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On the stability and efficiency of high-order parallel algorithms
for 3D wave problems

Raimondas Čiegis, Shalva Amiranashvili

Abstract

In this work, we investigate the stability conditions for four new high-order ADI type schemes
proposed to solve 3D wave equations with a non-constant sound speed coefficient. This analysis
is mainly based on the spectral method, therefore a basic benchmark problem is formulated with
a constant sound speed coefficient. For a case of general non-constant coefficient the stability
analysis is done by using the energy method. Our main conclusion states that the selected ADI
type schemes use different factorization operators (mainly due to the need to approximate the
artificial boundary conditions on the split time levels), but the general structure of the stability
factors are similar for all schemes and thus the obtained CFL conditions are also very similar.

The second goal is to compare the accuracy and efficiency of the selected ADI solvers. This
analysis also includes parallel versions of these schemes. Two schemes are selected as the most
effective and accurate.

1 Introduction

We are interested in solving the following Cauchy problem for the 3D wave equation for function u =
u(x, y, z, t), namely

∂2u

∂t2
= c2(X)

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
+ f(X, t), (1)

u(X, 0) = u0(X), ∂tu|t=0 = u1(X), u|∂Ω = g(X, t), (2)

t ∈ (0, T ], X := (x, y, z) ∈ Ω, Ω = (0, L)3. (3)

Here c(X) is the variable sound velocity, we assume that

0 < cm ≤ c(X) ≤ cM , for X ∈ Ω.

Before proceeding, it is important to make the following remarks.

1. The importance of the topic is emphasized by the fact that a number of different theoretical
approaches have been proposed to construct high-order compact schemes for solving the 3D
wave equations (see below).

2. This study does not consider the case of a non-stationary sound velocity coefficient c(X, t), we
restrict ourselves with c(X).

3. Compact approximations are defined as approximations of the Laplace operator on three-point
space mesh stencils in each dimension. Therefore, we deal with tridiagonal matrices, which is
very convenient for the efficient implementation of the algorithms.
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4. Integration in time is also done using high-order integration schemes. They are based on fac-
torized operators of the ADI (Alternating Direction Implicit) and LOD (Locally One-Dimensional)
types.

In order to reduce the linear algebra part of the time integration scheme to solution of systems with
tridiagonal matrices, the factorization methods should be supplemented with special boundary con-
ditions at all splitting steps. We prefer schemes where these boundary conditions are defined on the
same compact mesh stencil and the additional equations follow from the basic discrete equations.
Another popular approach, which employs one-sided high-order approximation techniques to resolve
the challenge of artificial boundary conditions, is beyond the scope of this paper.

5. One of our goals is to compare the stability factors of the evolution matrices of the selected
compact high-order schemes.

6. 3D problems require the use of discrete approximations on meshes with a very large number
of discrete points and unknowns defined on these points. Therefore, the efficiency of parallel
versions of these schemes is also analyzed.

Next, we give a brief overview of the main scientific results recently achieved in this direction. We limit
ourselves to the most important works that have a direct relation to the discrete schemes chosen as
the basic sources of our analysis.

Compact schemes of the ADI type are constructed in [1]. This article focuses on the analysis of
high-order compact ADI method for solving 2D coupled sine-Gordon equations. The classical Crank-
Nicolson method is used for the time discretization. It is important to note that not only the spectral
method but also the energy method is used for the stability analysis.

A family of high-order LOD schemes for the 3D elastic wave equation is constructed and analyzed in
[2]. We note that the same restrictions on the velocity coefficient c(X) and on boundary conditions
can be found in the earlier paper [3].

For 2D wave equations the analysis of fourth-order accurate compact finite difference schemes in
both space and time, was started in [4]. The discrete schemes have also been constructed for models
with variable sound speed. Although these schemes are implicit and only conditionally stable, they are
more efficient than the lower-order schemes. Fast time marching of the implicit schemes is achieved by
iterative methods such as conjugate gradient and multigrid. Stability is investigated using techniques
based on the energy method, as previously applied to nonstationary advection-diffusion problems.

Stability and accuracy analysis of 4th order finite-difference schemes for the wave equation is per-
formed in [5]. An important result of [5] is a new template of the discrete problems for which the
stability estimates can be proved by using the energy method. This technique is then further applied
to certain discrete schemes.

Ref. [6] can be considered as a continuation of Ref. [5]. One of the discrete schemes developed in [6] is
selected as a benchmark for a new class of compact high-order ADI type schemes developed by using
Numerov’s approximation approach. Thereafter, general properties of such schemes are investigated
for the wave equation with the variable sound speed coefficient.

A new family of LOD schemes with fourth-order accuracy in both space and time for the three-
dimensional (3D) acoustic wave equation is proposed in [3]. Still only wave equations in a homo-
geneous media are investigated and boundary conditions are also homogeneous. This family of LOD
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schemes has a different stability factor in comparison with ADI type schemes, moreover, LOD scheme
has a smaller CFL (Courant-Friedrichs-Lewy) constant.

A compact in space 4th order scheme is constructed in [7] by using the well known high-order ap-
proximation of the second derivative. The approximation error in time is O(τ 2). Both high-order ap-
proximations of the solution and its second derivative generate commuting operators. Therefore the
same combined energy and spectral analysis as in [4] can be applied. The obtained CFL constant is a
little bit worse than that obtained by the direct application of the spectral analysis for a constant sound
speed coefficient. Here, the boundary conditions in all computational experiments are homogeneous.

Parallelization and convergence of ADI time integrators for 2D finite difference acoustic wave propa-
gation are analyzed in [8]. Three parallel versions of each method are investigated. It is shown that
parallel solvers based on compact finite difference solvers with tridiagonal matrices and CUDA kernels
for a NVIDIA card give the highest performance.

The rest of the paper is organized as follows. In Section 2 the mathematical problem is formulated
for a general 3D wave equation with a variable sound speed coefficient. We are interested to analyze
state of the art compact high-order parallel finite-volume schemes.

Two different approaches are used.

First, the discretization is done by using the Padé approximation and application of the factorized
implicit regularization operator (ADI type schemes).

Second, the Numerov type approximations are used. The time integration is implemented by using
factorized operators and the important part consists in the formulation of artificial boundary conditions.

In Section 3 the stability analysis is performed for all constructed compact high-order discrete schemes
of the ADI type. Both the spectral and energy methods are used. In order to directly compare the
dynamic stability factors of discrete schemes, a simplified model problem is defined for which the
sound speed is constant. Then, the spectral method is used to find and compare CFL stability factors.
These factors are close to the stability conditions of classical symmetric explicit schemes.

The energy method is used for general coefficients c(x, y, z). However, we note that no complete
results are known for c ̸= const. A partial stability result is obtained for a simplified compact scheme.

In Section 4 results of computational experiments are given. We consider two test problems and pro-
vide errors, experimental convergence rates, and CPU times for a sequence of time and space steps.
It is shown that the EHOC scheme gives the most accurate approximations and is the most efficient in
terms of CPU time. The results of the computational experiments confirm both the theoretical accuracy
and the stability estimates.

The second set of the computational experiments deals with parallel computations. It is shown that
parallel versions of compact factorized high-order ADI schemes can be implemented very efficiently.
This property is important when simulating large-scale applied 3D wave propagation problems.

Finally, conclusions are given in Section 5.

2 High-order discrete schemes

The uniform time mesh ω̄τ on [0, T ] with the discrete step τ = T/N is defined by

ω̄τ =
{
tn : tn = nτ, n = 0, . . . , N

}
.
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In what follows, Hh denotes the Hilbert space of discrete functions on the uniform space mesh ω̄h on
Ω̄, where h is the space discretization parameter and

ω̄h =
{
(xi, yj, zk) : xi = ih, yj = jh, zk = kh, 0 ≤ i, j, k ≤ M

}
.

For the sake of simplicity, h is assumed to be the same in all three directions. We define the discrete
function

Un
ijk = U(Xijk, t

n), Xijk = (xi, yj, zk), (Xijk, t
n) ∈ ωh × ωτ ,

that approximates the exact solution u(Xijk, t
n).

First we formulate the benchmark problem, which is used to compare approximation errors and stability
results for different compact high-order discrete schemes. The problem is obtained by applying the
following assumptions for the mathematical problem (1)–(3):

c(X) := C, f(X, t) = 0, (4)

i.e., the velocity c(X) is constant.

In [9] a rather general technique was used to construct the fourth-order compact approximation of the
benchmark problem (1)–(4). This approach is based on the Padé approximation and the application of
the factorized implicit operator to the discrete second-order time derivative

(1 + ρδ2x)(1 + ρδ2y)(1 + ρδ2z)δ
2
tU

n = r2
[
δ2x

(
1 +

1

12
δ2y

)(
1 +

1

12
δ2z

)
+ δ2y

(
1 +

1

12
δ2x

)(
1 +

1

12
δ2z

)
+ δ2z

(
1 +

1

12
δ2x

)(
1 +

1

12
δ2y

)]
Un, (5)

where r = Cτ/h and ρ = (1− r2)/12. We use the standard notations

(δ2tU)n = Un+1 − 2Un + Un−1,

(δ2xU)ijk =Ui+1,j,k − 2Uijk + Ui−1,j,k,

(δ2yU)ijk =Ui,j+1,k − 2Uijk + Ui,j−1,k,

(δ2zU)ijk =Ui,j,k+1 − 2Uijk + Ui,j,k−1.

The popularity of this and similar ADI schemes stems from the fact that they can be solved efficiently
in three simple steps:

(1 + ρδ2x)U
n+1/3 = r2

[
δ2x

(
1 +

1

12
δ2y

)(
1 +

1

12
δ2z

)
+

δ2y

(
1 +

1

12
δ2x

)(
1 +

1

12
δ2z

)
+ δ2z

(
1 +

1

12
δ2x

)(
1 +

1

12
δ2y

)]
Un, (6)

(1 + ρδ2y)U
n+2/3 = Un+1/3, (7)

(1 + ρδ2z)δ
2
tU

n = Un+2/3. (8)

It is clear that the equations (6)–(8) can be solved as a sequence of 3M2 tridiagonal linear systems
with M ×M matrices.

An important note needs to be considered here. Such an ADI-type implementation preserves the
O(τ 4+h4) accuracy when special boundary conditions are used [10, 11]. A set of boundary conditions
consistent with the discrete equation (5) is the following [9]:

Un+1/3
∣∣
∂ωhx

= (1 + ρδ2y)(1 + ρδ2z) δ
2
tU

n
∣∣
∂ωhx

, (9)

Un+2/3
∣∣
∂ωhy

= (1 + ρδ2z) δ
2
tU

n
∣∣
∂ωhy

. (10)
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Since the scheme (5) is a three-level scheme, it requires the initial condition for U1. To construct the
fourth-order approximation the standard method of Taylor series can be used. The detailed definition
of this condition is not important for what follows (see [9] for all details).

Next, we consider the explicit high-order compact scheme (EHOC) constructed in [12]. In the following,
the discrete functions V n

x , V
n
y and V n

z approximate the second-order derivatives ∂2u
∂x2 , ∂2u

∂y2
and ∂2u

∂z2
,

respectively. Fourth-order Padé approximation is used to compute the values of these functions:

V n
x, i+1,jk + 10V n

x, ijk + V n
x, i−1,jk = 12

(δ2xU)nijk
h2

,
1 ≤ i < M,

0 ≤ j, k ≤ M,
(11)

V n
y, i,j+1,k + 10V n

y, ijk + V n
y, i,j−1,k = 12

(δ2yU)nijk
h2

,
1 ≤ j < M,

0 ≤ i, k ≤ M,
(12)

V n
z, ij,k+1 + 10V n

z, ijk + V n
z, ij,k−1 = 12

(δ2zU)nijk
h2

,
1 ≤ k < M,

0 ≤ i, j ≤ M.
(13)

An important advantage of this scheme is that the boundary conditions for the functions V n
ξ , ξ =

x, y, z follow directly from the exact boundary conditions of the differential mathematical model (1)–
(3). For the sake of brevity, we only give the boundary conditions in the x direction:

V n
x, Ijk =

[
1

c2(X)

(
∂2g(X, t)

∂t2
− f(X, t)

)
− ∂2g(X, t)

∂y2
− ∂2g(X, t)

∂z2

]
t=tn,

X=XIjk

,

I = 0,M, 0 ≤ j, k ≤ M, n > 0. (14)

Note that the coefficient matrices in the system (11)–(14) are tridiagonal, so the standard Thomas
algorithm [11] can be used to solve these linear systems efficiently.

The temporal part of the scheme is constructed applying the Taylor series in time:

Un+1
ijk = 2Un

ijk − Un−1
ijk +

c2ijkτ
2λ2

12

×
{
F n
i−1,jk + F n

i+1,jk + F n
i,j−1,k + F n

i,j+1,k + F n
ij,k−1 + F n

ij,k+1

+ c2i−1,jk

[
V n
x, i−1,jk + V n

y, i−1,jk + V n
z, i−1,jk

]
+ c2i+1,jk

[
V n
x, i+1,jk + V n

y, i+1,jk + V n
z, i+1,jk

]
+ c2i,j−1,k

[
V n
x, i,j−1,k + V n

y, i,j−1,k + V n
z, i,j−1,k

]
+ c2i,j+1,k

[
V n
x, i,j+1,k + V n

y, i,j+1,k + V n
z, i,j+1,k

]
+ c2ij,k−1

[
V n
x, ij,k−1 + V n

y, ij,k−1 + V n
z, ij,k−1

]
+ c2ij,k+1

[
V n
x, ij,k+1 + V n

y, ij,k+1 + V n
z, ij,k+1

]}
+ τ 2

(
1− 0.5c2ijkλ

2
)(

F n
ijk + c2ijk

[
V n
x, ijk + V n

y, ijk + V n
z, ijk

])
+

τ 4

12

(
∂2F n

∂t2

)
ijk

, (15)

where λ = τ/h.
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In [13] the following compact ADI scheme is introduced

Bc,h

(
1

c2
δtδt̄U

)
+ AhU =

1

c2
Fh on ωh × ωτ , (16)

Bc,h

(
1

c2
δtU

0

)
+ 0.5τAhU

0 = u1(t
n) + 0.5τF 0 on ωh,

Un
∣∣
∂ωh

= g(tn),

where the discrete derivative time operators are defined by

δtU
n =

Un+1 − Un

τ
, δt̄U

n =
Un − Un−1

τ
.

The splitting operator Bc,h is defined as the product of 1D operators defined on a three-point mesh
stencil

Bc,h := Bx,chBy,chBz,ch, Bξ,ch := Ih +
h2(h2 − τ 2c2)

12
Λξh, ξ = x, y, z,

where Ih is the discrete identity operator and the operators Λξh are defined as

ΛxhV =
(δ2xV )ijk

h2
, ΛyhV =

(δ2yV )ijk

h2
, ΛzhV =

(δ2zV )ijk
h2

.

3 Stability analysis

We recall that we consider two PDE benchmark problems. In the first one, the sound speed in (1)–(3)
is a general stationary function c(x, y, z). Stability analysis for discrete schemes that approximate this
problem is usually based on various versions of the energy method.

In the second simplified benchmark problem for (1)–(3), (4) the coefficient c is constant. This as-
sumption allows the use of spectral stability analysis. Exactly this technique allows us to compare the
stability properties of the high-order discrete schemes constructed in the previous section.

We approximate the problem (1)–(3), (4) by the explicit symmetric scheme [10, 11]

δ2tU
n = r2(δ2x + δ2y + δ2z)U

n, 1 ≤ n < N, (17)

where we recall that r = Cτ/h. The eigenvectors and eigenvalues of the discrete space operator δ2x
are defined by

−δ2xφ
l(xi) = λlφ

l(xi), l = 1, . . . ,M − 1, xi ∈ ωh, (18)

the eigenvectors and eigenvalues for the operators δ2y and δ2y are defined in a similar way. For the
following stability analysis it is very convenient that the set of eigenvalues can be written in an explicit
form (see, e.g. [10])

λl = 4 sin2
( lπh

2

)
, l = 1, . . . ,M − 1, 0 < λ1 < . . . < λM−1 < 4. (19)

Since the eigenvectors {φl, l = 1, . . . ,M −1} define a complete orthonormal set of basis functions,
we can write the solution Un in the form

Un
ijk =

M−1∑
l,m,r=1

qnlmrφ
l(xi)φ

m(yj)φ
r(zk), (20)

DOI 10.20347/WIAS.PREPRINT.3195 Berlin 2025



On the stability and efficiency of high-order parallel algorithms for 3D wave problems 7

where the coefficients qlmr are real numbers. We are interested in partial solutions in which the indices
l,m, r are fixed and qnlmr = (qlmr)

n. The discrete scheme (17) is stable if the following condition for
the stability factor qlmr

|qlmr| ≤ 1, 1 ≤ l,m, r ≤ M − 1,

holds.

Substituting (20) into the discrete scheme (17) and using the orthonormality of the basis functions
(eigenvectors), we obtain the following second order equations for the coefficients qlmr

q2lmr − [2− r2(λl + λm + λr)]qlmr + 1 = 0. (21)

It follows from the Hurwitz criterion that |qlmr| ≤ 1 if

|2− r2(λl + λm + λr)| ≤ 2 ⇒ 0 ≤ r2(λl + λm + λr) ≤ 4.

The most restrictive condition is obtained for the highest spectral component

3r2λM−1 ≤ 4 ⇒ 3r2 ≤ 1.

Thus we get the following stability result (in fact, this result is quite well known):

Lemma 1 The three-level symmetric discrete scheme (17) is stable if the time and space steps satisfy
the estimate

τ ≤ 1

C

√
3

3
h. (22)

For our stability analysis of high-order discrete schemes, this conditional stability estimate defines the
benchmark stability condition for explicit classical discrete schemes.

Now we consider the stability of the explicit symmetric scheme for a problem with a non-constant
sound speed c

1

c2(x, y, x)

1

τ 2
δ2tU

n =
1

h2
(δ2x + δ2y + δ2z)U

n, 1 ≤ n < N, (23)

using the energy method. Consider one of the canonical forms of three-layer schemes (see [10]):

Dh

(
1

τ 2
δ2t

)
Un + AhU

n = 0, (24)

where Dh, Ah are constant in time self-adjoint positive operators

Ah = A∗
h, Ah > 0, Dh = D∗

h, Dh > 0. (25)

For discrete functions V := {Vijk := V (xi, yj, zk), X ∈ ω̄h} in Hh we define the standard inner
product (·, ·) and the corresponding norm ∥ · ∥. We will use the following stability result [10]:

Theorem 1 The discrete scheme (24) under conditions (25) and the additional constraint

Dh ≥ τ 2

4
Ah, (26)

is stable with respect to the initial data.

DOI 10.20347/WIAS.PREPRINT.3195 Berlin 2025
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Example 1 Let us consider the explicit symmetric scheme (23) when the sound speed c is constant.
Then we have the operators

Dh =
1

c2
Ih, Ah = − 1

h2
(δ2x + δ2y + δ2z).

It is easy to prove that

(DhV, V ) =
1

c2
(V, V ), (AhV, V ) <

12

h2
(V, V ),

and the stability condition (26) is satisfied if

τ 2

4
Ah ≤ 3τ 2

h2
Ih ≤ 1

c2
Ih ⇒ τ ≤ 1

c

√
3

3
h.

The latter condition coincides with the estimate (22) derived by using the spectral method.

Example 2 Let us consider the explicit symmetric scheme (23) when the sound speed c(x, y, z) is
non-constant. We then deal with the diagonal matrix and the Laplace operator

Dh = diag

(
1

c2ijk

)
, Ah = − 1

h2
(δ2x + δ2y + δ2z).

By calculating scalar products

(DhV, V ) =
M−1∑
i,j,k=1

1

c2ijk
v2ijk ≥

1

c2max

(V, V ), (AhV, V ) <
12

h2
(V, V )

we obtain

Dh ≥ 1

c2max

Ih ≥ 3τ 2

h2
Ih ≥ τ 2

4
Ah.

So the stability condition (26) is satisfied if

τ ≤ 1

cmax

√
3

3
h.

Stability of the high-order discrete scheme (5). The sound speed is constant C in this problem,
so the spectral stability method can be used. The solution Un is written as

Un
ijk =

M−1∑
l,m,p=1

un
lmpφ

l(xi)φ
m(yj)φ

p(zk).

We restrict our analysis to the critical high eigenvector:

l = m = p = M − 1 with un
M−1,M−1,M−1 = (q)n.

Substituting the above Un into the discrete equation (5) we get an equation for the stability factor q

(1− ρλM−1)
3(q2 − 2q + 1) + 3r2λM−1(1− λM−1/12)

2q = 0.

DOI 10.20347/WIAS.PREPRINT.3195 Berlin 2025



On the stability and efficiency of high-order parallel algorithms for 3D wave problems 9

Taking into account that r = Cτ/h and ρ = (1−r2)/12, the following quadratic equation is obtained

q2 − (2− γ)q + 1 = 0, γ =
3r2λM−1(1− λM−1/12)

2(
1− λM−1(1− r2)/12

)3 , (27)

where λM−1 < 4. It follows from the Hurwitz criterion that discrete scheme (5) is stable if 0 ≤ γ ≤ 4.
By solving the inequality we get that the stability condition is satisfied for

Cτ < 0.607935083h.

This CFL estimate agrees well with results provided in [9]. We see that the stability constant of this
splitting scheme is a little bit larger than the CFL stability constant for the the standard second-order
explicit difference scheme (23) for which Cτ < 0.5773502693h.

Stability of the EHOC high-order discrete scheme (16). The non-constant sound speed is limited
by the “frozen” constant C = max |c(x, y, z)|. Therefore, the spectral stability method will be used to
analyze the stability of the modified discrete scheme.

The discrete solutions Un, V n are written as

Un
ijk =

M−1∑
l,m,p=1

un
lmpφ

l(xi)φ
m(yj)φ

p(zk),

V n
ξ,ijk =

M−1∑
l,m,p=1

vnξ,lmpφ
l(xi)φ

m(yj)φ
p(zk), ξ = x, y, z.

As in the previous case, we restrict our analysis to the critical high eigenvector with l = m = p =
M − 1 and set

un
M−1,M−1,M−1 = (q)n, vnξ,M−1,M−1,M−1 = (vξ)

n, ξ = x, y, z.

Substituting these expressions into the discrete equations (11)–(13) we get the following relation for
the stability factor q

(12− λM−1)(vξ)
n = −12

λM−1

h2
(q)n, ξ = x, y, z. (28)

Next, using the temporal part of the EHOC scheme (15) and relations (28), we get

qn+1 − 2qn + qn−1 = C2τ 2
(
1− C2τ 2

4h2
λM−1

)(
vnx + vny + vnz

)
= − 36λM−1

12− λM−1

C2τ 2

h2

(
1− C2τ 2

4h2
λM−1

)
qn.

The latter equation can be written in the following standard form

q2 − (2− γ)q + 1 = 0, γ =
36λM−1

12− λM−1

r2
(
1− r2

4
λM−1

)
,

where r = Cτ/h. It follows from the Hurwitz criterion that EHOC scheme is stable if

γ ≤ 4 ⇒ Cτ ≤ 0.5773502693h.

Thus, the CFL stability condition is the same as for the standard second-order explicit difference
scheme (23).

DOI 10.20347/WIAS.PREPRINT.3195 Berlin 2025
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The spectral stability analysis for a compact ADI scheme with variable sound speed coefficient.
In [14] a compact-higher order ADI scheme is proposed(

1−
c2ijk
12

νδ2x
1+δ2x/12

)(
1−

c2ijk
12

νδ2y
1+δ2y/12

)(
1−

c2ijk
12

νδ2z
1+δ2z/12

)(
δ2tU

n
)
ijk

= c2ijk

(
νδ2x

1 + δ2x/12
+

νδ2y
1 + δ2y/12

+
νδ2z

1 + δ2z/12

)
(Un)ijk, (29)

for the 3D acoustic wave equation with variable sound speed coefficient. Here ν = τ/h.

We will not consider a full convergence and stability analysis of this scheme, since its implementation
is based on an extended space mesh stencil and the one-sided approximations are used to formulate
additional boundary conditions. These details of the discrete scheme are not included in the stability
analysis, presented in [14]. The authors restrict themselves to the stability analysis of the simplified
(unfactorized) discrete equation

δ2t
1+δ2t /12

(
Un
)
ijk

= c2ijk

(
νδ2x

1+δ2x/12
+

νδ2y
1+δ2y/12

+
νδ2z

1+δ2z/12

)(
Un
)
ijk
. (30)

The stability analysis is based on the standard energy method, the well-known estimate for the spec-
trum of a self-adjoint operator A and a mapping of a real valued measurable function [15]:

σ
(
f(A)

)
⊆ f

(
σ(A)

)
,

where σ(A) is the spectrum of A and f
(
σ(A)

)
is the closure of the set f

(
σ(A)

)
.

The following stability condition

max
ijk

|cijk|τ <
h√
3
.

is proved in [14]. The latter equation is identical to the stability condition we have proved above for the
standard explicit second-order difference scheme (23).

In order to test the proposed stability analysis technique, we consider the scheme (29) in the case of
constant C . Applying the spectral form of the solution, the following quadratic equation is derived for
the stability factor:

q2 − (2− γ)q + 1 = 0, γ =

(
3r2λM−1

1− λM−1/12

)/(
1 +

r2λM−1

1− λM−1/12

)3

,

where r = Cτ/h. After simple transformations we get that parameter γ is equal to this parameter in
the stability equation of scheme (5). Thus ADI scheme (29) is stable if the CFL condition

Cτ < 0.607935083h

is satisfied. Clearly, this result is obtained for the constant sound speed C .

Stability of compact ADI scheme (16). Now we consider stability of high-order compact ADI scheme
(16). This scheme solves the 3D acoustic wave equation with a non-constant sound speed coefficient
c(x, y, z).

First, we examine the stability of this scheme when the basic technique of spectral stability analysis can
be applied, i.e., for the constant coefficient C . Here the stability factor q satisfies the same quadratic
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equation (27) as for the discrete scheme (5). Therefore the discrete scheme (16) is stable for the
constant speed of sound C , if again Cτ < 0.607935083h. For the general case of a varying sound
speed coefficient c(x, y, z), the stability analysis cannot be based on Theorem 1. Therefore a different
three-level in t template is proposed in [13]:

BhDhδtδt̄V + σh2
tAhδtδt̄V + AhV = F in Hh on ωτ , (31)

and the following sufficient stability conditions are formulated

Ah = A∗
h > 0, Bh = B∗

h > 0, Dh = D∗
h > 0,

AhBh = BhAh,

(1/4− σ)τ 2B−1
h Ah ≤ Dh.

This template cannot be used for the ADI scheme (16). However, one can construct a modified ADI
scheme for which the template easily gives the stability results. Let us consider the following factorized
ADI scheme [13]

B̄σ,h

(
1

c2
δtδt̄U

)
+ ĀhU = 0 on ωh × ωτ , (32)

The splitting operator B̄σ,h is defined as the product of 1D operators defined on a three-point mesh
stencil

Āh := −
(
s̄h,ys̄h,zΛx + s̄h,xs̄h,zΛy + s̄h,xs̄h,yΛz

)
, s̄h,ξ := Ih +

h2

12
Λξ,

B̄σ,h := B̄x,σhB̄y,σhB̄z,σh, B̄ξ,σh := Ih +
h2(h2−στ 2c2max)

12
Λξ, ξ = x, y, z.

The stability of this scheme follows directly from general estimates for the template scheme under the
conditions of CFL type. This nice stability property is obtained at some cost, as the approximation
order is reduced to O(τ 2 + h4).

4 Results of computational experiments

4.1 Experimental estimates of convergence rate and CPU time.

In this section, we provide a number of numerical experiments conducted in order to demonstrate the
accuracy and efficiency of the proposed higher-order compact ADI schemes for solving 3D acoustic
wave equations. All simulations are implemented using C++ language on the computer with Intel(R)
Core(TM) i7-12700 processors with 16 GB RAM.

First we solve the 3D test problem (1) with coefficients:

c(x, y, z) = 1, 0 ≤ x, y, z ≤ π, T = 1.

Initial and boundary data are defined according to the the exact solution

u(x, y, z, t) = cos
(√

3t
)
cos(x) cos(y) cos(z).
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Table 1: Errors e(τ), experimental convergence rates ρ(τ) and CPU times for the discrete solutions
of ADI scheme (5), EHOC scheme and ADI scheme (16) for a sequence of time and space steps
τ = T/N, h = π/M , e2(N) = e0(N).

(N,M) e0(N) ρ0(N) T0(N) e1(N) ρ1(N) T1(N) T2(N)

(40, 32) 8.04 · 10−8 — 0.044 5.69 · 10−8 — 0.042 0.045
(80, 64) 4.95 · 10−9 4.02 0.743 3.52 · 10−9 4.02 0.635 0.722
(160, 128) 3.10 · 10−10 4.00 15.34 2.21 · 10−10 3.99 10.45 13.02
(320, 256) 1.94 · 10−11 4.00 268.3 1.38 · 10−11 4.00 177.0 221.7

Errors e(τ), experimental convergence rates ρ(τ) and CPU times for the discrete solutions of ADI
scheme (5), EHOC scheme and ADI scheme (16) for a sequence of time and space steps τ =
T/N, h = π/M , e2(N) = e0(N) are presented in Table 1. It follows from computational results that
errors for two ADI schemes (5) and (16) are equal for this test problem.

It follows from the presented results that the convergence rates of all three discrete schemes are equal
to four. The CPU time for the EHOC scheme is the smallest one.

As the second example we solve 3D test problem (1) with coefficients:

c(x, y, z) = 1, 0 ≤ x, y, z ≤ π, T = 1,

f(x, y, z, t) = 4 exp(−t) cos(x) cos(y) cos(z)

Initial and boundary data are defined according to the the exact solution

u(x, y, z, t) = exp(−t) cos(x) cos(y) cos(z).

Errors e(τ), experimental convergence rates ρ(τ) and CPU times for the discrete solutions of EHOC
scheme and ADI scheme (16) for a sequence of time and space steps τ = T/N, h = π/M are
presented in Table 2.

Table 2: Errors e(τ), experimental convergence rates ρ(τ) and CPU times for the discrete solutions of
EHOC scheme and ADI scheme (16) for a sequence of time and space steps τ = T/N, h = π/M .

(N,M) e1(N) ρ1(N) T1(N) e2(N) ρ2(N) T2(N)

(40, 32) 3.12 · 10−8 — 0.169 1.36 · 10−7 — 0.233
(80, 64) 2.08 · 10−9 3.91 2.718 9.02 · 10−9 3.92 3.808
(160, 128) 1.33 · 10−10 3.96 44.58 5.77 · 10−10 3.97 62.55
(320, 256) 8.45 · 10−12 3.98 727.7 3.65 · 10−11 3.99 1052

It follows from the presented results that in the case of variable sound speed coefficients the conver-
gence rates of both discrete schemes again are equal to four. The CPU time for the EHOC scheme is
minimal also for this test problem.

4.2 Results of parallel computational experiments

We solved the second test problem. First, in order to test the efficiency of the parallel computers
used in all computational experiments we solved this problem by using the parallel version of classical

DOI 10.20347/WIAS.PREPRINT.3195 Berlin 2025



On the stability and efficiency of high-order parallel algorithms for 3D wave problems 13

explicit symmetric second order accurate discrete scheme

δ2tU
n = c2

(
δ2x + δ2y + δ2z

)
Un + F n, (x, y, z) ∈ ωh. (33)

Since a computational part of the algorithm (33) is reduced in comparison with high-order ADI type
schemes, this parallel solver can be used as a benchmark problem to test the efficiency of the com-
munication part of all parallel discrete schemes constructed in this paper.

Results for the symmetric second order accurate scheme (33) are calculated by using one computa-
tional node and a different number of cores p = 1, 2, 4, 8. These results are presented in Table 3,
here CPU time is denoted by Tp, speed up Sp = T1/Tp and efficiency Ep = Sp/p. Results are
presented for problems of two different sizes: a small size problem N = 160, M = 128 and a large
size problem N = 320, M = 256, where this information is denoted as T̃p, S̃p and Ẽp.

The space mesh ωh is split into 1 × 1 × 2, 1 × 2 × 2 and 2 × 2 × 2 sub-meshes. Each process is
responsible for computations at all discrete points of its mesh part.

Table 3: Results for the symmetric second order accurate scheme (33), one node with a different
number of cores p = 1, 2, 4, 8 is used. Here notation of CPU time Tp, speed up Sp and efficiency Ep

are introduced for a small size problem N = 160, M = 128 and T̃p, S̃p, Ẽp for a large size problem
N = 320, M = 256.

p Tp Sp Ep T̃p S̃p Ẽp

1 10.206 1 1 165.9 1 1
2 5.278 1.934 0.967 87.26 1.901 0.951
4 2.831 3.608 0.901 47.68 3.479 0.870
8 1.588 6.429 0.804 27.44 6.046 0.756

The obtained results agree well with the well-known theoretical complexity estimates of this parallel
algorithm. Still we remark on one interesting point, that in the case of the large size problem the usage
of the memory is not so effective as for the small size problem. This effect is explained by the fact that
we increase a number of cores but the size of the total memory remains unchanged.

Results of similar experiments for the parallel version of EHOC scheme are are given in Table 4. The
main new part of the parallel algorithm deals with a parallel solution of split systems with tridiagonal
matrices. It is implemented as a modification of the classical factorization algorithm when two pro-
cesses solve their parts of the system by moving in different directions from the left and right sides of
the system. They exchange information at the middle point of 1D mesh and continue calculation in the
backward direction. Thus the total amount of arithmetical operations is not increased and it is optimally
distributed among different cores.

It follows from the given results of experiments, that the efficiency Ep of the parallel EHOC version is
better than for the explicit symmetrical discrete scheme (33).

The second remark confirms the conclusion that for one node with different numbers of cores the
efficiency of memory usage is decreased for the large size problem.

Results of similar experiments for the parallel version of the ADI scheme (16) are given in Table 5. The
main new part of the parallel algorithm deals with a parallel solution of split systems with tridiagonal
matrix. It is implemented as it was done in EHOC parallel algorithm.

All conclusions are the same as for the parallel EHOC algorithm.
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Table 4: Results for the EHOC scheme where one node with a different number of cores p = 1, 2, 4, 8
is used. Here notation of CPU time Tp, speed up Sp and efficiency Ep are introduced for a small size

problem N = 160, M = 128 and T̃p, S̃p, Ẽp for a large size problem N = 320, M = 256.

p Tp Sp Ep T̃p S̃p Ẽp

1 44.541 1 1 727.7 1 1
2 22.437 1.985 0.993 366.9 1.983 0.991
4 11.672 3.816 0.954 192.4 3.781 0.945
8 6.571 6.778 0.847 109.8 6.630 0.829

Table 5: Results for the ADI scheme (16) where one node with a different number of cores p =
1, 2, 4, 8 is used. Here notation of CPU time Tp, speed up Sp and efficiency Ep are introduced for

a small size problem N = 160, M = 128 and T̃p, S̃p, Ẽp for a large size problem N = 320,
M = 256.

p Tp Sp Ep T̃p S̃p Ẽp

1 62.550 1 1 1052.4 1 1
2 31.729 1.971 0.986 575.03 1.830 0.915
4 17.025 3.674 0.919 287.53 3.660 0.915
8 9.736 6.425 0.803 169.36 6.214 0.776

In order to investigate a possibility to distribute the computational mesh among different nodes (and
cores of these nodes), we made computational experiments with a fixed total number of cores p = 8
distributed on different numbers of nodes. The following CPU times are obtained, where T8(n) denotes
CPU time

T8(1) = 169.36, T8(2) = 150.76, T8(4) = 143.37, T8(8) = 153.01,

for the case of 8 cores distributed among n nodes. These results show the influence of the size of
computer memory on a CPU time. This trend is even more important for larger 3D problems and their
CPU time is memory depended in many applications.

5 Conclusions

In summary, we have studied two main issues on the construction and analysis of high-order ADI-
type discrete schemes for solving 3D acoustic problem with variable sound speed coefficient. First,
we studied the stability of popular discrete schemes. The conclusion reached is that all the schemes
studied in this paper are stable under very similar CFL conditions. Note that this result was obtained for
the simplified benchmark problem when the coefficient c(x, y, z) was approximated by the constant
coefficient C . The challenge of developing efficient stability analysis techniques based on the energy
method remains unresolved.

The important point of our analysis is that for the selected ADI schemes artificial boundary conditions
are defined on the same stencil of space meshes. Only for one scheme the boundary conditions
for sub-steps are constructed by using larger stencils and one-sided approximations. There are no
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rigorous theoretical results on the stability of this particular ADI scheme with respect to such boundary
conditions.

The second part of this work was devoted to comparing the accuracy of new ADI-type schemes and
the efficiency of parallel versions of the solvers. The latter point is really important for solving 3D
problems. It is shown that for the selected test problems the EHOC schemes are the most accurate
and efficient. On the other hand, the parallel efficiency of all schemes is similar. It is planned to test
the efficiency of parallel solvers when more than 2 processes are used in one dimension. For example
Wang’s parallel algorithm can be used to solve systems with tridiagonal matrices.
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