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On the parallelized efficient computation of
high dimensional Voronoi diagrams
on bounded, unbounded, spherical

and periodic domains
Martin Heida

Abstract

We investigate a recently implemented new algorithm for the computation of a Voronoi diagram
in high dimensions and generalize it to N nodes in general or non-general position using a
geometric characterization of edges and vertices. The algorithm consist of local computations, is
well suited for parallelization and can be applied to the Euclidean geometry or on the sphere.

We provide a mathematical proof that the algorithm is exact, convergent and has computational
costs of O(ENN(N)), where E is the number of edges and NN(N) is the computational cost
to calculate the nearest neighbor among N points. We also provide data from performance tests
in the recently developed Julia package „HighVoronoi.jl” and compare it to the quickhull algorithm.

It turns out that the new approach is particularly well suited for bounded domains, periodic
domains and parallelization of computations.
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1 Introduction

In computational geometry, the Voronoi diagram and Delaunay triangulation stand as fundamental
cornerstones, with a broad variety of applications. As such we find for the Voronoi diagram applications
in molecular modeling [6, 5], political science [11] topological data analysis [14] or mesh generation for
finite volume methods [7]. The Delaunay triangulation is widely used in finite element analysis, among
other applications.

Beyond these applications, Voronoi diagrams and Delaunay triangulations have an inherent mathe-
matical elegance which make them very interesting objects and very suitable to provide insights into
the spatial partitioning of points, defining regions of influence and revealing underlying patterns within
datasets.

In this work, we focus on the Voronoi diagram and its computation for any given set of N points in the
Euclidian geometry (or on the sphere), as long as there are at least d linear independent points in Rd

(or every half sphere contains at least one point). In particular, since we do not claim otherwise, the
method also applies to generators in non-general position.

In a mathematical language, given N generators (nodes) (xi)i=1,...,N in Rd satisfying

∀i, j ∈ {1, . . . , N} , xi ̸= xj , (1)

the Voronoi diagram introduced in [16] is a partitioning of the space into cells (xi)i=1,...,N according to
the following definition.
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High dimensional Voronoi diagrams 3

Definition 1.1 (Voronoi cells and vertices). Let X = {x1, ..., xN} be a set of nodes (generators)
where xi ∈ Rd. The Voronoi diagram of X consists of N closed cells

(Ci)i=1,...,n , Ci =
{
x ∈ Rd : ∀j ̸= i |x− xi| ≤ |x− xj|

}
.

Introducing for every x ∈ Rd the local quantities

N (x) := {i ∈ {1, . . . , n} : x ∈ Ci} , N(x) := #N (x) ,

a point ν ∈ Rd is called vertex if there exists δ > 0 such that for every x ∈ Bδ(ν) \ {ν} it holds
N(x) < N(ν). The set of vertices is denoted V(X) and we also denote locally Vi := V(X) ∩ Ci

the vertices of Ci.

Our definition of a vertex appears different from the usual definitions in literature but we will see that for
generators in general position, this is equivalent with the classical definition:

Definition 1.2 (Generators in general position). A set of generators is in general position if for d+ k
mutually different cells (Cij)j=1,...d+k it holds

1 If k > 1 then
⋂

j Cij = ∅.

2 If k = 1 then
⋂

j Cij = ∅ or
⋂

j Cij = {x0} and x0 is called the vertex of (Cij)j=1,...d+1.

A single vertex ν is in general position if N(ν) = d+ 1.

Remark. If the nodes are in general position it implies that every vertex is in general position. The
nodes are in general position if the circumcircle of every vertex has exactly d+ 1 generators on the
boundary sphere.

The Delaunay triangulation was introduced independently in [4], and is characterized to connect points
in such a way that no point is inside the circumcircle (circumball in higher dimensions) of any triangle
(tetrahedron) in the triangulation. The Delaunay triangulation is the dual graph of the Voronoi diagram
and is well defined iff the generators are in general position. The derivation of the Delaunay triangulation
then goes basically with O(N).

If the generators are not in general position, we find that the circumcircles of vertices have more than
d + 1 generators. This implies that the triangulation of these local generators is not unique and it is
difficult to calculate a good triangulation. On the other hand, the Voronoi diagram is always unique.

While the significance of Voronoi diagrams and Delaunay triangulations is undeniable, the methods to
compute these structures have evolved over time. The most common approach to Voronoi diagrams
are the computation of the Delaunay triangulation and deriving the Voronoi diagram as the dual. There
are also direct methods such as the Fortune algorithm, but often working only in low dimensions. One
of the early algorithms is the Bowyer-Watson algorithm [3, 17]. It works by subsequently adding points
and comparing with the circumcircle. It has complexity O(N ln(N)) in general but having O(N2)
complexity for some rare cases. It works, however, for nodes in general positions only. This is a special
case of so called incremental algorithms, that are known to yield O(N lnN) for nodes in general
position.

Another method is to project the nodes into Rd+1 using the map (x1, . . . , xd) → (x1, . . . , xd, ∥x∥2).
Then the convex hull of this new set of points will correspond to tetrahedrons of the Delaunay tri-
angulation of the original points. The search for the convex hull is typically done using the quickhull
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Dimension 2 3 4 5 6 7
Vertices / Cell 6.6 29.2 191 1250 9720 91900

Neighbors / Cell 6.6 16.6 43 95 210 480
Approx. Variance 20% 15% 15% 15% 15% 10%

Table 1: Data for the average amount of vertices and neighbors for each cell when the nodes are
generated i.i.d and are in general position. The data is generated as the average over 10 representative
cells using the first code in suppl_01_statistics.jl in [10]

algorithm, which grows polynomially in high dimensions with O(N fV |V|−1) where fV goes with
exp(floor(d/2) ln |V|) [1].

Finally, devide-and-conquer algorithms split the sets of points incrementally by planes into equal parts,
until tetrahedrons are left.

This paper presents a novel approach that redefines the computation of Voronoi diagrams. The approach
was introduced first in the VoronoiGraph.jl library [15] for nodes in general position and is an
extension of a previously introduced idea of raycasting [13, 14]. The algorithm as such is based on a
nearest neighbor search combined with a sound mathematical characterization of the edges emerging
in a given vertex. While this characterization was implicitly used in VoronoiGraph.jl for nodes
in general position, its universal mathematical formulation for arbitrary grids given below seems to be
new, or at least unexploited.

The algorithm is local, i.e. it starts from a given vertex and uses nearest neighbor searches to find the
adjacent vertices. Hence it is well suited for the following features that we will discuss in this work and
which were implemented in the new HighVoronoi.jl Julia package [9].:

■ the inclusion of the boundary of a convex polygonal domain,

■ of mesh refinement,

■ periodic boundary conditions,

■ parallelization,

■ Voronoi diagrams on the Sphere Sd−1.

We will see that the computational effort grows linearly in the number of edges E multiplied with the
effort to compute nearest neighbors. While for iid. distributed nodes this turns out to be O(lnN) in
the KD-Tree search algorithm [8], for nodes in non-general position this performance unfortunately
decreases to O(N) for the nearest neighbor search. We suggest a solution to this issue in the outlook.

Finally, we mention that the usage of nodes in non-general position can be very benefiting in Finite
Volume methods due to the reduced number of neighbors that comes with it. We illustrate this as follows:
In a cubic mesh in Rd, every cell has 2d neighbors. However, if the nodes are in general position, we
observe that the number of neighbors and vertices increases dramatically with higher dimension, see
Table 1. We can thus use quasi-periodic meshes that benefit from a low number of generators per
vertex and a low number of neighbors per cell, see Table 2.
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High dimensional Voronoi diagrams 5

Dimension 2 3 4 5 6 7
Vertices / Cell 5.6 14 42 87 160 500

Neighbors / Cell 5.6 9 15 18 19 30
Approx. Variance 15% 30% 50% 30% 30% 60%

Table 2: Data for the average amount of vertices and neighbors for each cell when the nodes are
generated by two nodes in a unit cell which is then copied periodically. In particular, the nodes are
in non-general position. The data is generated as the average over 10 representative cells using the
second code in suppl_01_statistics.jl in [10]

Outline

In Section 2 we provide the mathematics on which the algorithms are based. The theory culminates in
the following four major results: Lemma 2.15 states that the well known fact that the Voronoi diagram
is connected via edges, no matter whether the nodes are in general or non-general position. Lemma
2.14 states that it is always and in every cell possible to find an initial vertex as starting point for the
travel. Lemma 2.9 provides the insight how we can travel from one vertex along a known edge to the
neighboring vertex and Lemma 2.19 provides an efficient way to identify all edges emerging at a vertex
with generators in general or non-general position.

In Section 3 we provide a fully exhaustive and terminating algorithm to calculate the Voronoi diagram
based on the theory from Section 2. We also provide a proof for these properties, see Theorem 3.2.
Theorem 3.5 provides the complexity estimate for the algorithm. This also leads to estimates for special
cases.

In Section 4 we provide an algorithm suitable to calculate a refined version of a given Voronoi diagram
when adding a set of further points. We prove in Theorem 4.1 that the resulting mesh is complete.
Section 5 exploits the properties of the algorithm to introduce a fast way to calculate quasi-periodic
grids. Section 6 introduces HighVoronoi-computations on Spheres.

In Section 7 we have a look at the robustness of the algorithm, i.e. how likely it is to find a corrupted
vertex, edge or interface.

In Section 8 we discuss performance tests based on the Julia implementation HighVoronoi.jl
and in Section 9 we give a wrap-up of our findings and provide an outlook.

2 The underlying mathematics

In what follows, we write Sd−1 for the unit sphere in Rd and BR(x) for a ball with radius R around x.

2.1 Properties of N ( · )

Corollary. Every Voronoi cell is convex and closed.

Proof. This well known result is a direct consequence of the triangle inequality and the definition of a
Voronoi cell.

Corollary. In the setting of Definition 1.1 the set V of vertices consists of isolated points. For every
ν ∈ V(X) it holds N(ν) ≥ d+ 1.
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Proof. The first statement is evident from the definition of a vertex. For the second statement, note that
given xi, xj ∈ C the set of equidistant points to xi, xj ∈ C is a plane and it takes at least d planes to
intersect in order to define a single point.

The last corollary is important as it limits the amount of nodes needed to define a vertex from below by
d+ 1. This lower bound is at the same time the upper bound for a huge class of Voronoi diagrams.

Lemma 2.1. Let the points X be randomly distributed with a density function that is absolutely
continuous w.r.t. the Lebesgue measure, i.e. the density is ρdL. Then the probability of a given vertex
ν to have N(ν) > d+ 1 is zero.

Proof. Suppose ν is a vertex and d+ 1 generators are known. Then these nodes all lie on a sphere of
radius R around ν. The probability to find another node inside the spherical hull BR+ε(ν) \ BR(ν) is
then proportional to |X|

∫
BR+ε(ν)\BR(ν)

ρdL → 0 as ε → 0.

Finally, it has to be mentioned that N (x) is upper semicontinuous in the following sense:

Lemma 2.2 (N (·) and N(·) are upper semicontinuous). For every y ∈ Rd there exists δ > 0 such
that for every ỹ ∈ Bδ(y) it holds N (ỹ) ⊆ N (y). In particular, N(x) is upper semicontinuous:

lim sup
x→y

N(x) ≤ N(y) . (2)

Proof. Assume the first statement is wrong. Then for every k ∈ N there exists yk ∈ B 1
k
(y) and

xjk ∈ X with xjk ∈ N (yk) but xjk ̸∈ N (y). Since X is finite we can assume that xjk = xj is
constant (subsequence argument!). But xj ∈ N (yk) implies yk ∈ Cj . Since Cj is closed and yk → y
this implies y ∈ Cj and xj in N (y), a contradiction. This now leads straight forward to N(ỹ) ≤ N(y)
and (2).

2.2 Vertices, neighbors, adjacents and edges

Every vertex ν satisfies N(ν) = d + k, k ≥ 1, and it is the only element of the intersection of the
cells generated by {xσ1 , . . . , xσd+k

} ⊂ X , which we store as

σν = [σ1, . . . , σd+k] , where σ1 < σ2 < · · · < σd+k.

Definition 2.1. We say that two nodes xi, xj are adjacent if they share a vertex, i.e. if Vi ∩ Vj ̸= ∅.
We say that two nodes xi, xj are neighbors if they share a positive interfacial area, i.e. if ∂Ci ∩ ∂Cj

has positive (d− 1)-dimensional measure.

Corollary. xi, xj are neighbors if and only if they share d linearly independent vertices.

Proof. This follows since the intersection of both cells is convex and it needs d points to span a
(d− 1)-dimensional hyperplane.

Definition 2.2. An edge of the Voronoi diagram generated by X is a 1-dimensional set of positive or
infinite 1-dimensional measure for which there exist at least d elements {xj1 , . . . , xjd} ⊂ X such that

η =
⋂

k=1,...,d

Cjk . (3)

We write η = (xj1 , . . . , xjd). We denote Xη := {xi ∈ X : η ⊂ Ci} and say that η is an edge of
xi ∈ Xη.
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High dimensional Voronoi diagrams 7

Lemma 2.3. 1. Let η be an edge. Then for every x0 ∈ Xη the set Xη − x0 contains d − 1 linear
independent points and there exists n ∈ Sd−1 such that Xη is contained in the plane characterized by
(x− x0) · n = 0 for arbitrary x0 ∈ Xη.

2. Let t 7→ xt := x0 + tn be the straight infinte line containing η. Then xt ∈ η if and only if every
xi ∈ Xη is in N (xt).

Proof. 1. Since all cells are polytopes, their intersections are polytopes. If η is one dimensional and
characterized by equal distance to all elements of Xη, it has to be contained in a straight line and Xη

has to lie in a plane orthogonal to that line. This in turn implies that Xη − x0 span a d− 1 dimensional
space since otherwise η would be at least two-dimensional.

2. Let t 7→ xt := x0 + tn represent the straight line discovered in 1. Then for every xt and every
xi ∈ Xη it holds: if for x ∈ X \Xη it holds |x− xt| < |xi − xt| then for every xj ∈ Xη it also holds
|x− xt| < |xi − xt| = |xj − xt|. Hence xi ∈ N (xt) if and only if Xη ⊂ N (xt).

If xi ∈ X and xj is a neighbor of xi, we denote Pij the hyperplane with base bij =
1
2
(xi + xj) and

normal nij =
xj−xi

|xj−xi| .

Lemma 2.4. If η is an edge of Co then Xη contains at least d− 1 neighbors x̃1, . . . x̃d−1 such that
x̃j − xo are linearly independent.

Proof. By a scaling with a constant factor, a rotation and mirror operation, assume n from Lemma
2.3 satisfies n = ed = (0, . . . , 0, 1), Xη ⊂ Rd−1 × {0} and xo = re1 = (r, 0 . . . , 0). Let also
ν = n ∈ η such that for some ε > 0 we find ν + (−ε, ε)n ⊂ η.

Now we write Xη = (xηi)i and we study the planes Poi which have their normal vector noi in parallel
to Rd−1 × {0} ≃ Rd−1 and we consider their orthogonal projections P̃oi onto Rd−1. The equations
noi · x < 0 describe a convex cone-like set C (but note that it might be rather a „bar” in one or
more directions) with apex 0 at least d− 1 different flat parts of the surface, due to the d− 1 linear
independent elements of Xη.

Since ν has positive distance to the vertices of η and the straight line connecting xi and ν lies in Co,
we find that for sufficiently small t > 0 it holds νt := ν + te1 ∈ Co.

Now we consider the plane Pν ≃ Rd−1 through ν orthogonal to n with νt ∈ Pν and observe that P̃oi

form the same cone-like set C in this plane with νt ∈ C. Adding the extra dimension n, we see that
each plane of C corresponds locally to a set of positive d− 1 dimensional measure close to ν, which is
by the same time part of the boundary of Co. Thus we have found at least d1 neighbors of xo.

Lemma 2.5. η is an edge of Ci in the sense of Definition 2.2 if and only if there exist d− 1 neighbors
Ñ := {xj1 , . . . , xjd−1

} of xi and n ∈ Sd−1 orthogonal to a hyperplane that contains xi and Ñ and
one of the following conditions holds:

1 There exists x ∈ Ci with xj1 , . . . , xjd−1
∈ N (x) and η = x+ Rn.

2 for some ν0 ∈ Vi with xj1 , . . . , xjd−1
∈ N (ν0) it holds η = ν0 + [0,∞)n.

3 There exists t1 > 0 and ν0, ν1 ∈ Vi with xj1 , . . . , xjd−1
∈ N (ν0) ∩ N (ν1) such that

η = ν0 + [0, t1]n and ν1 = ν0 + t1n.
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Interpretation. The lemma expresses the following fact: If the nodes in X all together span a d− 1
dimensional space, then the edges will be orthogonal to this space but of infinite extend (1.). There
can also be edges emerging on a given vertex with no "counterpart", i.e. the edge tends to infinity (2.).
Lastly, an edge can connect two vertices (3.).

Definition 2.3 (Neighbored vertices ν0 ∼ ν1). We call ν0, ν1 ∈ Vi neighbored vertices and write
ν0 ∼ ν1 if ν0, ν1 satisfy 3..

Proof of Lemma 2.5. If x ∈ X and Ñ = {xj1 , . . . , xjd−1
} are neighbors of x this implies that

{xi} ∪ Ñ are d linear independent vectors and thus up to a sign ± the normal vector n of the
hyperplane P0 containing {xi} ∪ Ñ is unique. Furthermore, the planes Pijk are orthogonal to P0 and
intersect in a straight line η̃ = x+Rn which is therefore also orthogonal to P0. It remains to show that
η := η̃ ∩ Ci ̸= ∅ is equivalent with 1., 2. or 3..

First we observe that η is convex because Ci is convex and hence η having positive one dimensional
measure is equivalent with η being a ray of positive finite or infinite length. In particular, there exists
x ∈ η and −∞ ≤ t− < t+ ≤ +∞ such that η = x+ [t−, t+]n.

It remains to show that t− > −∞ or t+ < +∞ implies x+ t±n ∈ Vi respectively. Without restriction
consider the case t+ < +∞ with the other case handled similarly. Recall that N (·) and N(·) are upper
semicontinuous and for t < t+ but |t− t+| small enough it holds that N (x + t+n) ⊇ N (x + tn).
By Lemma 2.3 we find for every t̃ > t+ that xi ̸∈ N (x + t̃n), i.e. there exists xt̃ ∈ X with
|xt̃−(x+ t̃n)| < |xi−(x+ t̃n)|. But also for |t+− t̃| small enough we find N (x+ t̃n) ⊆ N (x+t+n)
This means that N(x+ t+n) has a local maximum and x+ t+n is a vertex.

Lemma 2.6. Let xi ∈ X and let ν0, ν1 ∈ Vi share d− 1 neighbors of Ci. Then there exists an edge
η of Ci in the representation 3. of Lemma 2.5 with vertices ν0 and ν1.

Proof. Let xj1 , . . . , xjd−1
be the d − 1 neighbors of Ci that are also neighbors of ν0 and ν1. Then

ν0, ν1 ∈ Ci ∩
⋂

k=1,...,d−1 Pijk and we conclude with Lemma 2.5.

Lemma 2.7 (Characterization of edges emerging from a given vertex). Let xi ∈ X and ν ∈ Vi. Let Y
be all the adjacents of xi which share the vertex ν. Then the following are equivalent:

1 xi has an edge of the form of Lemma 2.5 characterization 2. or 3. with ν0 = ν and given n

2 there exists Ỹ = {y1, . . . , yd−1} ⊂ Y such that Ỹ ∪ {xi} are linear independent and such
that n is orthogonal to the hyperplane containing xi and Ỹ . Furthermore, there is no y ∈ Y \ Ỹ
with (y − xi) · n > 0.

Interpretation. The meaning of this lemma is as follows: the cell Ci has a vertex ν generated by xi

and other nodes y1, . . . , yK . Then xi and the other nodes lie on a sphere of radius R > 0 around ν.
The above Lemma tells us now that η = [0, t1]n+ ν is an edge of Ci emerging at ν if and only if all
nodes generating this edge lie on a d− 1 dimensional hyperplane (not surprising) and all other nodes
lie on only one side of this hyperplane. One can draw the following conclusion: The above hyperplanes
corresponding to edges of Ci originating at ν form the boundary of a closed convex polytope that
contains all nodes generating ν.

For the case of a general Voronoi grid (i.e. when ν is generated by d+ 1 nodes), this commonly known
to be the simplex defined by xi and its neighbors in ν.
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A)

n � n�
B)

n � n�

Figure 1: Illustration of Lemma 2.7.2, i.e. the difference between A) valid and B) invalid directions n for
an edge emerging at a vertex ν. The gray dots indicate elements of Y

Proof. Suppose 1. holds with neighbors Ỹ = {y1, . . . , yd−1} ⊂ Y and n orthogonal to the hyperplane
containing xi and Ỹ . It remains to show that there is no y ∈ Y \ Ỹ with (y − xi) · n > 0. We give a
proof by contradiction.

Suppose such y exists and consider ỹ ∈ Ỹ . Since (xi − ỹ) · n = 0 it follows

(y − ν) · n = (y − xi) · n+ (xi − ν) · n > (ỹ − xi) · n+ (xi − ν) · n = (ỹ − ν) · n .

We denote yn = (y − ν) · n with y⊥ =
√

|y − ν|2 − y2n and similarly ỹn, ỹ⊥ for ỹ. Then moving to
νt := ν + tn, t > 0, implies

|y − ν − tn|2 = y2⊥ + (yn − t)2 = y2⊥ + y2n − 2ynt+ t2

= |y − ν|2 − 2ynt+ t2 = |ỹ − ν|2 − 2ynt+ t2

< |ỹ − ν|2 − 2ỹnt+ t2 = |ỹ − ν − tn|2 .

But this would imply that y lies closer to ν + tn than ỹ and hence for every t > 0 it holds that ν + tn
is not a part of the edge, a contradiction.

Now suppose 2. holds, let P be the hyperplane containing xi and Ỹ and assume 0 ∈ P . Since ν
has the same distance to every y ∈ Ỹ and to xi the same holds for ν + tn, t ∈ R and we may
assume w.l.o.g. that the line ν + tn hits P in 0 ∈ P for some t0 > 0. Since (y − xi) · n ≤ 0
and |xi − ν| = |y − ν| for every y ∈ Y \ Ỹ we conclude that for t̃ > 0 small enough it holds
|y − ν − tn|2 > |xi − ν − tn|2 for every such y and t ∈ (0, t̃). Every other x ∈ X \ Y satisfies
|x− ν| > |xi − ν| and since the distance function is Lipschitz continuous we can modify t̃ such that

∀x ∈ X \ Y, t ∈ (0, t̃) : |x− ν − tn| > |xi − ν − tn|.

Depending on whether equality can be obtained for some t ≥ t̃ and some x ∈ X , we found an edge
of either form 2. or 3..

2.3 The Raycast Lemma

We start with the following lemma, which we believe to most probably exist somewhere in the literature
but we are not aware of a proper reference. Its proof is indeed rather simple and we provide it for
completeness.

Lemma 2.8 (Circumcircle-Recovery-Lemma, see Figure 2). Let B1 be the open unit ball around ν = 0,
let n ∈ Sd−1 be a vector in the unit sphere and let x, z ∈ Sd−1 \ {n} such that x · n < z · n. Writing
xn := n (x · n) and B0 := B|x−xn|(xn) the following holds:
If z′ ∈ B1(0) \ B0 there exists t ∈ (0, |xn|) and R < 1 such that ν ′ := tn satisfies

|z − ν ′| > R = |x− ν ′| = |z′ − ν ′| . (4)
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Figure 2: The two different scenarios handled in Lemma 2.8: The left picture shows case z′ ∈
B1(ν) \ B|x−nx·n|(nx · n), i.e. z′ in this case does not lie within the gray ball. The right picture shows
the second case, where z′ lies within the grey ball but outside the large original ball going through x
and z. In both cases, ν ′ lies between ν and the vertical dotted line marking x · n.

Furthermore, for 0 < s < |xn| and every z′ ∈ B|x−sn|(sn) \ B1(ν) there exists 0 < t < s with
|tn− z′| = |tn− x|.

Interpretation. With regard to Figure 2 it means that if z′ is located in the very big white ball but not
inside the gray ball OR inside the gray ball but not inside the big white ball, then there exists ν ′ on the
line segment connecting ν and xn such that there exists a sphere around ν ′ with both x and z′ lying
on this very same sphere. Furthermore, every z lying on the big white sphere but not inside the gray
ball will definitely lie outside of the new sphere around ν ′.

The lemma is named „recovery” since it can be applied in an iterative manner to recover the circumcircles
in a Voronoi diagram, as we will see below.

Proof. Since |z′| < 1 there exists a point tn with |x− tn| = |z′ − tn|. This point minimizes

t 7→
(
(x− tn)2 − (z′ − tn)2

)2
= (1 + |z′|2 − 2(x− z′) · nt)2

and a short calculation shows that t = 1−|z′|2
2(x−z′)·n > 0 is the only solution. We next observe that

t < x · n is equivalent with

2(x · n)2 − 2(x · n)(z′ · n) > 1− |z′|2

⇔ (x · n− z′ · n)2 − (z′ · n)2 > 1− (x · n)2

⇔ |z′ − nx · n|2 > |x− nx · n|2

and the last line is equivalent with z′ ̸∈ B0.

It remains to prove (4). Let x = xn + ξx, z = zn + ξz, where n · ξi = 0 and where |xn| > |zn|. It
holds

(x− tn)2 < (z − tn)2 ⇔ |ξx|2 + (|xn| − t)2 < |ξz|2 + (|zn| − t)2

Using |ξi|2 + |in|2 = 1, i = x, z, the latter condition is equivalent with |xn| > |zn| and hence the first
claim follows.

For the second claim we argue in a similar way.

Lemma 2.9 (Raycast Lemma). Let ν = 0, n ∈ Sd−1, r > 0 and let every x ∈ X with x · n = 0
satisfy |x− ν| ≥ r. If x1 ∈ X with x1 · n = 0 and |x1 − ν| = r consider the following iteration:
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Figure 3: The idea of the Raycast Algorithm from Lemma 2.9. In application, we will start with a vertex
ν0 and take the generators of an edge emerging ν0 with direction n and generated by nodes which
correspond to x. The algorithm then starts with ν = ν1 and terminates in ν3 on both pictures.
The new vertex will lie on the opposite site of plane through all x orthogonal to n. In the first case, the
new generator will lie outside the gray ball and the new vertex will be on the opposite side of the plane.
In the second case, the new vertex will lie inside the gray ball and the new vertex will lie on the same
side of the plane as ν0.

1 chose z1 as nearest neighbor of ν1 = ν satisfying z1 · n > 0. If z1 does not exists, set t1 = ∞
and terminate

2 Given k ≥ 1 search ν ′
k = ν + tkn through the equation

|ν ′
k−x1|2 = |zk−ν ′

k|2 ⇔ |ν−x1|2−2tkn·(ν−x1) = |ν−zk|2−2tkn·(ν−zk) . (5)

3 Set νk+1 = ν ′
k and search for its nearest neighbor zk+1 of νk+1 which lies within a ball of radius

|ν ′
k − zk|. If |ν ′

k − zk| = |ν ′
k − zk+1| set ν̃ = νk+1, x = zk and stop, otherwise continue with

step 2. for k + 1.

Then the algorithm terminates either in Step 1 with t1 = ∞ or in Step 3 with ν̃ ̸= ν and some x ∈ X
satisfying x · n ̸= 0. If X̃ ⊂ X is the list of generators such that x̃ ∈ X̃ if and only if x̃ · n = 0
and |x̃− ν| = r there exists r̃ > r such that for every x̃ ∈ X̃ it holds |x̃− ν̃| = |x− ν̃| = r̃ and
N (ν̃) ⊇ X̃ ∪{x}. N (ν̃) can be recovered from X̃ ∪{x} by an inrange search among X with radius
|ν̃ − x| around ν̃.

Proof. Assume that the algorithm does not stop at Step 1.

In the first case, B|x1|(0) ∩ X = ∅ and hence zk ̸∈ B|x1|(0) but zk · n > 0. In this case the first
part of Lemma 2.8 yields that for every k and |zk − ν ′

k| = |x1 − ν ′
k| < |x1 − ν ′

k−1| is a decreasing
sequence with νk+1 · n > 0. The algorithm terminates due to finiteness of X .

In the second case we face the situation z1 ∈ B|x1|(0). The second part of Lemma 2.8 yields ν2 ·n < 0

and also subsequently zk ∈ B|x1|(0) and νk+1 · n < 0. The algorithm also in this case will terminate
after finite steps.

The remaining properties hold by the termination criteria and the characterization of ν.

Starting from version 1.1. the HighVoronoi.jl package implements the following Algorithm which
was discovered after the first online preprint of the present paper.

Lemma 2.10 (Raycast ”inrange” Lemma). Let ν = 0, n ∈ Sd−1, r > 0 and let every x ∈ X with
x · n = 0 satisfy |x − ν| ≥ r. If x1 ∈ X with x1 · n = 0 and |x1 − ν| = r consider the following
algorithm:
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1 chose z1 as nearest neighbor of ν1 = ν satisfying z1 · n > 0. If z1 does not exists, set t1 = ∞
and terminate

2 Define the function

t(z, x1) :=
1

2

(
|ν − z1|2 − |ν − x1|2

)
(n · (x1 − z))−1 (6)

and ν ′
1 = ν + t1n where t1 = t(z1, x1).

3 Find all points X̃1 := X ∩B|ν′1−x1|. Set t = min({t(z, x1) : z ∈ X̃1}\ (−∞, 0)) and define

X̂ := {z ∈ X̃1 : t(z, x1) = t}.

Then the algorithm terminates either in Step 1 with t1 = ∞ or in Step 3 with ν̃ ̸= ν and a nonempty
set X̂ such that every x ∈ X̂ satisfies x · n ̸= 0. If X̃ ⊂ X is the list of generators such that x̃ ∈ X̃
if and only if x̃ · n = 0 and |x̃− ν| = r there exists r̃ > r such that for every x̃ ∈ X̃ and x ∈ X̂ it
holds |x̃− ν̃| = |x− ν̃| = r̃ and N (ν̃) = X̃ ∪ X̂ .

Proof. In view of the proof of Lemma 2.9 we only observe that every possible outcome x from Lemma
2.9 is included in X̂ and vice versa every element of X̂ can be achieved in the final step of Lemma
2.9.

Lemma 2.11 (Raycast ”interpolated” Lemma). Let ν = 0, n ∈ Sd−1, r > 0 and let every x ∈ X with
x · n = 0 satisfy |x − ν| ≥ r. If x1 ∈ X with x1 · n = 0 and |x1 − ν| = r consider the following
algorithm:

1 chose z1 as nearest neighbor of ν1 = ν satisfying z1 · n > 0. If z1 does not exists, set t1 = ∞
and terminate

2 repeat steps 2.–3. of Lemma 2.9 at most 2 times to obtain z3.

3 do steps 2.–3. of Lemma 2.11 but starting in z2 or z3 from the previous step.

Then the algorithm terminates either in Step 1 with t1 = ∞ or in Step 3 with ν̃ ̸= ν and a nonempty
set X̂ such that every x ∈ X̂ satisfies x · n ̸= 0. If X̃ ⊂ X is the list of generators such that x̃ ∈ X̃
if and only if x̃ · n = 0 and |x̃− ν| = r there exists r̃ > r such that for every x̃ ∈ X̃ and x ∈ X̂ it
holds |x̃− ν̃| = |x− ν̃| = r̃ and N (ν̃) = X̃ ∪ X̂ .

Proof. This is obvious from the previous proofs.

The main difference between Lemmas 2.9, 2.10 and 2.11 is the point at which the inrange search is
performed. Depending on the situation, one may be faster than the other. However, one can put this
even further and directly fuse the nearest neighbor search with the inrange search and the raycast.

Definition 2.4. We call a nearest neighbor tree a Branch-and-Bound Search Tree or Priority Search
Tree if it employs a search strategy that progressively tightens the search radius during traversal.
Specifically, the search algorithm operates as follows:

■ It begins with a query point x0 and an initial maximal search radius r0. This radius can be set to
infinity or some large value based on prior knowledge.

■ As the search traverses the tree, it checks distances between x0 and candidate points yi located
within leaf nodes.
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■ Whenever a point yi is found such that |x0 − yi| < ri−1, the search radius is updated to
ri := |x0 − yi|.

■ The search then continues with the updated, smaller radius ri, effectively discarding further
exploration of points or branches that cannot contain closer points than the current best.

■ The process ends when all nodes within the current radius have been examined.

The inrange search variant of this algorithm follows the same traversal pattern, but the radius r0 remains
fixed and all points satisfying |x0 − yi| < r0 are collected.

The Branch-and-Bound Search approach is common in various nearest neighbor trees, particularly
those that rely on spatial partitioning and metric pruning. Examples include:

■ KD-Trees: The algorithm described above is a standard approach for nearest neighbor search in
KD-Trees.

■ Ball Trees: The radius-tightening mechanism applies similarly, with nodes representing bounding
hyperspheres instead of axis-aligned hyperrectangles.

■ Vantage-Point Trees (VP-Trees): These trees employ a similar strategy based on distances
from vantage points rather than axis-aligned partitions.

■ M-Trees: Designed for general metric spaces, they use a similar strategy of progressive pruning
by reducing the radius as better points are found.

An example of a tree structure that does not satisfy these conditions is a Quadtree or Octree with
fixed-depth traversal. In such structures, searches often require examining all leaves within a fixed-depth
level, without progressively adjusting a radius. Instead, all points within a predetermined cell size are
considered, regardless of whether closer points have already been found. While heuristics can be
applied to improve performance, the search process does not inherently adaptively tighten the radius.

Lemma 2.12 (Raycast ”fused” Lemma). Let ν = 0, n ∈ Sd−1, r > 0 and let every x ∈ X with
x · n = 0 satisfy |x− ν| ≥ r. Let T be a Branch-and-Bound Search Tree tree on X . If x1 ∈ X with
x1 · n = 0 and |x1 − ν| = r consider the following algorithm:

1 set r1 = ∞, ν1 := ν.

2 Initiate the Branch-and-Bound nearest neighbor search on T and iterate:

2.1 do the branch-and-bound search for ri around νi to find new yi+1.

2.2 if |yi+1 − νi| = |x1 − νi| remember yi+1 in X̂(νi).

2.3 if |yi+1−νi| < |x1−νi| use (6) set νi+1 = ν1+ t(yi+1, x1)n, set ri+1 := |yi+1−νi+1|,
remember yi+1 in X̂(νi+1).

2.4 continue with 2.1

3 set ν̃ := νi+1 for the last yi+1 found. X̂(ν̃) := X̂(νi+1).

Then the algorithm terminates in a vertex ν̃ with N (ν̃) = X̃ ∪ X̂(ν̃).

Proof. The proof is basically the same as for Lemma 2.9 but instead of computing the true nearest
neighbor in each iteration, we iterate with the first candidate that is closer than the last one. The
sequence of balls with decreasing radius will converge to the same center.
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2.4 Iterative search for vertices along edges

Definition 2.5 ((lower dimensional) Facets). Let X̃ ⊂ X such that such that E(X̃) =
⋂

xj∈X̃ Cj

satisfies Hk(E(X̃)) > 0 and in case k < d also Hk+1(E(X̃)) = 0. Then we call E(X̃) a k-facet.

Remark. The two extreme cases are 0-facets, which are vertices defined by d + 1 elements, and
d-facets which are defined by only one point and are hence the full Voronoi cell of the given point.

Lemma 2.13. Let X̃, Ỹ ⊂ X and such that both E(X̃) and E(Ỹ ) are k facets and such that
E(X̃) ∩ E(Ỹ ) has positive k dimensional Hausdorff measure. Then E0 := E(X̃) = E(Ỹ ) =
E(X̃ ∪ Ỹ ) and the k-dimensional plane defined by E0 is orthogonal to a d− k dimensional plane
containing X̃ ∪ Ỹ .

Proof. The case k = 1 is a direct consequence of Lemma 2.7 which tells us that edges are closed
convex intervals on finite lines and we further on focus on the case k > 1.

Since E(X̃), E(Ỹ ) are closed, E(X̃) ̸= E(Ỹ ) implies that E(X̃) \E(Ỹ ) ∪ E(Ỹ ) \E(X̃) is not
countable. However, they are both k dimensional plane objects and since E(X̃) ∩ E(Ỹ ) has positive
measure their supporting planes must coincide.

Let x ∈ E(Ỹ ) ∩ E(X̃) and let w.l.o.g. y ∈ E(Ỹ ) \ E(X̃). Denoting n := y − x we find for
η(t) = x+ tn that η(0) = x, η(1) = y and there is some t0 with η(t) ∈ E(Ỹ ) ∩ E(X̃) for t < t0
and η(t) ∈ E(Ỹ ) \ E(X̃) for t > t0. Similar to the proof of Lemma 2.5 we can argue from here that
η(t0) is a vertex. But since x and y can be chosen from a k-dimensional set, the set of vertices η(t0)
forms a k − 1 dimensional set, a contradiction to the characterization of vertices.

Now let Z̃ = X̃ ∪ Ỹ . Since every x ∈ E0 and every z1, z2 ∈ Z̃ satisfy |x− z1| = |x− z2| it holds
that Z̃ lies within a d− k-dimensional plane orthogonal to E0.

Lemma 2.14 (Descent-Lemma). Let X contain d + 1 linearly independent points. Then for every
k-facet E(X̃) with k > 0 the following holds: For Hk almost every ν ∈ E(X̃) there exists xj ∈ X ,
α ∈ R and n||E(X̃) such that

ν̃ = ν + αn ∈ E(Ỹ ) , Ỹ = X̃ ∪ {xj}

and E(Ỹ ) is a k − 1 facet.

Interpretation. One of the major problems of our algorithm is recovering an initial vertex from where to
start building the grid. The above lemma states that we can start in xi, then walk straight to the nearest
neighbor and hit the interface in the midpoint of the line segment. However, from there we can take
almost surely any orthogonal direction, knowing that the Raycast algorithm will yield a third element of
X and a point ν ∈ Ci that has equal distance to all three elements. The set of points having equal
distance to all three elements has dimension d − 2. We can iterate this algorithm until we found a
vertex of dimension 0.

Proof. If k > 1 Lemma 2.13 shows that we can assume that X̃ is so large that it contains all sets
capable to generate E(X̃). If k = 1 it is clear that all generators of a given 1-facet have to lie on one
single plane orthogonal to the facet.

Now let ν ∈ E(X̃) and n be orthogonal to the d− k dimensional plane that contains X̃ . However, n
defines a full d− 1 dimensional plane, which is not uniquely defined in case k < d− 1 and we first
assume we can chose n such that there exists x′ ∈ X on the opposite side of the plane than ν. But
then we can apply the Raycast algorithm of Lemma 2.9 to find ν̃ as claimed.
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If the above choice of a plane and n is not possible, we observe in a first step of the Raycast, that
t1 = ∞. We make use of this fact to „walk” along the ray to some ν ′ the other side of the plane and
start the Raycast in ν ′.

Lemma 2.15 (Connectivity Lemma). Let ν, ν̃ ∈ Vi. Then there exist vertices N vertices ν1 =
ν, . . . νN = ν̃ ∈ Vi such that for every j = 1, . . . , N −1 it holds νj ∼ νj+1. In particular, there exists
a path from ν to ν̃ among edges of Vi.

Proof. We take a straight line γ0 connecting ν and ν̃. We project this line within a d− 1 dimensional
plane to the boundary of Vi obtaining a new pathγ1 as a family of straight lines within a sequence
E1, . . . , EK of d − 1 facets which are interfaces with neighboring cells and ν ∈ E1, ν̃ ∈ EK . We
may now shift the intersection of γ1 with E1 ∩ E2 using the Descent Lemma to a vertex of Vi still lying
within E1 ∩ E2. Using this approach we may thus finally assume that γ1 is a path among d− 1 facets
which skips crosses from facet to facet only in vertices of Vi. We iterate this process going from d− 1
to d− 2 to . . . to 1-facets which are edges.

2.5 Localized convex cone algorithm: edge-iteration over degenerate vertices

We will now discuss how to identify the edges emerging at a vertex and how to iterate over these edges
in a cost- effective way. In the first case, the generators are in general position and a vertex is defined
by exactly d+ 1 generators.

Lemma 2.16. Let ν be a vertex defined by x1, . . . , xd+1. Then there are exactly d+1 edges emerging
at ν each characterized by dropping one of the points xi. The direction of each such edges is orthogonal
to the plane containing the remaining d points.

Proof. This is a direct consequence of Lemma 2.7.

Lemma 2.16 implies that d+ 1 edges are found in d+ 1 steps provided the generators are in general
position. In case the nodes are not in general position, i.e. a vertex ν is generated by x1, . . . , xd+k,
k > 1, Lemma 2.7 still tells us that we only need to iterate over all subsets xi1 , . . . , xid and verify
condition 2 of that lemma.

However, consider the case that N = nd, (xi)i=1,...,nd = {1, . . . , n}d. Generators in such a diagram
have 2d neighbors and 3d − 1 adjacents as well as 2d vertices and each of these vertices has 2d

generators. If we want to verify condition 2 of Lemma 2.7 for all xi1 , . . . , xid of a vertex with 2d

generators, this takes

(
2d

d

)
≈ (2d)d/d! such verifications. In 5 dimensions, this corresponds to

201376 candidates that have to be verified, in 8 dimensions already 409663695276000. Luckily, we
can reduce the amount of iterations significantly. For this, we will locally identify some of the tangential
planes to a Voronoi cell and extract iteratively for a given vertex the locally essential generators. It is
then sufficient to iterate only over subsets of these essential generators. We provide a sketch of the
idea in Figure 4.

Definition 2.6 (Infinite cone). Let A ⊂ Rd be a set and let x0 ∈ Rd be a point. Writing convB for the
closed convex hull of a set B ⊂ Rd we call

C(x0, A) := conv{t(x− x0) + x0 : t ≥ 0, x ∈ A}

the infinite cone of A with apex x0.
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Figure 4: Consider the degenerate vertex ν ∈ R3 with generators 1,...,8 aligned on the edges of a
cube. Among the visibel 6 edges emerging at ν we are interested in those that are edges of the Voronoi
cell of generator 1. For this purpose, we identify those planes of the polytope defined by 1,...,8 that
contain 1 as one of their vertices. Those three planes are fully described by the vectors 1 → 2, 1 → 3
and 1 → 5 and are simultaneously the orthogonal planes to the edges of 1 emerging at ν.

Lemma 2.17. Let d ≥ 2 and let Pd be a convex polytope generated by the finite set of points Xd, i.e.
Pd = convXd. Let 0 ∈ Xd and let X̃d ⊂ Xd be such that Pd ⊂ C(0, X̃d) but Pd ̸⊂ C(0, X̃d \ {x̃})
for every x̃ ∈ X̃d. Then X̃d is well defined.

Furthermore, assume that Rd−1 ≃ Rd−1 × {0} is tangential to Pd and that Pd−1 = Pd ∩ Rd−1

has positive measure and let Xd−1 := Pd ∩ Rd−1: If d > 2 it holds x ∈ X̃d ∩ Rd−1 if and only if
x ∈ X̃d−1. If d = 2 then X̃2 contains the two elements of X2 \ 0 that share the largest angle.

Interpretation. Let x0 = 0 ∈ X with Voronoi cell C0. If ν is a vertex and Xd are the generators of
ν, then Lemma 2.7 tells us that the edges emerging at ν correspond to the surface elements of Pd.
Moreover, the source elements of Pd containing x0 correspond to the edges emerging at ν along C0.
Since the set X̃d corresponds to the minimal set of edges that are needed to engulf Pd by a cone
with apex x0, we find a one to one correspondence between the surface elements of C(0, X̃d) and
the surface elements of Pd containing x0 = 0. If X̃d is significantly smaller than Xd, the iteration over
subsets of d elements of X̃d will be tremendously faster.

For a more concrete example, let ν = (0.5, 0.5, 0.5), x0 = 0 and X3 = {(a1, a2, a3) : ai ∈
{0, 1}}. Then

X̃3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

has only three elements while Xd has 8. This effect increases exponentially in d.
While this example suggests that X̃d has always d elements, numerical experiments show that this is
not true in general. The author was able to generate in 5d examples of X̃5 with up to 9 elements.

Proof of Lemma 2.17. Step 1: If x̃ ∈ X̃d then x̃ ̸∈ C(0, X̃d \ {x̃}). Proving this by contradiction, let
x̃ ∈ C(0, X̃d \ {x̃}). Then by convexity of C(0, X̃d \ {x̃}) this leads to C(0, X̃d \ {x̃}) = C(0, X̃d).

Step 2: In case d = 2 convexity implies that X̃2 is unique for a given pair (P2, X2) and X̃2 contains
the two elements of X2 \ 0 that share the largest angle.

Step 3: Assume the uniqueness of X̃d−1 is proven for the projection Pd−1 and Xd−1.

Step 3a: We claim that X̃d ∩ Pd−1 ⊃ X̃d−1:

Since every x ∈ Pd−1 is a convex combination of elements in X̃d and Pd−1 ⊂ ∂Pd it follows that
every x ∈ Pd−1 is a convex combination of elements in Rd−1 ∩ X̃d. On the other hand we can start
from Xd ∩ Pd−1 to calculate a suitable X̃d−1. Since X̃d−1 is unique, the claim 3a follows.
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Step 3b: Let x0 = 0 and let Pi ≃ Rd−1 be a family of hyperplanes that are parallel to one of the planes
of Pd emerging at x0. Let Pd−1,i := ∂Pd ∩ Pi and X̃d−1,i := Xd ∩ Pi be the corresponding subsets
of Xd−1,i ⊂ Xd. By definition of C(x,A) and convexity we have

C(0, Xd) = C(0, X̃d) = C(0,
⋃
i

C(0, X̃d−1,i)) = C(0,
⋃
i

X̃d−1,i) .

Hence X̃d ⊂ X̂d :=
⋃

i X̃d−1,i. On the other hand, X̂d cannot be reduced because of the necessary

condition from Step 3a and the uniqueness of X̃d−1. This implies X̃d = X̂d and by the same time
uniqueness as well as x ∈ X̃d ∩ Rd−1 if and only if x ∈ X̃d−1.

Lemma 2.18 (Local iterative convex cone algorithm). Let C0 be a Voronoi cell around x0 = 0 and
ν = (x0, x1, . . . , xN) be a vertex of C0 and consider the following algorithm.

1 Set Pd = Xd and mark all nodes as checked=false and blocked=false

2 chose an „unchecked” xi and try to find a flat surface of C0 that contains xi and „unblocked”
generators.

3 if this is not possible, set xi as checked=true and blocked=true

4 else

4.1 if d > 2 pass that interface to the same lower dimensional algorithm.

4.2 else mark the outer two nodes (those with the biggest angle between them) as
blocked=false and the others as blocked=true

5 mark all involved nodes as checked=true

6 if not all nodes are „checked”, restart at 2.

Then this algorithm returns all elements of X̃d as blocked=false and the others as
blocked=true.

Proof. This is an immediate consequence of Lemma 2.17.

Lemma 2.19. Let C0 be a Voronoi cell around x0 = 0 and ν = (x0, x1, . . . , xN) be a vertex of C0

and consider the following algorithm.

1 Let Xd be all generators of ν and let X̃d be given by the algorithm from Lemma 2.18.

2 for each subset η̃ = {x1, . . . , xd−1} ⊂ X̃d with exactly d− 1 elements, verify that

■ {x1, . . . , xd−1} are linear independent

■ all elements of Xd lie on the same side of the d− 1 dimensional plane spanned by η̃ and
x0.

and if both conditions are satisfied, calculate all elements of Xd that lie in the plane given by
η̃ ∪ {x0} and the normal vector u. If these elements have numbers η ⊂ {1, . . . , N} store
(η,u) as edge.

Then this algorithm finds all edges of C0 emerging at ν.
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Proof. Xd are the generators of ν and form a convex polytope around ν. By Lemma 2.18 the first step
yields X̃d for x0 with the properties given in Lemma 2.17 which also ensures that every plane of Pd

that intersects with x0 is generated by elements of X̃d and x0. Part 2 of Lemma 2.7 says that every
edge of C0 emerging at ν is characterized as plane on ∂Pd emerging at x0. Thus the above algorithm
will yield all edges of C0 emerging at ν.

3 The algorithms, data structures and parallelization

We will now introduce the concepts of the data structures and the algorithms to generate a full Voronoi
mesh from a given set of nodes X . We will provide both the algorithms and proofs that they converge.

3.1 The fundamental data structure

If X = (xi)i=1,...,N we recall the notation of Definition 1.1 and represent a vertex ν ∈ Vi as ν =
(σ, r), where σ = (σj1 , . . . , σjk) is a ordered subset of {1, . . . , N} with N (ν) = {xσj1

, . . . , xσjk
}

and where r stores the actual coordinates of ν.

In a similar way, we store an edge η = (η,u), where η = (η1, . . . , ηk) is a sorted list of the numbers
of all the generators of the edge and u is the orientation of the edge. In view of Definition 2.2 or Lemma
2.5 it appears that we should also provide the list of neighbors (which are actually unknown at the
instance of computation) or at least one vertex of η. However, this one vertex will implicitly be known
during the calculations.

Given xi ∈ X with Vi and accounting for the fact that every (σ, r) ∈ Vi satisfies i ∈ σ and that σ is
ordered we split

Vi = Ai ∪ Bi, where Ai = {(σ, r) ∈ Vi | σ1 = i} and Bi = {(σ, r) ∈ Vi | σ1 < i},

Furthermore we store in B∞ the edges of type 2. in Lemma 2.5. Then our mesh consists of

M = (X,A,B,B∞) .

3.2 Extended data structure with boundary planes

For i ∈ 1, . . . , K let Pi = (bi, ni) be a pair of a base vector bi and normal vector ni and let

Ω :=
{
x ∈ Rd | ∀i : (x− bi) · ni < 0

}
.

Then Ω is convex and we assume that X ⊂ Ω. Note that Ω might be bounded in all directions or
partially unbounded in some directions. Our domain in which we work thus has two representations: Ω
and (Pi)i=1,...,K which we group in the expression O and our new mesh data structure becomes:

O = O ((Pi)i=1,...,K) = ((Pi)i=1,...,K ,Ω) , M = (X,O,A,B,B∞) .

We take account of the boundaries in the Raycast algorithm using virtual, mirrored points. In particular,
we denote for j ∈ {N + 1, . . . , N +K} and i ∈ {1, . . . , N}

x
(i)
j := xi + 2⟨xi − bj−N , nj−N⟩ nj−N . (7)
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When working on the cell i, we will denote xj = x
(i)
j whenever this is convenient and no confusion is

possible. Furthermore, we extend X by entries xj , j > n which are either temporarily given as some

x
(i)
j or otherwise remain undefined. This makes sense in view of the following result.

Lemma 3.1. Given a set of nodes X ⊂ Rd and Ω, (Pj)j=1,...,K as above we call xi ∈ X a boundary

node if Ci ∩ (Rd \Ω) ̸= ∅ and define CΩ,i := Ci ∩Ω. Given i we extend X to X̃i by xj+N := x
(i)
j+N ,

j = 1, . . . , K, according to (7) and define C̃i as the Voronoi cell of xi w.r.t. X̃i. Then it holds
C̃i = CΩ,i.

Proof. For every plane Pj such that Pj ∩∂CΩ,i has positive d−1 dimensional measure, we recall that

x
(i)
j+N is the mirror of xi at Pj and hence Pj can be equally expressed by the base b̃j :=

1
2
(x

(i)
j+N +xi)

and normal ñj =
x
(i)
j+N−xi

|x(i)
j+N−xi|

. But this implies that Pj ∩ ∂CΩ,i is the Voronoi interface between x
(i)
j+N

and xi. Iterating over all j ∈ {1, . . . , K} gives the claim.

Remark.

■ It should be mentioned that most of the cells will typically not share any of the boundary planes
Pi. Hence in the realization of the code, the boundary nodes x(i)

j are calculated on the fly and
deleted after the iteration over the i-th cell.

■ In case the cell Ci touches the boundary plane Pj−N and we locally consider xj = x
(i)
j as part

of the mesh, we can w.l.o.g. call xj = x
(i)
j a neighbor of xi, since all of the above findings for

neighbors hold true.

3.3 The exhaustive search algorithm

We will now introduce the main algorithm. It is meant to work „from zero” but can also be run if parts of
the mesh are already known ( reflected in the assumption Ai ̸= ∅ ). The strategy is to iterate over all
generators xi, every vertex ν ∈ Vi and finally over all edges emerging at ν while skipping edges that
are already known.

Algorithm 3.1. Voronoi(X, (Pi)i=1,...,K )

1 Set up O((Pi)i=1,...,K) and create a data structure M = (X,O((Pi)i=1,...,K),A,B,B∞) for
storage of results.

2 For each i in 1, . . . , N call ExploreCell(M, i)

Algorithm 3.2. ExploreCell(M, i)

1 Initialize an empty queue list Q of vertices.

2 Initialize an empty list E of type (edge=>count)

3 Initialize a Boolean list (αj)j=1,...,K of false entries.

4 If Vi = Ai ∪ Bi is not empty, run through all (σ, r) ∈ Vi: if σ contains σj > N call
ActivateBoundary(M, α, i, σj)
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5 Cases:

■ If Vi = Ai ∪ Bi is empty:
do (σ, r) =Descent(M, i) and do QueueVertex(Q, E ,σ, r, i).

■ Else: for every (σ, r) ∈ Vi do QueueVertex(Q, E ,σ, r, i,init=true).

6 While Q is not empty

6.1 pop! first element (σ, r) from Q (take first element of Q and delete it from the list)

6.2 call ExploreVertex(Q, E ,M, i,σ, r)

6.3 (σ, r) ̸∈ Ai store vertex (σ, r) to Ai and if σ = (σ1, . . . , σn) store vertex (σ, r) to
every Bσj

, j = 2, . . . , n, provided (σ, r) ̸∈ Bj .

Algorithm 3.3. ActivateBoundary(M, α, i, σj)
If ασj−N=false then

1 Calculate x
(i)
σj according to (7) and store it in position σj of X : xσj

= x
(i)
σj .

2 Set ασj−N =true.

Algorithm 3.4. QueueVertex(Q, E ,σ, r, i,[optional: init=false])

1 If (σ, r) ̸∈ Ai ∪Q or init==true then push (σ, r) to Q, else STOP.

2 Call Edges(σ, r,M, i) to get the set E(σ, i) = (ηj, )j of all sorted edges ηj ⊂ σ.

3 For every ηj = (η1, . . . ) with smallest entry η1 = i:

■ If E has an entry (η, c), increase c by 1

■ Else: push! an entry (η, 1) to E

Algorithm 3.5. ExploreVertex(Q, E ,M, i,σ, r)

1. Call Edges(σ, r,M, i) to obtain a list E(σ, i) = (ηjuj)j .

2. Iterate through all sorted edges (η,u) ∈ E(σ, i), η = (η1, . . . , ηd) which stem from of σ with
the smallest element given by η1 = i:

2.1. Load (η, c) from E . If such entry exists and c ≥ 2 then skip the next step.

2.2. Call WalkRay(Q, E ,M, α, i, η, r,u).

Algorithm 3.6. Edges(σ, r,M, i)

■ If length(σ)==d + 1 return all subsets of σ of length d and with miminal entry i and the corre-
sponding directions of the edges as described by Lemma 2.16.

■ else use the algorithm given in Lemma 2.19 for x0 = xi and ν = r and return those edges.

Algorithm 3.7. WalkRay(Q, E ,M, α, i, η, r,n)
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1. resolve M = (X, ((Pi)i=1,...,K ,Ω), . . . ). In order to keep in mind that X is extended by
„activated” cells, we also write

X̃i = (Xj)j=1,...,N ∪ {x(i)
j ∈ X | j > N, αj−N = true}

2. Call RayCast(M, r,n, i) and

2.1. Either obtain a vertex (σ̃, r̃), defined by points in X̃i.

2.1.1. If r̃ ∈ Ω call QueueVertex(Q, E , σ̃, r̃, i)
2.1.2. Else the line connecting r and r̃ intersects with ∂Ω at plane Pj in coordinates R̃. We

call ActivateBoundary(M, α, i, N + j) to update X̃i. Afterwards calculate σ̃
as the list of all nearest neighbors of R̃ in X̃i (inrange-search!).
Call QueueVertex(Q, E , σ̃, R̃, i)

2.2. otherwise try to calculate an intersection of r + tn, t > 0 with ∂Ω:

2.2.1. If existent, this point is given through r̃ = r + t0n, t0 > 0, and Pj with the
property (r̃ − bj) · nj = 0 and for every k ̸= j it holds (r̃ − bk) · nk ≤ 0. Call
ActivateBoundary(M, α, i, N + j), update X̃i and afterwards calculate σ̃
as the list of all nearest neighbors of r̃ in X̃i (inrange-search!).
Call QueueVertex(Q, E , σ̃, r̃, i)

2.2.2. Otherwise we found an edge of type 2. in Lemma 2.5. we store (r,n) to B∞

Theorem 3.2 (Exhaustive search). Given a set of nodes X ⊂ Rd and a domain Ω ⊃ X described by
planes (Pj)j=1,...,K the Algorithm Voronoi(X, (Pj)j=1,...,K ) is exhaustive in Rd. In particular, if X
contains a subset of d linear independent nodes, then almost surely for every xi ∈ X all vertices of C̃i

will be found, where C̃i = Ci ∩ Ω is defined in Lemma 3.1.

Proof. Let us first assume that K = 0, i.e. there are no planes. The algorithm iterates over all cells. For
each cell Ci it checks whether there are known vertices. If not it calls Descent, which yields a vertex
due to Lemma 2.14. After the first vertex is found, Lemma 2.15 combined with the convergence of
RayCast by Lemma 2.9 ensures that the algorithm finds all vertices of Ci if we apply RayCast to all
edges of Ci emerging at ν for every ν ∈ Vi. This in turn is ensured by Edges due to Lemmas 2.16 and
2.19. However, let us note that every edge connects two vertices and Step 2.1. of ExploreVertex
skips a given edge if and only if c ≥ 2, i.e. if and only if the edge has been identified twice – or framed
differently: if both vertices have been identified before.

If K > 0 then Step 2.2.2. of WalkRay will identify if the boundary is crossed by the RayCast
and will first adjust the vertex to the boundary and also store this boundary implicitly as an additional
generator node for future calculations in the current cell. Lemma 3.1 tells us that we are then back in
the first case of the proof. Due to the localized nature of the calculations, the proof is complete.

3.4 Descent and Raycast algorithms

We will now get to the heart of the mesh generator: the Raycast algorithm. It is fully based on the
algorithm outlined in Lemma 2.9 and hence it converges.

Algorithm 3.8. RayCast(M, r,n, i)

1. chose z1 as nearest neighbor of ν1 = ν with (z1 − xi) · n > 0
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2. Given k ≥ 1 search rk = νk + tkn through the equation

|rk−xi|2 = |zk−rk|2 ⇔ |νk−xi|2−2tkν ·(νk−xi) = |νk−zk|2−2tkν ·(νk−zk)

which ultimately yields tk.

3. if tk = ∞ return (r,n).

4. otherwise set νk+1 = rk and search for its nearest neighbor zk+1 which lies within a ball of
radius |rk − zk|. If |rk − zk| = |rk − zk+1| we return (rk,N (rk)) otherwise we continue with
Step 2. for k + 1.

The Descent algorithm is almost an implementation of the proof of Lemma 2.14 and relies on the
RayCast algorithm. However, we still need to show that it converges.

Algorithm 3.9. Descent(M, i)

1. let y1 = xi and Y1 = {y1} as well as ν1 = y1 = xi

2. for j = 1, . . . d do the following:

2.1. Given Yj = {y1, . . . , yj} let nj ∈ Sd−1 be a random unit vector orthogonal to the j − 1
vectors {(y1 − y2), . . . , (y1 − yj)}.

2.2. call RayCast(M, νj,nj, i).

2.3. If RayCast successfully returns (r,N (r)) set Yj+1 = N (r) and νj+1 = r.

2.4. else call RayCast(M, νj,−nj, i), take the result (r,N (r)) and set Yj+1 = N (r) and
νj+1 = r.

Lemma 3.3. The Descent algorithm converges almost surely.

Remark. Lemma 3.3 is to be read as: Even though there is some randomness involved, the probability
that Descent(. . . ) fails is zero.

Proof. The Descent Lemma 2.14 and its proof ensure that for almost every νk lying in a d − k + 1
facet of Ci the descent Steps 2.2.–2.4. will almost surely yield νk+1 in a d− k-facet. Thus iterating the
algorithm finally yields a 0-facet, i.e. a vertex of Ci.

3.5 Computational complexity of the algorithm

Theorem 3.4. Let X = (xi)i=1,...,N be a set of nodes in Rd generating a Voronoi diagram with E
edges. Assume that the average complexity to calculate the nearest neighbor is NN(X). Then the
algorithm Voronoi(X, (Pi)i=1,...,K ) has computational complexity O(W NN(X)).

Proof. This is a direct consequence of the fact that we have to perform RayCast at most once along
each edge, every RayCast is associated with a finite number of nearest neighbor searches and all
other operations are bounded by a constant for each edge.

Theorem 3.5. Let X = (xi)i=1,...,N be a set of nodes in Rd such that the resulting Voronoi diagram is
regular, i.e. every vertex is given by exactly d+1 nodes. Then the algorithm Voronoi(X, (Pi)i=1,...,K )
has computational complexity O(N lnN).

DOI 10.20347/WIAS.PREPRINT.3197 Berlin 2025



High dimensional Voronoi diagrams 23

Proof. The number of vertices is proportional to the number of nodes N . The number of edges is
proportional to the number of vertices and the computational complexity of nearest neighbor searches is
proportional to O(lnN), e.g. with a kd-tree [2, 8]. This gives the claimed computational complexity.

Remark. For a Voronoi diagram with nodes in non-general position, one would at a first glance expect
O(n2− 1

d ) performance. This is because for each newly calculated vertex we have to perform an inrange
search to find all generating nodes. An inrange search in a k-d tree has a computational cost of worst
case O(n1− 1

d ) [12]. However, numerical experiments suggest that the inrange search is of minor
influence, see Table 3. Instead we will see that for nodes of a (quasi) periodic grid, the computational
effort to find the nearest neighbor approaches N . This probably is because nodes are oriented along
flat interfaces, rendering the partitioning of space by flat surfaces – as done by the KD-Tree algorithm –
useless. However, the upper cost for a nearest neighbor search is N and there is still hope for more
fittet nearest neighbor searches in the future.

3.6 Parallelization

The algorithm offers various possibilities for a parallelization. However, in the HighVoronoi.jl
package, this is done in the following way: Consider the mesh M = (X,O,A,B,B∞) and say we
want to distribute the computation among T threads.

Outline Assume for simplicity that X consists of T N0 points, where T,N0 ∈ N.

It then suffices to implement T wrapper around the data such that the i-th wrapper pretends to the
algorithm that the points (i− 1)N0 + 1, . . . , iN0 are the first N0 points. It can do this by consitently
shifting indices of nodes and in the data (σ, r) that are presented to the algorithm.

Internally, there is one central database where a strict order of data is preserved and which communi-
cates with all wrappers.

Avoiding race conditions The issue with one central database is to handle simultaneous access by
several threads. This can be handled by a lock that allows

■ either several parallel read operations,

■ or one single write operation.

This is fine as the algorithm spends much more time reading data (up to 10%) than writing (up to 3%).

Parallel consistency If one thread finds a new vertex, it blocks all other threads from writing access.
Then it checks if the vertex is allready known. If so, it unlocks writing, frees the vertex and continues. If
the vertex is unkown, it writes it to the database, then checks if the vertex is relevant to one of the other
parallel threads – this is the case if it is a vertex of the cell currently handled by another thread – and
informs them about the find. Then it releases the vertex, unlocks writing and continues.

This exchange of information avoids a double calculation in all cases except if two threads are computing
the same vertex at the very same time comming from two different directions. However, in this case the
above locking scenario will prevent the data from being written to the database more than once.
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4 Mesh refinement

Suppose we are given a fully computed Voronoi diagram M = (X,O,A,B,B∞) and want to add
some additional points Z ⊂ Ω. This is done by the following algorithm

Algorithm 4.1. Refine(M, Z)

1 Let Nz := #Z .

2 For every i ∈ {1, . . . , N} and every (σ, r) ∈ Ai ∪ Bi do: Replace σ = (σ1, . . . , σJ) by
σ = (σ1 +Nz, . . . , σJ +Nz)

3 Prepend Z to X , that is: define X̃ = Z ∪X where

X̃ = {z1, . . . , zNz , x1, . . . , xN} , i.e.

∀i = 1, . . . , Nz : x̃i = zi , ∀i = Nz + 1, . . . , Nz +N : x̃i = xi−Nz .

4 For i = 1, . . . Nz set Ãi, B̃i as empty sets and for i = Nz + 1, . . . , Nz +N set Ãi = Ai−Nz

and B̃i = Bi−Nz . Furthermore, set B̃∞ as an empty set. Then set

M̃ = (X̃,O, Ã, B̃, B̃∞)

5 For i = 1, . . . , Nz call ExploreCell(M̃, i)

6 Call Affected(M̃, Nz) to get the set of indices A of affected nodes

7 For every i = Nz + 1, . . . , Nz +N do the following:
For every (σ, r) ∈ Ai such that σ ⊂ A ∪ {Nz +N + 1, . . . , Nz +N +K} delete (σ, r)
from Ai and from every Bj , j > i.

8 For i = Nz + 1, . . . , Nz +N call ExploreCell(M̃, i)

9 For every element (r,u) of B∞ check if r is still a valid vertex and u is still a valid direction. If
so, copy to B̃∞

Algorithm 4.2. Affected(M̃, nz)

1 create empty list A of integer indices

2 for j ∈ 1, . . . , Nz and for every (σ, r) ∈ Aj do: If σ = (σ1, . . . σK) store every σk > Nz to
A

3 return A

Theorem 4.1. For every fully calculated mesh M and every set of points Z ⊂ Ω \X the Refine
algorithm converges to a complete mesh, i.e. in view of Theorem 3.2 if X contains d linear independent
nodes, then almost surely for ever xi ∈ X̃ all vertices of C̃i will be found, where C̃i = Ci ∩ Ω is
defined in Lemma 3.1.
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Proof. Steps 1.–4. only modify existing data in way as to increase the index number of every single
node x ∈ X by nz. Accordingly, also the indices of the boundary planes and the nodes x

(i)
j are

increased.

In Step 5 the new Voronoi mesh is calculated but only the cells of the first Nz nodes. Following
the outline of the proof of Theorem 3.2 this is completely independent from any result calculated by
ExploreCell(M̃, i) for i > Nz.

In Step 6 we determine which of the „old cells” calculated and stored in M are affected by the inclusion
of Z. However, an old cell Cj , j > Nz is affected by the new nodes if and only if one of the cells Ci,
i ≤ Nz has a vertex (σ, r) ∈ Vi with j ∈ σ.

In Step 7 we make use of the fact that an „old” vertex can be affected by the new nodes only if all of its
adjacent nodes are affected. Hence we delete all such vertices and keep the others.

In Step 8 we use once more ExploreCell(M̃, i) for all i > Nz which will make use of all previously
calculated, non-deleted vertices and complete the mesh as pointed out in the proof of Theorem 3.2.

In Step 9 we make sure to copy only reasonable elements of B∞ to the new mesh.

5 Fast quasi-periodic mesh generation

We will now come to a particular feature of our data structure: We can takeN0 nodesX0 = (xi)i=1,...,N0

within a cuboid Q ⊂ Rd oriented along the standard axes and declare a multiplication array A =
[a1, . . . , ad]. If the origin of Q is at 0 and Q has width qi in dimension i we associate with each
B = [b1, . . . , bd] with 1 ≤ bi ≤ ai a cube QB = Q + ((b1 − 1)q1, . . . , (bd − 1)qd) and copy a
version of X0 into QB and call it XB . The union of all XB is our new X for which we want to calculate
the Voronoi Diagram inside

⋃
B QB .

If B = [b1, . . . , bd] satisfies for some i that 2 < bi < ai then we can define B̃ = [b1, . . . , bi−1, bi −
1, bi+1, . . . , bd] and copy the vertices of XB̃ directly to XB , only adjusting the indices of the generators.
This also works with the data on volume and interfaces. On the remaining boundary cells, one can copy
most of the data from previous steps and only has to take care of intersections with the boundary.

This trick is implemented in HighVoronoi [9], suppl_02_periodic_fast.jl in [10] and
the HighVoronoi.jl handbook.

We can provide a rough estimate on the amount of time saved by this approach as follows: set

P0 = 0 and if ak > 2 Pk = Pk−1
3

ak
+

ak − 3

ak
else Pk = Pk−1

then Pd is the fraction of data that can be obtained from copying. Some sample values for Pd are given
in the following table:

A [4,4,4,4] [4,4,4,5] [4,4,4,10] [4,4,4,4,4] [4,4,4,4,4,4] [4,4,4,4,4,4,4,4]
Pd 0.683594 0.746875 0.873438 0.762695 0.822021 0.899887

6 Voronoi diagrams on Sd−1

The fundamental observation at the base of computing the Voronoi diagram on the Sd is that for three
points x1, x2, y ∈ Sd it holds |x1 − y| = |x2 − y| if and only if distSd(x1, y) = distSd(x2, y). This is
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because there exists a bijective map between the Riemannian distance and the Euclidian distance.

For points (xi)i∈N ⊂ Sd it only remains to add xN+1 = 0, the center of Sd and compute the Voronoi
cells for (xi)i∈N. This can be further improved by skipping every edge that does not contain xN+1.
Also, this algorithm can be easily parallelized. Finally, after the vertices have been computed, it remains
to project them onto Sd by simply normalizing them. While the original vertex is equidistant to the points
(xi1 , . . . , xid+1

, xN+1), the normalized vertex is still equidistant to (xi1 , . . . , xid+1
).

It is obvious, that this algorithm can be parallelized similar to the original version.

7 Robustness

In our whole algorithm machinery, there are two major sources of error that have proven to cause
complications and have to be accounted by internal corrections:

1 Rounding errors in orthogonalization: There are many occasions in the code when a local
orthogonal basis has to be calculated, primarily when we iterate through edges. In 5 dimensions
it happens quickly that the accuracy is only of order 10−8, which quickly accumulates to massive
deviations from the exact positions of new vertices. However, this can be fixed by repeated
orthogonalization, which pushes the error below 10−15.

2 Deviation of a computed vertex from its true position: If a computed vertex deviates to much from
its true position this causes tremendous problems in case of non-general position generators,
because the edge criterion in Lemma 2.19 is very sensitive to the relative positions of vertex and
generators.
However, a good criterion turns out to be the relative total variation of the position of vertices: For
each vertex (σ, r) one may calculate the mean squared distance d20 := |σ|−1

∑
σi∈σ |xσi

−r|2
and the relative variation: v := d−2

0

∑
σi∈σ(|xσi

− r|2 − d20)
2. By this we avoid the costly

calculation of squareroots. If the later value is to large, one may correct the position: Note that
σ has a least d+ 1 generators. Using a sophisticated selection we set up the invertible linear
system

|xi − r|2 = |x1 − r|2 ⇔ |xi|2 − |x1|2 = 2(xi − x1) · r , (8)

and use our current candidate for r as initial guess. This correction, if necessary, can reduce
the error significantly. In the HighVoronoi package, the distances of the generators coincide
with a relative error of less than 10−12, the relative total variation, e.g. in 5D, being often less
than 10−30.

7.1 Probability for a fraud vertex

In what follows, a fraud vertex is given by ν̃ = (σ̃, r̃) where σ̃ will not be a valid set of indices that
could represents a true vertex. That is, we leave aside the question whether r̃ has sufficient accuracy,
as this question was handled at the beginning of this whole section.

Assume we are given the domain Ω = (0, 1)d, i.e. the unit cube, with N points distributed randomly
and uniformly. Given the vertex ν = (σ, r) we denote Xσ = (xσ1 , . . . , xσk

) with R0 = |xσ1 − r|.
In order for a fraud vertex to occur, the necessary condition is that there exists x ∈ X \Xσ that is
close enough to r so the algorithm will consider it as a generator of ν. By definition of a vertex, the
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event (X \Xσ) ∩ BR0(r) = ∅ has probability 1 and thus the probability of fraud vertex amounts to
the probability for some small ε > 0 that

(X \Xσ) ∩
(
BR0(1+ε)(r) \ BR0(r)

)
̸= ∅

We introduce the notation Sε,R0(ν) := BR0(1+ε)(r)\BR0(r) and imply that on average R0 <
d
√
N−1.

Given Sd−1 the area of the unit sphere, we obtain the estimate

V0 = |Sε,R0(ν)| =
∣∣∣BR0(1+ε)(r) \ BR0(r)

∣∣∣ < Rd−1
0 Sd−1R0ε < Sd−1N

−1ε .

This value is by order 0 proportional to the probability of any x ∈ X \ σ to lie in Sε,R0(ν). The
probability for none of these is thus larger than

(1− V0)
N−d−1 > (1− V0)

N = exp(N ln(1− V0)) ≈ exp(−N V0) > exp(−Sd−1ε) .

While this implies that the probability to find a wrong x ∈ σ̃ is of the order 1−(1−V0)
N−d−1 ≈ Sd−1ε

and hence rather small, the probability to find such an error in at least one vertex of the full Voronoi
diagram is rather high: Given #V the number of vertices we find the probability of non-failure to be

(1− V0)
(N−d−1)#V ≳ exp(−Sd−1#Vε) . (9)

7.2 Probability for a fraud edge or fraud interface

We set aside Sd−1 in formula 9 as this value has its maximum in d = 8 and afterwards decreases with
d. We find that the failure probability for #V vertices with accuracy ε is bounded from above essentially
by #Vε. We have seen that this is somewhat the probability that there is at least one fraudulent vertex.
The probability that there is a whole fraudulent edge, e.g. an edge formed by two fraudulent vertices
that both share a given x ∈ X even though they should not, is the product of the probability that each
of these vertices if fraudulent. It is hence bounded from above by (Sd−1ε)

2.

In a grid of nodes of general position, there are d-times more edges than vertices and we conclude that
the probability of a fraudulent edge is smaller than d Sd−1#Vε2. Similar conclusions hold for fraudulent
interfaces, which decrease with #Vεd.

8 Implementation and performance tests

The above algorithms are implemented as parts of the Julia package HighVoronoi.jl by the
author [9]. On top of the sole calculation of the vertices it implements mesh refinement, substitution
of prescribed area, prescribed distribution of generators, boundaries and periodic meshes. Further it
provides algorithms for volume and area as well as for integration of functions over cells and interfaces
and it can pass these to a Finite Volume model generator that can account for Dirichlet-, Neumann-
and periodic boundary conditions.

8.1 Vertices from generators in non-general position

We will discuss the effects and benefits of generators in non-general position. First we will discuss
the benefits in Subsection 8.1.1. Then we will illustrate our algorithm from Lemma 2.19 that allows to
effectively iterate the edges in vertices of non-general position.
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8.1.1 Benefits

The most evident benefit of a cubic mesh over a general Voronoi mesh is that every cell has precisely
2d neighbors and hence the matrices in Finite Volume (equivalent with finite difference in this case) are
extremely sparse. On the other side of the spectrum, Voronoi meshes generated from i.i.d distributed
nodes have a very high average number of neighbors in high dimensions, see Table 1. In 7 dimensions,
the number of neighbors goes up to a factor of 35 compared to the cubic grid. However, if the algorithm
is capable to handle non-general position generators, we can e.g. compute a quasi periodic grid, where
two nodes are placed in a unit cell which is then copied in each dimension for a given number of
repetition. This results in much lower amount of neighbors per cell, see Table 2, where the factor from a
cubic grid in 7D is now in between 2 and 4.

The approach also allows us in principle to generate a fully cubic grid and to refine it locally. Computa-
tional effort is then spent only in the places where a high resolution is needed while the rest of the grid
is handled in a very fast way.

Finally, it is possible to compute large quasi-periodic grids using copy-and-paste subroutines. This is
particularly interesting if one is not only interested in the Voronoi diagram but also in volumes and
interface areas, such as needed in Finite Volume methods. Figure 7 shows the performance gain for
this fast copy-and-paste algorithm vs. computation for a full mesh of nodes in general position. Also it
shows the time vs. number of nodes when increasing a quasi-periodic mesh.

8.1.2 Illustration of Lemma 2.19

We start with a periodic mesh in 5D generated from two nodes by the same principle as in the previous
subsection. In the resulting mesh, the first two nodes are x1 = (0.0475, 0.225, 0.01, 0.205, 0.0425)
and x2 = (0.1475, 0.1375, 0.245, 0.0875, 0.085). We pick out a vertex which has 10 generators
and apply a shift transformation of coordinates such that x1 = 0. In these local coordinates we have
the following generators:

node local coordinates node local coordinates node local coordinates

9 [0.0, 0.25, 0.0, 0.0, 0.0] 33 [0.0, 0.0, 0.25, 0.0, 0.0] 41 [0.0, 0.25, 0.25, 0.0, 0.0]
138 [0.1, 0.1625, 0.235, 0.1325, 0.0425] 513 [0.0, 0.0, 0.0, 0.0, 0.25] 521 [0.0, 0.25, 0.0, 0.0, 0.25]
545 [0.0, 0.0, 0.25, 0.0, 0.25] 553 [0.0, 0.25, 0.25, 0.0, 0.25] 2050 [-0.095, 0.0, 0.0, 0.0, 0.0]

Note that 2050 is a boundary node, i.e. a mirrored version of x1. By their odd number we can conclude
that all other nodes except node 138 are periodic copies of x1. We will now follow the algorithm how it
will identify the essential generators of the vertex from the point of view of x1.

Step I: The algorithm will detect that x1, x9, x33, x41, x513, x521, x545, x553, x2050 lie in one plane. It
will pass this to the lower dimensional algorithm in 4D

Step I.a: Identify the d− 2 = 3 dimensional plane x1, x33, x513, x545, x2050

Step I.a.1: The 2-dimensional plane x1, x33, x513, x545 will lead to kicking out x545. x33, x513 are
identified as part of X̃2.

Step I.a.2: From x1, x33, x2050 we will identify in total X̃3=x1, x33, x513, x2050.

Step I.b: Next is the 3 dimensional plane x1, x9, x33, x41, x2050

Step I.b.1: The 2 dimensional plane x1, x9, x33, x41 leads to kicking out x41.

Step II: The points x1, x9, x33, x41, x138, x513, x2050 all lie on another 4 dimensional plane
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Step II.a: 3 dimensional plane x1, x9, x33, x41, x138

Step II.a.1: The 2 dimensional plane x1, x33, x41, x138 leads to removal of x41 and acceptance of x138.

Hence, the algorithm terminates with essential generators x9, x33, x138, x513 and x2050. The resulting
edges can be computed to be the following:

generators orientation

[1, 9, 33, 41, 138, 513, 521, 545, 553] [0.7981891503332307, 0.0, 0.0, -0.6024069059118722, 0.0]
[1, 9, 33, 41, 138, 2050] [0.0, 0.0, 0.0, 0.3054275543593127, -0.952215316531975]

[1, 9, 33, 41, 513, 521, 545, 553, 2050] [0.0, 0.0, 0.0, -1.0, 0.0]
[1, 9, 138, 513, 521, 2050] [0.0, 0.0, -0.4911409242478349, 0.871080129798047, 0.0]
[1, 33, 138, 513, 545, 2050] [0.0, -0.6319383146726604, 0.0, 0.7750186878060926, 0.0]

8.2 Performance tests

8.2.1 Nodes in general position

The performance of HighVoronoiwas compared to that of QuickHull using the Delaunay.jl
package and the delaunay(...) command therein. Technically, this gives a minor advantage to
quickhull, since the data is not resorted to represent the Voronoi diagram. In the HighVoronoi package
this takes about 5% of the computation.

Samples were computed on 100, 500, 1000, 2500, 5000, 10000, 15000, 20000, 25000, 30000, 35000,
40000 and 50000 nodes in 2, 3, 4 and 5 dimensions and for 100, 500, 1000, 2500, 5000 and 10000
nodes in 6 dimensions.

The less nodes, the more samples were taken in order to obtain reasonable averaged values. While the
QuickHull algorithm is only applicable to unbounded domains and cannot the author is not aware
of a parallelized implementation in more than 3 dimensions, we perform only unbounded non-parallel
computations for QuickHull.

We compared up to 3 different Raycast-algorithms based on three lemmas from above:

■ RCOriginal: based on Lemma 2.9 but without a final inrange search, this method is devel-
oped for a scenario where all points are in general position.

■ RCNonGeneral: based on Lemma 2.11, as the name suggest this method is for the case
that the nodes are in non-general position.

■ RCCombined: based on Lemma 2.12, this method fuses the nearest neighbor search, inrange
search and raycast into one single iterative search.

The computations where performed using the code in test_performance_voronoi.jl resp.
test_performance_voronoi_parallel.jl in [10].

Unbounded domains On unbounded domains, the classical QuickHull algorithm proves to be faster
than RCOriginal and RCNonGeneral (See Figure 5 left). The RCCombined is not tested
as it is comparable to RCNonGeneral. All three algorithms follow an interpolated O(N lnN)
asymptotic.

DOI 10.20347/WIAS.PREPRINT.3197 Berlin 2025



M. Heida 30

Figure 5: The quickhull algorithm on unbounded domains compared to the various raycast methods
on unbounded (left) and bounded (right) domains. There is no implementation of the quickhull in 5
dimensions known to the author that would directly consider bounded domains. Hence "cropping"would
even further increase computational time.

Bounded domains On bounded domains, the classical QuickHull algorithm proves to be slower than
RCOriginal and RCNonGeneral (See Figure 5 left). This becomes even more striking for the
RCCombined. Again, all algorithms follow an interpolated O(N lnN) asymptotic.

Parallelization It can be seen in Figure 6 that parallization with 4 threads increases the speed with a
factor of approximately 2.

Discussion The first reason, why the raycast method performs faster on bounded domains is clear:
there are simply less vertices to compute. However, "far away from the point cloud", nearest neighbor
searches become much more computationally costly. This is the main reason why even the simple
textttRCOriginal is to some extent much slower than quickhull on the unbounded domain.

While it is expected that parallelizatoin speeds up the whole process, we only observe a factor 2 for
4 threads, even though the parallel trunks are independent of one another. This has several reasons:
First, the parallel threads still share a common memmory. While on the implementation level, the
usage of locking times is relatively small, the central RAM cannot feed all process at once, considering
there are lots of RAM accesses in the code. Then there is Amdahl’s law, which tells us that there is a
limited amount of benefit that one can gain, even with parallelization. In this case Amdahl’s law simply
comprises all access, memory, and indexing effects that come into play: Additional effort that does not
occur in single-thread computation.

However, there is still room for improvement. E.g. the algorithm could split computations in multiple
parts that can even be run on separate machines and put together later.

8.2.2 Nodes in non-general position: classical mode

A test was performed on quasi-periodic sets of points generated from the identical pair of nodes, copied
ki-times in dimension i. This was done using the code in test_periodic_1.jl in [10]. In total,
we obtain 43 samples for the following number of nodes: 64, 96, 144, 216, 324, 486, 648, 864, 1152,
1536, 2048, 2560, 3200, 4000, 5000, 6250, 7500, 9000, 10800, 12960, 15552, 18144, 21168, 24696,
28812, 33614, 38416, 43904, 50176, 57344, 65536, 73728, 82944, 93312, 104976, 118098, 131220,
145800, 162000, 180000, 200000.
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Figure 6: The quickhull algorithm on unbounded domains, single-threaded, compared to the various
raycast methods on unbounded (left) and bounded (right) domains for four threads parallelization. There
is no implementation of the quickhull in 5 dimensions known to the author that would directly consider
bounded domains or parallelization.

Unfortunately, Figure 7 shows that the performance in this case follows rather a quadratic curve than a
N lnN curve. We first note that there are several reasons that can cause this behavior:

■ In case there are many vertices with generators in non-general position, lots of inrange
searches are needed. These are known to have a worst-case performance of O(N1−1/d).

■ There is a hidden operation in the HighVoronoi code that goes with N and kicks in only in
non-general positions.

■ There is an issue with the nearest neighbor search that shows up only in such pathological
situations.

For this reason, another test was performed: test_periodic_2.jl in [10].

The output by @profview was then split into the following major tasks by the code: edge identification
and iteration, nearest-neighbor search, inrange search, neighbor identification from vertices. The results
are given in Table 3 in the form „operation vs. percentage of time”. It has to be noted that we are only
interested in the big picture and hence these numbers are not 100% accurate but very close to the
truth.

As one can see, the proportion of the nearest neighbor search increases dramatically from 6250 to
15552 nodes. On the other hand, the percentual cost of the inrange search remains approximately
the same. In the code, the inrange search is called once for every approximately 2.5 nearest neighbor
searches but evidently does not significantly contribute to the computational effort.

This results suggest in total that the problem stems from the implementation of the nearest neighbor
search. More precisely, the RayCast algorithm calls a conditioned nearest neighbor search, which
seamingly is not a problem for nodes in general position, but causes a lot of problems in case the nodes
are in non-general positions. One problem that @profview highlights is that the implementation of
the condition itself is not (pre)compiled, a fact that may slow down the Julia code in these bottlenecks
significantly. However, a future version of the NearestNeighbor.jl package or of Julia itself
might solve this issue.
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case nodes % edge iteration % nearest-neighbor % inrange %neighbor ident.
3 486 74.7 15.8 2.3 6.7
4 2048 66.2 20.4 2.2 6.7
5 6250 60.9 26.7 2.3 5.9
6 15552 31.0 63.8 2.7 2.4

Table 3: Approximate share of the computational costs for different parts of the Voronoi diagram
generation in % of total time. The residual percentage is distributed to unspecified iteration and storage
related operations.

Figure 7: Calculations for a quasi-periodic Voronoi diagram in 5D from 2 nodes that are copied
periodically in each dimension, with a vector B ranging from B = [2, . . . , 2] to B = [10, . . . , 10] (see
Section 5). In the left we see the classical calculation for each generator without making use of the
periodicity. On the right is the performance for a version of the code that heavily exploits the periodic
structure.

8.2.3 Nodes in non-general position: fast mode

Finally, we test the fast mesh generation method. The copy method should be linear in the amount
of unit cells that are copied, hence somewhat sublinear proportional to N and the rest of the method
should grow with N lnN as discussed above. We test this with test_periodic_3.jl in [10].

However, with regard to Figure 7 it turns out that we again face a quadratic growth. However, the share
of the quadratic growth is mus less even though the total time is already strongly decreased. This is
mostly due to the fact that there are only few nearest neighbor searches necessary compared to the
total amount of generators or vertices.

9 Conclusions

We have described a new way to calculate Voronoi diagrams for nodes in general and non-general
position based on a fully localized algorithm. The algorithm is suitable for local refinement or for
benefiting from a periodic mesh structure using copy-modify-paste algorithms. We have demonstrated
that the algorithm can be expected to behave as O(N lnN) under ideal implementation of the nearest-
neighbor search such as i.i.d distributed generators and general O(E NN(X)) performance on any
diagram.

The new algorithm outperforms classical algorithms like quickhull on bounded domains, because it can
intrinsically handle boundaries of convex domains by virtual points and intrinsically stays inside the
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domain. It is thus also well suited for periodic Voronoi diagrams, benefitting from effective refinement
and adaptation techniques.

Finally, the new algorithm can be parallelized in an easy fashion. Besides the parallelization ansatz
provided in this work, other approaches are thinkable.

Open topics for the future is an improvement of the performance on generators in non-general position.
A possibility in periodic meshes could be to benefit from the periodicity by setting up a reference
configuration and to reduce nearest neighbor search to this reference configuration. In case a periodic
mesh is perturbed by a set of additional random nodes, nearest neighbor search could be split into to
searches: One on the periodic and one on the random set of nodes.

Another open topic is the Delaunay triangulation based on the High dimensional Voronoi diagram, in
particular for generators in non-general position. This seems to be completely open. Maybe there was
hope to calculate the Delaunay grid for a perturbed Voronoi Diagram and to match the tetrahedrons
afterwards. We leave this question open for future investigations.
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