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Extended Kalman smoothing of free spin precession signals for
precise magnetic field determination

Lutz Mertenskötter†, Jasper Riebesehl†, Wilhelm Stannat, Wiebke Pohlandt, Wolfgang Kilian

Abstract

We present a novel application of the Extended Kalman Smoother (EKS) for high-precision
frequency estimation from free spin precession signals of polarized 3He. Traditional approaches
often rely on nonlinear least-squares fitting, which can suffer from limited robustness to signal
decay and time-dependent frequency shifts. By contrast, our EKS-based method captures both
amplitude and frequency variations with minimal tuning, adapting automatically to fluctuations via
an expectation-maximization algorithm.

We benchmark the technique in extensive simulations that emulate realistic spin precession
signals with exponentially decaying amplitudes and noisy frequency drifts. Compared to least-
squares fits with fixed block lengths, EKS systematically reduces estimation errors, particularly
when frequencies evolve or signal-to-noise ratios are moderate to high. We further validate these
findings with experimental data from a free-precession decay 3He magnetometer.

Our results indicate that EKS-based analysis can substantially improve precision in nuclear
magnetic resonance-based magnetometry, where accurate frequency estimation underpins abso-
lute field determinations. This versatile approach promises to enhance the stability and accuracy
of future high-precision measurements.

1 Introduction

Spin precession magnetrometry Magnetometry, i.e. the determination of the static magnetic flux
density, is an extremely broad field of research in which a wide variety of technical methods are used
[1]. The potentially most precise technique which allows to directly trace back the unit of Tesla to the SI
unite of the second is the measurement of the free spin precession frequency using either electronic
spin resonance (ESR) or nuclear magnetic resonance (NMR). Given the fundamental relation of the
Larmor resonance frequency fL and magnetic field strength B0

fL =
γ

2π
B0, (1)

only the substance-specific gyromagnetic ratio γ has to be known to deduce the external magnetic
field strength from Larmor precession measurements. The gyromagnetic ratio γ′

p of protons has been
known for decades with a relative uncertainty well below 10−6 and has more recently been determined
with an uncertainty even below 10−8 [2]. Consequently, the classical proton free induction decay
(FID) measurement – aside from its widespread use in chemical analysis and medical imaging – has
naturally become a prominent method for high-precision magnetic field measurements [3, 4]. With
recent advances in measuring the magnetic moment of 3He+ and calculation of the diamagnetic
shielding, the gyromagnetic ratio γ′

h of gaseous 3He is now known with even higher precision, achieving
a relative uncertainty below 10−9 [5, 2]. Given these precisely known scaling factors for γ′

p and γ′
h,
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the overall accuracy of magnetic field measurements now critically depends on the precision of the
frequency determination from NMR signals. In this work we employ a new frequency tracking technique,
based on frequency domain Kalman smoothing to improve this precision. Consequently, 3He NMR
allows for the most precise field determination in future when all systematic errors have to be accounted
correctly [6]. These systematic errors are not further discussed in this work.

A wide range of analytical methods – and their variants – have been proposed for this task, including
frequency-domain analysis using fast Fourier transformation (FFT) [7, 8], zero-crossing counting [9],
singular value decomposition [10], and separable nonlinear least-squares analysis using the variable
projection method [11]. More recently, machine learning-based approaches have also been explored
[12, 13].

To our knowledge, the nonlinear least-squares method remains the benchmark for estimating frequen-
cies in ultra-high-precision NMR signals in 3He-129Xe-co-magnetrometry measurements [14, 15, 16].
Our frequency domain Kalman smoothing method is a promising candidate for a more precise esti-
mator, as it effectively filters out the majority of the noise, and – unlike the least-squares method –
is able to assimilate the entire time-series into one estimation. In the following chapters we give an
in-depth comparison of this method to the least-squares method on a host of simulated data and real
measurements.

The Kalman smoother [17] not only estimates the hidden state xk, in our case frequency f(t) and
amplitude A(t), but also computes its covariance matrix Pk. The recursive update of Pk provides a
robust measure of the confidence in the state estimates, which is crucial in sensor applications, where
the uncertainty is of paramount importance.

Kalman smoothers have found numerous applications in post-processing of sensor data, geophysical
signal reconstruction, and time series forecasting. For instance, in biomedical applications, Kalman
smoothers improve electroencephalography (EEG) [18]. In magnetometry, Kalman filters have been
successfully used to significantly improve the resolution of atomic sensors [19].

2 Frequency estimation methods

2.1 The Kalman smoother

The Kalman smoother is a recursive algorithm designed to estimate the state of a dynamical system
from noisy observations. It is formulated within a state-space framework, which separates the system
dynamics from the measurement process. In the nonlinear case, the system dynamics are described
by the state equation

xk = ϕ(xk−1, tk−1) +wk, (2)

where xk represents the state vector at time tk, and ϕ(x, t) is a (potentially nonlinear) function. The
process noise wk is white noise with covariance Q. The measurement process, is in turn described by
the measurement equation

yk = h(xk, tk) + vk, (3)

where h(x, t) is a nonlinear function mapping the state to the observed measurements yk, and the
measurement noise vk is white noise with covariance R.
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EKS of FPD signals 3

The Kalman Smoother then estimates the hidden state xk at time tk given all N measurements, i.e.
it computes p(xk|y1:N). It does so, such that it minimizes the mean squared error of the estimated
state vs. the true state. Strictly, this applies only when ϕ(x, t) and h(x, t) are linear. Yet, the extended
Kalman smoother (EKS) used here performs very well if the linearizations are as adequate as in our
case. The Kalman Filter in turn estimates xk at time tk given only the measurements up to time tk, i.e.
it computes p(xk|y1:k), as needed in real-time applications.

2.2 The model

In this work we will take a different approach in modeling the atomic sensor, that strays from the
traditional conceptualization in which ϕ(x, t) is typically a discretization of a differential equation – ’the
dynamics’ – and h(x, t) is a function modeling the relationship of the hidden state to the measured
quantity – ’the measurement’. Rather we focus on the statistics of the data, namely that (2) and (3) both
have additive white noise to derive a more versatile model.

To extract the Larmor frequency of the spin precession signal, we adapted the approach of La Scala et
al. [20], which applies an extended Kalman filter (EKF) to track a harmonic signal with low signal-to-
noise ratio (SNR) and slowly varying frequency f(t) as is typical in spin precession measurements.
The main idea is to derive the analytic expression for the Fourier coefficients of the harmonic signal
(4) and use this as the measurement equation (3) to compare the model prediction to the Fourier
coefficients of the signal, rather than using the time-domain model (4) itself. To this end, the signal
model is separated into non-overlapping blocks, each of duration Tbl = ∆tNbl with Nbl sample points
(separated by the sampling period ∆t) in which the frequency f0+ δfk and amplitude Ak are assumed
to be constant

zk(tn) = Ak cos {2π [f0 + δfk] tn + φk}+ ηk (tn) , (4)

with additive Gaussian noise η(t) of variance σ2
η . φk = Σk−1

i=0 2πδfkTbl + φ0 then is the accumulated
phase at the beginning of the k−th block and f0 is the part of the frequency that fits integer periods
into the block, i.e. cos (2π(f0 + δfk)Tbl) = cos (2πδfkTbl). The discrete Fourier transform of each
block then reads

Fzk(fm) =
Nbl−1∑
n=0

zk(tn)e
−i2πfmtn = hm (xk) + vm,k (5)

=
Ak

2

(
eiφk

1− ei2πδfkTbl

1− ei2π(f0+δfk−fm)∆t
+ e−iφk

1− e−i2πδfkTbl

1− e−i2π(f0+δfk+fm)∆t

)
+ vm,k, (6)

where , fm = m
Tbl

,m = 1, ..., Nbl. Since the Fourier transform is linear, the Gaussian white noise ηk(t)
transforms into independent Gaussian noise components vm,k = Fηk (fm) in the Fourier coefficients,
with variance of the independent real and imaginary parts

σ2
v =

2

Nbl

σ2
η (7)

that is significantly reduced compared to that of ηk. Thus, the Fzk(fm) themselves form a time series
with white Gaussian noise components, and are therefore compatible with the EKS framework.
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L. Mertenskötter, J. Riebesehl et al. 4

Figure 1: EKS tracking of a simulated signal with time-dependent frequency variation illustrating the
variance/stiffness trade-off. The true frequency (black dashed line) is followed by the model with
artificially large Q (blue) even when the frequency changes rapidly in time. Meanwhile, the model with
artificially small Q (red) exhibits a maximum slew rate that is at some point exceeded by the rate of
change of the frequency. Conversely, where the frequency is constant, the model with small Q has
much smaller variance and outperforms the model with large Q.

The evolution of the hidden variables is modeled by a typical augmented Kalman filter approach,

xk =


Ak

∆Ak

φk

δfk
∆δfk

 =


Ak−1 +∆Ak−1

∆Ak−1

φk−1 + 2πδfk−1

δfk−1 +∆δfk−1

∆δfk−1

+wk, (8)

with independent integrated random walks in the amplitude and frequency offset, while the phase is
only an auxiliary variable that is computed as the numerical integral of the frequency. The process
noise wk is white noise with covariance

Q = diag
([
0 Q∆A 0 0 Q∆δf

])
, (9)

such that the variables A, δf , and φ that feed into the model through (6) are integrated and twice-
integrated white noise, respectively. This choice of integrated model for the state evolution reduces the
variance of the tracking, but also reduces its slew rate, as the integration amplifies slow components of
the model while suppressing fast ones. The filter then compares the estimated state not to the signal
directly in the time-domain, but rather to its Fourier coefficients (6), which serve as the measurement
model

yk (xk) =

hM−L(xk)
...

hM+L(xk)

+

vM−L,k
...

vM+L,k

 . (10)

Rather than operating on all Fourier coefficients, the EKS only incorporates a range of frequencies
around f0 = fM , controlled by the parameter L, which determines how many spectral bins contribute
to the estimation. A larger L improves robustness to frequency drifts but introduces more noise and
thus reduces precision, while a smaller L improves precision but reduces adaptability. By tuning L, this
method enables reliable frequency tracking even in extreme noise conditions. Frequency drifts in DC
magnetometry systems are typically very small, and it is sufficient to choose L = 1.
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EKS of FPD signals 5

The static parameters of the model

θ = {Q,R, δf0, A0} , (11)

that is, the process noise covariance Q, the measurement noise covariance R, and the starting
values δf0 and A0 are all optimized separately using an algorithm based on expectation maximization.
Details on the algorithm can be found in the supplementary material. An important strength of this
model is that (3) and (2) are entirely free of system-dependent parameters that would need to be
known in order to perform the tracking. The only static parameters in the Kalman smoother itself are
noise-covariances and starting values in (11), which are inherently present in any state-space filtering
problem. Optimization of the process covariances Q is particularly vital to the performance of the EKS,
as the tracking becomes too stiff when it is too small, while a Q that is too large results in a large
variance of the estimates, as is illustrated in Fig. 1.

2.3 Least Square Analysis as Reference Method

To separate the nonlinear signal dependence on frequency f and phase offset φ0 at t = 0 for a signal
obeying S(t) = A sin (2πft+ φ0) within the least squares framework, an equivalent model function,
commonly referred to as the sine-cos-fit (SCF) is used

S(t) = As cos (2πft) + Ac cos (2πft) + C0, (12)

which allows to calculate the signal amplitude of the corresponding data set by A =
√

A2
s + A2

c and
the phase at t = 0 by φ0 = arctan (Ac/As) and accounts for a constant signal offset C0. Fitting
data to (12) permits the use of the variable projection (VP) method [11] wherein the linear terms are
estimated separately from the nonlinear frequency dependence. The method alternates between a
linear least-squares fit of the linear parameters As, Ac, and C0, and a non-linear least-squares fit of
the frequency f using the Levenberg-Marquardt algorithm. The uncertainties of the four parameters uf ,
uAc, uAs, and uC0 are obtained by scaling the covariance matrix with the mean squared errors of the
residuals. The covariance matrices for f and the other three parameters are obtained from the two
separate fitting procedures of the VP, respectively. The start parameter for f for the fitting process, is
determined beforehand by performing a FFT on the complete dataset and searching for the frequency
bin with the highest peak in a given range. The start values for the parameters As, Ac, and C0 are set
to 1, since their estimation via linear least squares is largely insensitive to the choice of starting values.

As the function (12) does not take into account the exponential decay of the amplitude, the entire
time domain data is divided into non-overlapping blocks of equal length. These blocks are chosen to
be short enough that the signal amplitude can be assumed constant, yet long enough to sufficiently
reduce the variance of the least-squares estimates. As the uncertainty (i.e., standard deviation) of
the fitted parameters scales inversely with the square root of the number of sample points, assuming
independent, homoscedastic Gaussian noise [21], in principle a longer block length should reduce the
uncertainties. However, in our experimental data this is compromised by the signal amplitude decay
and frequency drifts due to a drift in B0.

3 Comparing the methods on simulated data

To quantitatively determine which of the methods can provide better frequency estimates in free
precession decay (FPD) signals, we turn to a broad simulation study. The characteristic properties
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of such a signal are its exponential amplitude decay and the time-dependence of the true frequency,
which is in turn determined by the fluctuations of the true magnetic field strength. To represent this
class of signals, we use the phenomenological model

y(tk) = A0 e
−tk/T

∗
2 sin {2πf(tk)tk + φ0}+ η(tk), (13)

where A0 is the initial signal amplitude, T ∗
2 the effective time constant of the transverse spin-relaxation

leading to loss of phase-coherence and thus to exponential signal decay, f(t) the time-varying
frequency, φ0 an initial phase and finally, η(t) subsumes all noise sources accumulated within the
measurement data. The index k = 0 . . . N indicates a discretely sampled signal with sampling rate fs.

We generated simulated signals for different value combinations of these parameters to evaluate the
methods on. We are mainly interested in investigating the influence of A0 and the strength of frequency
fluctuations, while T ∗

2 and the variance of η are fixed for a certain experimental setup.

The stochastic nature of field fluctuations is emulated by modeling the time dependence of the frequency
with a random walk plus a constant offset fc. An instance of a random walk is generated by cumulatively
summing discrete random increments δf drawn from a Gaussian distribution with variance σ2

δf . The
magnitude of the frequency drift is quantified by the diffusion constant D of the random walk, with

D =
σ2
δffs

2
. (14)

The second parameter to be varied is the initial amplitude A0, giving an initial SNR

SNR0 =
A2

0

2σ2
η

. (15)

For simplicity, η(t) is white Gaussian noise with fixed variance σ2
η . Real experimental signals, however,

can also contain low-frequency magnetic field perturbations and additional noise signals with frequency
components that do not originate from the spin precession, e.g. from power-line or setup vibrations.
Because the Kalman smoother method effectively applies a band-pass filter these deviations from the
model can be neglected unless they are close in frequency to the signal itself.

Due to the stochastic nature of the simulated signals, multiple repetitions were simulated per set of
parameters and the ensemble means are reported. The fixed parameters of this study are shown in
the supplementary material. They were selected to closely resemble those of the measured data. We
generated an ensemble of signals according to (13) for a range of values of D and SNR0. For each
instance, both the SCF and the EKS methods were applied.

For the SCF, a broad range of block sizes were evaluated for each D and SNR0 independently.
Ultimately, the block size which results in the estimate with the lowest MSE was selected as the best
estimate (supplementary material 2.4). Note that this is the best case for the SCF estimate, and this
selection method is only available in simulation.

The application of the EKS includes the full parameter optimization routine using the EM algorithm. Here,
we intentionally kept the initial parameters for the optimization fixed to emulate zero prior knowledge
about the signal. This demonstrates the method’s robustness as the optimization’s convergence does
not critically depend on the initial parameters. The only parameter which has to be adapted by simulation
studies is Tbl,EKS = 4.5 s providing valid uncertainty bounds for the EKS (supplementary material 2.3).
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Figure 2: Quantitative comparison of the SCF against the EKS in a simulation study. a) log2 of the
mean ratio of the frequency estimate errors. Blue indicates a better performance of the EKS over the
SCF, red the opposite. The star marker indicates a rough estimate of our experimental conditions. b)
Horizontal slice through a). The RMSEs of individual simulation runs are displayed as markers, the
solid lines indicate the mean. c) displays a vertical slice.

3.1 Results

The results of this study are summarized in Fig. 2. The frequency estimation errors of both methods
are compared by calculating the ratio of their root mean squared errors (RMSE). Using the expression

ρRMSE,f = log2
RMSEf,EKS

RMSEf,SCF

, (16)

a comparative measure is obtained. ρRMSE,f is zero when the errors are equal, becomes negative for
lower error of the EKS frequency estimate, and positive for the opposite case. For a large portion of the
parameter space in Fig. 2 a), ρRMSE,f is close to−1, indicating an improved frequency estimate of the
EKS by a factor of 2. For low SNR and very low frequency drift, ρRMSE,f becomes positive, indicating
that the SCF estimate should be used in these regions. This seems consistent with the observation that
the SCF operates closer to the Cramér–Rao lower bound (CRLB) for no frequency drift (supplementary
material 2.5). Continuously reducing the frequency drift asymptotically approaches this regime.

We also compared the amplitude estimates, where the EKS significantly outperforms the SCF. This
is to be expected, as the models don’t consider the exponential signal decay in order to stay free
of unknown parameters. For the longer SCF block lengths, this model mismatch leads to a stronger
degradation of estimation performance in the time-dependent amplitude (supplementary material 2.2).
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B0 OMG

CYFL

RF

CS

PBS

λ/4

Figure 3: a) Schematic of the setup as used for 3He spin precession measurements. For MEOP, light
from a laser (CYFL) via some optics (PBS and a λ/4) is shone on the metastable 3He generated by a
radio-frequency (RF) discharge. A current source (CS) attached to a coil inside the four-layer shield
generates the B0 field. The OMG sensor is used for readout. b)/c) Experimental gradiometer signal
from the OMG sensor. b) Time domain of the signal. The inset shows the fast oscillations caused by
the 3He spin precession. c) Power spectral density of the signal.

4 Application to experimental data

Finally, we assess both methods on real experimental data. For this 3He spin precession measurements
were performed by a setup as sketched in Fig. 3 a). A glass cell of 3 cm diameter filled with 10 torr 3He
was positioned within a mu-metal shield which allows to generate a constant holding field B0 in the
µT-range and a pulsed B1-field (⊥ B0) to induce the π/2 spin flip. Signal detection of the FPD was
performed alike shown in [22], applying a commercial dual cell optical pumped rubidium magnetometer
in gradiometer arrangement (OMG). To maintain sufficiently high signal metastability exchange optical
pumping (MEOP) technique [23] was used to polarize nuclear spins of the 3He atoms.

Due to the T ⋆
2 time of about 50 minutes, signals over a time-span of nearly four hours could be

measured as shown in Fig. 3 b). The inset shows a zoomed-in view of the sinusoidal signal stemming
from the precessing 3He magnetization which is generating a time-varying field difference seen by the
two Rb cells. The ≈ 50 pT amplitude can be calculated to stem from ≈ 8% 3He polarization [24]. The
large offset of ≈ 2 nT reflects the background field gradient of ≈ 1nT/cm explaining the relatively
short T ⋆

2 time as compared to measurements obtained in a large shielded room [14] and common in
small shielding environment [25]. The dominant peak at ≈ 84.6Hz in the power spectrum in Fig. 3c)
stems from the FPD signal corresponding to a constant background field of ≈ 2.61µT.

Both analysis methods were applied directly to the OMG time-domain signal without any pre-processing.
Again, Tbl,EKS = 4.5 s was used for the EKS as determined in the simulation study. For the SCF,
multiple block lengths were evaluated as no clear criterion is available to select the optimal block length
in the RMSE sense purely from data. The simulation study indicated that the optimal block length for a
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Figure 4: Frequency tracking on experimental data, comparison of the methods. Uncertainty intervals
are two standard deviations. b) and c) are zoomed insets of a).

signal with the given parameters should be close to 200 s (supplementary material 2.4).

The frequency estimates over time are shown in Fig. 4. In a), the estimates over the full time series are
shown without error bars for visibility. The SCF estimates of any block lengths are scattered around the
EKS estimate with increasing variance at larger times. This is caused by the exponential amplitude
decay and subsequent decrease in SNR. Fig. 4 b) shows a zoom to the beginning of the measurement,
where the SNR is high. Here, the effect of a reduced time resolution when selecting very large block
lengths for the SCF becomes apparent. For the smaller block length of 60 s the tracking of fluctuation
dynamics is possible, however, resulting in higher uncertainty margins, a typical bias-variance tradeoff.
Note that the SCF with the largest block length applied here can not resolve the upwards swerve at
≈ 300 s while the uncertainty interval is much smaller than this variation, clearly seen with the shorter
block lengths and the EKS. This hints at unreliable uncertainty estimates of the SCF for too large block
lengths, however, with no analytical measure to judge on this.

In Fig. 4 c) the frequency estimates towards the end of the measurement with low SNR are shown. All
results agree within their uncertainty intervals. Notably, the EKS uncertainty have a similar magnitude
to SCF uncertainty intervals which use close to 2 orders of magnitude larger block length. An obvious
improvement to the SCF method would be the introduction of an SNR-adaptive block length in future
work. However, it is not clear which criterion should be used to determine said block length.

These results highlight the flexibility of the EKS, as it does not need to be tuned manually to perform
best in a wide range of parameter regimes. All tuning is handled automatically by the EM algorithm.

5 Conclusion

In this work we have demonstrated the use of extended Kalman smoothing for precise frequency
estimation in 3He nuclear spin precession signals aimed to be used for absolute field magnetometry.
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L. Mertenskötter, J. Riebesehl et al. 10

Through simulation studies, we have shown that the EKS outperforms the nonlinear least squares
fit based state of the art method for a wide range of experimental conditions. In addition, we have
demonstrated the robustness of the method by applying it to an experimental signal with significant
perturbations. For accessibility, we have provided a robust and easy to use implementation of the
method.

Data availability statement

The code that supports the findings of this study is available from the corresponding author upon
reasonable request.

Supplementary Material

A Mathematical details on the extended Kalman smoother method

In this section, the equations for the Kalman smoothing approach presented in the main text are given
for reproducibility. For derivations and more detail please refer to [26].

A.1 Extended Kalman filtering and smoothing equations

The EKS discussed in this work relies on a forward-backward recursion over the signal to be applied. In
the first forward recursion, the extended Kalman filter is applied by using the filtering equations given as

x̂k = ϕ(xk−1, tk)

P̂k = Jϕ(x)
∣∣∣
xk−1

Pk−1Jϕ(x)
T
∣∣∣
xk−1

+Qk

Sk = Jh(x)
∣∣∣
x̂k

P̂kJh(x)
T
∣∣∣
x̂k

+Rk

Kk = P̂kJh(x)
T
∣∣∣
x̂k

S−1
k

vk = yk − h(x̂k)

xk = x̂k +Kkvk

Pk = P̂k −KkSkK
T
k

(17)

where Jϕ(x)
∣∣∣
xk

indicates the Jacobian of a function ϕ with respect to x, evaluated at xk. For k = 0

an initial state x0 and its covariance P0 are required. In our method, we keep Qk and Rk constant
over k.

In the second step, the EKS estimates are calculated using the smoothing equations:

Gk = Pk

[
Jϕ(x)

∣∣∣
xk

]T
P̂−1

k+1

xs
k = xk +Gk

[
xs
k+1 − x̂k+1

]
Ps

k = Pk +Gk

[
Ps

k+1 − P̂k+1

]
GT

k

(18)
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This backwards recursion is initialized at k = N with xs
N = xN and Ps

N = PN . The smoothing
estimates xs

k for k = N . . . 0 contain the EKS frequency and amplitude estimates. The diagonal
elements of the covariance matrices Ps

k contain the marginal uncertainties of the estimates.

A.2 Robust and fast parameter optimization with the Expectation-Maximization
algorithm

The filtering and smoothing equations contain static parameters which need to be optimized for
the method to perform optimally. These parameters are the process/measurement noise covariance
matrices Q and R and the initial state and state covariance, x0 and P0.

A well documented algorithm for this purpose is the Expectation-Maximization (EM) algorithm [26, 27].
It iteratively maximizes the likelihood function and can be approximately solved using closed form
analytic expressions. Using the auxiliary variables

Ck = Ps
kG

T
k−1 + xs

k

[
xs
k−1

]T
Σk = Ps

k + xs
k [x

s
k]

T

Λ(j+1) =
1

T

N∑
k=1

Σk −Ck

[
Jϕ(x)

∣∣∣
xs
k

]T
− Jϕ(x)

∣∣∣
xs
k

CT
k − Jϕ(x)

∣∣∣
xs
k

Σk−1

[
Jϕ(x)

∣∣∣
xs
k

]T
Ω(j+1) =

1

T

N∑
k=1

vkv
T
k − Jh(x)

∣∣∣
xs
k

Ps
k

[
Jh(x)

∣∣∣
xs
k

]T
(19)

the EM update equations are expressed as

R(j+1) = (1− αR)Ω
(j+1) + αRR

(j)

Q(j+1) = (1− αQ)Λ
(j+1) + αQQ

(j)

P
(j+1)
0 = (1− αP0)

[
Ps

0 + (xs
0 − x0)(x

s
0 − x0)

T
]
+ αP0P

(j)
0

x
(j+1)
0 = (1− αx0)x

s
0 + αx0x

(j)
0 .

(20)

Here we have added exponential smoothing to the update equations in the form of a convex combination
of the new and previous parameter estimate. In practice, this improves the convergence of all parameters
since it allows individual tuning of the convergence speeds. Throughout this work, we have used
αR = αx0 = αP0 = 0.8 and αQ = 0. Q is the slowest parameter to converge and this adjustment
can help to equalize the parameter convergence speeds.

Due to numerical inaccuracies, it is possible that the covariance matrices loose the positive semi-
definiteness property they are required to have. To ensure that Q(j+1), R(j+1) and P

(j+1)
0 are positive

semi-definite, we enforce this property by applying to function

A→ Re
(√

AAT
)
. (21)

While other projections exists, this particular one has proved to be the most reliable.

A.3 Bisection-like algorithm for EM

Simply iterating over the EM update equations (20) does eventually lead to convergence. However, it
often requires a set of well-selected initial parameters. In addition, convergence can be slow as the
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optimum is approached, especially if the initial conditions are not well conditioned. To improve these
the convergence speed and to reduce dependence on initial parameters, we add an optional bisection
inspired algorithm on top of EM. The algorithm is defined in Alg. 1 in pseudo-code.

Algorithm 1: Bisection-like algorithm for EM to improve convergence speed of Q.

Input :(β,γ, βend,Ξ, J, Jinit, Jmax)
1 perform Jinit EM iterations using Eqs. (20);
2 j ← Jinit;
3 while any(βi > βend) and (j < Jmax) do
4 perform J EM iterations using Eqs. (20);
5 j ← j + J ;
6 B← ⊮;
7 for i = 1..dims(Q) do

8 ∆Q← Q
(j)
i,i −Q

(j−J)
i,i ;

9 if ∆Q > 0 then
10 if γi ≥ 0 then
11 Bi,i ←

√
βi ;

12 else
13 βi ← βΞ

i ;
14 Bi,i ←

√
βi ;

15 end
16 γi ← 1;
17 else
18 if γi ≥ 0 then
19 Bi,i ←

√
1/βi ;

20 else
21 βi ← βΞ

i ;

22 Bi,i ←
√

1/βi ;
23 end
24 γi ← −1;
25 end
26 end
27 Q(j) ← BQ(j)BT

28 end

This algorithm applies J EM iterations and amplifies the convergence trend of the diagonal elements of
Q. If the matrix element Qi,i has converged to higher values within J steps, it is multiplied with a factor√
βi larger than 1. For a downwards trend, it is multiplied with 1/

√
βi < 1. βi is initially large to cause

large jumps in Qi,i. Initial large jumps ensure that a large portion of the parameter space is explored
during the optimization. While Qi,i is closing in on the true value through continuous application of the
EM algorithm, βi is shrunk closer to unity using βi ← βΞ

i with 0 < Ξ < 1 whenever the sign of the
previous trend amplification had the opposite sign γi. This causes smaller and smaller jumps to home
in on the true value for Qi,i. This ensures that βi monotonically shrinks. The process terminates when
βi < βend with βend close to 1.
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A.4 Initial values for EM parameter optimization

The modifications and tuning of the EM algorithm presented above lead to apparent independence
of the convergence of the initial parameters. Hence we are able to use the same hyper- and initial
parameters for all applications of the EKS in this work. The only exception are the initial values for
amplitude (Aest

0 ) and frequency (δestf ) of the signal, which appear in x0. They are estimated using the
same approach as for the nonlinear least squares method. All other initial parameters are:

Table 1: Hyper- and initial parameters for EKS parameter optimization

Parameter Value

Q(j=0) diag(10−5, 10−5, 10−5, 10−5, 10−4)

R(j=0) diag(102)

x
(j=0)
0

[√
Aest

0 /(4π), 1.0, δestf , 0, 0
]T

P
(j=0)
0 diag(10−1, 10−1, 10−1, 10−2, 10−2)

Ξ 0.75

γi 0

βi 100

βend [βi]
−26

J 20

Jinit 200

Jend 100 · J

B Further simulation study results

Here we present further results from the simulation study shown in the main text, but were left out due
to space constraints.

B.1 Simulation Study Parameters

B.2 Amplitude RMSE comparison

Just as the ratio of the frequency estimation RMSE of both methods are compared in the main text, we
can also compare the amplitude estimates of the methods. Analogously to the definition in the main
text, we define the ratio of amplitude RMSE as

ρRMSE,A = log2
RMSEA,EKS

RMSEA,SCF

. (22)
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Table 2: Fixed parameters in the simulation study.
Parameter Value

N 5.4Msamples
fs 500Hz
fc 84.06Hz
T ∗
2 3142 second

ση 10pT
φ0 0

Nrepetitions 50
Nbl,EKS 4.5 s · fs

This ratio, alongside with slices through the parameter space, are displayed in Fig. 5. The ratio is below
0 everywhere, indicating that the amplitude time series estimation of the EKS is significantly better
that the SCF estimation. This is due to the selection of the block length of the SCF: The block length
that produces the lowest frequency RMSE is selected, which is often very long compared to the time
scales of the exponential decay of the amplitude. Hence, the time resolution is too low to resolve the
exponential decay, leading to large RMSE.

While the SCF block length could be optimized to produce a significantly lower amplitude RMSE, this
would result in a larger frequency RMSE. This tradeoff can be avoided using the EKS, as the same
model parameters produce both good frequency and amplitude estimates.

B.3 Validity of EKS uncertainty intervals

As the EKS is a Bayesian method, it inherently produces uncertainty estimates for its frequency
estimates. However, since the EKS can only solve the nonlinear state space model approximately via
linearization, we checked whether the uncertainty intervals accurately reflect the frequency estimation
error.
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Figure 5: Quantitative comparison of the SinCos Fit against the EKS in a simulation study. a) log2 of
the mean ratio of the amplitude estimate errors. Blue indicates a better performance of the EKS over
the SCF, red the opposite. The star marker indicates a rough estimate of our experimental conditions.
b) Horizontal slice through a). The RMSEs of individual simulation runs are displayed as markers, the
solid lines indicate the mean. c) displays a vertical slice.
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Figure 6: Percentage of true frequency samples f(tk)true within the 1σ bounds of the EKS frequency
estimate.

The EKS assumes Gaussian probability distributions of its estimates. For each signal sample, the EKS
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produces a probability density function (PDF) that should represent the probability of the value of the
true frequency. Therefore, we can simply count the number of true frequency samples that lie within the
1σ interval of the estimated Gaussian PDF. If the estimated PDF represents the estimation error well,
about 68% of true frequency samples of the full time series should fall within the 1σ interval.

This count is visualized in Fig. 6. In a large region of the parameter space, the count is very close to
68% of samples within the 1σ interval, indicating that the uncertainty estimates are valid. This regime
corresponds to the region in which the EKS outperforms the SCF in frequency estimation. For very low
frequency fluctuation and low SNR, the count is closer to 50%, which indicates that the uncertainty is
underestimated. This coincides with the parameter regime where the SCF performs better than the
EKS.

Not shown here is that the uncertainty estimate depends on the selected block length of the EKS.
With small block lengths, the uncertainty tends to be underestimated while with large block lengths,
it is overestimated. Therefore, the selection of the correct block length is critical if the uncertainty
estimates are of importance for the application. Currently, no selection criterion other than comparison
to simulations exists.

B.4 Optimal SCF block length

As mentioned in the main text, the optimal block length of the SCF is selected based on the minimal
frequency estimation RMSE. In Fig. 7, these optimal block lengths are shown.
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Figure 7: Optimal block length for SCF in the minimal frequency RMSE sense.

B.5 Cramér–Rao lower bound (CRLB) for zero drift

In the case of zero drift (D = 0) we can calculate the CRLB [14] and compare it to the performance of
our estimators (see Fig. 8).
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Figure 8: At zero drift the SCF performs better then the EKS, while both methods perform close to the
theoretical variance limit of the CRLB.
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