) with distribution Q ∈ P(G∗) if, for any ε > 0,

lim
n→∞

P
(
dP(Qn,Q) > ε

)
= 0, (2)

where
Qn( · ) = |Vn|−1

∑
v∈Vn

1{(Gn, v) ∈ · } ∈ P(G∗)

denotes the empirical distribution on G∗ associated with Gn if a root is chosen uniformly at
random, and dP denotes the LÃ©vy–Prokhorov metric on P(G∗). We write

Gn
P
⇀
n→∞

(G , o)

for local convergence in probability. Note that, if on ∈ Vn is chosen uniformly at random and
the distribution of (Gn, on) is denoted by Qn, then (2) implies that Qn → Q weakly1. This
corresponds to local weak convergence of (Gn)n∈N to (G , o) with distribution Q. In particular,
the above definitions apply to sequences (Gn)n∈N of deterministic finite graphs. It is well known,
that every distribution Q ∈ P(G∗) that arises as a local limit is unimodular, i.e., satisfies a
certain mass-transport principle [AL07]. If a unimodular measure Q ∈ P(G∗) does not admit
any non-trivial representation as a convex combination of other unimodular measures, then we
call Q extremal. Extremal distributions on rooted graphs are characterised by the property that

Q(A) ∈ {0, 1}, for all A ∈ I,

where the σ-field I consists of all Borel-events over G∗ that do not depend on the root of the
involved graphs.

Remark 1.1. In general, if a sequence (Gn)n∈N of (not necessarily connected) random graphs
converges locally in probability to a limit graph (G , o) and (Gn)n∈N is supercritical in the sense
that, with high probability, a unique macroscopic giant component is formed, then the sequence
of the corresponding giant components converges locally in probability to (G , o) conditioned
on |V | = ∞, see [vdH23]. Examples where the limiting distribution is concentrated on trees
include sparse Erdös–Renyi graphs, inhomogeneous random graphs, random regular graphs,
preferential attachment graphs, and the configuration model. In the context of spatial random
graphs, such as e.g. lattice bond and site percolation models, spatial scale-free networks, con-
tinuum percolation models and spatial random intersection graphs, the limits are usually not
trees.

The classical example for coincidence of the critical values λ+ and λ1 is the case in which
(Gn)n∈N are boxes in Zd and the limit graph is the full lattice. In this case, it is also known that
fast extinction actually occurs at a time scale that is logarithmic in the size of Vn [DL, DS]. A
similar result is known to hold for random regular graphs converging to the d-ary tree [LS17]. The

1Let us mention that the convergence in (2) still makes sense if Q is random, see [vdH24, Remarks 2.12 and
2.13]. In this case, the induced weak limit is the expectation of Q. However, since we are mostly interested in
a law-of-large-numbers-type convergence of the contact process observables, we will always assume Q to be
deterministic. Our results also hold for random Q in an almost-sure sense, but we do not present them in this way
to spare the reader another layer of randomness that has no bearing on the technical core of our results.
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situation is quite different if (G , o) is not only random but also admits unbounded degrees. In
two seminal works, Nam, Ngyuen and Sly [NNS] and Nguyen and Sly [NS25] recently showed
that, in configuration graphs converging to a unimodular Bienaymé–Galton–Watson tree, the
extinction time in the subcritical phase is polynomial in the size of the graph and determine
explicit bounds on the polynomial power. Consequently, one defines

λ−
(
(Gn)n∈N

)
= sup

{
λ > 0: lim

n→∞
Pλ

Gn

(
τ∅(Vn) > |Vn|c

)
= 0 for all c > 0

}
.

The starting point of our investigation is the following conjecture of Nam, Ngyuen and Sly:

Conjecture 1.2 ([NNS, Conjecture 4]). Let µ denote a probability distribution on the non-
negative integers satisfying ∑

k≥0

k(k − 2)µ(k) > 0

and let (Gn)n∈N denote configuration graphs on n vertices derived from µ. Then,

λ−
(
(Cn)n∈N

)
= λ+

(
(Cn)n∈N

)
= λ1(T ),

where for each n, Cn is the maximal component of Gn, and T is the local limit of (Cn)n∈N, i.e.,
the unimodular Bienaymé–Galton–Watson tree associated with µ conditioned on non-extinction.

For the moment, we remark that λ1(T ) > 0 if and only if µ has an exponential tail [HD20,
BNNS] and that the partial result λ+

(
(Gn)n∈N

)
≤ λ1(T ) was already established in [NNS].

Overview of main results. Let (Gn)n∈N denote a sequence of finite connected random graphs
converging locally in probability to (G , o). Let (s(m))m∈N be some diverging sequence. We
say that the contact process on (Gn)n∈N is metastable at time scale s(m) if, for all sequences
(t(n))n∈N with limn→∞ P(t(n) ≤ s(|Vn|)) = 1, there exists some η > 0, which may depend
on (Gn)n∈N, such that

lim sup
n→∞

Pλ
Gn

(
|Vn|−1|ξVn

t(n)| > η
)
> 0.

Our goal is to quantify the infection density |ξVn |/|Vn|, and thereby the occurrence of a metastable
phase, through the survival probability of the contact process on the limit graph (G , o),

ηλ(Q) = E
[
Pλ

G (τ∅(o) =∞)
]

= Pλ(τ∅(o) =∞).

Observe that ηλ depends only on the distribution of the limit graph, while metastability as well
as λ+ and λ− are, in principle, dependent on the realisation of (Gn)n∈N. However, if (G , o) is
the infinite cluster of some percolation process, then its distribution Q is usually extremal, such
as in the setting of Conjecture 1.2, and then the limiting objects do not depend on the realisation
of the graph sequence, cf Remark 1.1.

Our first main result is that the metastable density of the infection cannot exceed the survival
probability in the limit.

Theorem 1.3. Assume that (Gn)n∈N is a sequence of connected locally finite graphs that con-
verges locally in probability to some rooted locally finite random graph (G , o) with extremal
distribution Q. Then, for any diverging sequence (t(n))n∈N of times and any ε > 0, we have

lim
n→∞

Pλ
(
|Vn|−1|ξVn

t(n)| ≥ ηλ(Q) + ε
)

= 0.
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In particular, if λ < λ1(G ) ≡ λ1(Q), then

|Vn|−1|ξVn
t(n)|

Pλ−→
n→∞

0.

Note that the density of the infection is a global quantity, therefore the extinction probability in
the limit has to coincide with the ‘annealed’ survival probability ηλ.

The absence of metastability for some time scale does not imply that the contact process dies
out on that time scale, as is illustrated by our next result. To formulate it, we define a sequence of
random graphs (Gn)n∈N to be sparse if the family

{
degGn(on) : n ∈ N

}
is uniformly integrable

under Pλ. Sparsity is a natural assumption in the context of locality of the fast/slow transition in
the contact process as it guarantees that (Gn)n∈N is tight in G∗, see [BLS15].

Theorem 1.4. For every ε > 0, there exists a sequence of sparse graphs (Gn)n∈N that con-
verges locally in probability to some (G , o) with extremal distribution Q satisfying λ1(G ) > 0
and such that, for all λ > 0,

lim
n→∞

Pλ
(
τ∅(Vn) > exp

(
|Vn|/ log1+ε(|Vn|)

))
= 1. (3)

In particular, for these graph sequences we have that 0 = λ−
(
(Gn)n∈N

)
< λ1(G ).

This result suggests that, if ((Gn, on))n∈N is sparse, then the correct time scale to distinguish
the fast extinction regime from the slow extinction regime is in general the exponential one, i.e.,
s(m) = ecm,m ∈ N, for some c > 0. It is not difficult to see, cf. Lemma 2.5 below, that in this
case, absence of metastability on the exponential time scale also implies extinction. On the other
hand, it is straightforward that, in sparse graphs, there cannot be survival at super-exponential
scales. We use the connection between metastability and survival on the exponential time scale
to prove a general inequality for the critical values.

Theorem 1.5. Suppose (Gn)n∈N is a sequence of connected sparse graphs converging locally
in probability to a graph (G , o) with extremal distrbution Q. Then,

λ+

(
(Gn)n∈N

)
≥ λ1(G ) ≡ λ1(Q).

In particular, our theorem implies the second equality in Conjecture 1.2.

Corollary 1.6. Let µ denote a probability distribution on the non-negative integers and let
(Gn)n∈N denote configuration graphs on n vertices derived from µ. Then,

λ+

(
(Cn)n∈N

)
= λ1(T ),

where, for each n, Cn denotes the largest component in Gn and T is the local limit of (Cn)n∈N.

Proof. It is well known that the configuration model converges locally in probability to the uni-
modular Bienaymé–Galton–Watson tree T and that the corresponding giant components con-
verge to the limit tree conditioned on non-extinction, see [vdH23]. Hence, Theorem 1.5 applies.
The converse inequality is provided in [NNS, Theorem 5].

DOI 10.20347/WIAS.PREPRINT.3199 Berlin 2025
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Our final result concerns lower bounds in probability for the metastable density. For this, consider
the condition

lim
R→∞

lim sup
n→∞

Pλ
(
ξont(n) = ∅, τ (n)

R (on) < t(n)
)

= 0, (4)

where τ (n)
R (on) denotes the first times that a vertex at distance R from the root is infected

in Gn. The next statement asserts that (4) is necessary and sufficient for lower bounding the
metastable density via the limit’s survival probability.

Proposition 1.7. Let (Gn)n∈N be a sequence of connected random graphs with Gn
P
⇀
n→∞

(G , o), where the limit is distributed according to some extremal distribution Q. Let (t(n))n∈N
denote a sequence of diverging times. Then, (4) is equivalent to

lim
n→∞

Pλ
(
|Vn|−1|ξVn

t(n)| ≤ ηλ(Q)− ε
)

= 0, for all ε > 0.

This, together with our Theorem 1.3 now implies that (4) is equivalent to convergence in proba-
bility of the metastable density to the limit’s survival probability.

Corollary 1.8. Under the assumptions of Proposition 1.7, the condition (4) is equivalent to

|Vn|−1|ξVn
t(n)|

Pλ−→
n→∞

ηλ(Q).

Proof. This is a direct consequence of Theorem 1.3 and Proposition 1.7.

Naturally, establishing (4) for a given time-scale is in general hard and the main challenge in
proving metastability for a concrete graph sequence.

Further discussion and related work. Another useful observation pertaining to the locality
of metastability on (Gn)n∈N is that λ1(G , o) can be characterised by tightness of the extinction
times.

Lemma 1.9. Suppose that (Gn)n∈N converges to (G , o) locally weakly. For any λ > 0,

{τ (n)
∅ (on), n ∈ N} is tight if and only if

Pλ(τ∅(o) <∞) = 1.

Lemma 1.9 provides yet another perspective on the fast/slow transition. The law of large num-
bers in Corollary 1.8 suggests the following definition for the critical value

λρ
(
(Gn)n∈N

)
= sup

{
λ > 0: lim

n→∞
Pλ

Gn

(
ρ(ec|Vn|) > ε

)
= 0 for all ε, c > 0

}
,

where ρ(t) = ρn(t) = |ξVn
t |/|Vn| denotes the density process associated with ξVn on Gn.

Denoting

λ−ρ
(
(Gn)n∈N

)
= sup

{
λ > 0: lim

n→∞
Pλ

Gn

(
ρ(t(|Vn|)) > ε

)
= 0

for all ε > 0 and (t(n))n∈N with t(n)→∞
}
,
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we have that λ−ρ ≤ λρ. However, it is also elementary to see that

lim
n→∞

Pλ
Gn

(
ρ(t(|Vn|)) > ε

)
= 0 for all ε > 0, t(n)→∞

if and only if {τ (n)
∅ (on), n ∈ N} is tight. Consequently, λ1 = λ−ρ ≤ λρ, in the case where

the underlying graphs converge locally in probability. Note that λ1 ≤ λρ also follows from
Theorem 1.3. For the configuration model, the bound λρ ≥ λ1 is essentially [NNS, Theorem 6].
Our results show that this inequality always holds if Gn → (G , o) locally in probability. Moreover,
our proof of Theorem 1.5 below implies that

if Gn
P
⇀
n→∞

(G , o) and (Gn)n∈N is sparse, then λρ = λ+.

Further evidence that the polynomial time scale is the natural one for fast extinction in sparse
locally tree-like graphs is, for instance, given in [Dur24] and [NS25]. Note that, unlike in our The-
orem 1.4, the time scale of extinction in the graphs discussed there is not determined solely by
the presence of stars. Furthermore, Theorem 1.4 should be contrasted with [SV, Theorem 1.2],
where it is shown that the supercritical extinction time is at least as large as the time scale given
in Theorem 1.4 on any finite graph provided that λ > λ1(Z). Our proof also shows that the
time scale exp(|Vn|/ log(|Vn|)1+o(1)) is not optimal, cf. Remark 2.2, but that exp(Θ(|Vn|))
cannot be achieved. It is an interesting question to determine whether there are sparse graphs
on which fast extinction occurs on time scale exp(c−(|Vn|)) and slow extinction occurs on time
scale exp(c+(|Vn|)) with c− < c+, or even with c− = c+. Another recent work proving ex-
ponential extinction times with logarithmic correction for all infection rates is [BHSV25], see in
particular Theorem 1.1.(ii) therein. However, the random graphs considered in that paper are
small worlds and it is highly likely that their local limits do not display an extinction phase in
the parameter regime of [BHSV25, Theorem 1.1.(ii)]. This contrasts with our example in Theo-
rem 1.4, which is not a small world graph but displays distances comparable to the lattice [L2̈4]
and does have a phase transition in the local limit.

Let us further mention that, if sparsity is violated, survival can occur on super-exponential time
scales as demonstrated in [Can].

Finally, we would like to point out, that our approach to metastability in the contact process
on random graph was inspired by [LMSV, Theorem 1.4], a metastability result on a concrete
random graph sequence, and, most prominently, by the phenomenology developed for the cor-
responding percolation problem [vdH23].

Overview of the proof section. The remainder of the paper is devoted to the derivation of
our results. We first recall some facts about local convergence and prove Lemma 1.9, which is
independent of our main results. Then we construct the example leading to Theorem 1.4, and
finally we prove the LLN-type results Theorem 1.3 and Proposition 1.7 and apply them to derive
Theorem 1.5.

DOI 10.20347/WIAS.PREPRINT.3199 Berlin 2025
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2 Proofs

2.1 Preparatory and auxiliary results

We recall some fundamental properties of the space G∗. Recall that the local metric d∗ on G∗ is
given by

d∗
(
(G, oG), (H, oH)

)
= 2− sup{k : BG(oG,k)=BH(oH ,k)},

where BG(oG, k) denotes the subgraph in G induced by all vertices of graph distances at most
k from oG. Recall that statements like BG(oG, k) = BH(oH , k) or G = H for elements of G∗
always implicitly refer to equality of equivalence classes under rooted isomorphisms.

We begin by noting that our definition of local convergence in probability is slightly different to
the one given in [vdH23, vdH24]. In fact, there are several equivalent formulations.

Lemma 2.1. Let (Gn)n∈N be a sequence of finite random graphs and let (G , o) ∈ G∗ be a
random graph with distribution Q. The following three assertions are equivalent:

(a) Gn
P
⇀
n→∞

(G , o)

(b) For all bounded continuous functions h : G∗ → R,

E[h(Gn, on)|Gn]
P−→

n→∞

∫
h(G, o) dQ(G, o),

where on ∈ Vn is chosen uniformly at random and
P−→

n→∞
denotes convergence in proba-

bility in R.2

1 For all bounded continuous functions h1, h2 : G∗ → R,

E[h1(Gn, on)h2(Gn, õn)]−→
n→∞

∫
h1(G, o) dQ(G, o)

∫
h2(G, o) dQ(G, o),

where on, õn ∈ Vn represent two independently and uniformly chosen roots.

Proof. First note that, by [vdH24, Thm 2.15 b)], the characterisation (b) is equivalent to

|Vn|−1
∑
v∈Vn

1{BGn(v, k) = (H, oH)} P−→
n→∞

Q(BG (v, k) = (H, oH)), (5)

for all k ∈ N and (H, oH) ∈ G∗. Now, to see that (b) implies (a), note that

P
(
dP(Qn,Q) > ε

)
= P

(
∃(H, oH) ∈ G∗ : Qn(H, oH) > Q(Hε

∗) + ε
)

≤
∑

(H,oH)∈G̃∗

P
(
Qn(H, oH)− Q(H, oH) > ε/2

)
,

2Recall that local convergence in probability in particular implies that E[h(Gn, on)] →
∫
h(G, o) dQ(G, o),

as n to infinity, for all bounded continuous functions h. This characterises local weak convergence by the Port-
manteau theorem. Further, since the limit on the right-hand side is deterministic, local convergence in probability is
equivalent to convergence in distribution of all random variables E[h(Gn, on)|Gn] towards

∫
h(G, o) dQ(G, o).

On the other hand, converge in probability on G∗ with respect to the local topology induced by d∗, is stronger than
local convergence in probability.

DOI 10.20347/WIAS.PREPRINT.3199 Berlin 2025
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where Hε
∗ = {(H ′, oH′) : d∗((H

′, oH′), (H, oH)) < ε} and G̃∗ denotes the countable and
dense subset of G∗ consisting of all finite graphs. But, due to (5), the right-hand side tends to
zero as n tends to infinity. On the other hand, for all k ∈ N and (H, oH) ∈ G∗,

P
(∣∣∣|Vn|−1

∑
v∈Vn

1{BGn(v, k) = (H, oH)}−Q(BG (v, k) = (H, oH))
∣∣∣ > ε

)
≤ P(dP(Qn,Q) > ε)→ 0

as n tends to infinity. The equivalence of (b) and (c) is presented, for example, in [LRW23,
Lemma 2.8.].

We next explain, how the contact procoess can be incorporated into the local convergence
setup. The notion of random networks describing processes on random graphs that are invariant
under graph isomorphisms was coined in [AL07]. A network is a rooted graph (G, o) together
with two maps ΞV : V → S, ΞE : E → S on edges and vertices. Here, S is some metric
mark space. We choose S = N (R × {1,−1}), the space of all locally finite point measures
on R marked by −1 or 1. We turn the network into a random network by allowing the under-
lying graph G to be random, and conditionally on G = G = (V,E), letting (ΞE(e))e∈E be
an independent collection of Poisson(2λ)-processes where each point carries mark 1 or −1
with probability 1/2 and by letting (ΞV (v))v∈V be an independent collection of Poisson(1)-
processes where each point carries mark 1. A realisation of the contact process on G with
initial infections at A ⊂ V is now obtained by considering infection paths induced by interpret-
ing (ΞE(e))e∈E as infection events with orientations along edges and (Ξv(v))v∈V as recovery
events on the vertices. This is the well-known graphical representation of the contact process. It
is straightforward to see that the law Pλ

G of the induced oriented percolation model is invariant
under rooted isomorphisms of (G, o). If (G, o) is selected by some random mechanism, we are
therefore justified in interpreting the annealed law Pλ as a distribution on random networks in
the sense of [AL07], in particular we may write

Pλ =

∫
Pλ
G dQ(G, o)

to designate the law of the contact process on a random graph with distribution Q ∈ P(G∗). A
similar definition applies to sequences of random graphs and henceforth we will assume, without
loss of generality, that graph sequence, limit graph, and all associated contact processes live
on the same probability space and have distribution Pλ. This is only for notational convenience,
since the framework of local convergence in probability is flexible enough to deal with graphs
sequences that do not converge on the same probability space, see [vdH24, Remark 2.12] for a
discussion. We occasionally omit the parameter λ from the notation if we refer to distributional
properties of the underlying graphs under Pλ only.

We close this section with the proof of Lemma 1.9, which is independent of our main results.

Proof of Lemma 1.9. Let λ be such that ξ dies out almost surely. Fix s ∈ [0,∞) and let τ (n)
R

and τR denote the first times that a vertex at distance R from the root is infected in Gn and G ,
respectively. We have, for fixed R, that

|Pλ(τ (n)
∅ (on) > s)− Pλ(τ∅(o) > s)|

≤ |Pλ(τ (n)
∅ (on) > s, τ

(n)
R =∞)− Pλ(τ∅(o) > s, τR =∞)|

+ |Pλ(τR <∞)− Pλ(τ (n)
R <∞)|.

(6)
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By local weak convergence, the second term on the right hand side of (6) vanishes with n, since
the event in question depends solely on the R-neighbourhood of the roots. Let us consider the
first term on the right-hand side of (6). If we choose n sufficiently large, then Gn and G agree
on an (R + 1)-neighbourhood with high probability. On this event, the contact processes can
be perfectly coupled up to extinction, if it does not leave the R-neighbourhood in the respective
base graph. Combining both observations, we see that extinction times converge in distribution,
which implies tightness.

Now assume that λ is such that ξ survives with positive probability ε. Choose a subsequence
(Gn(R))R∈N by asking that (Gn(R), on(R)) and (G , o) can be coupled up to depth R with prob-
ability exceeding 1 − ε/2. Under the graph coupling, the infection dynamics can be perfectly
coupled as well up to the first time a vertex outside the R-neighbourhoods of the roots are
infected. Thus ξ still survives with probability at least ε to distance R from the root in Gn(R).

In particular, the overall probability of the event
⋂
R{τR < τ

(n(R))
∅ (on(R))} is positive. This

contradicts tightness, since τR →∞ almost surely as R→∞ conditionally on survival.

2.2 Slow extinction of subcritical contact processes on scale-free spatial
networks

In this section, we prove Theorem 1.4. To this end, we need to construct, for any given ε > 0,
a sequence of graphs (Gn)n∈N that satisfies (3). We first introduce an auxiliary graph. Place
n independent random variables uniformly on the one-dimensional torus (−n/2, n/2] of vol-
ume n, order them from smallest value to largest (with respect to the interval) and denote by
X−n/2+1 < · · · < Xn/2 the ordered sequence; we assume n to be even for notational con-
venience. We now assign each vertex Xi an independent radius Ri, drawn as an i.i.d. copy of
a positive random variable R, and form the associated Gilbert graph by connecting Xi and Xj

precisely if dn(Xi, Xj) < Ri+Rj , where dn denotes the torus metric. We denote the resulting

graph as G̃n. The graph Gn now has the discrete torus {−n/2 + 1, . . . , n/2} as its vertex set
and

En :=
{
i ∼ j : Xi ∼ Xj in G̃n

}
∪
{
i ∼ i+1: i = −n/2+1, . . . , n/2−1

}
∪
{
n/2 ∼ 1−n/2

}
as its edge set, writing ‘∼’ to indicate neighbours. It is straightforward to deduce that the local
limit in probability of this model is the augmented Boolean model G , analysed in [JLM25], which
follows the same construction but with the Gilbert graph on a Poisson process on the real line
as its auxiliary graph, which is mapped on Z. Particularly, [JLM25] establishes that λ1(G ) > 0
for the limiting graph, whenever R has finite expectation.

Proof of Theorem 1.4. The proof is based on a comparison of the survival time on the graph
Gn with the time the process survives on the star graph S ∗

n , induced by the vertex of maximal
degree. To this end, let us first recapitulate some known results on the survival time on star
graphs. Let S (k) be the star graph with k leaves and centre o. The first result about the survival
time on S (k) is [BBCS, Lemma 5.2], stating that the infection survives, with high probability,
exponentially long in the number of leaves. We use a refined version of this statement. First,
by [SV, Lemma 2.5],we have

Eλ
S (k)

[
τ∅(S

(k))
]
≥ e2cλk,
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where cλ > 0 is a λ-dependent constant. Secondly, we have, due to [Val24, Lemma 2.13], that

Pλ
S (k)

(
τ∅(S

(k)) ≤ t
)
≤ t

Eλ
S (k)

[
τ∅(S (k))

] .
Combining both results and choosing t = ecλk, we thus infer

Pλ
S (k)

(
τ∅(S

(k)) > ecλk
)
≥ 1− e−cλk. (7)

Now, fix ε > 0, choose 1 < p < 1 + ε, and consider the augmented Gilbert graph Gn,
constructed above, with radius distribution

P(R > x) =
(
x logp(x)

)−1
. (8)

Note that R has finite first moment as p > 1. By independence of the radii, we infer for the
largest radius R∗n := max{R1−n/2, . . . , Rn/2}, any K > 0 and large enough n that

P
(
R∗n ≤ Kn

log1+ε(n)

)
=
(
1− log1+ε(n)

Kn logp(Kn/ log1+ε(n))

)n ≤ e− log1+ε−p(n)/K ,

which tends to zero, as p < 1 + ε. Put differently, R∗n > Kn/ log1+ε(n), for any K , with high
probability. Moreover, by construction, the degree of X∗n, the vertex associated with R∗n, has
degree lower bounded by a Binomial number with parameters n and 2R∗n/n. Writing Xn,p for a
binomial with parameters n and p, Chernoff’s inequality thus yields, for sufficiently large n,

P
(

deg(X∗n) > Kn
log1+ε(n)

)
= E

[
P
(

deg(X∗n) > Kn
log1+ε(n)

) ∣∣R∗n]
≥ E

[
P
(
Xn,2K/ log1+ε(n) >

Kn
log1+ε(n)

)
1
{
R∗n >

Kn
log1+ε(n)

}]
≥
(
1− e−Kn/(4 log1+ε(n))

)
P
(
R∗n >

Kn
log1+ε(n)

)
≥
(

1− e−Kn/(4 log1+ε(n))
)(

1− e− log1+ε−p(n)/K
)
.

Combining this with (7), and writing S ∗
n for the star graph induced by X∗n and its neighbours,

we have for K = 1/cλ,

Pλ
(
τ∅(Vn) > en/ log1+ε(n)

)
≥ Pλ

(
τ∅(S

∗
n ) > en/ log1+ε(n)

)
≥ E

[
1
{

deg(X∗) ≥ n
cλ log1+ε(n)

}
Pλ

S ∗n

(
τ∅(S

∗
n ) ≥ en/ log1+ε(n)

)]
≥
(
1− e

− n
4cλ log1+ε(n)

)(
1− e−cλ log1+ε−p(n)

)(
1− e−n/ log1+ε(n)

)
−→
n→∞

1,

as desired. In particular, this holds true for any λ ∈ (0, λ1(G )) and hence
λ1(G ) > λ−

(
(Gn)n∈N

)
= 0.

Remark 2.2. The choice of the distribution in (8) can be adapted to yield examples in which the
survival time is even closer to eΘ(|Vn|), for instance, by setting

P(R > x) ∼
(
x log(x) log2(log(x))

)−1
.

In particular, the resulting graph would satisfy the lower bound in Theorem 1.4 for all ε simul-
taneously. We have chosen the particular scaling in (8) to illustrate that we can match the best
known universal lower bound on supercritical extinction times given in [SV] with subcritical ex-
tinction times on certain classes of graphs.
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2.3 Upper bounds on the metastable density from local limit

Before we provide the proof of Theorem 1.3, we introduce some notation and auxiliary results.
Throughout this section, let

(
(Gn, on)

)
n∈N and its local limit (G , o) with distribution Q be given.

As usually, on denotes a uniformly chosen vertex here. Fix λ > 0, set η = ηλ(Q) and let

τ
(n)
R (v) denote the first time that the infection started in v ∈ Vn reaches a vertex of graph

distance R from v in Gn. Let further τR(v), v ∈ V , denote the corresponding quantities for the
rooted limit graph (G , o). Now define

η≥R = E[Pλ
G (τR(o) <∞)], R ∈ N,

and
Z≥R = Z≥R(n) =

∑
v∈Vn

1
{
τ

(n)
R (v) <∞

}
, n ∈ N.

The proof of Theorem 1.3 relies on the following two auxiliary statements.

Proposition 2.3. Assume that Gn
P
⇀
n→∞

(G , o). Then,

|Vn|−1
∑
v∈Vn

1
{
ξvt(n) 6= ∅, τ

(n)
R (v) > t(n)

} Pλ−→
n→∞

0,

for any R ∈ N and any diverging sequence (t(n))n∈N.

Proposition 2.4. Assume that Gn
P
⇀
n→∞

(G , o) where (G , o) is distributed according to some

extremal measure Q. Then we have, for any R ∈ N, that

|Vn|−1Z≥R
Pλ−→

n→∞
η≥R.

Before we prove Propositions 2.3 and 2.4, we show how they imply Theorem 1.3.

Proof of Theorem 1.3. By additivity, we have that

Pλ
(∣∣ξVn

t(n)

∣∣ ∈ ·) = Pλ
(∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
∈ ·
)

and hence the assertion of the theorem is equivalent to showing(
|Vn|−1

∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
− η
)
∨ 0

Pλ−→
n→∞

0. (9)

Observe that, on one hand,

η = Pλ
( ⋂
R∈N

{τR(o) <∞}
)

= lim
R→∞

η≥R,

and hence, for any given ε, we may chose Rε so large that, for any R > Rε,

|Vn|−1
∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
≤ η≥R + ε/2 (10)
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implies

|Vn|−1
∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
≤ η + ε.

On the other hand, the bound

|Vn|−1
∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
= |Vn|−1

∑
v∈Vn

1
{
ξvt(n) 6= ∅, τ

(n)
R (v) ≤ t(n)

}
+ |Vn|−1

∑
v∈Vn

1
{
ξvt(n) 6= ∅, τ

(n)
R (v) > t(n)

}
≤ |Vn|−1

∑
v∈Vn

1
{
τ

(n)
R (v) <∞

}
+ |Vn|−1

∑
v∈Vn

1
{
ξvt(n) 6= ∅, τ

(n)
R (v) > t(n)

}
,

together with Proposition 2.3 tells us that(
|Vn|−1

∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
− |Vn|−1Z≥R

)
∨ 0

Pλ−→
n→∞

0.

for anyR ∈ N. ChoosingR > Rε and applying Proposition 2.4 thus yields that (10) occurs with
probability tending to 1 as n→∞, which in turn establishes (9) and concludes the proof.

It remains to prove the two supporting results.

Proof of Proposition 2.3. For all ε > 0, we have

Pλ
(
|Vn|−1

∑
v∈Vn

1{ξvt(n) 6=∅, τ
(n)
R (v) > t(n)} > ε

)
≤ 1

ε
Eλ
[
|Vn|−1

∑
v∈Vn

1{ξvt(n) 6= ∅, τ
(n)
R (v) > t(n)}

]
≤ 1

ε
Eλ
[
|Vn|−1

∑
v∈Vn

ft(n)

(
BGn(v,R)

)]
=

1

ε

∑
(H,oH)∈G∗

ft(n)(H, oH)P
(
BGn(on, R) = (H, oH)

)
,

where
ft(n)(G, o) := Pλ

G

(
ξos 6= ∅ for all s ≤ t(n)

)
, (G, o) ∈ G∗.

By the assumption of local convergence in probability, the distributions of BGn(on, R) con-
verge to the distribution of BG (o,R). Since the limiting graph is locally finite, P(BG (o,R) ∈
· ) is a probability measure on G∗ and hence, by Prokhorov’s theorem, the distributions of(
BGn(on, R)

)
n≥1

are tight. Hence, for all δ > 0, there exists a finite setA ⊂ G∗ such that

sup
n≥1

∑
(H,oH))/∈A

Pλ
(
BGn(on, R) = (H, oH)

)
≤ δ.
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We thus conclude that

lim sup
n→∞

Pλ
(
|Vn|−1

∑
v∈Vn

1{ξvt(n) 6= ∅, τ
(n)
R (v) > t(n)} > ε

)
≤ lim sup

n→∞

∑
(H,oH)∈A

ft(n)(H, oH)P
(
BGn(on, R) = (H, oH)

)
+
δ

ε
=
δ

ε
,

since limn→∞Pλ
H

(
ξoHs 6= ∅ for all ∀s ≤ t(n)

)
= 0 for all finite H . This gives the result.

Proof of Proposition 2.4. We have that

lim
n→∞

Eλ
[
|Vn|−1Z≥R − ηR

]
= lim

n→∞
E
[
Pλ

Gn

(
τ

(n)
R (on) <∞

)∣∣Gn]− ηR = 0,

by Lemma 2.1(b), hence the first moments asymptotically agree under Pλ. On the other hand,

Eλ
[
|Vn|−2Z2

≥R
∣∣Gn] = E

[
Pλ

Gn

(
τ

(n)
R (on) <∞, τ (n)

R (o′n) <∞
)∣∣Gn],

where (on, o
′
n) is uniformly chosen (with replacement) from Vn × Vn. Since the events

{τ (n)
R (on) < ∞} and {τ (n)

R (o′n) < ∞} are measurable with respect to the marks ΞV ,ΞE

of the random network and the graph inside a radius of R + 1 around the respective root, the
right-hand side converges to η2

≥R as n→∞ by Lemma 2.1(c). Combining the first and second
moment limits, yields that the conditional variance of Z≥R/|Vn|, given Gn, vanishes, implying
that Z≥R/|Vn| converges to its expectation η≥R in probability and in L1.

2.4 Lower bounds on the metastable density from local limits

In this section, we prove Proposition 1.7.

Proof of Proposition 1.7. Assume that Gn
P
⇀
n→∞

(G , o) and let (t(n))n∈N denote a sequence

of diverging times. We begin by showing that

|Vn|−1
∑
v∈Vn

1
{
ξvt(n) 6= ∅

} Pλ−→
n→∞

ηλ(Q)

implies

lim
R→∞

lim sup
n→∞

Pλ
(
ξont(n) = ∅, τ (n)

R (on) < t(n)
)

= 0.

To this end, observe that, for all ε > 0,

Eλ
[
|Vn|−1

∑
v∈Vn

1
{
ξvt(n) = ∅, τ (n)

R (v) ≤ t(n)
}]

≤ ε+ Pλ
(∑
v∈Vn

1
{
ξvt(n) = ∅, τ (n)

R (v) ≤ t(n)
}
> |Vn|ε

)
.

(11)
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The random variable of the second term can be rewritten as∑
v∈Vn

1
{
ξvt(n) = ∅, τ (n)

R (v) ≤ t(n)
}

≤
∑
v∈Vn

1
{
τ

(n)
R <∞

}
−
∑
v∈Vn

1
{
ξvt(n) 6= ∅, τ

(n)
R (v) ≤ t(n)

}
=
∑
v∈Vn

1
{
τ

(n)
R <∞

}
−
∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
+
∑
v∈Vn

1
{
ξvt(n) 6= ∅, τ

(n)
R (v) > t(n)

}
.

After dividing both sides by Vn, the right-hand side converges in probability to ηR − η(Q), as
n→∞ by assumption and Propositions 2.3 and 2.4. As ηR ↓ η, as R →∞, the expectation
in (11) can be made arbitrarily small by choosing n and R large enough, proving the claimed
implication.

It remains to prove the other implication, i.e. that (4) implies, for all ε > 0,

Pλ
(
|ξVn
t(n)| < |Vn|(η − ε)

)
→ 0 as n→∞. (12)

Using additivity, this is equivalent to

Pλ
(∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
< |Vn|(η − ε)

)
→ 0 as n→∞.

To obtain this statement, note that

Pλ
(∑
v∈Vn

1
{
ξvt(n) 6= ∅

}
< |Vn|(η − ε)

)
≤ Pλ

(∑
v∈Vn

1
{
ξvt(n) 6= ∅, τ

(n)
R (v) <∞

}
< |Vn|(η − ε)

)
≤ Pλ

(∑
v∈Vn

1
{
τ

(n)
R (v) <∞

}
< |Vn|(η − ε/2)

)
+ Pλ

(∑
v∈Vn

1
{
ξvt(n) = ∅, τ (n)

R (v) <∞
}
> |Vn|ε/2

)
,

where the first summand tends to zero by Proposition 2.4. For the second summand, we note
that ξvt(n) = ∅ and τ (n)

R (v) < ∞ together imply τ (n)
R (v) < t(n). A application of Markov’s

inequality then yields

Pλ
Gn

(∑
v∈Vn

1
{
ξvt(n) = ∅, τ (n)

R (v) < t(n)
}
> ε|Vn|

)
≤ 1

ε|Vn|
Eλ

Gn

[
#
{
v ∈ Vn : τ

(n)
R (v) ≤ t(n)

}]
≤ 1

ε
Pλ

Gn

(
ξont(n) = ∅, τ (n)

R (on) < t(n)
)
.

Taking expectations on both sides, we hence see that (4) is a sufficient criterion for (12).
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2.5 Fast extinction by absence of metastability

In this section, we prove Theorem 1.5. We begin with an auxiliary result.

Lemma 2.5. Let (Gn)n∈N be sparse with Gn
P
⇀
n→∞

(G , o). Then, for every δ > 0, there exists

ε > 0 such that

lim
n→∞

P
(

max
I⊂Vn : |I|<ε|Vn|

∑
v∈I

degGn(v) > δ|Vn|
)

= 0.

Proof. Fix δ > 0 and denote |Vn| = N . Let D(n)
1 ≤ D

(n)
2 ≤ · · · ≤ D

(n)
N denote the vertex

degrees in Gn ordered by magnitude. By sparsity and the convergence assumption, it follows
that, for any ε ∈ [0, 1],

∞ > E[degG (o)]− lim
n→∞

N−1

N∑
i=bεNc+1

D
(n)
i = lim

n→∞
N−1

bεNc∑
i=1

D
(n)
i =: σε,

where the convergence is to be understood in probability. In particular, the deterministic term σε
on the right-hand side vanishes as ε → 0. Writing Σε(n) := N−1

∑bεNc
i=1 D

(n)
i , we obtain for

ε ∈ (0, 1) fixed

lim
n→∞

P(Σε(n) > 2σε) = 0.

The desired result now follows upon choosing ε = ε(δ) such that σε < δ/2.

Proof of Theorem 1.5. As λρ ≥ λ1 by Theorem 1.3, it suffices to show λρ = λ+. Clearly,
λρ ≥ λ+ by definition, and it hence remains to show λρ ≤ λ+. To this end, pick λ < λρ and
show that ξVn does not survive on the exponential scale. Let c > 0 be arbitrary, denote by
T = Tn,c = ec|Vn| the relevant time scale and let

r(ε, T ) = T−1

∫ T

0

1
{∣∣ξVn

t

∣∣ ≤ ε|Vn|
}

dt

represent the proportion of time that the infected set spends in low density states. Let

τ1 = inf
{
t > 0:

∣∣ξVn
t

∣∣ ≤ ε|Vn|
}

and denote

τk = inf
{
t > τk−1 + 1:

∣∣ξVn
t

∣∣ ≤ ε|Vn|
}
, k ≥ 2.

Define furtherK = max{k : τk ≤ T−1}. Fix an arbitrary δ > 0 and let ε be as in Lemma 2.5.
Then, at each time τk, k ≤ K , the total size of the infected set is at most ε|Vn| and, conse-
quently, has total degree no larger than δ|Vn| with probability 1− o(1). Hence, conditionally on
the evolution of the process up to the stopping time τk, the probability of immediate extinction
just after τk, meaning that a recovery occurs at every vertex in the time interval [τk, τk + 1) but
no infection, is at least

(1− e−1)|ξτk |e
−2λ

∑
v∈ξτk

degGn (v) ≥ (1− e−1)ε|Vn|e−2λδ|Vn|,
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where the inequality holds with probability exceeding 1 − o(1) uniformly for all k ≤ K . More
precisely, if En denotes the exceptional event in Lemma 2.5, then we obtain from the strong
Markov property and a coupling of the contact process to a geometric experiment,

Pλ
(
{τ (n)
∅ (Vn) > T}

∣∣ |Vn|) ≤ P
(
En
∣∣ |Vn|)+ Pλ

(
K ≤ T/3

∣∣ |Vn|)
+ Eλ

[
1{Ec

n}1{τ
(n)
∅ (Vn) > T}1{K > T/3}

∣∣ |Vn|]
≤ P

(
En
∣∣ |Vn|)

+ Pλ
(
K ≤ T/3

∣∣ |Vn|)+ 3T−1e− log(1−e−1)ε|Vn|+2λδ|Vn|.

Here, the bound on the last term follows from the fact that P(G > t) ≤ (pt)−1 for a
Geometric(p) random variable G. Taking expectations yields

Pλ(τ (n)
∅ (Vn) > T ) ≤ P(En) + Pλ(K ≤ T/3) + E

[
3T−1e− log(1−e−1)ε|Vn|+2λδ|Vn|

]
. (13)

Decreasing the values of ε and δ if needed, the last term of the right-hand side vanishes since
T = ec|Vn| with fixed c, as n → ∞, while the first term vanishes by Lemma 2.5. Hence it
remains to show that γn = Pλ(K ≤ T/3) converges to 0 as n→∞.

Note that, on the event {K ≤ T/3}, the term 1− r(ε, T ) is bounded from below by 2/3. Let
W be uniform on [0, T ] under Pλ and independent of the graph sequence and contact process.
Denote by

ρ(t) = |Vn|−1|ξVn
t |, t ≥ 0,

the density process and by In the σ-field generated by Gn and the corresponding edge marks
in the network construction of ξ. We have

Pλ(ρ(W ) > ε) ≥ Eλ
[
1{K ≤ T/3}P(ρ(W ) > ε | In)

]
≥ 2

3
Pλ(K ≤ T/3) = 2

3
γn.

On the other hand,
Pλ(ρ(W ) > ε) ≤ 1

ε
Eλ[ρ(W )],

and by additivity of ξ we have

Eλ[ρ(W )] ≤ Pλ(τ (n)
∅ (on) > W ) ≤ Pλ(W ≤

√
T ) + Pλ(τ (n)

∅ (on) >
√
T ).

The first term vanishes by choice of W . Note that duality implies that the second term equals

E
[
Pλ

Gn

(
ξVn√

T
∩ {on} 6= ∅

)]
= Eλ

[
ρ(
√
T )
]
,

as on is chosen uniformly. Since λ < λρ, we have ρ(
√
T ) → 0 in probability, and the ex-

pectation on the right-hand side thus vanishes by dominated convergence, as ρ ≤ 1. Hence,
limn→∞ γn = 0 and the result follows from (13).
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